WorldWideScience

Sample records for supernova neutrino background

  1. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  2. Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae

    International Nuclear Information System (INIS)

    Lien, Amy; Fields, Brian D.; Beacom, John F.

    2010-01-01

    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (±40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated ±5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < or approx. 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (≅87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.

  3. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  4. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  5. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  6. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  7. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  8. Flavor Oscillations in the Supernova Hot Bubble Region: Nonlinear Effects of Neutrino Background

    Science.gov (United States)

    Pastor, Sergio; Raffelt, Georg

    2002-10-01

    The neutrino flux close to a supernova core contributes substantially to neutrino refraction so that flavor oscillations become a nonlinear phenomenon. One unexpected consequence is efficient flavor transformation for antineutrinos in a region where only neutrinos encounter a Mikheyev-Smirnov-Wolfenstein resonance or vice versa. Contrary to previous studies we find that in the neutrino-driven wind the electron fraction Ye always stays below 0.5, corresponding to a neutron-rich environment as required by r-process nucleosynthesis. The relevant range of masses and mixing angles includes the region indicated by LSND, but not the atmospheric or solar oscillation parameters.

  9. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  10. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  11. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  12. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    Totsuka, Y.

    1991-01-01

    On February 25, 1987, a sheet of telefax came to us from S. A. Bludman, saying Supernova went off in Large Magellanic Clouds. Can you see it? This is what we have been waiting 350 years for exclamation point In few hours, more information arrived. But it was still too early to definitely identify the supernova as type I or type II. This paper reports that the type I supernova is an explosion of a complete star due to uncontrolled nuclear fusion, while the type II supernova is triggered by gravitational collapse of the Fe core of a massive star (≥8 solar mass). It is this type II supernova that would leave a neutron star or a black hole after the liberation of an enormous amount of energy (3 x 10 53 erg) in the form of neutrinos. Therefore only the type II supernova is a relevant place to look for neutrino signals. It was also frustrating that the time when the stellar collapse actually took place was not definitely determined, because it was believed that the supernova brightened up about a day after the collapse and there was an ambiguity in a time lag of the optical observation. There was a possibility that it had happened well before February 24

  13. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  14. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  15. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  16. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  17. Neutrinos and nucleosynthesis in supernova

    International Nuclear Information System (INIS)

    Solis, U; D'Olivo, J C; Cabral-Rosetti, L G

    2006-01-01

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment

  18. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  19. Supernova neutrinos and explosive nucleosynthesis

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  20. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  1. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  2. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  3. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  4. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  5. Supernova neutrino detection with LVD

    International Nuclear Information System (INIS)

    Selvi, M.

    2007-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy, is a ν observatory mainly designed to study low energy neutrinos from the gravitational collapse of galactic objects.We describe the characteristics of the supernova neutrino signal expected in the LVD detector and, in particular, we investigate the effect of neutrino oscillations. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ 13 , presently unknown.The experiment has been monitoring the Galaxy since June 1992, under increasing larger configurations: in January 2001 it has reached its final active mass M = 1 kt. LVD is one of the largest liquid scintillator apparatus for the detection of stellar collapses and, besides SNO, SuperKamiokande and Amanda, it is a charter member of the SNEWS network, that has become fully operational since July 1st, 2005. No gravitational core-collapse has been detected by LVD during 14 years of data acquisition; this allows to put an upper limit of 0.18 events y -1 in our galaxy at the 90% C.L

  6. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  7. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  8. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  9. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    Science.gov (United States)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  10. Neutrino Observation of Core Collapse Supernovae

    Science.gov (United States)

    Nakazato, Ken'ichiro

    The event rate of the supernova neutrinos are predicted for the future SK-Gd experiment. With an eye on the neutron tagging by Gd, the energy and angular distributions are calculated both for tagged events from inverse β decay reaction and untagged events from other reactions. As a result, it is indicated that the shock revival in the supernova is detectable through the decrease of the event rate and decline of the average energy of events. It is also implied that a careful treatment for the neutrino spectra is needed to investigate the untagged events owing to the high neutrino threshold energy of 16O reactions.

  11. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  12. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  13. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  14. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  15. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  16. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  17. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  18. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  19. Detection of supernova neutrinos by neutrino-proton elastic scattering

    International Nuclear Information System (INIS)

    Beacom, John F.; Farr, Will M.; Vogel, Petr

    2002-01-01

    We propose that neutrino-proton elastic scattering, ν+p→ν+p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with T p ≅2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from ν(bar sign) e +p→e + +n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ν μ , ν τ , ν(bar sign) μ , and ν(bar sign) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  20. Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrino in the case of the inverted mass hierarchy (m 3 1 2 ). This is an extended study of our previous study where all analyses are performed with normal mass hierarchy (m 1 2 3 ). Numerical analysis using a realistic supernova and presupernova model allow us to discuss quantitatively a possibility to probe neutrino oscillation parameters. We show that we can break partly the degeneracy of the solar neutrino problem (LMA or SMA) and probe the magnitude of θ 13 to some extent by the ratios of high-energy events and low-energy events at SuperKamiokande and SNO and the presence of the Earth effects. Further, if the magnitude of θ 13 is known roughly, we can identify the mass hierarchy

  1. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  2. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  3. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  4. Type II supernovae modelisation: neutrinos transport simulation

    International Nuclear Information System (INIS)

    Mellor, P.

    1988-10-01

    A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism [fr

  5. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  6. KamLAND Sensitivity to Neutrinos from Pre-supernova Stars

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Learned, J. G.; Maricic, J.; Matsuno, S.; Sakai, M.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND Collaboration

    2016-02-01

    In the late stages of nuclear burning for massive stars (M > 8 M⊙), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 M⊙ at a distance less than 690 pc with 3σ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.

  7. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  8. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  9. Neutrino Flavor Evolution in Turbulent Supernova Matter

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  10. Supernova neutrinos, giant resonances, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. I argue that the resulting spallation reactions are an important nucleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and approximately a dozen other light nuclei. 18 refs., 1 fig., 1 tab

  11. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  12. Monte Carlo study of neutrino acceleration in supernova shocks

    International Nuclear Information System (INIS)

    Kazanas, Demosthenes; Ellison, D.C.; National Aeronautics and Space Administration, Greenbelt, MD

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities rho>10 13 g cm -3 at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse

  13. Detection of supernova neutrinos with neutrino-iron scattering

    International Nuclear Information System (INIS)

    Samana, A. R.; Bertulani, C. A.

    2008-01-01

    The ν e - 56 Fe cross section is evaluated in the projected quasiparticle random phase approximation (PQRPA). This model solves the puzzle observed in RPA for nuclei with mass around 12 C, because it is the only RPA model that treats the Pauli Principle correctly. The cross sections as a function of the incident neutrino energy are compared with recent theoretical calculations of similar models. The average cross section weighted with the flux spectrum yields a good agreement with the experimental data. The expected number of events in the detection of supernova neutrinos is calculated for the LVD detector, leading to an upper limit for the electron neutrino energy of particular importance in this experiment

  14. Collective neutrino oscillations and r-process nucleosynthesis in supernovae

    Science.gov (United States)

    Duan, Huaiyu

    2012-10-01

    Neutrinos can oscillate collectively in a core-collapse supernova. This phenomenon can occur much deeper inside the supernova envelope than what is predicted from the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect, and hence may have an impact on nucleosynthesis. The oscillation patterns and the r-process yields are sensitive to the details of the emitted neutrino fluxes, the sign of the neutrino mass hierarchy, the modeling of neutrino oscillations and the astrophysical conditions. The effects of collective neutrino oscillations on the r-process will be illustrated using representative late-time neutrino spectra and outflow models.

  15. Neutrino nonstandard interactions in the supernova

    International Nuclear Information System (INIS)

    Das, C. R.; Pulido, Joao

    2011-01-01

    Neutrino nonstandard interactions (NSI) were investigated earlier in the solar case and were shown to reduce the tensions between the data and the large mixing angle solution predictions. We extend the previous framework to the supernova and evaluate the appearance probabilities for neutrinos and antineutrinos as a function of their energy after leaving the collapsing star with and without NSI. For normal hierarchy the probability for electron neutrinos and antineutrinos at low energy (E < or approx. 0.8-0.9 MeV) is substantially increased with respect to the non-NSI case and joins its value for inverse hierarchy which is constant with energy. Also for inverse hierarchy the NSI and non-NSI probabilities are the same for each neutrino and antineutrino species. Although detection in such a low energy range remains at present an experimental challenge, it will become a visible trace of NSI with normal hierarchy if they exist. On the other hand, the neutrino decay probability into an antineutrino and a majoron, an effect previously shown to be induced by dense matter, is, as in the case of the sun, too small to be observed as a direct consequence of NSI.

  16. Modelling neutrino and gamma-ray fluxes in supernova remnants

    International Nuclear Information System (INIS)

    Ballet, J; Cassam-Chenai, G; Maurin, G; Naumann, C

    2008-01-01

    Supernova remnants (SNRs) are believed to accelerate charged particles by diffusive shock acceleration (DSA) and to produce the majority of galactic cosmic rays, at least up to the 'knee' at 3-10 15 electron volts. In the framework of a hydrodynamic self-similar simulation of the evolution of young supernova remnants, its interaction with the ambient matter as well as the microwave and infrared background is studied. The photon spectra resulting from synchrotron and inverse Compton emission as well as from hadronic processes are calculated, as are the accompanying neutrino fluxes. Applying this method to the particular case of the SNR RXJ-1713, 7-3946, we find that its TeV emission can in principle be explained by pion decay if the ambient density is assumed to grow with increasing distance from the centre. The neutrino flux associated with this hadronic model is of a magnitude that may be detectable by a cubic-kilometre sized deep-sea neutrino telescope in the northern hemisphere. In this poster, a description of the supernova remnant simulation is given together with the results concerning RXJ-1713.

  17. Neutrino spectrum from SN 1987A and from cosmic supernovae

    International Nuclear Information System (INIS)

    Yueksel, Hasan; Beacom, John F.

    2007-01-01

    The detection of neutrinos from SN 1987A by the Kamiokande-II and Irvine-Michigan-Brookhaven detectors provided the first glimpse of core collapse in a supernova, complementing the optical observations and confirming our basic understanding of the mechanism behind the explosion. One long-standing puzzle is that, when fitted with thermal spectra, the two independent detections do not seem to agree with either each other or typical theoretical expectations. We assess the compatibility of the two data sets in a model-independent way and show that they can be reconciled if one avoids any bias on the neutrino spectrum stemming from theoretical conjecture. We reconstruct the neutrino spectrum from SN 1987A directly from the data through nonparametric inferential statistical methods and present predictions for the diffuse supernova neutrino background based on SN 1987A data. We show that this prediction cannot be too small (especially in the 10-18 MeV range), since the majority of the detected events from SN 1987A were above 18 MeV (including 6 events above 35 MeV), suggesting an imminent detection in operational and planned detectors

  18. Effects of neutrino trapping on supernova explosions

    International Nuclear Information System (INIS)

    Takahara, Mariko; Sato, Katsuhiko

    1982-01-01

    Effects of neutrino trapping on the mass ejection from the stellar cores are investigated with the aid of a simplified equation of state under the assumption of adiabatic collapse. It is found that mass ejection becomes violent only if the ratio of the trapped leptons to baryons, Y sub(L), lies in an appropriate range. If the value of Y sub(L) lies out of this range, mass ejection is difficult. It is also shown that as the thermal stiffness of the shocked matter increases, the range necessary for the violent mass ejection becomes wider. Possibilities of supernova explosion are discussed on the basis of these results. (author)

  19. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  20. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  1. Earth Effects and Mass Hierarchy with Supernova Neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb

    2009-01-01

    Collective neutrino flavor transformations take place deep inside a supernova if the neutrino mass hierarchy is inverted, even for extremely small values of θ 13 . We show that the presence (or absence) of Earth matter effects in antineutrino signal is directly related to the absence (or presence) of these collective effects, when the mixing angle θ 13 is small. Thus a neutrino signal from a galactic supernova may enable us to distinguish between the hierarchies even for small values of θ 13 .

  2. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    Science.gov (United States)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  3. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  4. Effects of neutrino oscillations on the supernova signal in LVD

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Nurzia, G.; Pesci, A.; Picchi, P.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Vissani, F.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2002-01-01

    We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D = 10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for ν properties, such as normal or inverted ν mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U e3 . Of particular importance are the charged current (c.c.) reactions on 12 C: oscillations increase by almost one order of magnitude the number of events expected from this channel

  5. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  6. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  7. Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations

    International Nuclear Information System (INIS)

    Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias

    2010-01-01

    Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)

  8. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  9. Oscillation effects and time variation of the supernova neutrino signal

    Science.gov (United States)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  10. Collective neutrino flavor transitions in supernovae: analytical and numerical aspects

    International Nuclear Information System (INIS)

    Fogli, G L; Marrone, A; Mirizzi, A; Lisi, E

    2008-01-01

    Non-linear effects on supernova neutrino oscillations, associated with neutrino-neutrino interactions, are known to induce collective flavor transformations near the supernova core for θ 13 ≠ 0. For typical electron density profiles (as taken from shock-wave simulations at a few seconds after bounce) these transformations precede ordinary matter effects, and become more amenable to both numerical computations and analytical interpretations in inverted hierarchy-while they basically vanish in normal hierarchy. We numerically evolve the neutrino density matrix in the region relevant for self-interaction effects, using thermal spectra and a representative value sin 2 θ 13 = 10 -4 . Our results neatly show the collective phenomena of synchronization, bipolar oscillations, and spectral split, with analytically understandable features. They also suggest that averaging over neutrino trajectories plays a minor role in the final outcome. The split/swap of (anti)neutrino spectra emerges as an unmistakable signature of the inverted neutrino hierarchy

  11. Core-Collapse Supernovae: Explosion dynamics, neutrinos and gravitational waves

    OpenAIRE

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas; Hanke, Florian; Wongwathanarat, Annop; Müller, Ewald

    2011-01-01

    The quest for the supernova explosion mechanism has been one of the outstanding challenges in computational astrophysics for several decades. Simulations have now progressed to a stage at which the solution appears close and neutrino and gravitational wave signals from self-consistent explosion models are becoming available. Here we focus one of the recent advances in supernova modeling, the inclusion of general relativity in multi-dimensional neutrino hydrodynamics simulations, and present t...

  12. No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase

    Science.gov (United States)

    Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard

    2011-10-01

    We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.

  13. Neutrino flavor instabilities in a time-dependent supernova model

    Directory of Open Access Journals (Sweden)

    Sajad Abbar

    2015-12-01

    Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  14. Neutrino flavor instabilities in a time-dependent supernova model

    Energy Technology Data Exchange (ETDEWEB)

    Abbar, Sajad; Duan, Huaiyu, E-mail: duan@unm.edu

    2015-12-17

    A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  15. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NARCIS (Netherlands)

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  16. Evaluation of the WIPP site for the supernova neutrino burst observatory

    International Nuclear Information System (INIS)

    Balbes, M.J.; Boyd, R.N.; Kalen, J.D.; Mitchell, C.A.; Hencheck, M.; Sugarbaker, E.R.; Vandegriff, J.D.; Lieberwirth, S.D.

    1997-01-01

    Measurements of the neutron background in a potential underground site for the supernova neutrino burst observatory (SNBO) have been made. The SNBO will ultimately be capable of detecting μ and τ neutrinos from a supernova. Furthermore, masses of the μ and τ neutrinos might be measurable in the range of 10-50 eV. SNBO operates by detecting the neutrons caused by interaction of the supernova neutrinos with rock. It will consist of order ten thousand neutron detectors located in an underground environment having a very low intrinsic radiation level. The limit to the size, hence sensitivity, of SNBO is thus the neutron signal-to-noise ratio, which depends on the neutron background in the environment of SNBO. Thus we have made neutron background measurements at the department of energy waste isolation pilot plant (WIPP) located near Carlsbad, NM. The value of the ambient neutron flux we determined, 332±148 neutrons m -2 d -1 , shows that the background levels in this facility are sufficiently low to warrant construction of a galactic supernova neutrino detector. (orig.)

  17. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  18. Density profiles of supernova matter and determination of neutrino parameters

    Science.gov (United States)

    Chiu, Shao-Hsuan

    2007-08-01

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  19. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  20. The Effect of Neutrino Oscillations on Supernova Light Element Synthesis

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2006-01-01

    We investigate light element synthesis through the ν-process during supernova explosions considering neutrino oscillations and investigate the dependence of 7Li and 11B yields on neutrino oscillation parameters mass hierarchy and θ13. The adopted supernova explosion model for explosive nucleosynthesis corresponds to SN 1987A. The 7Li and 11B yields increase by about factors of 1.9 and 1.3 in the case of normal mass hierarchy and adiabatic 13-mixing resonance compared with the case without neutrino oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increase in 7Li and 11B yields is much smaller. Astronomical observations of 7Li/11B ratio in stars formed in regions strongly affected by prior generations of supernovae would constrain mass hierarchy and the range of θ13

  1. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    Science.gov (United States)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  2. Light neutrinos as cosmological dark matter and the next supernova

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1990-01-01

    We point out that the light-neutrino hypothesis for cosmological dark matter can be tested by observing a neutrino burst from a type-II supernova. With the luck of a nearby (∼10 kpc) event watched by enlarged water Cherenkov detectors, such as the proposed super-Kamiokande, it might be possible to measure the tau- (heaviest-)neutrino mass. In such a case the statistically significant (4000--6000) bar ν e absorption events would allow the precise determination of the neutrino flux and the temperature. By using a simple model of neutrino emission based on the simulation by Mayle, Wilson, and Schramm, we show that the existence of the neutrino mixing can be signaled by 20--30 % excess of the scattering events in the water Cherenkov detector, and by factor ∼3 larger rate in Davis's 37 Cl detector. The effect on the recoil electron energy spectrum is also analyzed

  3. Supernova Neutrinos - MeV Messengers of the Extreme

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A core-collapse supernova is a nearly perfect neutrino bomb. While capable of outshining its entire host galaxy, this stunning light show represents just a small portion of the explosion.  Indeed, each such cataclysmic event typically radiates two orders of magnitude more energy as low-energy neutrinos than it does as electromagnetic radiation or as kinetic shockwaves. Consequently, MeV-scale neutrinos are made in huge numbers as the star is dying, and because these ghostly subatomic particles interact so rarely with normal matter they easily escape the fireball, providing a window into one of the most violent and interesting volumes in space: the heart of a stellar collapse. This talk will cover some of the history of neutrinos and supernovas, as well as how we are preparing new technology and partnerships to observe the next spectacular explosion in all its multimessenger glory.

  4. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  5. Neutrino-induced nucleosynthesis in core-collapse supernovae

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA

    1990-01-01

    Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab

  6. How to detect the cosmic neutrino background?

    International Nuclear Information System (INIS)

    Ringwald, A.

    2003-01-01

    A measurement of the big bang relic neutrinos would open a new window to the early universe. We review various possibilities to detect this cosmic neutrino background and substantiate the assertion that - apart from the rather indirect evidence to be gained from cosmology and large-scale structure formation - the annihilation of ultrahigh energy cosmic neutrinos with relic anti-neutrinos (or vice versa) on the Z-resonance is a unique process having sensitivity to the relic neutrinos, if a sufficient flux at E ν i res =M Z 2 /(2m ν i )=4.10 22 eV (0.1 eV/m ν i ) exists. The associated absorption dips in the ultrahigh energy cosmic neutrino spectrum may be searched for at forthcoming neutrino and air shower detectors. The associated protons and photons may have been seen already in form of the cosmic ray events above the Greisen-Zatsepin-Kuzmin cutoff. (orig.)

  7. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  8. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  9. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vale, D. [Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, HR-10000 Zagreb (Croatia); Rauscher, T. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Paar, N., E-mail: dvale@phy.hr, E-mail: Thomas.Rauscher@unibas.ch, E-mail: npaar@phy.hr [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  10. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  11. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    International Nuclear Information System (INIS)

    Volpe, C.; Welzel, J.

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  12. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  13. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  14. Nonlinear Dynamics of the Cosmic Neutrino Background

    Science.gov (United States)

    Inman, Derek

    At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may

  15. Supernova nucleosynthesis and the physics of neutrino oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Toshitaka [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan) and Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-11-20

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like {sup 7}Li, {sup 11}B, {sup 138}La, {sup 180}Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, {theta}{sub 13} and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process {sup 11}B and {sup 7}Li encapsulated in the grains. Combining the recent experimental constraints on {theta}{sub 13}, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  16. Supernova nucleosynthesis and the physics of neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  17. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  18. Spacetime Dynamics and Slow Neutrino Background

    Science.gov (United States)

    Zhang, Tianxi

    2018-06-01

    Space is a form of existence of matter, while time is a measure of change of the matter in the space. Issac Newton suggested that the space and time are absolute, not affected by matter and its motion. His first law of motion or the law of inertia says that, without net force acts on it, an object in motion remains the motion in a straight line at a constant speed. Ernest Mach proposed that the inertia of a body results from the gravitational interaction on the body by the rest of the entire universe. As mass is a measure of inertia, Mach’s principle can be simply stated as mass here is affected by matter there. On the basis of Mach’s principle, Albert Einstein considered the space and time to be relative and developed two theories of relativities. One called special relativity describes the effect of motion on spacetime and the other called general relativity describes the effect of matter on spacetime. Recently, the author has further considered reactions of the influenced spacetime on the moving objects, including photons. A moving object including a photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, the author has modelled the effective gravitational force to be Newtonian and derived a new redshift-distance relation that not only perfectly explained the redshift-distance measurement of distant type Ia supernovae but also inherently obtained Hubble’s law as an approximate at small redshift. In this study, we will further analyse the reaction of the influenced spacetime on moving neutrinos and demonstrate the creation of slow neutrino (or tired neutrino) background that may be gravitationally orbiting around clusters

  19. Quantum treatment of neutrino in background matter

    International Nuclear Information System (INIS)

    Studenikin, A I

    2006-01-01

    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLν), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter' (SLe)) that can be emitted by the electron in this case

  20. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  1. Simple picture for neutrino flavor transformation in supernovae

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  2. Neutrino nucleosynthesis in core-collapse Supernova explosions

    Directory of Open Access Journals (Sweden)

    Sieverding A.

    2016-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⊙ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the ν process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the ν process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  3. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  4. Neutrino nucleosynthesis in core-collapse Supernova explosions

    Science.gov (United States)

    Sieverding, A.; Huther, L.; Martínez-Pinedo, G.; Langanke, K.; Heger, A.

    2018-01-01

    The neutrino-induced nucleosynthesis (v process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⨀ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the v process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the v process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  5. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  6. Massive Majorana neutrinos in pre-bounce supernovae

    International Nuclear Information System (INIS)

    Goswami, S.; Raychaudhuri, A.

    1992-06-01

    The currently accepted models of supernova collapse rely on the standard electroweak theory and massless left-handed neutrinos. We consider the effect of massive right-handed Majorana neutrinos on this scenario. In order that they do not upset the agreement of the usual treatment with observation, we require that in the pre-bounce stage either (a) these neutrinos are trapped or (b) if they free stream they do not change the electron fraction to the extent that the explosion is prevented. From these constraints, we obtain upper and lower bounds on the right-handed interaction strengths as a function of the neutrino mass which can be translated to bounds on the right-handed gauge boson mass. (author). 18 refs, 1 fig., 2 tabs

  7. The cosmic MeV neutrino background as a laboratory for black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Yüksel, Hasan, E-mail: hyuksel@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Mimar Sinan Fine Arts University, Bomonti 34380, İstanbul (Turkey); Kistler, Matthew D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2015-12-17

    Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as “unnovae” in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  8. The cosmic MeV neutrino background as a laboratory for black hole formation

    Directory of Open Access Journals (Sweden)

    Hasan Yüksel

    2015-12-01

    Full Text Available Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as “unnovae” in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  9. The cosmic MeV neutrino background as a laboratory for black hole formation

    Science.gov (United States)

    Yüksel, Hasan; Kistler, Matthew D.

    2015-12-01

    Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  10. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    the Chandrasekhar limiting mass the pressure of the relativistic electron gas alone can ... and facilitates electron capture by nuclei and free protons leading to .... the neutrino luminosity in units of 10 ¾ ergs/sec, Т and Ф are the neutron and proton ... would be changed to М . One can make a rough estimate of the increase in ...

  11. Detection of supernova neutrinos in the liquid-scintillator experiment LENA

    International Nuclear Information System (INIS)

    Winter, Jurgen Michael Albrecht

    2014-01-01

    The LENA project (Low-Energy Neutrino Astronomy) is a planned large-volume liquid-scintillator detector. The good energy resolution, low-energy threshold, and its large mass allow to perform real-time spectroscopy of low-energy neutrinos with high statistics. This is especially beneficial for the observation of rare events such as a galactic core-collapse supernova. In a liquid scintillator, interactions by different particle types cause different scintillation light pulse shapes. They can be used to identify proton recoils induced by neutrino-proton scattering from supernova neutrinos or by cosmogenic knock-out neutrons. In order to evaluate the performance of the detector, a precise characterization of the liquid scintillator is necessary. In the course of this work, an experiment has been set up at the Maier-Leibnitz-Laboratorium in Garching in order to determine the pulse shape of proton and electron recoils in different liquid-scintillator mixtures. Neutrons produced via 11 B(p,n) 11 C or an americiumberyllium source were used to induce proton recoils. Compton scattering of simultaneously emitted γs provided information on the electron recoils. A time-of-flight measurement allows for an easy identification of neutron and γ induced events and thus effective background reduction. The tail-to-total and the Gatti method are used in order to determine the energy-dependent discrimination power of proton and electron recoils in liquid scintillator. Combining both methods, a proton recoil identification efficiency of (99.70±0.05)% can be achieved between 1-1.5 MeV, while suppressing 99% of the γ induced recoils for the probable liquid scintillator mixture for LENA, linear alkylbenzene (LAB) as solvent and 3 g/l 2,5-diphenyloxazole (PPO) and 20mg/l 1,4-bis-(o-methylstyryl)-benzole (bisMSB) as fluors. Moreover, the decay constants τ i and the respective amplitudes n i are determined for various liquid scintillator mixtures. It can be observed that the decay times

  12. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  13. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  14. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  15. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    Science.gov (United States)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  16. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  17. Impact of Neutrino Opacities on Core-collapse Supernova Simulations

    Science.gov (United States)

    Kotake, Kei; Takiwaki, Tomoya; Fischer, Tobias; Nakamura, Ko; Martínez-Pinedo, Gabriel

    2018-02-01

    The accurate description of neutrino opacities is central to both the core-collapse supernova (CCSN) phenomenon and the validity of the explosion mechanism itself. In this work, we study in a systematic fashion the role of a variety of well-selected neutrino opacities in CCSN simulations where the multi-energy, three-flavor neutrino transport is solved using the isotropic diffusion source approximation (IDSA) scheme. To verify our code, we first present results from one-dimensional (1D) simulations following the core collapse, bounce, and ∼250 ms postbounce of a 15 {M}ȯ star using a standard set of neutrino opacities by Bruenn. A detailed comparison with published results supports the reliability of our three-flavor IDSA scheme using the standard opacity set. We then investigate in 1D simulations how individual opacity updates lead to differences with the baseline run with the standard opacity set. Through detailed comparisons with previous work, we check the validity of our implementation of each update in a step-by-step manner. Individual neutrino opacities with the largest impact on the overall evolution in 1D simulations are selected for systematic comparisons in our two-dimensional (2D) simulations. Special attention is given to the criterion of explodability in the 2D models. We discuss the implications of these results as well as its limitations and the requirements for future, more elaborate CCSN modeling.

  18. Big bang nucleosynthesis and the cosmic neutrino background

    International Nuclear Information System (INIS)

    Cao Yun; Xing Zhizhong

    2013-01-01

    We present a brief overview of the neutrino decoupling and big bang nucleosynthesis in the early universe. The big bang relic neutrinos formed one of the backgrounds of the universe. A few possible ways to directly detect the cosmic neutrino background are briefly introduced, and particular attention is paid to the relic neutrino capture on b-decaying nuclei. (authors)

  19. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  20. Detection prospects of the cosmic neutrino background

    Science.gov (United States)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  1. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  2. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  3. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    International Nuclear Information System (INIS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar_e+p→n+e"+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar_e flux with the ν-bar_x (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  4. Pairing in the cosmic neutrino background

    International Nuclear Information System (INIS)

    Alonso, V.; Paredes, R.

    1981-07-01

    We extend the discussion of the possible superfluidity of the cosmic background of neutrinos beyond the arguments based on the gap equation, originally given by Ginzburg and Zharkov. We show how to develop a simple Ginzburg-Landau liquid model, in analogy with superconductivity. We use it to show how an analysis of the energy spectrum of the universe can be formulated to include general relativistic effects on the superfluid neutrinos. Finally, in view of the Hawking and Collins careful discussion on the rotation and distortion of a spatially homogeneous and isotropic universe, we discuss the vortex dynamics that might be generated on the superfluid by rotations (allowed by the almost isotropy of the microwave background of photons) of up to 2 x 10 -14 second of arc/century, but conclude that rotations of this order of magnitude would be sufficiently strong to deter the existence of the superfluid state. (author)

  5. Collective three-flavor oscillations of supernova neutrinos

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol

    2008-06-01

    Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be “factorized” into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the “e3-e8 triangle” diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

  6. Supernovae

    International Nuclear Information System (INIS)

    Petschek, A.

    1990-01-01

    This book offers papers incorporating the latest results and understanding about supernovae, including SN1987A. There are several chapters reviewing all the radio through infrared, visible, and ultraviolet to X-rays and gamma-rays but also neutrinos. Other chapters deal with the classification of supernovae, depending on their spectra and light curves. Three chapters treat supernovae theory, including an idea of a fractal burning front and another on the behavior of neutron stars

  7. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  8. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  9. Can the Copernican principle be tested using the cosmic neutrino background?

    International Nuclear Information System (INIS)

    Jia, Junji; Zhang, Hongbao

    2008-01-01

    The Copernican principle, stating that we do not occupy any special place in our universe, is usually taken for granted in modern cosmology. However recent observational supernova data indicate that we may live in the under-dense center of our universe, which challenges the Copernican principle. It thus becomes urgent and important to test the Copernican principle via cosmological observations. Taking into account that unlike cosmic photons, cosmic neutrinos of different energies come from different places to us, along different worldlines, we here propose using the cosmic neutrino background as a test of the Copernican principle. It is shown that from the theoretical perspective, the cosmic neutrino background can allow one to determine whether the Copernican principle is valid or not, but to implement such an observation, larger neutrino detectors are called for

  10. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  11. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  12. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT

    International Nuclear Information System (INIS)

    Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.

    2009-01-01

    Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.

  13. On the importance of low-energy beta-beams for supernova neutrino physics

    International Nuclear Information System (INIS)

    Jachowicz, N.; McLaughlin, G.C.

    2005-01-01

    Beta beams, which are neutrino beams produced by the beta decay of nuclei that have been accelerated to high gamma factor, were original proposed for high energy applications, such as the measurement of the third neutrino mixing angle θ 13 . Volpe suggested that a beta beam run at lower gamma factor, would be useful for neutrino measurements in the tens of MeV range. We suggest to exploit the flexibility these beta beam facilities offer, combined with the fact that beta-beam neutrino energies overlap with supernova-neutrino energies, to construct 'synthetic' spectra that approximate an incoming supernova-neutrino energy-distribution. Using these constructed spectra we are able to reproduce total and differential folded supernova-neutrino cross-sections very accurately. We illustrate this technique using Deuterium, 16 O, and 208 Pb. This technique provides an easy and straightforward way to apply the results of a beta-beam neutrino-nucleus measurement to the corresponding supernova-neutrino detector, virtually eliminating potential uncertainties due to nuclear-structure calculations. (author)

  14. Applying Bayesian neural networks to separate neutrino events from backgrounds in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu, Y; Meng, Y X; Xu, W W

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks (BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8 He/ 9 Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample

  15. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  16. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    Science.gov (United States)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  17. Supernova pointing with low- and high-energy neutrino detectors

    CERN Document Server

    Tomás, R; Raffelt, Georg G; Kachelriess, M; Dighe, Amol S

    2003-01-01

    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of $nu$-$e$-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is $8^circ$ at 95% C.L. in the absence of tagging, which improves to $3^circ$ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as $0.6^circ$. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical ex...

  18. Search for neutrinos from core-collapse supernova from the global network of detectors

    Energy Technology Data Exchange (ETDEWEB)

    Habig, Alec, E-mail: ahabig@umn.ed [University of Minnesota Duluth, Physics Department, 10 University Dr., Duluth, MN 55812 (United States)

    2010-01-01

    The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the {approx}hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.

  19. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    International Nuclear Information System (INIS)

    Casentini, Claudio

    2016-01-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project. (paper)

  20. Impact of cosmic neutrinos on the gravitational-wave background

    CERN Document Server

    Mangilli, A; Matarrese, S; Riotto, Antonio

    2008-01-01

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultra-relativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  1. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  2. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  3. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics.

  4. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics. (orig.)

  5. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Basudeb; Sen, Manibrata [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India); Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' , Via Amendola 173, 70126 Bari (Italy)

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  6. Detection of Supernova Neutrinos on the Earth for Large θ13

    Science.gov (United States)

    Xu, Jing; Huang, Ming-Yang; Hu, Li-Jun; Guo, Xin-Heng; Young, Bing-Lin

    2014-02-01

    Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev—Smirnov—Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle θ13 (≃ 8.8°) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance region of SN, PH, which is in the form of hypergeometric function in the case of large θ13, we deduce the expression of PH taking into account the shock wave effects. It is found that PH is not zero in a certain range of time due to the shock wave effects. After considering all the four physical effects and scanning relevant parameters, we calculate the event numbers of SN neutrinos for the “Garching” distribution of neutrino energy spectrum. From the numerical results, it is found that the behaviors of neutrino event numbers detected on the Earth depend on the neutrino mass hierarchy and neutrino spectrum parameters including the dimensionless pinching parameter βα (where α refers to neutrino flavor), the average energy , and the SN neutrino luminosities Lα. Finally, we give the ranges of SN neutrino event numbers that will be detected at the Daya Bay experiment.

  7. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-01-01

    The prompt ν e burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a ''split'' occurs in the emerging spectrum, i.e., the ν e flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations

  8. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt νe burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a “split” occurs in the emerging spectrum, i.e., the νe flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  9. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  10. Identifying Neutrino Mass Hierarchy at Extremely Small θ13 through Earth Matter Effects in a Supernova Signal

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-01-01

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of θ 13 . Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin 2 θ 13 -5 , where long baseline neutrino experiments would be ineffectual

  11. Neutral current induced neutrino oscillations in a supernova

    CERN Document Server

    Kusenko, A; Kusenko, Alexander; Segre, Gino

    1997-01-01

    Neutral currents induced matter oscillations of electroweak-active (anti-)neutrinos to sterile neutrinos can explain the observed motion of pulsars. In contrast to a recently proposed explanation of the pulsar birth velocities based on the electron to tau (muon) neutrino oscillations [hep-ph/9606428], the heaviest neutrino (either active or sterile) would have to have mass of order several keV.

  12. Type II successful supernovae, the anatomy of shocks: neutrino emission and the adiabatic index

    International Nuclear Information System (INIS)

    Kahana, S.; Baron, E.; Cooperstein, J.

    1983-01-01

    Hydrodynamic calculations of stellar collapse in Type II Supernova are described using a variable stiffness and compressibility for the nuclear equation of state at high density. Initial models employing a relatively small mass core with low central entropy are necessary to achieve viable shocks; near success the models are sensitive to both neutrino emission and the high density equation of state. The treatment of neutrino production and transport is sketched and recent results reported

  13. Density fluctuation effects on collective neutrino oscillations in O-Ne-Mg core-collapse supernovae

    International Nuclear Information System (INIS)

    Cherry, John F.; Fuller, George M.; Wu Mengru; Qian Yongzhong; Carlson, J.; Duan Huaiyu

    2011-01-01

    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multiangle, three-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core-collapse supernova at shock breakout (neutronization neutrino burst) to study the effect of the matter density ''bump'' left by the He-burning shell. We find a seemingly counterintuitive increase in the overall ν e survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the ν e survival probability at very low energy.

  14. Time delays of supernova neutrinos from new long-range interactions

    International Nuclear Information System (INIS)

    Malaney, R.A.; Starkman, G.D.; Tremaine, S.

    1995-01-01

    A new long-range interaction between heavy neutrinos may solve some current problems in large-scale structure, if the new interaction mimics gravity. Assuming that the dark matter is dominated by ∼100 eV τ neutrinos, we investigate whether time delay measurements on supernova neutrinos can test this possibility. We find that such experiments can rule out or detect specific forms of the new interaction potential. In addition, we find the exact dispersive nature of the interacting medium to be critical in determining the time delay: even small corrections to the potential can dramatically alter the magnitude of the effect

  15. Neutrinos from supernova explosion and the Mikheyev-Smirnov-Wolfenstein effect

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.; Shiraishi, K.; Suzuki, H.

    1987-01-01

    It is shown that by taking the effect of the Earth into account the possible observation of electron neutrinos from the supernova SN1987A at the Kamiokande II is compatible with the solution of the solar neutrino puzzle by the Mikheyev-Smirnov-Wolfenstein mechanism. The authors' scenario requires relatively large mixing angles sin/sup 2/ 2θ>≥0.3 and, most probably, Δm/sup 2/ of the order of 10/sup -6/ -- 10/sup -5/(eV)/sup 2/. The implications of possible observation in other neutrino detectors are briefly discussed

  16. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  17. Cumulative neutrino background from quasar-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission from quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.

  18. Fast-time Variations of Supernova Neutrino Fluxes and Detection Perspectives

    NARCIS (Netherlands)

    Tamborra, I.; Hanke, F.; Müller, B.; Janka, H.T.; Raffelt, G.G.

    2015-01-01

    In the delayed explosion scenario of a core-collapse supernova, the accretion phase shows pronounced convective over-turns and a low-multipole hydrodynamic instability, the so-called standing accretion shock instability (SASI). Neutrino signal variations from the first full-scale three-dimensional

  19. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  20. Cosmological Neutrino Background and Connected Problems

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2011-06-01

    Full Text Available Applying the formulae derived by us (A. Sapar 1964 for the Universe filled with baryonic matter and decoupled particles (photons and massive neutrinos, a scenario of evolution of the Universe is studied. The dark energy can be treated as the kinetic energy excess over the potential energy of all particles in the hyperbolic Universe which is going to its new, kinetic energy dominated epoch of evolution. The dark mass can be due to slowly moving rest-mass neutrinos, crossing the galaxies where they form wide iso-potential (constant orbital velocity shells. The real Big Bang is assumed to precede the Planck unit time and this removes necessity of the later inflation phenomenon. The possibility to modify the equations of cosmology into the non-local ones by gravitational potential of the Universe is shortly discussed.

  1. Constraints on the electron-neutrino mass from the supernova data

    International Nuclear Information System (INIS)

    Abbott, L.F.; Walker, T.P.

    1988-01-01

    The energy versus time of arrival pattern of neutrinos from SN1987A is sensitive to a neutrino mass, m ν , of order a few eV. To disentangle constraints on m ν , from the data, a theory of supernova emission is necessary. We recall the present status of this theory and approximate its predictions in two diffusion models: One designed to reflect the present supernova lore, the other devised to pessimize, within reason, the consequent upper limits on m ν . We discuss the model dependence and statistical significance of our results, as well as the experimental uncertainties and caveats to which they are subject. We adress the question, do the supernova results supercede the present laboratory limits on m ν ? (orig.)

  2. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  3. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  4. Weighing neutrinos with microwave background and galaxy data

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias; Hamilton, Andrew J.S.

    2000-01-01

    Cosmological constraints on neutrino masses are improving rapidly. We compute the joint constraints on 11 cosmological parameters from the latest cosmic microwave background and large scale structure data, and find that at 95% confidence, the total (cold+hot) dark matter density is h 2 Ω dm 0.20 +.12 -.10 . As much as 38% of this dark matter is allowed to be hot (due to neutrinos). Indeed, the data favors a non-zero neutrino fraction, but not at a statistically significant level

  5. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    Directory of Open Access Journals (Sweden)

    Jue Zhang

    2016-02-01

    Full Text Available It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe+H3→He3+e− for the PTOLEMY experiment is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm−3, which should be compared to the number density 336 cm−3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff=3.14−0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  6. Flipped neutrino emissivity of hot plasma in supernova core

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India))

    1994-05-15

    We calculate the energy loss due to wrong-helicity sterile neutrinos produced due to the decay of plasmons into flipped neutrino pairs at relativistic temperatures and densities in the core of a nascent neutron star and compare our results with other processes.

  7. Revealing the supernova-gamma-ray burst connection with TeV neutrinos.

    Science.gov (United States)

    Ando, Shin'ichiro; Beacom, John F

    2005-08-05

    Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.

  8. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L

  9. Shedding New Light on Exploding Stars: Tera-Scale Simulation of Neutrino-Driven Supernovae and their Nucleosynthesis. Final Report

    International Nuclear Information System (INIS)

    Fuller, George M.

    2006-01-01

    Goals: I took seriously the charge to SciDAC P.I.'s to go after outstanding and key physics problems with cutting-edge numerical science. I proposed solving a key problem in core collapse supernova physics: the evolution of neutrino flavors in the supernova environment. A great deal may be riding on the solution to this problem. First, laboratory physics outstripped the supernova theorists, providing us with neutrino mass-squared differences and two of the three vacuum mixing angles. This data had not been incorporated into core collapse supernova models before, but it clearly pointed to the possibility of major changes to our existing supernova neutrino paradigm. Second, knowing how the neutrino and antineutrino energy spectra and fluxes evolved through flavor inter-conversion could be crucial for determining and understanding the supernova neutrino signal, light p-process, and r-process nucleosynthesis, and possibly even the shock re-heating problem. Moreover, much about fundamental neutrino properties remains unresolved by terrestrial experiment (e.g., the neutrino mass hierarchy, θ 13 , etc.). Unraveling the supernova neutrino flavor evolution problem coupled with a future Galactic supernova signal could allow determination of these unknown neutrino properties. Results and Findings: We solved the problem of coherent neutrino flavor evolution (both 2 x 2 and 3 x 3) in the supernova environment, for the first time incorporating self-consistently the nonlinear geometric and quantum trajectory coupling outlined above. The results were unexpected and surprising. These results hold out the possibility that a future Galactic supernova neutrino signal could give us significant insights into both fundamental neutrino physics, otherwise inacces- sible in the lab (e.g., the neutrino mass hierarchy, θ 13 ), and key issues in supernova physics (e.g., distinguishing between Fe core collapse and O-Ne-Mg core collapse events). First, the numerical solution to this problem

  10. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  11. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  12. The neutrino ignition of thermonuclear carbon burning, neutron star formation and supernova explosions

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Khlopov, M.Yu.; Imshennik, V.S.; Ivanova, L.N.; Chechetkin, V.M.

    1977-01-01

    Taking account of neutrino energy transport in the self-consistent hydrodynamical calculation of explosions of deo-enerated carbon stallar cores at 3x10 9 9 g/cm 3 central density leads to the core disruption with kinetic energy up to 10 51 erg (that corresponds to parameters of Supernovae of 2 type) . This mechanism leads to the formation of neutron stars with the mass M approximately 1.4M Sun at rhosub(c) > 8.4 x 10 9 g/cm 3 and to successive blow off the envelope being typical for Supernovae of 1 type

  13. Background to neutrino counting in e+e- collisions

    International Nuclear Information System (INIS)

    Dicus, D.A.

    1979-06-01

    The background from e + e - → 3γ to the proposed neutrino counting process of e + e - → γ ν anti ν is calculated. It is shown that at PEP or PETRA beam energies the 3γ cross section is at least three orders of magnitude greater than the γ ν anti ν cross section. At higher beam energies, near the Z pole, the γ ν anti ν cross section is larger than the background but other ambiguities may make a determination of the number of types of neutrinos very difficult. 9 references

  14. Neutrino production by UHECR proton interactions in the infrared background

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2004-08-12

    We discuss the contribution of proton photoproduction interactions in the isotropic infrared/optical background to the cosmic neutrino fluxes. This contribution has a strong dependence on the proton injection energy spectrum, and is essential at high redshifts. It is thus closely correlated with the cosmological evolution of the ultra-high energy proton sources and of the infrared background itself. These interactions may also contribute to the source fluxes of neutrinos if the proton sources are located in regions of high infrared emission and magnetic fields.

  15. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    International Nuclear Information System (INIS)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.

  16. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mail code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Dolence, Joshua [CCS-2, Los Alamos National Laboratory, P.O. Box 1663 Los Alamos, NM 87545 (United States); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Yamada, Shoichi, E-mail: srichers@tapir.caltech.edu [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2017-10-01

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.

  17. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  18. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    Science.gov (United States)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  19. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed

  20. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  1. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  2. Determining neutrino mass from the cosmic microwave background alone.

    Science.gov (United States)

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  3. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  4. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Liebendoerfer, Matthias [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Bruenn, Stephen W., E-mail: elentz@utk.edu, E-mail: mezzacappaa@ornl.gov [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-03-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  5. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Liebendörfer, Matthias; Bruenn, Stephen W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  6. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  7. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  8. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  9. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  10. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    International Nuclear Information System (INIS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T.J.; Cesar, J.; Cushman, P.; Dent, J.B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H.R.; Hays, C.C.; Iyer, V.

    2017-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  11. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  12. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Sean M. [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Ott, Christian D., E-mail: smc@flash.uchichago.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-20

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M {sub ☉} progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations.

  13. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Couch, Sean M.; Ott, Christian D.

    2015-01-01

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M ☉ progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations

  14. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Forastieri, Francesco; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Lattanzi, Massimiliano [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Mangano, Gianpiero [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Univ. Monte S.Angelo, I-80126 Napoli (Italy); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica ' Michelangelo Merlin,' Via Amendola 173, 70126 Bari (Italy); Saviano, Ninetta, E-mail: francesco.forastieri@unife.it, E-mail: lattanzi@fe.infn.it, E-mail: mangano@na.infn.it, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: natoli@fe.infn.it, E-mail: nsaviano@uni-mainz.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, JohannesGutenberg-Universität Mainz, 55099 Mainz (Germany)

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.

  15. Fast flavor conversions of supernova neutrinos: Classifying instabilities via dispersion relations

    Science.gov (United States)

    Capozzi, Francesco; Dasgupta, Basudeb; Lisi, Eligio; Marrone, Antonio; Mirizzi, Alessandro

    2017-08-01

    Supernova neutrinos can exhibit a rich variety of flavor conversion mechanisms. In particular, they can experience "fast" self-induced flavor conversions almost immediately above the core. Very recently, a novel method has been proposed to investigate these phenomena, in terms of the dispersion relation for the complex frequency and wave number (ω ,k ) of disturbances in the mean field of the νeνx flavor coherence. We discuss a systematic approach to such instabilities, originally developed in the context of plasma physics, and based of the time-asymptotic behavior of the Green's function of the system. Instabilities are typically seen to emerge for complex ω and can be further characterized as convective (moving away faster than they spread) and absolute (growing locally), depending on k -dependent features. Stable cases emerge when k (but not ω ) is complex, leading to disturbances damped in space, or when both ω and k are real, corresponding to complete stability. The analytical classification of both unstable and stable modes leads not only to qualitative insights about their features but also to quantitative predictions about the growth rates of instabilities. Representative numerical solutions are discussed in a simple two-beam model of interacting neutrinos. As an application, we argue that supernova and binary neutron star mergers exhibiting a "crossing" in the electron lepton number would lead to an absolute instability in the flavor content of the neutrino gas.

  16. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  17. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie [AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics, Université Paris Diderot, Rue Alice Domon et Leonie Duquet, Paris (France); Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw [Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan (China)

    2017-06-01

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.

  18. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    International Nuclear Information System (INIS)

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-01-01

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M · star. We find that p-nuclei are mainly produced through γ-processes, and that the nuclei lighter than 92 Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y e ≤0.48. 94 Mo, 96 Ru, and 98 Ru, are underproduced compared with the solar system, as in the spherical model.

  19. The influence of collective neutrino oscillations on a supernova r process

    Science.gov (United States)

    Duan, Huaiyu; Friedland, Alexander; McLaughlin, Gail C.; Surman, Rebecca

    2011-03-01

    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used 'single-angle' approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions—in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.

  20. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    Science.gov (United States)

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  1. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line

    International Nuclear Information System (INIS)

    Ferry, S.

    2004-09-01

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 v μ , cm -2 can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 v μ per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  2. Nonstandard neutrino self-interactions in a supernova and fast flavor conversions

    Science.gov (United States)

    Dighe, Amol; Sen, Manibrata

    2018-02-01

    We study the effects of nonstandard self-interactions (NSSI) of neutrinos streaming out of a core-collapse supernova. We show that with NSSI, the standard linear stability analysis gives rise to linearly as well as exponentially growing solutions. For a two-box spectrum, we demonstrate analytically that flavor-preserving NSSI lead to a suppression of bipolar collective oscillations. In the intersecting four-beam model, we show that flavor-violating NSSI can lead to fast oscillations even when the angle between the neutrino and antineutrino beams is obtuse, which is forbidden in the standard model. This leads to the new possibility of fast oscillations in a two-beam system with opposing neutrino-antineutrino fluxes, even in the absence of any spatial inhomogeneities. Finally, we solve the full nonlinear equations of motion in the four-beam model numerically, and explore the interplay of fast and slow flavor conversions in the long-time behavior, in the presence of NSSI.

  3. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  4. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  5. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    OpenAIRE

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  6. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    Science.gov (United States)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  7. Signal and background in the underwater neutrino telescope ANTARES

    NARCIS (Netherlands)

    Vries-Uiterweerd, G. de

    2007-01-01

    At the bottom of the Mediterranean, the neutrino telescope ANTARES is being constructed. Its purpose is to detect cosmic neutrinos, which can yield information on distant and energetic processes that cannot be obtained from the more traditional study of light or charged particles. ANTARES searches

  8. Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae

    Science.gov (United States)

    Marek, A.; Janka, H.-T.; Müller, E.

    2009-03-01

    We present two-dimensional (axisymmetric) neutrino-hydrodynamic simulations of the long-time accretion phase of a 15 M_⊙ progenitor star after core bounce and before the launch of a supernova explosion, when non-radial hydrodynamic instabilities like convection occur in different regions of the collapsing stellar core and the standing accretion shock instability (SASI) leads to large-amplitude oscillations of the stalled shock with a period of tens of milliseconds. Our simulations were performed with the Prometheus-Vertex code, which includes a multi-flavor, energy-dependent neutrino transport scheme and employs an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core impose a time variability on the neutrino and gravitational-wave signals with larger amplitudes, as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant produces higher neutrino luminosities and higher mean neutrino energies. The observable neutrino emission in the SASI sloshing direction exhibits a modulation of several ten percent in the luminosities and around 1 MeV in the mean energies with most power at typical SASI frequencies between roughly 20 and 100 Hz. The modulation is caused by quasi-periodic variations in the mass accretion rate of the neutron star in each hemisphere. At times later than ~50-100 ms after bounce, the gravitational-wave amplitude is dominated by the growing low-frequency (⪉200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal results from nonradial gas flows in the outer layers of the anisotropically accreting neutron star. Right after bounce such nonradial mass motions occur due to prompt post-shock convection in both considered cases and contribute mostly to the early

  9. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    Pllumbi, E.; Tamborra, I.; Wanajo, S.; Janka, H.-T.; Hüdepohl, L.

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of

  10. Neutrinos in astrophysics

    CERN Document Server

    Rees, Martin J

    1980-01-01

    The amount of 4He synthesised in the "big bang" is sensitive to the early particle content and to the expansion rate. If there was indeed a "big bang", surprisingly strong conclusions can be drawn about the number of species of neutrinos, and about the possibility that such particles have non-zero rest mass. The dynamics of supernovae are sensitive to the det~ils of neutrino physics; such explosions would yield IO L-1053 ergs of -v IO Mev neutrinos, in a burst lasting a few milliseconds. Galactic nuclei, cosmic ray sources and other high energy cosmic phenomena could yield a low background of~ 10 Gev neutrinos.

  11. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  12. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  13. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  14. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  15. Probing the neutrino mass hierarchy with the rise time of a supernova burst

    Science.gov (United States)

    Serpico, Pasquale D.; Chakraborty, Sovan; Fischer, Tobias; Hüdepohl, Lorenz; Janka, Hans-Thomas; Mirizzi, Alessandro

    2012-04-01

    The rise time of a Galactic supernova (SN) ν¯e light curve, observable at a high-statistics experiment such as the Icecube Cherenkov detector, can provide a diagnostic tool for the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ13. Thanks to the combination of matter suppression of collective effects at early post-bounce times on one hand and the presence of the ordinary Mikheyev-Smirnov-Wolfenstein effect in the outer layers of the SN on the other hand, a sufficiently fast rise time on O(100)ms scale is indicative of an inverted mass hierarchy. We investigate results from an extensive set of stellar core-collapse simulations, providing a first exploration of the astrophysical robustness of these features. We find that for all the models analyzed (sharing the same weak interaction microphysics) the rise times for the same hierarchy are similar not only qualitatively, but also quantitatively, with the signals for the two classes of hierarchies significantly separated. We show via Monte Carlo simulations that the two cases should be distinguishable at IceCube for SNe at a typical Galactic distance 99% of the time. Finally, a preliminary survey seems to show that the faster rise time for inverted hierarchy as compared to normal hierarchy is a qualitatively robust feature predicted by several simulation groups. Since the viability of this signature ultimately depends on the quantitative assessment of theoretical/numerical uncertainties, our results motivate an extensive campaign of comparison of different code predictions at early accretion times with implementation of microphysics of comparable sophistication, including effects such as nucleon recoils in weak interactions.

  16. REVIEWS OF TOPICAL PROBLEMS Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud

    Science.gov (United States)

    Imshennik, Vladimir S.

    2011-02-01

    The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.

  17. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  18. Environmental 222Rn as a background source in the solar neutrino experiment GALLEX

    International Nuclear Information System (INIS)

    Wojcik, M.

    1996-01-01

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs

  19. Environmental {sup 222}Rn as a background source in the solar neutrino experiment GALLEX

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, M. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; BOREXINO

    1996-12-31

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs.

  20. Environmental {sup 222}Rn as a background source in the solar neutrino experiment GALLEX

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, M [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; BOREXINO,

    1997-12-31

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs.

  1. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  2. Stochastic gravitational wave background from the single-degenerate channel of type Ia supernovae

    International Nuclear Information System (INIS)

    Falta, David; Fisher, Robert

    2011-01-01

    We demonstrate that the integrated gravitational wave signal of type Ia supernovae (SNe Ia) in the single-degenerate channel out to cosmological distances gives rise to a continuous background to spaceborne gravitational wave detectors, including the Big Bang Observer and Deci-Hertz Interferometer Gravitational wave Observatory planned missions. This gravitational wave background from SNe Ia acts as a noise background in the frequency range 0.1-10 Hz, which heretofore was thought to be relatively free from astrophysical sources apart from neutron-star and white-dwarf binaries, and therefore a key window in which to study primordial gravitational waves generated by inflation. While inflationary energy scales of > or approx. 10 16 GeV yield inflationary gravitational wave backgrounds in excess of our range of predicted backgrounds, for lower energy scales of ∼10 15 GeV, the inflationary gravitational wave background becomes comparable to the noise background from SNe Ia.

  3. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-01-01

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M ⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ −1 in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade

  4. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  5. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    International Nuclear Information System (INIS)

    Abazajian, K. N.; Bischoff, C.; Bock, J.; Carvalho, C. S.; Chiang, H. C.; Dawson, K. S.; Halverson, N. W.; Hubmayr, J.; Knox, L.; Kuo, C.-L.; Linder, E.; Lubin, P.; Smith, K. M.; Spergel, D.; Stompor, R.; Vieregg, A. G.; Wang, G.; Wu, W.; Yoon, K. W.; Zahn, O.

    2014-01-01

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ(σmν) = 16 meV and σ(N eff ) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of N eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N eff = 3.046

  6. Detector development and background estimation for the observation of Coherent Neutrino Nucleus Scattering (CNNS)

    Energy Technology Data Exchange (ETDEWEB)

    Guetlein, Achim; Ciemniak, Christian; Feilitzsch, Franz von; Lanfranchi, Jean-Come; Oberauer, Lothar; Potzel, Walter; Roth, Sabine; Schoenert, Stefan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stefan; Willers, Michael; Zoeller, Andreas [Technische Universitaet Muenchen, Physik-Department, E15 (Germany)

    2012-07-01

    The Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction and is thus flavor independent. A low-energetic neutrino scatters off a target nucleus. For low transferred momenta the wavelength of the transferred Z{sup 0} boson is comparable to the diameter of the target nucleus. Thus, the neutrino interacts with all nucleons coherently and the cross section for the CNNS is enhanced. To observe CNNS for the first time we are developing cryogenic detectors with a target mass of about 10 g each and an energy threshold of less than 0.5 keV. The current status of this development is presented as well as the estimated background for an experiment in the vicinity of a nuclear power reactor as a strong neutrino source.

  7. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS

    International Nuclear Information System (INIS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2013-01-01

    We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.

  8. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line; Etude de la production de neutrinos associes aux Sursauts Gamma dans le modele du Boulet de canon: possibilite d'observation de ces neutrinos par le detecteur ANTARES, et etude du bruit de fond optique enregistre par le prototype d'un secteur de ligne

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, S

    2004-09-15

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 v{sub {mu}}, cm{sup -2} can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 v{sub {mu}} per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  9. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  10. The joint search for gravitational wave and low energy neutrino signals from core-collapse supernovae: methodology and status report

    Science.gov (United States)

    Gromov, M. B.; Casentini, C.

    2017-09-01

    The detection of gravitational waves opens a new era in physics. Now it's possible to observe the Universe using a fundamentally new way. Gravitational waves potentially permit getting insight into the physics of Core-Collapse Supernovae (CCSNe). However, due to significant uncertainties on the theoretical models of gravitational wave emission associated with CCSNe, benefits may come from multi-messenger observations of CCSNe. Such benefits include increased confidence in detection, extending the astrophysical reach of the detectors and allowing deeper understanding of the nature of the phenomenon. Fortunately, CCSNe have a neutrino signature confirmed by the observation of SN1987A. The gravitational and neutrino signals propagate with the speed of light and without significant interaction with interstellar matter. So that they must reach an observer on the Earth almost simultaneously. These facts open a way to search for the correlation between the signals. However, this method is limited by the sensitivity of modern neutrino detectors that allow to observe CCSNe only in the Local Group of galaxies. The methodology and status of a proposed joint search for the correlation signals are presented here.

  11. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  12. Super-NOvA a long-baseline neutrino experiment with two off-axis detectors

    CERN Document Server

    Requejo, O M; Pascoli, S; Requejo, Olga Mena; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2005-01-01

    Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.

  13. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Arcones, Almudena [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 2, D-64289 Darmstadt (Germany)

    2012-09-20

    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.

  14. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  15. Anisotropies in the cosmic neutrino background after Wilkinson Microwave Anisotropy Probe five-year data

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Pagano, Luca; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha

    2008-01-01

    We search for the presence of cosmological neutrino background (CNB) anisotropies in recent Wilkinson Microwave Anisotropy Probe (WMAP) five-year data using their signature imprinted on modifications to the cosmic microwave background (CMB) anisotropy power spectrum. By parameterizing the neutrino background anisotropies with the speed viscosity parameter c vis , we find that the WMAP five-year data alone provide only a weak indication for CNB anisotropies with c vis 2 >0.06 at the 95% confidence level. When we combine CMB anisotropy data with measurements of galaxy clustering, the SN-Ia Hubble diagram, and other cosmological information, the detection increases to c vis 2 >0.16 at the same 95% confidence level. Future data from Planck, combined with a weak lensing survey such as the one expected with DUNE from space, will be able to measure the CNB anisotropy parameter at about 10% accuracy. We discuss the degeneracy between neutrino background anisotropies and other cosmological parameters such as the number of effective neutrinos species and the dark energy equation of state

  16. Magnetic Dipole and Gamow-Teller Modes in Neutrino-Nucleus Reactions: Impact on Supernova Dynamics and Nucleosynthesis

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Byelikov, A.; Richter, A.; Shevchenko, A.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Heger, A.; Kolbe, E.; Langanke, K.; Martinez-Pinedo, G.

    2006-01-01

    Some aspects of the importance of neutrino-induced reactions on nuclei within supernova physics are discussed. It is argued that important constraints on the experimentally unknown cross sections can be obtained from experimental studies of the nuclear response in selected cases. Examples are neutral-current induced reactions on fp-shell nuclei extracted from high-resolution inelastic electron scattering data providing the M1 strength distributions and the production of the exotic heavy, odd-odd nuclei 138La and 180Ta through charged-current reactions dominated by Gamow-Teller transitions. The Gamow-Teller strength can deduced from the (3He,t) charge-exchange reaction at zero degree

  17. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    Science.gov (United States)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  18. Development of low background germanium spectrometer for measurement of neutrino magnetic moment

    CERN Document Server

    Beda, A G; Starostin, A S

    2000-01-01

    The prospects for a search for neutrino magnetic moment down to (3-5)centre dot 10 sup - sup 1 sup 1 of the Bohr magneton with the use of low background Ge-NaI spectrometer built in ITEP are discussed. The lowest level of background for shallow setups was achieved in the preliminary test measurements of background. This result and estimations of additional sources of the background in a reactor experiment testify that using the low background Ge-NaI spectrometer with mass of Ge-crystal of 2 kg it is possible to achieve above objective, that will be one order of magnitude better than the present experimental limit.

  19. FULLY GENERAL RELATIVISTIC SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE WITH AN APPROXIMATE NEUTRINO TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Takami; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Takiwaki, Tomoya [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-08-10

    We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using an M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core collapse of a 15 M{sub Sun} star, through bounce, up to about 100 ms postbounce in this study. By computing four models that differ according to 1D to 3D and by switching from special relativistic (SR) to GR hydrodynamics, we study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutrino energy of any neutrino flavor in the postbounce phase increase when switching from SR to GR hydrodynamics. This is because the deeper gravitational well of GR produces more compact core structures, and thus hotter neutrino spheres at smaller radii. By analyzing the residency timescale to the neutrino-heating timescale in the gain region, we show that the criterion to initiate neutrino-driven explosions can be most easily satisfied in 3D models, irrespective of SR or GR hydrodynamics. Our results suggest that the combination of GR and 3D hydrodynamics provides the most favorable condition to drive a robust neutrino-driven explosion.

  20. PROBING THE ROTATION OF CORE-COLLAPSE SUPERNOVA WITH A CONCURRENT ANALYSIS OF GRAVITATIONAL WAVES AND NEUTRINOS

    Energy Technology Data Exchange (ETDEWEB)

    Yokozawa, Takaaki; Asano, Mitsuhiro; Kanda, Nobuyuki [Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kayano, Tsubasa; Koshio, Yusuke [Department of Physics, Okayama University, Okayama, Okayama, 700-8530 (Japan); Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Vagins, Mark R. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2015-10-01

    The next time a core-collapse supernova (SN) explodes in our galaxy, various detectors will be ready and waiting to detect its emissions of gravitational waves (GWs) and neutrinos. Current numerical simulations have successfully introduced multi-dimensional effects to produce exploding SN models, but thus far the explosion mechanism is not well understood. In this paper, we focus on an investigation of progenitor core rotation via comparison of the start time of GW emission and that of the neutronization burst. The GW and neutrino detectors are assumed to be, respectively, the KAGRA detector and a co-located gadolinium-loaded water Cherenkov detector, either EGADS or GADZOOKS!. Our detection simulation studies show that for a nearby SN (0.2 kpc) we can confirm the lack of core rotation close to 100% of the time, and the presence of core rotation about 90% of the time. Using this approach there is also the potential to confirm rotation for considerably more distant Milky Way SN explosions.

  1. Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Globus, Noemie; Piran, Tsvi [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Allard, Denis; Parizot, Etienne [Laboratoire Astroparticule et Cosmologie, Université Paris Diderot/CNRS, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)

    2017-04-20

    GeV–TeV gamma-rays and PeV–EeV neutrino backgrounds provide a unique window on the nature of the ultra-high-energy cosmic rays (UHECRs). We discuss the implications of the recent Fermi -LAT data regarding the extragalactic gamma-ray background and related estimates of the contribution of point sources as well as IceCube neutrino data on the origin of the UHECRs. We calculate the diffuse flux of cosmogenic γ -rays and neutrinos produced by the UHECRs and derive constraints on the possible cosmological evolution of UHECR sources. In particular, we show that the mixed-composition scenario considered in Globus et al., which is in agreement with both (i) Auger measurements of the energy spectrum and composition up to the highest energies and (ii) the ankle-like feature in the light component detected by KASCADE-Grande, is compatible with both the Fermi -LAT measurements and with current IceCube limits. We also discuss the possibility for future experiments to detect associated cosmogenic neutrinos and further constrain the UHECR models, including possible subdominant UHECR proton sources.

  2. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  3. Two enigmas of stellar evolution: the solar neutrinos and 1987 a supernova

    International Nuclear Information System (INIS)

    Cahen, S.

    1987-01-01

    Solar models have been compared, using more recent opacity tables. Parameters to enter have been reviewed (thermonuclear reaction rate and element abundance) and opacity coefficient has been corrected. Incertitude influence of parameters on model results has been estimated. Helium initial abundance deduced from our model is coherent with observation and other calculated values. Causes of differences between some models are elucidated. For 1987a supernova, a semi-analytical model of light curve is presented. Light curve of supernovae whose progenitor is a massive star with a low initial radius. Electron recombination can explain almost the whole light emission [fr

  4. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  5. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  6. Cosmic microwave background and supernova constraints on quintessence: Concordance regions and target models

    International Nuclear Information System (INIS)

    Caldwell, Robert R.; Doran, Michael

    2004-01-01

    We perform a detailed comparison of the Wilkinson Microwave Anisotropy Probe measurements of the cosmic microwave background (CMB) temperature and polarization anisotropy with the predictions of quintessence cosmological models of dark energy. We consider a wide range of quintessence models, including a constant equation of state, a simply parametrized, time-evolving equation of state, a class of models of early quintessence, and scalar fields with an inverse-power law potential. We also provide a joint fit to the Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver (ACBAR) CMB data, and the type 1a supernovae. Using these select constraints we identify viable, target models which should prove useful for numerical studies of large scale structure formation, and to rapidly estimate the impact to the concordance region when new or improved observations become available

  7. The methodology of the search for a correlated signal from a supernova explosion using the data of gravitational wave detectors and neutrino observatories

    Science.gov (United States)

    Gromov, M. B.

    2017-11-01

    The proposed methodology developed in cooperation of the LIGO, VIRGO, Borexino, LVD, and IceCube collaborations is based on a joint analysis of data from neutrino and gravitational wave detectors which record corresponding radiations, almost undistorted by the interstellar medium and propagating with similar speeds. This approach allows to increase the reliability of observations, detect the so-called Silent supernovae and explore the properties and generation mechanisms of gravitational waves.

  8. Leptogenesis from heavy right-handed neutrinos in CPT violating backgrounds

    Science.gov (United States)

    Bossingham, Thomas; Mavromatos, Nick E.; Sarkar, Sarben

    2018-02-01

    We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT-violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Padé approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a right-handed neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ˜ 12.5% uncertainty). Our analysis depends on a novel use of Padé approximants to solve the Boltzmann equations and may be more widely useful in cosmology.

  9. Leptogenesis from heavy right-handed neutrinos in CPT violating backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bossingham, Thomas; Sarkar, Sarben [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mavromatos, Nick E. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Valencia (Spain)

    2018-02-15

    We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT-violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Pade approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a right-handed neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ∝ 12.5% uncertainty). Our analysis depends on a novel use of Pade approximants to solve the Boltzmann equations and may be more widely useful in cosmology. (orig.)

  10. Gravitational instabilities of the cosmic neutrino background with non-zero lepton number

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2017-09-01

    Full Text Available We argue that a cosmic neutrino background that carries non-zero lepton charge develops gravitational instabilities. Fundamentally, these instabilities are related to the mixed gravity-lepton number anomaly. We have explicitly computed the gravitational Chern–Simons term which is generated quantum-mechanically in the effective action in the presence of a lepton number asymmetric neutrino background. The induced Chern–Simons term has a twofold effect: (i gravitational waves propagating in such a neutrino background exhibit birefringent behaviour leading to an enhancement/suppression of the gravitational wave amplitudes depending on the polarisation, where the magnitude of this effect is related to the size of the lepton asymmetry; (ii Negative energy graviton modes are induced in the high frequency regime, which leads to very fast vacuum decay producing, e.g., positive energy photons and negative energy gravitons. From the constraint on the present radiation energy density, we obtain an interesting bound on the lepton asymmetry of the universe.

  11. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2013-01-01

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M ☉ . Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (∼M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  12. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2013-01-10

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M {sub Sun }. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness ({approx}M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  13. Principles and applications of a neutral current detector for neutrino physics and astronomy

    International Nuclear Information System (INIS)

    Drukier, A.; Stodolsky, L.

    1982-01-01

    We study neutrino detection through the elastic scattering of neutrinos on nuclei and identification of the recoil energy. The very large value of the cross section compared to previous methods indicates a detector would be relatively light and suggests the possibility of a true 'neutrino observatory'. We examine a realization in terms of the superconducting grain idea, which appears in principle feasible through extension and extrapolation of presently known techniques. Such a detector would permit determination of the neutrino spectrum and should be intensive to neutrino oscillations. Various applications and tests are discussed, including spallation sources, reactors, supernovas, solar and terrestrial neutrinos. A supernova would permit a simple determination of the number of neutrinos and their masses, while for solar neutrinos rates of thousands of S.N.U. are theoretically attainable. A preliminary estimate of the most difficult backgrounds is attempted. (orig.)

  14. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    Science.gov (United States)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  15. Constraints on neutrino degeneracy from the cosmic microwave background and primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Orito, M.; Kajino, T.; Mathews, G. J.; Wang, Y.

    2002-01-01

    We reanalyze the cosmological constraints on the existence of a net universal lepton asymmetry and neutrino degeneracy based upon the latest high resolution CMB sky maps from BOOMERANG, DASI, and MAXIMA-1. We generate likelihood functions by marginalizing over (Ω b h 2 ,ξ ν μ,τ ,ξ ν e ,Ω Λ ,h,n) plus the calibration uncertainties. We consider flat Ω M +Ω Λ =1 cosmological models with two identical degenerate neutrino species, ξ ν μ,τ ≡ vertical bar ξ ν μ vertical bar = vertical bar ξ ν τ vertical bar and a small ξ ν e . We assign weak top-hat priors on the electron-neutrino degeneracy parameter ξ ν e and Ω b h 2 based upon allowed values consistent with the nucleosynthesis constraints as a function of ξ ν μ,τ . The change in the background neutrino temperature with degeneracy is also explicitly included, and Gaussian priors for h=0.72±0.08 and the experimental calibration uncertainties are adopted. The marginalized likelihood functions show a slight (0.5σ) preference for neutrino degeneracy. Optimum values with two equally degenerate μ and τ neutrinos imply ξ ν μ,τ =1.0 -1.0(0.5σ) +0.8(1σ) ,from which we deduce ξ ν e =0.09 -0.09 +0.15 , and Ω b h 2 =0.021 -0.002 +0.06 . The 2σ upper limit becomes ξ ν μ,τ ≤2.1, which implies ξ ν e ≤0.30, and Ω b h 2 ≤0.030. For only a single large-degeneracy species the optimal value is vertical bar ξ ν μ vertical bar or vertical bar ξ ν τ vertical bar =1.4 with a 2σ upper limit of vertical bar ξ ν μ vertical bar or vertical bar ξ ν τ vertical bar ≤2.5.

  16. Charge and magnetic moment of the neutrino in the background field method and in the linear RξL gauge

    International Nuclear Information System (INIS)

    Cabral-Rosetti, L.G.; Bernabeu, J.; Vidal, J.

    2000-01-01

    We present a computation of the charge and the magnetic moment of the neutrino in the recently developed electro-weak background field method and in the linear R ξ L gauge. First, we deduce a formal Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper) one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of the magnetic moment of the neutrino, in the minimal extension of the standard model with massive Dirac neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly. (orig.)

  17. Neutrino conversion in a neutrino flux: towards an effective theory of collective oscillations

    Science.gov (United States)

    Hansen, Rasmus S. L.; Smirnov, Alexei Yu.

    2018-04-01

    Collective oscillations of supernova neutrinos above the neutrino sphere can be completely described by the propagation of individual neutrinos in external potentials and are in this sense a linear phenomenon. An effective theory of collective oscillations can be developed based on certain assumptions about time dependence of these potentials. General conditions for strong flavor transformations are formulated and these transformations can be interpreted as parametric resonance effects induced by periodic modulations of the potentials. We study a simplified and solvable example, where a probe neutrino is propagating in a flux of collinear neutrinos, such that ν ν‑ interactions in the flux are absent. Still, this example retains the main feature—the coherent flavor exchange. Properties of the parametric resonance are studied, and it is shown that integrations over energies and emission points of the flux neutrinos suppress modulations of the potentials and therefore strong transformations. The transformations are also suppressed by changes in densities of background neutrinos and electrons.

  18. On-site underground background measurements for the KASKA reactor-neutrino experiment

    International Nuclear Information System (INIS)

    Furuta, H.; Sakuma, K.; Aoki, M.; Fukuda, Y.; Funaki, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Katsumata, M.; Kawasaki, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Matsumoto, T.; Miyata, H.; Nagasaka, Y.; Nakagawa, T.; Nakajima, N.; Nitta, K.; Sakai, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.; Tamura, N.; Tsuchiya, Y.

    2006-01-01

    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70m underground level, and a detector unit for γ-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment

  19. Constraining Dark Energy with X-ray Galaxy Clusters, Supernovae and the Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    We present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w 0 = 1.05 -0.12 +0.10 . Including w et as a free parameter and allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . We find no significant evidence for evolution in the dark energy equation of state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w 0 = -1.09 -0.15 +0.12 and obtain a tight constraint on the current dark energy density, (Omega) de = 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy-momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c s 2 = 1 in the dark energy fluid as expected for Quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints

  20. An array of low-background 3He proportional counters for theSudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, J.F.; Anaya, J.M.; Banar, J.; Bowles, T.J.; Browne,M.C.; Bullard, T.V.; Burritt, T.H.; Cox-Mobrand, G.A.; Dai, X.; H.Deng,X.; Di Marco, M.; Doe, P.J.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Earle, E.D.; Elliott, S.R.; Esch, E.-I.; Fergani, H.; Formaggio, J.A.; Fowler, M.M.; Franklin, J.E.; Geissbuehler, P.; Germani, J.V.; Goldschmidt, A.; Guillian, E.; Hallin, A.L.; Harper, G.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heise, J.; Hime, A.; Howe, M.A.; Huang, M.; Kormos, L.L.; Kraus, C.; Krauss, C.B.; Law, J.; Lawson, I.T.; Lesko,K.T.; Loach, J.C.; Majerus, S.; Manor, J.; McGee, S.; Miknaitis, K.K.S.; Miller, G.G.; Morissette, B.; Myers, A.; Oblath, N.S.; O' Kee, H.M.; Ollerhead, R.W.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Reitzner,S.D.; Rielage, K.; Robertson, R.G.H.; Skensved, P.; Smith, A.R.; Smith,M.W.E.; Steiger, T.D.; Stonehill,L.C.; Thornewell, P.M.; Tolich, N.; VanDevender, B.A.; VanWechel, T.D.; Wall, B.L.; Tseung, H.W.C.; Wendland,J.; West, N.; Wilhelmy, J.B.; Wilkerson, J.F.; Wouters, J.M.

    2007-02-01

    An array of Neutral-Current Detectors (NCDs) has been builtin order to make a unique measurement of the total active ux of solarneutrinos in the Sudbury Neutrino Observatory (SNO). Data in the thirdphase of the SNO experiment were collected between November 2004 andNovember 2006, after the NCD array was added to improve theneutral-current sensitivity of the SNO detector. This array consisted of36 strings of proportional counters lled with a mixture of 3He and CF4gas capable of detecting the neutrons liberated by the neutrino-deuteronneutral current reaction in the D2O, and four strings lled with a mixtureof 4He and CF4 gas for background measurements. The proportional counterdiameter is 5 cm. The total deployed array length was 398 m. The SNO NCDarray is the lowest-radioactivity large array of proportional countersever produced. This article describes the design, construction,deployment, and characterization of the NCD array, discusses theelectronics and data acquisition system, and considers event signaturesand backgrounds.

  1. Neutrino flavor conversions in high-density astrophysical and cosmological environments

    International Nuclear Information System (INIS)

    Saviano, Ninetta

    2014-03-01

    The topic of this thesis is the study of the neutrino flavor conversions in high-density environments: the supernovae and the the Early Universe. Remarkably, these represent the only two cases in which neutrinos themselves contribute to the ''background medium'' for their propagation, making their oscillations a non-linear phenomenon. In particular, in the dense supernova core, the neutrino-neutrino interactions can lead in some situations to surprising and counterintuitive collective phenomena, when the entire neutrino system oscillates coherently as a single collective mode. In this context, we have shown that during the early SN accretion phase (post-bounce times 10 -3 ) in order to suppress the sterile neutrino production and to find a better agreement between the cosmological and laboratory hints. Finally, we discuss the implications of our results on Big-Bang Nucleosynthesis and on the Cosmic Microwave Background from data measured by the Planck experiment.

  2. Observing the Next Galactic Supernova with the NOvA Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Justin A. [Indiana U.; Sheshukov, Andrey [Dubna, JINR; Habig, Alec [Minnesota U., Duluth

    2017-10-02

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvA detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.

  3. Progress on a spherical TPC for low energy neutrino detection

    International Nuclear Information System (INIS)

    Aune, S; Colas, P; Deschamps, H; Dolbeau, J; Fanourakis, G; Ribas, E Ferrer; Enqvist, T; Geralis, T; Giomataris, Y; Gorodetzky, P; Gounaris, G J; Gros, M; Irastorza, I G; Kousouris, K; Lepeltier, V; Morales, J; Patzak, T; Paschos, E A; Salin, P; Savvidis, I; Vergados, J D

    2006-01-01

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m 3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others

  4. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  5. Mixing of fourth-generation neutrinos

    International Nuclear Information System (INIS)

    Nussinov, S.

    1987-01-01

    This paper reviews some of the constraints on the mixing of massive decaying neutrinos. Some of the possible implications for neutrino physics of the recent supernova, and in particular the apparent overabundance of neutrino energy, are discussed

  6. Cosmic constraint on massive neutrinos in viable f(R) gravity with producing ΛCDM background expansion

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Wu, Yabo; Wang, Yan; Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Liu, Molin [Xinyang Normal University, Department of Physics, Xinyang (China)

    2016-12-15

    Tensions between several cosmic observations were found recently, such as the inconsistent values of H{sub 0} (or σ{sub 8}) were indicated by the different cosmic observations. Introducing the massive neutrinos in ΛCDM could potentially solve the tensions. Viable f(R) gravity producing ΛCDM background expansion with massive neutrinos is investigated in this paper. We fit the current observational data: Planck-2015 CMB, RSD, BAO, and SNIa to constrain the mass of neutrinos in viable f(R) theory. The constraint results at 95% confidence level are: Σm{sub ν} < 0.202 eV for the active-neutrino case, m{sub ν,sterile}{sup eff} < 0.757 eV with N{sub eff} < 3.22 for the sterile neutrino case. For the effects due to the mass of the neutrinos, the constraint results on model parameter at 95% confidence level become f{sub R0} x 10{sup -6} > -1.89 and f{sub R0} x 10{sup -6} > -2.02 for two cases, respectively. It is also shown that the fitting values of several parameters much depend on the neutrino properties, such as the cold dark matter density, the cosmological quantities at matter-radiation equality, the neutrino density and the fraction of baryonic mass in helium. Finally, the constraint result shows that the tension between direct and CMB measurements of H{sub 0} gets slightly weaker in the viable f(R) model than that in the base ΛCDM model. (orig.)

  7. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    Science.gov (United States)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  8. Mechanisms for supernova explosions

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1977-01-01

    This report discusses some of the recent developments in the study of one supernova mechanism, the neutrino transport mechanism, and indicates what future developments are needed before this model can be adequately understood. (Auth.)

  9. High-energy neutrino background: Limitations on models of deuterium production

    International Nuclear Information System (INIS)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in the Earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z> or approx. =300). Improved neutrino experiments may be able to push these limits back to recombination

  10. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  11. Towards neutrino astronomy

    International Nuclear Information System (INIS)

    Lagage, P.O.; Spiro, M.

    1985-01-01

    Neutrino sources are numerous and varied; the sun, a supernova explosion, the cosmic radiation interaction with interstellar medium are neutrino or antineutrino sources. The aim of this article is to overview the international projects of neutrino detection while giving the preference to the experimental side of the detection [fr

  12. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  13. Utilization of FADC for reconstruction and analysis of the background data in the Chooz neutrino experiment

    International Nuclear Information System (INIS)

    Veron, Didier

    1997-01-01

    This thesis describes a particular contribution to the Chooz experiment. The latter looks for the oscillations, over a distance of 1 km, of antineutrons emitted by two nuclear reactors. The electron-type antineutrinos are detected through their inverse beta interaction with a target's proton. The neutron is detected through its capture by a gadolinium nucleus revealed by an 8 MeV gamma emission. In the first part we describe the reconstruction of events as simulated by the GIANT software. We show that the positron's and neutron's stopping point can actually be reconstructed with an accuracy of 10 and 20 cm respectively. In the second part, we proceed to the analysis of the calibration's data as recorded with Fast Wave Form Digitizers. This confirms the reliability of the Monte-Carlo results and allows measurement of both the neutrons' capture probability and time by the target gadolinium. The last part deals with the background (reactor turned off) data analysis and the pin-pointing of its various sources. In order to reduce their contribution, we define spatial cuts. These cuts' reliability is validated by analysis of data obtained not only with a neutron source, but also with neutrons issued from cosmic rays. We end up with a background contribution of two to three events per day, about ten times less than the expected neutrino rate at full reactor power. (author)

  14. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  15. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    Science.gov (United States)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  16. Evidence for massive neutrinos from cosmic microwave background and lensing observations.

    Science.gov (United States)

    Battye, Richard A; Moss, Adam

    2014-02-07

    We discuss whether massive neutrinos (either active or sterile) can reconcile some of the tensions within cosmological data that have been brought into focus by the recently released Planck data. We point out that a discrepancy is present when comparing the primary CMB and lensing measurements both from the CMB and galaxy lensing data using CFHTLenS, similar to that which arises when comparing CMB measurements and SZ cluster counts. A consistent picture emerges and including a prior for the cluster constraints and BAOs we find that for an active neutrino model with three degenerate neutrinos, ∑m(ν)=(0.320±0.081)  eV, whereas for a sterile neutrino, in addition to 3 neutrinos with a standard hierarchy and ∑m(ν)=0.06  eV, m(ν,sterile)(eff)=(0.450±0.124)  eV and ΔN(eff)=0.45±0.23. In both cases there is a significant detection of modification to the neutrino sector from the standard model and in the case of the sterile neutrino it is possible to reconcile the BAO and local H0 measurements. However, a caveat to our result is some internal tension between the CMB and lensing and cluster observations, and the masses are in excess of those estimated from the shape of the matter power spectrum from galaxy surveys.

  17. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    Science.gov (United States)

    Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2017-06-01

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.

  18. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei-Ming; Cai, Rong-Gen [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Guo, Zong-Kuan [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); University of Chinese Academy of Sciences, School of Astronomy and Space Science, Beijing (China); Zhang, Yuan-Zhong [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-06-15

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density. (orig.)

  19. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    International Nuclear Information System (INIS)

    Dai, Wei-Ming; Cai, Rong-Gen; Guo, Zong-Kuan; Zhang, Yuan-Zhong

    2017-01-01

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density. (orig.)

  20. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  1. Handbook of supernovae

    CERN Document Server

    Murdin, Paul

    2017-01-01

    This reference work gathers all of the latest research in the supernova field areas to create a definitive source book on supernovae, their remnants and related topics. It includes each distinct subdiscipline, including stellar types, progenitors, stellar evolution, nucleosynthesis of elements, supernova types, neutron stars and pulsars, black holes, swept up interstellar matter, cosmic rays, neutrinos from supernovae, supernova observations in different wavelengths, interstellar molecules and dust. While there is a great deal of primary and specialist literature on supernovae, with a great many scientific groups around the world focusing on the phenomenon and related subdisciplines, nothing else presents an overall survey. This handbook closes that gap at last. As a comprehensive and balanced collection that presents the current state of knowledge in the broad field of supernovae, this is to be used as a basis for further work and study by graduate students, astronomers and astrophysicists working in close/r...

  2. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  3. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  4. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  5. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  6. Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

    International Nuclear Information System (INIS)

    Biron von Curland, A.

    2002-07-01

    The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10 9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E ν -2 spectra, typical flux limits for selected sources of the order of Φ μ limit ∝ 10 -14 cm -2 s -1 for muons and Φ ν limit ∝ 10 -7 cm -2 s -1 for neutrinos have been obtained. (orig.)

  7. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  8. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  9. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints

    NARCIS (Netherlands)

    Zandanel, F.; Tamborra, I.; Gabici, S.; Ando, S.

    2015-01-01

    Cosmic-ray protons accumulate for cosmological times in clusters of galaxies because their typical radiative and diffusive escape times are longer than the Hubble time. Their hadronic interactions with protons of the intra-cluster medium generate secondary electrons, gamma rays, and neutrinos. In

  10. THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS

    International Nuclear Information System (INIS)

    Pejcha, Ondřej; Thompson, Todd A.

    2015-01-01

    If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E SN ) and nickel yields (M Ni ), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. We predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M ☉ are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E SN -M Ni correlation, we predict a correlation between the mean and width of the NS mass and E SN distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M ☉ implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties

  11. Type II supernovae: How do they explode?

    International Nuclear Information System (INIS)

    Baron, E.

    1988-01-01

    I discuss what has been learned from the neutrino observations of Supernova 1987A. The neutrino detections confirmed our basic theoretical scenario that Type II supernovae involve the gravitational collapse of a massive star. The small number of events makes it difficult to infer details about the actual mechanism of collapse. I discuss the current theoretical situation on the mechanism of explosion

  12. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kneller, James P. [North Carolina State Univ., Raleigh, NC (United States)

    2016-10-12

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  13. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    International Nuclear Information System (INIS)

    Kneller, James P.

    2016-01-01

    The final report for the award 'The Neutrino: A Better Understanding Through Astrophysics' is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  14. Research and design progress of the Jinping Neutrino Experiment

    Science.gov (United States)

    Wang, Zhe

    2018-01-01

    Thanks to the 2400 m overburden and the long distance to commercial reactors, the China Jinping Underground Laboratory (CJPL) is an ideal site for low background neutrino experiments. The Jinping Neutrino Experiment will perform an in-depth research on solar neutrinos, geo-neutrinos and supernova relic neutrinos. Many efforts were devoted to the R&D of the experimental proposal. A new type of liquid scintillator, with high light-yield and Cherenkov and scintillation separation capability, is being developed. The assay and selection of low radioactive stainless-steel (SST) was carried out. A wide field-of-view of 90 degree and high-geometry-efficiency of 98% light concentrator is developed. At the same time, a 1-ton prototype is constructed and placed underground at Jinping laboratory. The simulation and analysis software, electromagnetic calorimeter function, rock damage zone simulation will also be introduced briefly.

  15. A statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors from supernova SN 1987 A

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1989-01-01

    A detailed statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors on UT 07:35, 2/23'87 is carried out. Distribution functions of the mean scattering angles in the reaction anti υ e p→e + n and υe→υe are constructed with account taken of the multiple Coulomb scattering and the experimental angular errors. The Smirnov and Wald-Wolfowitz run tests are used to test the hypothesis that the angular distributions of events from the two detectors agree with each other. We test with the use of the Kolmogorov and Mises statistical criterions the hypothesis that the recorded events all represent anti υ e p→e + n inelastic scatterings. Then the Neyman-Pearson test is applied to each event in testing the hypothesis anti υ e p→e + n against the alternative υe→υe. The hypotheses that the number of elastic events equals s=0, 1, 2, ... against the alternatives s≠0, 1, 2, ... are tested on the basis of the generalized likelihood ratio criterion. The confidence intervals for the number of elastic events are also constructed. The current supernova models fail to give a satisfactory account of the angular distribution data. (orig.)

  16. Physics of supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs

  17. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  18. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    International Nuclear Information System (INIS)

    Fargion, Daniele; Di Giacomo, Paola

    2009-01-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., (arXiv:0806.4424), Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. (0810.1959v1)]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino 'flare' may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  19. Producing a background free data set for measurement of the charge current flux and day-night asymmetry at the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    McCauley, Neil K.

    2001-01-01

    The SNO detector is a 1 kilo-tonne heavy water Cerenkov detector designed to solve the solar neutrino problem. The detector is situated 2km underground in the INCO Ltd. Creighton mine near Sudbury, Ontario. The heavy water is observed by approximately 9500 photo-multiplier tubes (PMTs) to detect Cerenkov light generated by solar neutrino interactions. Using heavy water SNO can detect neutrinos in three different ways. In this thesis aspects of the charge current (a reaction sensitive to electron neutrinos only) and elastic scattering flux analysis are presented. Some models predict a difference in the detected neutrino rate between day and night. Measurement of this via the day-night asymmetry can help solve the solar neutrino problem. One of the principal problems for the solar neutrino analysis are the instrumental backgrounds; events caused by processes other than Cerenkov light. This thesis contains the descriptions of the backgrounds, the data selection cuts that have been designed to remove them and the effect of these cuts on SNO data. To demonstrate the effectiveness of the cuts, the fraction of good events removed and the residual background content of the data set after application of the cuts are measured. Once the cuts have been applied to the data the charge current flux and day-night asymmetry can be measured. In this thesis data taken between the 2nd of November 1999 and the 1st July 2000, providing a total of 64.6 days of data during the day and 93.1 days of night data, are used to measure the day-night asymmetry. The results of this analysis for the asymmetry in the detected solar neutrino rate from the charge current and elastic scattering reactions are presented. (author)

  20. Capturing Neutrinos from a Star's Final Hours

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  1. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  2. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  3. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  4. Physical processes in collapse driven supernova

    Energy Technology Data Exchange (ETDEWEB)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  5. Physical processes in collapse driven supernova

    International Nuclear Information System (INIS)

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs

  6. Revisiting cosmological bounds on sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Aaron C. [Institute for Particle Physics Phenomenology (IPPP), Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Martínez, Enrique Fernández [Departamento and Instituto de Física Teórica (IFT), UAM/CSIC, Universidad Autonoma de Madrid, C/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain); Hernández, Pilar; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lattanzi, Massimiliano, E-mail: aaron.vincent@durham.ac.uk, E-mail: enrique.fernandez-martinez@uam.es, E-mail: m.pilar.hernandez@uv.es, E-mail: omena@ific.uv.es, E-mail: lattanzi@fe.infn.it [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico, Edificio C Via Saragat, 1, I-44122 Ferrara (Italy)

    2015-04-01

    We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R{sub CMB} and the sound horizon r{sub s} from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin{sup 2}θ ∼< 0.026 (m{sub s}/eV){sup −2}.

  7. Measurement of neutrinos released in nuclear reactors through the Borexino experiment; Mesure des neutrinos de reacteurs nucleaires dans l'experience Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Dadoun, O

    2003-06-01

    The main goal of the Borexino experiment is to measure in real time the solar neutrino flux from the beryllium (Be{sup 7}) line at 862 keV. Beyond this pioneer low energy neutrino detection, Borexino will be able to measure solar neutrinos above the MeV, (B{sup 8} neutrinos and pep neutrinos), nuclear reactor neutrinos (with an average energy of 3 MeV) and the supernova neutrinos (their spectrum goes up to some ten MeV). In this work I mainly focus on the study of the nuclear reactors neutrinos. This field has recently been enriched by the results of the KamLAND experiment, which have greatly improved the determination of the neutrino oscillation parameters. In order to measure these events which are above the MeV, the Borexino collaboration entrusted the PCC group at College de France, with the tasks of developing a fast digit system running at 400 MHz: the FADC cards. The PCC group designed the FADC cards and completed them at the beginning of 2002. The first cards which were introduced in the main electronic acquisition unit allowed us to control their functioning and that of the acquisition software. FADC cards were also installed in the Borexino prototype, CTF. The data are analysed in order to determine a limit to the expected background noise of Borexino in measuring the nuclear reactor neutrinos. (author)

  8. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  9. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  10. Learning Physics from the Cosmic Microwave Background

    CERN Document Server

    Ellis, Jonathan Richard

    1999-01-01

    The Cosmic Microwave Background (CMB) provides a precious window on fundamental physics at very high energy scales, possibly including quantum gravity, GUTs and supersymmetry. The CMB has already enabled defect-based rivals to inflation to be discarded, and will be able to falsify many inflationary models. In combination with other cosmological observations, including those of high-redshift supernovae and large-scale structure, the CMB is on the way to providing a detailed budget for the density of the Universe, to be compared with particle-physics calculations for neutrinos and cold dark matter. Thus CMB measurements complement experiments with the LHC and long-baseline neutrino beams.

  11. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  12. Sterile neutrinos in the milky way

    DEFF Research Database (Denmark)

    Riemer-Sørensen, Signe; Hansen, Steen Harle; Pedersen, K.

    2006-01-01

    Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30......Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30...

  13. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  14. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  15. Physics of neutrino flavor transformation through matter–neutrino resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru, E-mail: mwu@theorie.ikp.physik.tu-darmstadt.de [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany); Duan, Huaiyu, E-mail: duan@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Qian, Yong-Zhong, E-mail: qian@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-01-10

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  16. Simulating nonlinear neutrino flavor evolution

    Science.gov (United States)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  17. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  18. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  19. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  20. Mirror model for sterile neutrinos

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  1. Supernova real-time monitor system in Kamiokande

    International Nuclear Information System (INIS)

    Oyama, Y.; Yamada, M.; Ishida, T.; Yamaguchi, T.; Yokoyama, H.

    1994-01-01

    A data-analysis program to discover possible supernova neutrino bursts has been installed in the online data-acquisition computer of the Kamiokande experiment. The program automatically analyzes data within 20 min and gives an alarm to collaborators if a possible supernova neutrino burst is found. The detection efficiency of the program is 96% for a typical supernova located 50 kpc from Earth. After a careful analysis by the Kamiokande collaborators, it will be possible to inform all optical observatories in the world about the occurrence of a supernova within 3 h from the time of first detecting the neutrino burst. Information concerning the celestial position of a supernova will also be available for supernovae having a distance less than ∼ 10 kpc. This information will be helpful for observing the first optical emissions from the newly born supernova. (orig.)

  2. Acceleration and propagation of cosmic radiation. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.-O.

    1987-06-01

    In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  3. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  4. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  5. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  6. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Pfahler, Patrick

    2012-12-17

    Neutrino physics is one of the most vivid fields in particle physics. Within this field, neutrino oscillations are of special interest as they allow to determine driving oscillation parameters, which are collected as mixing angles in the leptonic mixing matrix. The exact knowledge of these parameters is the main key for the investigation of new physics beyond the currently known Standard Model of particle physics. The Double Chooz experiment is one of three reactor disappearance experiments currently taking data, which recently succeeded to discover a non-zero value for the last neutrino mixing angle {Theta}{sub 13}. As successor of the CHOOZ experiment, Double Chooz will use two detectors with improved design, each of them now composed of four concentrically nested detector vessels each filled with different detector liquid. The integrity of this multi-layered structure and the quality of the used detector liquids are essential for the success of the experiment. Within this frame, the here presented work describes the production of two detector liquids, the filling and handling of the Double Chooz far detector and the installation of all necessary hardware components therefore. In order to meet the strict requirements existing for the detector liquids, all components were individually selected in an extensive material selection process at TUM, which compared samples from different companies for their key properties: density, transparency, light yield and radio purity. Based on these measurements, the composition of muon veto scintillator and buffer liquid were determined. For the production of the detector liquids, a simple surface building close to the far detector site was upgraded into a large-scale storage and mixing facility, which allowed to separately, mix, handle and store 90 m{sup 3} of muon veto scintillator and 110 m{sup 3} of buffer liquid. For the muon veto scintillator, a master-solution composed of 4800 l LAB, 180 kg PPO and 1.8 kg of bis/MSB was

  7. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    International Nuclear Information System (INIS)

    Pfahler, Patrick

    2012-01-01

    Neutrino physics is one of the most vivid fields in particle physics. Within this field, neutrino oscillations are of special interest as they allow to determine driving oscillation parameters, which are collected as mixing angles in the leptonic mixing matrix. The exact knowledge of these parameters is the main key for the investigation of new physics beyond the currently known Standard Model of particle physics. The Double Chooz experiment is one of three reactor disappearance experiments currently taking data, which recently succeeded to discover a non-zero value for the last neutrino mixing angle Θ 13 . As successor of the CHOOZ experiment, Double Chooz will use two detectors with improved design, each of them now composed of four concentrically nested detector vessels each filled with different detector liquid. The integrity of this multi-layered structure and the quality of the used detector liquids are essential for the success of the experiment. Within this frame, the here presented work describes the production of two detector liquids, the filling and handling of the Double Chooz far detector and the installation of all necessary hardware components therefore. In order to meet the strict requirements existing for the detector liquids, all components were individually selected in an extensive material selection process at TUM, which compared samples from different companies for their key properties: density, transparency, light yield and radio purity. Based on these measurements, the composition of muon veto scintillator and buffer liquid were determined. For the production of the detector liquids, a simple surface building close to the far detector site was upgraded into a large-scale storage and mixing facility, which allowed to separately, mix, handle and store 90 m 3 of muon veto scintillator and 110 m 3 of buffer liquid. For the muon veto scintillator, a master-solution composed of 4800 l LAB, 180 kg PPO and 1.8 kg of bis/MSB was produced and

  8. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of 100Mo beta beta decay

    International Nuclear Information System (INIS)

    Piquemal, F.

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10 25 years for 100 Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e + - e - pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of 214 Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e + - e - pairs. (author)

  9. Neutrinos, Weak Interactions, and r-process Nucleosynthesis

    International Nuclear Information System (INIS)

    Balantekin, A B

    2006-01-01

    Two of the key issues in understanding the neutron-to-proton ratio in a corecollapse supernova are discussed. One of these is the behavior of the neutrino-nucleon cross sections as supernova energies. The other issue is the many-body properties of the neutrino gas near the core when both one- and two-body interaction terms are included

  10. Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport, and a mechanism for supernova explosion enhancement

    Science.gov (United States)

    Hidaka, Jun; Fuller, George M.

    2006-12-01

    We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νe⇌νs channel in the collapse of the iron core of a presupernova star. For values of sterile neutrino rest mass ms and vacuum mixing angle θ (specifically, 0.5keV5×10-12) which include those required for viable sterile neutrino dark matter, our one-zone in-fall phase collapse calculations show a significant reduction in core lepton fraction. This would result in a smaller homologous core and therefore a smaller initial shock energy, disfavoring successful shock reheating and the prospects for an explosion. However, these calculations also suggest that the MSW resonance energy can exhibit a minimum located between the center and surface of the core. In turn, this suggests a post-core-bounce mechanism to enhance neutrino transport and neutrino luminosities at the core surface and thereby augment shock reheating: (1) scattering-induced or coherent MSW νe→νs conversion occurs deep in the core, at the first MSW resonance, where νe energies are large (˜150MeV); (2) the high energy νs stream outward at near light speed; (3) they deposit their energy when they encounter the second MSW resonance νs→νe just below the proto-neutron star surface.

  11. Experimental Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Richard Jeffrey [Univ. of Washington, Seattle, WA (United States)

    2017-11-15

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

  12. A 'nu' look at gravitational waves: the black hole birth rate from neutrinos combined with the merger rate from LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jonathan H.; Fairbairn, Malcolm, E-mail: jonathan.davis@kcl.ac.uk, E-mail: malcolm.fairbairn@kcl.ac.uk [Theoretical Particle Physics and Cosmology, Department of Physics, King' s College London, London WC2R 2LS (United Kingdom)

    2017-07-01

    We make projections for measuring the black hole birth rate from the diffuse supernova neutrino background (DSNB) by future neutrino experiments, and constrain the black hole merger fraction ε, when combined with information on the black hole merger rate from gravitational wave experiments such as LIGO. The DSNB originates from neutrinos emitted by all the supernovae in the Universe, and is expected to be made up of two components: neutrinos from neutron-star-forming supernovae, and a sub-dominant component at higher energies from black-hole-forming 'unnovae'. We perform a Markov Chain Monte Carlo analysis of simulated data of the DSNB in an experiment similar to Hyper-Kamiokande, focusing on this second component. Since all knowledge of the neutrino emission from unnovae comes from simulations of collapsing stars, we choose two sets of priors: one where the unnovae are well-understood and one where their neutrino emission is poorly known. By combining the black hole birth rate from the DSNB with projected measurements of the black hole merger rate from LIGO, we show that the fraction of black holes which lead to binary mergers observed today ε could be constrained to be within the range 2 ⋅ 10{sup −4} ≤ ε ≤ 3 ⋅ 10{sup −2} at 3 σ confidence, after ten years of running an experiment like Hyper-Kamiokande.

  13. A 'nu' look at gravitational waves: the black hole birth rate from neutrinos combined with the merger rate from LIGO

    International Nuclear Information System (INIS)

    Davis, Jonathan H.; Fairbairn, Malcolm

    2017-01-01

    We make projections for measuring the black hole birth rate from the diffuse supernova neutrino background (DSNB) by future neutrino experiments, and constrain the black hole merger fraction ε, when combined with information on the black hole merger rate from gravitational wave experiments such as LIGO. The DSNB originates from neutrinos emitted by all the supernovae in the Universe, and is expected to be made up of two components: neutrinos from neutron-star-forming supernovae, and a sub-dominant component at higher energies from black-hole-forming 'unnovae'. We perform a Markov Chain Monte Carlo analysis of simulated data of the DSNB in an experiment similar to Hyper-Kamiokande, focusing on this second component. Since all knowledge of the neutrino emission from unnovae comes from simulations of collapsing stars, we choose two sets of priors: one where the unnovae are well-understood and one where their neutrino emission is poorly known. By combining the black hole birth rate from the DSNB with projected measurements of the black hole merger rate from LIGO, we show that the fraction of black holes which lead to binary mergers observed today ε could be constrained to be within the range 2 ⋅ 10 −4 ≤ ε ≤ 3 ⋅ 10 −2 at 3 σ confidence, after ten years of running an experiment like Hyper-Kamiokande.

  14. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  15. Coherent and Incoherent Neutral Current Scattering for Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2012-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the neutral current neutrino scattering off 40Ar and 132Xe isotopes at neutrino energies (Ev<100 MeV. The individual contribution coming from coherent and incoherent channels is taking into account. An enhancement of the neutral current component is achieved via the coherent (0gs+→0gs+ channel which is dominant with respect to incoherent (0gs+→Jf one. The response of the above isotopes as a supernova neutrino detection has been considered, assuming a two parameter Fermi-Dirac distribution for the supernova neutrino energy spectra. The calculated total cross sections are tested on a gaseous spherical TPC detector dedicated for supernova neutrino detection.

  16. Solar neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education

    1975-01-01

    The measurement of solar neutrino was performed by using the reaction /sup 37/cl+..nu..sub(e)..-->../sup 37/Ar+e/sup -/ by Davis et al. The argon gas produced through the above mentioned reaction in a tank containing 610 ton of C/sub 2/Cl/sub 4/ was collected and measured. The rate of production of /sup 37/Ar was 0.13+-0.20/day, and the net production rate by the solar neutrino was 0.06+-0.20/day, being corrected for background. This value corresponds to 0.5+-1.0 SNU. Theoretical calculation with the model of spherically symmetric solar development gave an expected value of 5.6 SNU, which is in contradiction with the experimental value. Reason of this discrepancy was considered. The possibility of decay of neutrino to the other particles with weak interaction is very slight. Various models of the sun were investigated, but the results were still inconsistent with the experiment. The mixing of matters in the sun may cause the reduction of neutrino. If He gas comes to the center of the sun by mixing, the reaction, /sup 3/He+/sup 3/He, progresses excessively at the center, and it produces the expansion of the core of the sun. Then, the temperature drops and the neutrino is reduced. Various models which can explain the neutrino of less than ISNU have been presented. However, other theory says that the reduction of neutrino is not expected even if the mixing is considered. A problem concerning the mixing is whether the thermal instability which causes the mixing exists. (Kato, T.).

  17. The great supernova of 1987

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1989-01-01

    Seven hundred day after the explosion of the brightest supernova in four centuries, astronomers continue to be both excited and perplexed by its behavior. By now, the supernova has received considerably attention in the literature. This paper emphasizes several aspects of the supernova that continue to be of special interest. These include: the evolution of the presupernova star, why it was blue, what its composition and core structure were; the iron core mass, explosion mechanism, and certain aspects of the neutrino burst; the detailed isotopic composition of the ejecta; the light curve and the requirement for mixing; the expected continued evolution of the supernova at all wavelengths given both the presence of several radioactivities as well as a central collapsed object as a power source; and late breaking news regarding the pulsar

  18. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  19. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  20. A Nine-Year Hunt for Neutrinos

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth

  1. MEDITERRANEAN: Underwater neutrinos get off the ground

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Now funded is the initial stage of NESTOR, an imaginative new programme for a dedicated underwater neutrino astroparticle physics laboratory. Located in the international waters off the southernmost corner of continental Europe near the town of Pylos in S.W. Greece, NESTOR (NEutrinos from Supernovae and TeV sources Ocean Range) recalls the wise king of Pylos who counselled the Greeks during the Trojan war, an excellent tradition for new scientific goals of detecting neutrinos

  2. Interaction of electron neutrino with LSD detector

    Science.gov (United States)

    Ryazhskaya, O. G.; Semenov, S. V.

    2016-06-01

    The interaction of electron neutrino flux, originating in the rotational collapse mechanism on the first stage of Supernova burst, with the LSD detector components, such as 56Fe (a large amount of this metal is included in as shielding material) and liquid scintillator barNnH2n+2, is being investigated. Both charged and neutral channels of neutrino reaction with 12barN and 56Fe are considered. Experimental data, giving the possibility to extract information for nuclear matrix elements calculation are used. The number of signals, produced in LSD by the neutrino pulse of Supernova 1987A is determined. The obtained results are in good agreement with experimental data.

  3. Acceleration and propagation of cosmic rays. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1987-01-01

    This thesis is devoted to studies on cosmic rays and neutrinos, particles astrophysically relevant. In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth ...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  4. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  5. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  6. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  7. Supernova 1987A: 18 Months later

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), /approximately/50 kpc away. The supernova star was a massive star of /approximately/15--20M. Observations now show that it was once a red-giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red [supergiant]. Of particular importance to physicists is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2--4 /times/ 10/sup 53/ergs emitted in neutrinos and a temperature, T/sub /bar /nu/e//, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. A neutrino detection, such as that reported earlier in Mt. Blanc, would require more than the rest mass energy of a neutron star to be converted to neutrinos, if it were to have its origin in the LMC. Thus it is probably unrelated to the supernova. The anticipated frequency of collapse events in our Galaxy, will also be discussed with a rate as high as 1/10 year shown to be not unreasonable. 61 refs

  8. A network of neutral current spherical TPCs for dedicated supernova detection

    International Nuclear Information System (INIS)

    Giomataris, Y.; Vergados, J.D.

    2006-01-01

    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current offers a realistic prospect of detecting supernova neutrinos. As a matter of fact for a typical supernova at 10 kpc, about 1000 events are expected using a spherical gaseous detector of radius 4 m and employing Xe gas at a pressure of 10 atm. We propose a world wide network of several such simple, stable and low cost supernova detectors with a running time of a few centuries

  9. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  10. Aspherical supernovae

    International Nuclear Information System (INIS)

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  11. Smoking supernovae

    OpenAIRE

    Gomez, Haley Louise; Eales, Stephen Anthony; Dunne, L.

    2007-01-01

    The question ‘Are supernovae important sources of dust?’ is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is i...

  12. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  13. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  14. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  15. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    Science.gov (United States)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

  16. Utilization of FADC for reconstruction and analysis of the background data in the Chooz neutrino experiment; Utilisation des FADC pour la reconstruction et l`analyse des donnees de bruit de fond dans l`experience neutrino de Chooz

    Energy Technology Data Exchange (ETDEWEB)

    Veron, Didier [Universite Claude Bernard, 69 - Lyon (France)

    1997-03-25

    This thesis describes a particular contribution to the Chooz experiment. The latter looks for the oscillations, over a distance of 1 km, of antineutrons emitted by two nuclear reactors. The electron-type antineutrinos are detected through their inverse beta interaction with a target`s proton. The neutron is detected through its capture by a gadolinium nucleus revealed by an 8 MeV gamma emission. In the first part we describe the reconstruction of events as simulated by the GIANT software. We show that the positron`s and neutron`s stopping point can actually be reconstructed with an accuracy of 10 and 20 cm respectively. In the second part, we proceed to the analysis of the calibration`s data as recorded with Fast Wave Form Digitizers. This confirms the reliability of the Monte-Carlo results and allows measurement of both the neutrons` capture probability and time by the target gadolinium. The last part deals with the background (reactor turned off) data analysis and the pin-pointing of its various sources. In order to reduce their contribution, we define spatial cuts. These cuts` reliability is validated by analysis of data obtained not only with a neutron source, but also with neutrons issued from cosmic rays. We end up with a background contribution of two to three events per day, about ten times less than the expected neutrino rate at full reactor power. (author) 81 refs., 152 figs.,43 tabs.

  17. Neutrino Interactions

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri; Handler, Thomas

    2016-01-01

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ_1_3 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton 'FAR' neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton 'NEAR' detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  18. Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshkov, Yuri [Univ. of Tennesse, Knoxville, TN (United States); Handler, Thomas [Univ. of Tennesse, Knoxville, TN (United States)

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  19. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  20. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  1. New possibilities in supernova accretion phase from dense matter effect

    Science.gov (United States)

    Chakraborty, S.; Mirizzi, A.; Saviano, N.

    2012-07-01

    We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.

  2. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  3. Neutrino and dark radiation properties in light of recent CMB observations

    Science.gov (United States)

    Archidiacono, Maria; Giusarma, Elena; Melchiorri, Alessandro; Mena, Olga

    2013-05-01

    Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with Neff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the Neff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity cvis2=1/3 at the 2σ C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation

  4. Core-collapse supernovae - successes, problems, and perspectives

    CERN Document Server

    Janka, H T

    2000-01-01

    Multi-dimensional hydrodynamic simulations of the post-bounce evolution of collapsed stellar iron cores have demonstrated that convective overturn between the stalled shock and the neutrinosphere can have an important effect on the neutrino-driven explosion mechanism. Whether a model yields a successful explosion or not, however, still depends on the power of neutrino energy deposition behind the stalled shock. The neutrino interaction with the stellar gas in the 'hot bubble' also determines the duration of the shock stagnation phase, the explosion energy, and the composition of the neutrino-heated supernova ejecta. More accurate models require a more precise calculation of the neutrino luminosities and spectra and of the angular distributions of the neutrinos in the heating region. Therefore it is necessary to improve the numerical treatment of the neutrino transport, to take into account convective processes inside the newly formed neutron star, and to develop a better understanding of the neutrino opacitie...

  5. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  6. supernovae: Photometric classification of supernovae

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  7. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  8. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  9. Simulating nonlinear neutrino flavor evolution

    Energy Technology Data Exchange (ETDEWEB)

    Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.

  10. Gravitational waves from a pulsar kick caused by neutrino conversions

    International Nuclear Information System (INIS)

    Loveridge, Lee C.

    2004-01-01

    It has been suggested that the observed pulsar velocities are caused by an asymmetric neutrino emission from a hot neutron star during the first seconds after the supernova collapse. We calculate the magnitude of gravitational waves produced by the asymmetries in the emission of neutrinos. The resulting periodic gravitational waves may be detectable by LIGO and LISA in the event of a nearby supernova explosion

  11. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  12. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed

  13. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  14. Possible explanation of the solar-neutrino puzzle

    Science.gov (United States)

    Bethe, H. A.

    1986-01-01

    A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.

  15. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  16. A look at Supernova 1987A

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T ∼ 4ε 0 4.5 MeV) and total energy emitted (2ε 0 4 x 10 53 ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1ε 0 2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail at high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs

  17. Interacting supernovae and supernova impostors

    Science.gov (United States)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  18. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  19. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  20. Collaborative Research: Neutrinos and Nucleosynthesis in Hot Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Gail [North Carolina State Univ., Raleigh, NC (United States); Schaefer, Thomas [North Carolina State Univ., Raleigh, NC (United States)

    2015-05-31

    The major accomplishments of the research activity at NC State during the five years were: to determine the effects and signatures of turbulence in supernova, to calculate r-process and supernova nucleosynthesis, and to determine the neutrino scattering and flavor transformation that occurs in black hole accretion disks. This report goes into more detail on them.

  1. Neutrino burst from SN1987A and the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Arafune, J.; Fukugita, M.; Yanagida, T.; Yoshimura, M.

    1987-01-01

    The prompt ν/sub e/ signal from the supernova explosion in the Large Magellanic Cloud presumably detected by Kamiokande II does not necessarily mean that the Mikheyev-Smirnov-Wolfenstein effect on the solar-neutrino flux is not operative. The electron neutrino, once rotated to a different-flavor neutrino in the progenitor star, can come back via the matter-oscillation effect in the Earth, or a residual ν/sub e/ flux from the progenitor can directly hit the detector, saving the Mikheyev-Smirnov-Wolfenstein explanation of the solar-neutrino problem for a range of mixing parameters

  2. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  3. GZK cutoff and associated neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2004-11-15

    We discuss the cosmogenic neutrinos that are produced in interactions of ultrahigh energy cosmic rays with radiation fields. The obvious and most important target is the microwave background. It is possible that the infrared/optical background contributes to the flux of cosmogenic neutrinos, especially in the case of steep cosmic ray injection spectra and fast cosmological evolution of the cosmic ray sources.

  4. Neutrino mass hierarchy and matter effects

    OpenAIRE

    Smirnov, Alexei Yu.

    2013-01-01

    Matter effects modify the mixing and the effective masses of neutrinos in a way which depends on the neutrino mass hierarchy. Consequently, for normal and inverted hierarchies the oscillations and flavor conversion results are different. Sensitivity to the mass hierarchy appears whenever the matter effects on the 1-3 mixing and mass splitting become substantial. This happens in supernovae in wide energy range and in the matter of the Earth. The Earth density profile is a multi-layer medium wh...

  5. Reconstruction of GeV Neutrino Events in LENA

    International Nuclear Information System (INIS)

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-01-01

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  6. Equation of state and neutrino opacity of dense stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, S. (Sanjay)

    2004-01-01

    The properties of matter at densities similar to nuclear density plays an important role in core collapse supernova. In this talk I discuss aspects of the equation of state and weak interactions at high density. I highlight its relation to the temporal and spectral features of the neutrino emission from the newly born neutron star born in the aftermath of a core-collapse supernova. I will briefly comment on how this will impact r-process nucleosynthesis. The hot and dense neutron star (proto-neutron star) born in the aftermath of a core collapse supernova provides a promising environment for r-process nucleosynthesis. The intense temperatures and neutrino fluxes in the vicinity of the proto-neutron star is expected to result in a high entropy neutron-rich wind necessary for successful r-process nucleosynthesis. Although theoretical efforts to simulate core collapse supernova have not been able to provide a mechanism for robust explosions, several key features of the supernova dynamics and early evolution of the proto-neutron star are well understood. Large scale numerical simulations of supernova and neutron star evolution are now being pursued by several groups. Simulating core collapse supernova is challenging because it involves coupled multi-dimensional hydrodynamics and neutrino transport. The neutrinos play a key role since they are the dominant source of energy transport. It is expected that refinements in neutrino transport and better treatment of multi-dimensional effects are needed to understand the explosion mechanism. The temporal and spectral features of the neutrino emission which is emitted from the proto-neutron star is an independent diagnostic of supernova explosion dynamics and early evolution of the proto-neutron star. To accurately predict the ambient conditions just outside the newly born neutron star for the first 10-20 s, we will need to understand both the explosion mechanism and neutrino emission. In this talk I will discuss micro

  7. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  8. Neutrino interaction event reconstruction and analysis in the Opera emulsion targets and charmed background rejection in the τ → 3h channel

    International Nuclear Information System (INIS)

    Besnier, M.

    2008-07-01

    OPERA (Gran-Sasso, Italy) is a long-baseline neutrino experiment dedicated to the tau neutrino detection in a pure muon neutrino beam, produced at CERN (730 km away). The main goal is to observe the ν μ → ν τ oscillation. The experiment uses a hybrid technology with electronic detectors and target blocks made of lead plates interleaved with nuclear emulsion sheets, in order to sign efficiently the ν τ interactions. The fundamental features of OPERA are its particle reconstruction performances achieved in spatial and angular resolutions. The first studies done in this thesis concern the development of several analysis tools like the particle momentum determination using the multiple coulomb scattering in target, and a method of neutrino interaction reconstruction for multi-vertex events. Then it has been possible to develop a multivariable analysis in order to separate τ and charmed events in the τ decay channel into three charged hadrons. These tools have been tested with neutrino interactions observed first with the OPERA test-beam called PEANUT, then with the OPERA events accumulated during the first CNGS (CERN Neutrino to Gran Sasso) run in 2007. The combined analysis of these events has shown that both the analysis method and the OPERA detector behaviour are well understood. (author)

  9. TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.

    Science.gov (United States)

    Murase, Kohta; Ioka, Kunihito

    2013-09-20

    We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.

  10. Can we scan the supernova model space for collective oscillations?

    International Nuclear Information System (INIS)

    Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka

    2016-01-01

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  11. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  12. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  13. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    Astier, P.

    1987-09-01

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst) [fr

  14. Model of a black hole gas submitted to background gravitational field for active galaxy nuclei with application to calculating the continuous emission spectra of massless particles (Photons: neutrinos and gravitons)

    International Nuclear Information System (INIS)

    Pinto Neto, A.

    1987-01-01

    A new theoretical model for active galaxy nuclei which describes the continuous spectrum of rest massless particles (photons, neutrinos and gravitons) in the frequency range from radiofrequency to gamma ray frequency, is presented. The model consists in a black hole gas interacting with a background gravitacional field. The previously models proposed for active galaxy nuclei are exposured. Whole theoretical fundaments based on Einstein general relativity theory for defining and studying singularity properties (black holes) are also presented. (M.C.K.) [pt

  15. Neutrinos at the forefront of elementary physics and astrophysics - Slides and abstracts

    International Nuclear Information System (INIS)

    Wark, D.; Cabrera, A.; Clark, K.; Cribier, M.; Rubbia, A.; Schwetz, T.; Hagedorn, C.; Bajc, B.; Thomas, J.; Nakahata, M.; Bravar, S.; Raffelt, G.; Mirizzi, A.; Serpico, P.; Drappeau, S.; Turk-Chieze, S.; Vignaud, D.; Kouchner, A.; Gay, P.; Baerwald, P.; Van Elewyck, V.; Branco, G.; Arbey, A.; Saviano, N.; Cirelli, M.; Verde, L.; Courtois, H.; Mauger, F.; Giunti, C.; Smadja, G.; Gascon, J.; Katsanevas, S.; Autiero, D.

    2014-01-01

    The conference has focused on neutrinos as a bridge between the two words of particle physics and astrophysics/cosmology with 3 main topics: -) the fundamental properties of neutrinos (neutrino masses and oscillations, mass hierarchy, neutrinoless double beta decay, neutrinos as Majorana particles, the search for CP violation in the leptonic sector, hints of physics beyond the standard model, the present experimental scenario and future large size experiments for neutrino oscillations and astro particle physics...); -) Neutrinos in astrophysics (neutrinos from the sun, neutrinos from Supernovae, high energy neutrinos... ); -) Neutrinos in cosmology (measurements of large scale structures, cosmological parameters, nucleosynthesis, dark matter, sterile neutrinos,...). This document is made up of the slides of the presentations and a few abstracts.

  16. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  17. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  18. Nuclear Neutrino Spectra in Late Stellar Evolution

    Science.gov (United States)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  19. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  20. Absolute values of neutrino masses: status and prospects

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Giunti, C.; Grifols, J.A.; Masso, E.

    2003-01-01

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of β-decay neutrino mass measurements and neutrinoless double-β decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-β decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection

  1. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  2. Peculiar Supernovae

    Science.gov (United States)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  3. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  4. Extracting limits for the difuse non-electron neutrino flux from SNO data

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, B.S.R.; Kemp, E.; Peres, O.L.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin

    2009-07-01

    Full text. There is a prediction of a diffuse neutrino flux yield from the time integration of all supernova already exploded in the past governed by stellar formation and supernovae occurrence rates. The spectral characteristics of these neutrinos differ from those from recent supernovae mainly in two features: the reduction in their fluxes and their energy 'redshift' due the expansion of the universe. Thus, despite the fact that one single supernova is a transient state, their cumulative effect produces a steady flux of diffuse neutrinos everywhere in universe. These neutrinos have never been observed before. Only upper limits on their fluxes have been reported by the collaborations operating neutrino telescopes. Recently the SNO experiment have made an analysis where the total flux of diffuse electron neutrinos has an upper limit of phi{sub e} <= 61-93 cm{sup -2} s{sup -1}, depending on a specific supernova model. At the present, the best limit for the diffuse flux of non-electron neutrinos is phi{sub x} <= 10{sub 4} cm{sup -2} s{sup -1}, resulted from an analysis of the Super-Kamiokande data. In this work we have extended the SNO analysis including the elastic scattering on electrons via neutral current interactions to extract information on diffuse flux of the non-electron neutrino flavours (i.e. muon and tauon neutrinos). We make a comparison among our results and others from different experiments (LVD, SK, LSD). (author)

  5. Neutron star kicks and asymmetric supernovae

    International Nuclear Information System (INIS)

    Lai, D.

    2001-01-01

    Observational advances over the last decade have left little doubt that neutron stars received a large kick velocity (of order a few hundred to a thousand km s -1 ) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino - magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed. (orig.)

  6. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  7. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  8. The ν process in the innermost supernova ejecta

    Directory of Open Access Journals (Sweden)

    Sieverding Andre

    2017-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  9. The ν process in the innermost supernova ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, Andre [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Martínez-Pinedo, Gabriel [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Harris, James Austin [ORNL; Hix, William Raphael [ORNL

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  10. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  11. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  12. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  13. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  14. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  15. Feasibility study for a first observation of coherent neutrino nucleus scattering using low-temperature detectors

    International Nuclear Information System (INIS)

    Guetlein, Achim

    2013-01-01

    Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction. For low transferred momenta the neutrino scatters coherently off all nucleons leading to an enhanced cross section. However, because of the small resulting recoil energies (O(keV)) CNNS has not been observed experimentally so far. For the first observation of CNNS a strong neutrino source is needed. Thus, the expected count rates for solar neutrinos, supernova neutrinos, neutrinos generated by the decay of stopped π + particles at accelerators, and reactor neutrinos were calculated. Although an observation of CNNS could also be possible with other sources, the most promising neutrino sources are nuclear reactors with thermal powers between 2 and 4 GW. For an assumed energy threshold of 0.5 keV the target material with the largest count rate (∝10 kg -1 day -1 ) is sapphire. Thus, a low-temperature detector based on a 32 g sapphire crystal was designed and built to measure the background spectrum for energies below ∝10 keV. Although the energy threshold (∝1 keV) of this detector is too large for an observation of CNNS, the measured background spectrum can still be used for an investigation of the main background sources and the suppression of their events. For this investigation the simulated spectra of cosmic muons, ambient neutrons, and external gamma-rays are compared to the measured background spectrum. As a result, cosmic muons are the main contribution to the measured background spectrum. For a future experiment aiming at the observation of CNNS an array of 125 low-temperature detectors based on 32 g sapphire crystals is assumed. Background simulations of cosmic muons, ambient neutrons, and intrinsic radioactivity show that especially an efficient muon-veto system is crucial for a sufficient background suppression. To study the observation potential of this future experiment a distance of ∝ 40 m to a reactor core with a thermal power of ∝4 GW (neutrino

  16. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  17. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  18. Implication of the solar neutrino experiments

    International Nuclear Information System (INIS)

    Dar, A.; Nussinov, S.

    1992-01-01

    The recent results from the KAMIOKANDE II and BAKSAN solar neutrino experiments, if correct, imply that lepton flavour is not conserved. The Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem, which was first exposed by the HOMESTAKE Cl experiment, fully explains also these results if the electron neutrino is mixed with the muon neutrino or the tau neutrino with mixing parameters Δm 2 ≅ 10 -6 eV 2 2 and sin 2 Θ ≅ 4 x 10 -2 . This MSW solution can be tested with the new generation of solar neutrino experiments which will be able to detect both the predicted distortion of the spectrum of 8 B solar νe's and the 'missing' ν e 's that appear as ν μ 's or ν τ 's. Further evidence may be obtained from the day-night effect and from the flavour content of the neutronization burst from the birth of a neutron star in a nearby supernova. Moreover, the MSW solution combined with the seesaw mechanism for generating neutrino masses further suggests m νe ≅ 10 -8 eV, m νμ ≅ 10 -3 cV, m ντ ≅ 10eV, and sin 2 2Θ ≅ 4x10 -2 for ν μ ν τ mixing. These predictions can be tested by previously proposed neutrino oscillation experiments at accelerators and by detecting neutrinos from a nearby supernova explosion. A tau neutrino with m ντ ≅ 10 eV can account for most of the dark matter in the Universe and is a viable candidate for the hot dark matter scenario of the formation of large scale structure in the Universe. (orig.)

  19. Sterile neutrinos in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  20. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  1. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  2. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  3. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  4. Supernova models

    International Nuclear Information System (INIS)

    Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.

    1981-01-01

    Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star

  5. Supernova mechanisms: Before and after SN1987a

    International Nuclear Information System (INIS)

    Kahana, S.H.

    1987-01-01

    The impact of SN1987a on theoretical studies of the specific mechanism generating Type II supernovae is examined. The explosion energy extracted from analysis of the light curve for SN 1987a is on the edge of distinguishing between a prompt explosion from a hydrodynamic shock and a delayed, neutrino-induced, explosion. The detection of neutrinos from 1987a is also reanalyzed. 30 refs., 2 tabs

  6. Studying neutrino properties in the future LENA experiment

    International Nuclear Information System (INIS)

    Wurm, Michael

    2013-01-01

    LENA (Low Energy Neutrino Astronomy) is a next-generation neutrino detector based on 50 kt of liquid scintillator. The low detection threshold, the good energy resolution and the potent background discrimination inherent to liquid scintillator make LENA a versatile observatory for astrophysical and terrestrial neutrinos. The present contribution highlights LENA's capabilities for studying neutrino properties based on both natural and artificial sources

  7. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  8. Neutrino physics with DARWIN

    Science.gov (United States)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  9. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of {sup 100}Mo beta beta decay; Double radioactivite beta et physique du neutrino. Etude du bruit de fond a 3 MeV dans la recherche de la desintegration beta beta du {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10{sup 25} years for {sup 100}Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e{sup +} - e{sup -} pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of {sup 214}Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e{sup +} - e{sup -}pairs. (author).

  10. Research in theoretical nuclear and neutrino physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevic, Ina [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2014-06-14

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  11. Research in theoretical nuclear and neutrino physics. Final report

    International Nuclear Information System (INIS)

    Sarcevic, Ina

    2014-01-01

    The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of AdS/CFT approach to QCD, neutrino signals of dark mattter annihilation in the Sun and on novel processes that take place in dense stellar medium and their role in stellar collapse, in particular the effect of new neutrino interactions on neutrino flavor conversion in Supernovae. We present final technical report on projects completed under the grant.

  12. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  13. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  14. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  15. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  16. Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses

    International Nuclear Information System (INIS)

    Arnaud, N.; Barsuglia, M.; Bizouard, M.A.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T.

    2002-01-01

    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occurring at the end of the core collapse on a time scale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO,...) and the gravity wave antennas soon to operate (LIGO, VIRGO,...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass degenerate. The 95% C.L. upper limit which can be achieved varies from 0.75 eV/c 2 for large ν e survival probabilities to 1.1 eV/c 2 when in practice all ν e 's convert into ν μ 's or ν τ 's. The sensitivity is nearly independent of the supernova distance

  17. Dedicated supernova detection by a network of neutral current spherical TPC detectors

    International Nuclear Information System (INIS)

    Vergados, J. D.; Giomataris, Y.

    2007-01-01

    Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron-rich target since the neutrino-nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact, for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 atm. A worldwide network of several such simple, stable, and low-cost supernova detectors with a running time of a few centuries is quite feasible

  18. MSW regeneration of solar and supernova V in the earth

    International Nuclear Information System (INIS)

    Cribier, M.; Lagage, P.O.; Rich, J.; Spiro, M.; Vignaud, D.

    1987-01-01

    We discuss the MSW (Mikheyev-Smirnov-Wolfenstein) effect for different radiochemical and real-time neutrino experiments taking into account the effects of the passage through the earth for solar and supernova neutrinos. We emphasize that V e regeneration in the earth can lead to measurable increases in counting rates and to a time dependent V e energy spectrum. Such observations would verify the presence of the MSW effect and lead to a restriction on the allowed values of neutrino mass differences and mixing angles

  19. Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Jing-Fei; Zhang, Xin

    2018-04-01

    We make a consistency test for the general relativity (GR) through measuring the growth index γ in a universe with massive (sterile/active) neutrinos. We employ the redshift space distortion measurements to do the analysis. To constrain other cosmological parameters, we also use other cosmological measurements, including the Planck 2015 cosmic microwave background temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova JLA data, the weak lensing galaxy shear data, and the Planck 2015 lensing data. In a universe with massive sterile neutrinos, we obtain γ =0.624-0.050+0.055, with the tension with the GR prediction γ = 0.55 at the 1.48σ level, showing that the consideration of sterile neutrinos still cannot make the true measurement of γ be well consistent with the GR prediction. In a universe with massive active neutrinos, we obtain γ = 0.663 ± 0.045 for the normal hierarchy case, γ =0.661-0.050+0.044 for the degenerate hierarchy case, and γ =0.668-0.051+0.045 for the inverted hierarchy case, with the tensions with GR all at beyond the 2σ level. We find that the consideration of massive active neutrinos (no matter what mass hierarchy is considered) almost does not influence the measurement of the growth index γ.

  20. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37 Ar and the question of the constancy of the production rate of 37 Ar are given special emphasis

  1. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  2. Are crab-type supernova remnants (plerions) short-lived

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.

    1978-01-01

    Arguments are given for a possible picture of the origin, maintenance, and lifetimes of the so-called Crab-like supernova remnants. It is suggested that these objects imply the existence of at least two distinct types of supernova events. A possible connection of the remnant types with the optically defined supernovae of Type I and Type II is discussed. Accepting that a pulsar is formed in at least some supernova events, the proposal is made that a rapidly rotating, rapidly slowing pulsar is necessary to create and maintain a Crab-like supernova remnant. Finally, arguments are presented that such a supernova remnant will be relatively short lived with respect to the more common shell-type of supernova remnant, perhaps surviving only 10000-20000 yr before fading into the Galactic background. The name of plerion is proposed for these filled-center supernova remnants and observational possiblities for confirming their nature are suggested. (orig.) [de

  3. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  4. Multimessengers from Core-Collapse Supernovae: Multidimensionality as a Key to Bridge Theory and Observation

    Directory of Open Access Journals (Sweden)

    Kei Kotake

    2012-01-01

    Full Text Available Core-collapse supernovae are dramatic explosions marking the catastrophic end of massive stars. The only means to get direct information about the supernova engine is from observations of neutrinos emitted by the forming neutron star, and through gravitational waves which are produced when the hydrodynamic flow or the neutrino flux is not perfectly spherically symmetric. The multidimensionality of the supernova engine, which breaks the sphericity of the central core such as convection, rotation, magnetic fields, and hydrodynamic instabilities of the supernova shock, is attracting great attention as the most important ingredient to understand the long-veiled explosion mechanism. Based on our recent work, we summarize properties of gravitational waves, neutrinos, and explosive nucleosynthesis obtained in a series of our multidimensional hydrodynamic simulations and discuss how the mystery of the central engines can be unraveled by deciphering these multimessengers produced under the thick veils of massive stars.

  5. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  6. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  7. Detection of the neutrino

    International Nuclear Information System (INIS)

    Reines, F.

    1989-01-01

    Using the nuclear bomb developed at Los Alamos as an intense source of neutrinos, the author aimed to build a detector suitable to observe this newly predicted particle for the first time during his work there in the early 1950s. He chose to work on the reaction of beta decay inversion. The discovery of organic liquid scintillation counters brought the possibility of neutrino detection one place closer. Delayed coincidence between positron and neutron capture pulses were planned as a way to eliminate background signals. Experiments finally went ahead using nuclear reactors rather than bombs and was successful although many problems with shielding, and the sheer scale of the apparatus were encountered. (UK)

  8. Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts

    Science.gov (United States)

    Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.

    2018-01-01

    The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.

  9. Neutrino physics after boomerang

    International Nuclear Information System (INIS)

    Hannestad, Steen

    2001-01-01

    A new generation of Cosmic Microwave Background Radiation (CMBR) experiments are currently providing the first precision measurements of fluctuations in the CMBR. These fluctuations hold information about all the fundamental cosmological parameters, and the experiments have already confirmed beyond reasonable doubt that the geometry of the universe is very close to being flat. The new CMBR experiments can also be used to probe particle physics beyond the standard model. For instance, data from the new Boomerang experiment yield an upper limit on the effective number of neutrinos present at recombination, N ν ≤ 13 (95% C.L.). This already puts significant constraints on many non-standard neutrino scenarios, such as the possible bulk neutrino modes expected in theories with large extra dimensions. The upcoming satellite experiments will improve the sensitivity of the CMBR by almost an order of magnitude and make the CMBR an excellent laboratory for precision particle physics

  10. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  11. Massive neutrinos and cosmology

    International Nuclear Information System (INIS)

    Shandarin, S.F.

    1991-01-01

    This paper discussed the importance of the consequences of a nonzero neutrino rest mass on cosmology, perhaps, first recognized by Gershtein and Zeldovich, after the discover of the 3-K microwave background radiation MBR. Since the first works on the primordial synthesis of 4 He, it has been known that additional neutrino species increase the rate of expansion of the universe during the epoch of the primordial nucleosynthesis, which increases the yield of 4 He. Combining the results of the theory with astronomical measurements of the 4 He abundance and the estimate of the mass density of MBR, Shvartsman suggested the upper limit on the mass density of all relativistic matter at that epoch: ρ rel ≤ 5ρ MBR which eventually became the upper limit for the number of neutrino species: N ν ≤ 7. At that time, the constraints based on cosmological arguments were much stronger than one based on laboratory experiments

  12. Formation of galaxies from massive neutrinos

    International Nuclear Information System (INIS)

    Davis, M.; Lecar, M.; Pryor, C.; Witten, E.

    1981-01-01

    Neutrinos with nonzero rest mass strongly influence galaxy formation in the early universe. If stable neutrinos have rest masses on the order of 100 eV, they close the universe, but they erase initial perturbations on mass scales less than 4 x 10 15 M/sub sun/. However, if in addition there exist unstable neutrinos with rest masses on the order of 100 keV, they preserve and amplify initial perturbations on galactic mass scales (10 12 M/sub sun/). These perturbations are picked up and further amplified by the lighter, stable neutrinos, as long as the heavy neutrinos decay somewhat after the lighter neutrinos go nonrelativistic. If the heavy neutrinos decay into light neutrinos, the decay products contribute about one-half of the present mass density in a hot unclustered background. The only alternative method of retaining initial perturbations until the light neutrinos become nonrelativistic is to introduce large amplitude initial fluctuations such as primordial black holes. If the light neutrinos close the universe, black hole seeds of size 10 9 M/sub sun/ would be required for galaxies of 10 12 M/sub sun/ to form. We point out that the neutrino damping mass is a steep function of the present neutrino temperature and that galaxy sized fluctuations would be preserved if T/sub ν/ <1.0 K. However, the only model we can devise to effect this cooling is shown to be in serious violation of astrophysical constraints

  13. Final Report for DOE Grant DE-FG02-00ER41149 ''Nuclear Physics of Core-Collapse Supernovae''

    International Nuclear Information System (INIS)

    Yong-Zhong Qian

    2004-01-01

    During the funding period from August 15, 2000 to August 14, 2004, the main foci of my research have been implications of abundances in metal-poor stars for nucleosynthetic yields of supernovae and chemical evolution of the universe, effects of neutrino oscillations and neutrino-nucleus interactions on r-process nucleosynthesis, physical conditions in neutrino-driven winds from proto-neutron stars, neutrino driven mechanism of supernova explosion, supernova neutrino signals in terrestrial detectors, and constraints on variations of fundamental couplings and astrophysical conditions from properties of nuclear reactions. Personnel (three graduate students and a postdoctoral research associate) involved in my research are listed in section 2. Completed research projects are discussed in section 3. Publications during the funding period are listed in section 4 and oral presentations in section 5. Remarks about the budget are given in section 6

  14. Cutting-edge issues of core-collapse supernova theory

    International Nuclear Information System (INIS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-01-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables

  15. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  16. Supernova hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1981-01-01

    The explosion of a star supernova occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN or it may collapse, type I and type II SN leaving a neutron star remnant. The type I progenitor should be thought to be an old accreting white dwarf, 1.4 M/sub theta/, with a close companion star. A type II SN is thought to be a massive young star 6 to 10 M/sub theta/. The mechanism of explosion is still a challenge to our ability to model the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe. 39 references

  17. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  18. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  19. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  20. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  1. Nuclear 'pasta phase' and its consequences on neutrino opacities

    International Nuclear Information System (INIS)

    Alloy, M. D.; Menezes, D. P.

    2011-01-01

    In this paper, we calculate the diffusion coefficients that are related to the neutrino opacities considering the formation of nuclear pasta and homogeneous matter at low densities. Our results show that the mean-free paths are significantly altered by the presence of nuclear pasta in stellar matter when compared with the results obtained with homogeneous matter. These differences in neutrino opacities certainly influence the Kelvin-Helmholtz phase of protoneutron stars and consequently the results of supernova explosion simulations.

  2. DUMAND: The Ocean as a Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Blood, H.; Learned, J.; Reines, F.; Roberts, A.

    1976-06-01

    We consider the possibility of using the ocean as a neutrino detector; neutrino-produced interactions result in charged particles that generate Cerenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include 1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, 2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and 3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach.

  3. Neutrino sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1992-09-15

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history.

  4. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  5. Neutrino sunshine

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1992-01-01

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history

  6. Neutrino overview

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss some of the open issues in neutrino physics, emphasizing areas of intersection with astrophysics, that occupied the participants of the Snowmass Workshop on Nuclear and Particle Astrophysics and Cosmology in the Next Millenium

  7. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  8. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  9. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  10. Masses of supernova progenitors

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1977-01-01

    The possible nature and masses of supernovae progenitors, and the bearing of empirical results on some unsolved theoretical problems concerning the origin of supernovae, are discussed. The author concentrates on two main questions: what is the lower mass limit for stars to die explosively and what stars initiate type I supernovae. The evidence considered includes local supernova rates, empirical estimates of msub(w) (the upper mass limit for death as a white dwarf), the distributions of supernovae among stellar populations in galaxies and the colors of supernova producing galaxies. (B.D.)

  11. The Deep Underground Neutrino Experiment: The precision era of neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, E. [Gleb Wataghin Institute of Physics, Universidade de Campinas - UNICAMP, Campinas Brazil

    2017-12-01

    The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 103 km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.

  12. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  13. Multi-dimensional explorations in supernova theory

    International Nuclear Information System (INIS)

    Burrows, Adam; Dessart, Luc; Ott, Christian D.; Livne, Eli

    2007-01-01

    In this paper, we bring together various of our published and unpublished findings from our recent 2D multi-group, flux-limited radiation hydrodynamic simulations of the collapse and explosion of the cores of massive stars. Aided by 2D and 3D graphical renditions, we motivate the acoustic mechanism of core-collapse supernova explosions and explain, as best we currently can, the phases and phenomena that attend this mechanism. Two major foci of our presentation are the outer shock instability and the inner core g-mode oscillations. The former sets the stage for the latter, which damp by the generation of sound. This sound propagates outward to energize the explosion and is relevant only if the core has not exploded earlier by some other means. Hence, it is a more delayed mechanism than the traditional neutrino mechanism that has been studied for the last twenty years since it was championed by Bethe and Wilson. We discuss protoneutron star convection, accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the angular anisotropy of the neutrino emissions, a subset of numerical issues, and a new code we are designing that should supercede our current supernova code VULCAN/2D. Whatever ideas last from this current generation of numerical results, and whatever the eventual mechanism(s), we conclude that the breaking of spherical symmetry will survive as one of the crucial keys to the supernova puzzle

  14. Prompt effects of supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    Conflicting theories on the mechanisms of supernova production are examined. Supernova as sources of other phenomena such as comic rays, gamma rays, x-rays, and electromagnetic pulses are considered. 32 references

  15. Dynamics of Cosmic Neutrinos in Galaxies

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2014-06-01

    Full Text Available The cosmic background of massive (about 1 eV rest-energy neutrinos can be cooled to extremely low temperatures, reaching almost completely degenerated state. The Fermi velocity of the neutrinos becomes less than 100 km/s. The equations of dynamics for the cosmic background neutrinos are derived for the spherical and axisymmetrical thin circular disk galaxies. The equations comprise the gravitational potential and gravity of the uniform baryonic disk galaxies. Then the equations are integrated analytically over the disk radius. The constant radial neutrino flux in spherical galaxies favors formation of the wide unipotential wells in them. The neutrino flux in the axisymmetrical galaxies suggests to favor the evolution in the direction of a spherically symmetrical potential. The generated unipotential wells are observed as plateaux in the velocity curves of circular stellar orbits. The constant neutrino density at galactic centers gives the linear part of the curves. The derived system of quasilinear differential equations for neutrinos in the axisymmetrical galaxies have been reduced to the system of the Lagrange-Charpit equations: the coupled differential equations, specifying the local neutrino velocities and dynamics of motion along trajectories, and an additional interconnected equation of the neutrino mass conservation, which can be applied for the determination of density of the neutrino component in galaxies.

  16. E1 Working Group summary: Neutrino factories and muon colliders Neutrino Factories and Muon Colliders

    CERN Document Server

    Adams, T.; Balbekov, V.; Barenboim, G.; Harris, Deborah A.; Chou, W.; DeJongh, F.; Geer, S.; Johnstone, C.; Mokhov, N.; Morfin, J.; Neuffer, D.; Raja, R.; Romanino, A.; Shanahan, P.; Spentzouris, P.; Yu, J.; Barger, V.; Marfatia, D.; Han, Tao; Aoki, M.; Kuno, Y.; Sato, A.; Ichikawa, K.; Nakaya, T.; Machida, S.; Nagamine, K.; Yoshimura, K.; Ball, R.D.; Campanelli, Mario; Casper, D.; Molzon, W.; sobel, H.; Cline, D.B.; Cushman, P.; Diwan, M.; Kahn, S.; Morse, W.; Palmer, R.; Parsa, Zohreh; Roser, T.; Fleming, Bonnie T.; Formaggio, J.A.; Garren, A.; Gavela, M.B.; Gonzalez-Garcia, M.C.; Hanson, G.; Berger, M.; Kayser, Boris; Jung, C.K.; Shrock, R.; McGrew, C.; Mocioiu, I.; Lindner, M.; McDonald, K.; McFarland, Kevin Scott; Nienaber, P.; Olness, F.; Pope, B.; Rigolin, S.; Roberts, L.; Schellman, H.; Shiozawa, M.; Wai, L.; Wang, Y.F.; Whisnant, K.; Zeller, M.

    2001-01-01

    We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

  17. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  18. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  19. LENS spectroscopy of low energy solar neutrinos

    CERN Document Server

    Schönert, S

    2001-01-01

    The LENS experiments will measure energy resolved sub-MeV solar electron-neutrinos ( nu /sub e/) in real time via inverse beta - transition populating an isomeric state in the daughter nuclei. The subsequent de-excitation provides a delayed coincidence tag which discriminates against background. A liquid scintillation detector loaded with 20 t of Yb would yield an event rate of 190 pp- and 175 /sup 7/Be neutrinos per year. Essential information on neutrino mixing and masses can be derived.

  20. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  1. Matter suppression of collective SN neutrino oscillations and stability analysis

    International Nuclear Information System (INIS)

    Saviano, N.; Chakraborty, S.; Mirizzi, A.

    2014-01-01

    We perform a detailed analysis of the supernova (SN) neutrino flavor evolution during the early time accretion phase (post-bounce time t pb ≤ 500 ms), characterizing the ν signal by recent SN hydrodynamics simulations. We find that collective oscillations induced the ν-ν interactions in the deepest SN regions are suppressed by trajectory-dependent 'multi-angle' effects associated with the dense ordinary matter. We confirm this result with a linearized stability analysis of the neutrino equations of motion in presence of realistic neutrino energy with angle distributions. (authors)

  2. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  3. Neutrinos and Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Gary Steigman

    2012-01-01

    Full Text Available According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN and the cosmic microwave background (CMB radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation, on the baryon asymmetry (baryon density, and on a possible lepton asymmetry (neutrino degeneracy are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of ~3.

  4. Neutrino-'pasta' scattering: The opacity of nonuniform neutron-rich matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Piekarewicz, J.

    2004-01-01

    Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and/or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for μ and τ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations

  5. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  6. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  7. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  8. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  9. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments

  10. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  11. Neutrino clouds

    International Nuclear Information System (INIS)

    Stephenson Jr, G.J.; McKellar, B.H.J.

    1997-01-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs

  12. Neutrino clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson Jr, G.J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Physics and Astronomy; Goldman, T. [Los Alamos National Lab., NM (United States); McKellar, B.H.J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs.

  13. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  14. Explosions and light curves of supernovae

    International Nuclear Information System (INIS)

    Gaffet, B.

    1975-01-01

    The models developed to explain supernovae explosions are reviewed. The first one is thermonuclear explosion (simple or preceded by an implosion phase); the neutrino emission which results of such an explosion can have an important dynamical effect, according as the star is opaque or transparent to them; another theory involves the radiation pressure of the pulsar which is formed in the center of the star. The origin of the supernovae brightness is also uncertain: the initial heat due to the explosion does not seem to be sufficient; the brightness can result from the diffusion of the heat through the ejected matter or can be transported more rapidly by a shock wave. A model in which the heat is produced by the pulsar seems compatible with most observations (shapes of the brightness curves and the continuum spectra, expansion velocities, temperature and luminosity at the peak, total kinetic energy) [fr

  15. Microscopic calculation of neutrino capture rates in /sup 69,71/Ga and the detection of solar and galactic neutrinos

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.; Metzinger, J.

    1986-01-01

    Calculations of the neutrino capture cross sections for /sup 69,71/Ga based on a microscopic treatment of the Gamow-Teller matrix elements are presented. A strong enhancement of the cross section for highly energetic neutrinos is found compared to previous phenomenological estimates. As a consequence, the present assumptions on the signal from 8 B neutrinos in 71 Ga have to be revised. A non-negligible solar model dependent background of 8 B neutrinos has to be expected in a gallium solar neutrino experiment together with the pp signal. The calculations yield a larger sensitivity of the gallium detector than assumed previously for galactic neutrinos

  16. Neutrino astronomy at Mont Blanc: from LSD to LSD-2

    International Nuclear Information System (INIS)

    Saavedra, O.; Aglietta, M.; Badino, G.

    1988-01-01

    In this paper we present the upgrading of the LSD experiment, presently running in the Mont Blanc Laboratory. The data recorded during the period when supernova 1987A exploded are analysed in detail. The research program of LSD-2, the same experiment as LSD but with an higher sensitivity to search for neutrino burst from collapsing stars, is also discussed

  17. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  18. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  19. Status and aims of the DUMAND neutrino project: the ocean as a neutrino detector

    International Nuclear Information System (INIS)

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth's atmosphere. The technology for such an undertaking seems to be within reach

  20. Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe

    International Nuclear Information System (INIS)

    Holanda, Pedro Cunha de

    2011-01-01

    Full text: Recent results from the SNO, Super-Kamiokande and Borexino experiments do not show the expected upturn of the energy spectrum of events (the ratio R ≡ N obs /N SSM ) at low energies. At the same time, cosmological observations testify for possible existence of additional relativistic degrees of freedom in the early Universe: ΔN eff = 1 - 2. These facts strengthen the case of very light sterile neutrino, ν s , with Δm 0 1 2 ∼ (0.7 - 2) . 10 -5 e V 2 , which mixes weakly with the active neutrinos. The ν s mixing in the mass eigenstate ν 1 characterized by sin 2 2∝ ∼ 10 -3 can explain an absence of the upturn. The mixing of ν s in the eigenstate ν 3 with sin 2 β ∼ 0.1 leads to production of ν s via oscillations in the Universe and to additional contribution Δ N eff ∼ 0.7 -1 before the big bang nucleosynthesis and later. Such a mixing can be tested in forthcoming experiments with the atmospheric neutrinos as well as in future accelerator long baseline experiments. It has substantial impact on conversion of the supernova neutrinos. We perform a qualitative and quantitative analysis of solar neutrino data including a fourth neutrino with different mixings with the active neutrino sector.(author)