WorldWideScience

Sample records for supernova hubble diagram

  1. Initial Hubble Diagram Results from the Nearby Supernova Factory

    CERN Document Server

    Bailey, S; Antilogus, P; Aragon, C; Baltay, C; Bongard, S; Buton, C; Childress, M; Copin, Y; Gangler, E; Loken, S; Nugent, P; Pain, R; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Ripoche, P; Runge, K; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Wu, C

    2008-01-01

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  2. Study of the influence of Type Ia supernovae environment on the Hubble diagram

    Science.gov (United States)

    Henne, Vincent

    2016-06-01

    The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.

  3. Hubble Diagram

    Science.gov (United States)

    Djorgovski, S.; Murdin, P.

    2000-11-01

    Initially introduced as a way to demonstrate the expansion of the universe, and subsequently to determine the expansion rate (the HUBBLE CONSTANT H0), the Hubble diagram is one of the classical cosmological tests. It is a plot of apparent fluxes (usually expressed as magnitudes) of some types of objects at cosmological distances, against their REDSHIFTS. It is used as a tool to measure the glob...

  4. Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers

    CERN Document Server

    Li, Zhengxiang; Yu, Hongwei; Zhu, Zong-Hong; Alcaniz, J S

    2015-01-01

    We apply two methods to reconstruct the Hubble parameter $H(z)$ as a function of redshift from 15 measurements of the expansion rate obtained from age estimates of passively evolving galaxies. These reconstructions enable us to derive the luminosity distance to a certain redshift $z$, calibrate the light-curve fitting parameters accounting for the (unknown) intrinsic magnitude of type Ia supernova (SNe Ia) and construct cosmological model-independent Hubble diagrams of SNe Ia. In order to test the compatibility between the reconstructed functions of $H(z)$, we perform a statistical analysis considering the latest SNe Ia sample, the so-called JLA compilation. We find that, while one of the reconstructed functions leads to a value of the local Hubble parameter $H_0$ in excellent agreement with the one reported by the Planck collaboration, the other requires a higher value of $H_0$, which is consistent with recent measurements of this quantity from Cepheids and other local distance indicators.

  5. A Hubble diagram from Type II Supernovae based solely on photometry: the Photometric-Colour Method

    CERN Document Server

    T., de Jaeger; P., Anderson J; L., Galbany; M., Hamuy; M., Phillips M; M., Stritzinger; C., Gutiérrez; L., Bolt; R., Burns C; A., Campillay; S., Castellón; C., Contreras; G., Folatelli; L., Freedman W; Y., Hsiao E; K., Krisciunas; W., Krzeminski; H., Kuncarayakti; N., Morrell; F., Olivares E; E., Persson S; N, Suntzeff

    2015-01-01

    We present a Hubble diagram of type II supernovae using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I (CSP) for which optical and near-infrared light-curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the $V$ band and the second a colour term. We obtain a dispersion of 0.44 mag using a combination of the $(V-i)$ colour and the $r$ band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric colour method (PCM) with the standardised candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag which compares with 0.43 mag from the PCM, for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will in...

  6. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    Energy Technology Data Exchange (ETDEWEB)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H. [Millennium Institute of Astrophysics, Santiago (Chile); Anderson, J. P. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile); Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. D.; Contreras, C. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Bolt, L. [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53111 Bonn (Germany); Burns, C. R. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Folatelli, G. [Instituto de Astrofísica de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Freedman, W. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Krisciunas, K. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Krzeminski, W., E-mail: dthomas@das.uchile.cl [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2015-12-20

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.

  7. The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7

    CERN Document Server

    Freedman, Wendy L; Phillips, M M; Wyatt, Pamela; Persson, S E; Madore, Barry F; Contreras, Carlos; Folatelli, Gaston; Gonzalez, E Sergio; Hamuy, Mario; Hsiao, Eric; Kelson, Daniel D; Morrell, Nidia; Murphy, D C; Roth, Miguel; Stritzinger, Maximilian; Sturch, Laura; Suntzeff, Nick B; Astier, P; Balland, C; Bassett, Bruce; Boldt, Luis; Carlberg, R G; Conley, Alexander J; Frieman, Joshua A; Garnavich, Peter M; Guy, J; Hardin, D; Howell, D Andrew; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Pain, R; Perrett, Kathy; Regnault, N; Riess, Adam G; Sako, Masao; Schneider, Donald P; Sullivan, Mark; Wood-Vasey, Michael

    2009-01-01

    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the Universe. The CSP differs from other projects to date in its goal of providing an I-band {rest-frame} Hubble diagram. Here we present the first results from near-infrared (NIR) observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the Universe is accelerating. When combined with independent results from baryon acoustic oscillations (Eisenstein et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and Omega_DE = 0.7...

  8. Towards a Cosmological Hubble Diagram for Type II-P Supernovae

    CERN Document Server

    Nugent, P; Carlberg, R G; Conley, A; Ellis, R; Fabbro, S; Fouchez, D; Gal-Yam, A; Howell, D A; Leonard, D C; Neill, J D; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M; Astier, Pierre; Carlberg, Raymond G.; Conley, Alex; Ellis, Richard; Fabbro, Sebastien; Fouchez, Dominique; Gal-Yam, Avishay; Leonard, Douglas C.; Neill, James D.; Nugent, Peter; Pain, Reynald; Perrett, Kathy; Pritchet, Chris J.; Regnault, Nicolas; Sullivan, Mark

    2006-01-01

    We present the first high-redshift Hubble diagram for Type II-P supernovae (SNe II-P) based upon five events at redshift up to z~0.3. This diagram was constructed using photometry from the Canada-France-Hawaii Telescope Supernova Legacy Survey and absorption line spectroscopy from the Keck observatory. The method used to measure distances to these supernovae is based on recent work by Hamuy & Pinto (2002) and exploits a correlation between the absolute brightness of SNe II-P and the expansion velocities derived from the minimum of the Fe II 516.9 nm P-Cygni feature observed during the plateau phases. We present three refinements to this method which significantly improve the practicality of measuring the distances of SNe II-P at cosmologically interesting redshifts. These are an extinction correction measurement based on the V-I colors at day 50, a cross-correlation measurement for the expansion velocity and the ability to extrapolate such velocities accurately over almost the entire plateau phase. We app...

  9. The Hubble Diagram of Type Ia Supernovae as a Function of Host Galaxy Morphology

    CERN Document Server

    Sullivan, M; Aldering, G; Amanullah, R; Astier, Pierre; Blanc, G; Burns, M S; Conley, A; Deustua, S E; Doi, M; Fabbro, S; Folatelli, G; Fruchter, A S; Garavini, G; Gibbons, R; Goldhaber, Gerson; Goobar, A; Groom, D E; Hardin, D; Hook, I; Howell, D A; Irwin, M; Kim, A G; Knop, R A; Lidman, C E; McMahon, R; Méndez, J; Nobili, S; Nugent, P; Pain, R; Panagia, N; Pennypacker, C R; Perlmutter, S; Quimby, R; Raux, J; Regnault, N; Ruiz-Lapuente, P; Schaefer, B; Schahmaneche, K; Spadafora, A L; Walton, N A; Wang, L; Wood-Vasey, W M; Yasuda, N

    2003-01-01

    (Abridged) We present new results on the Hubble diagram of distant type Ia supernovae (SNe Ia) segregated according to the type of host galaxy. This makes it possible to check earlier evidence for a cosmological constant by explicitly comparing SNe residing in galaxies likely to contain negligible dust with the larger sample. The cosmological parameters derived from these SNe Ia hosted by presumed dust-free early-type galaxies supports earlier claims for a cosmological constant, which we demonstrate at 5 sigma significance, and the internal extinction implied is small even for late-type systems (A_B<0.2). Thus, our data demonstrate that host galaxy extinction is unlikely to systematically dim distant SNe Ia in a manner that would produce a spurious cosmological constant. We classify the host galaxies of 39 distant SNe discovered by the Supernova Cosmology Project (SCP) using the combination of HST STIS imaging, Keck ESI spectroscopy and ground-based broad-band photometry. We compare with a low-redshift sam...

  10. The New Wedge-Shaped Hubble Diagram of 398 SCP Supernovae According to the Expansion Center Model

    CERN Document Server

    Lorenzi, Luciano

    2010-01-01

    Following the successful dipole test on 53 SCP SNe Ia presented at SAIt2004 in Milan, this 9th contribution to the ECM series beginning in 1999 in Naples (43th SAIt meeting: "Revolutions in Astronomy") deals with the construction of the new wedge-shaped Hubble diagram obtained with 398 supernovae of the SCP Union Compilation (Kowalski et al. 2008) by applying a calculated correlation between SNe Ia absolute blue magnitude MB and central redshift z0, according to the expansion center model. The ECM distance D of the Hubble diagram (cz versus D) is computed as the ratio between the luminosity distance DL and 1 + z. Mathematically D results to be a power series of the light-space r run inside the expanding cosmic medium or Hubble flow; thus its expression is independent of the corresponding z. In addition one can have D = D(z, h) from the ECM Hubble law by using the h convention with an anisotropic HX. It is proposed to the meeting that the wedge-shape of this new Hubble diagram be confirmed independently as mai...

  11. First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters

    CERN Document Server

    Kessler, Richard; Cinabro, David; Vanderplas, Jake; Frieman, Joshua A; Marriner, John; Davis, Tamara M; Dilday, Benjamin; Holtzman, Jon; Jha, Saurabh; Lampeitl, Hubert; Sako, Masao; Smith, Mathew; Zheng, Chen; Nichol, Robert C; Bassett, Bruce; Bender, Ralf; Depoy, Darren L; Doi, Mamoru; Elson, Ed; Filippenko, Alex V; Foley, Ryan J; Garnavich, Peter M; Hopp, Ulrich; Ihara, Yutaka; Ketzeback, William; Kollatschny, W; Konishi, Kohki; Marshall, Jennifer L; McMillan, Russet J; Miknaitis, Gajus; Morokuma, Tomoki; M"ortsell, Edvard; Pan, Kaike; Prieto, Jose Luis; Richmond, Michael W; Riess, Adam G; Romani, Roger; Schneider, Donald P; Sollerman, Jesper; Takanashi, Naohiro; Tokita, Kouichi; van der Heyden, Kurt; Wheeler, J C; Yasuda, Naoki; York, Donald

    2009-01-01

    We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023...

  12. Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~0.5

    CERN Document Server

    Project, T S C; Amanullah, R; Garavini, G; Goobar, A; Lidman, C; Stanishev, V; Aldering, G; Antilogus, P; Astier, Pierre; Burns, M S; Conley, A; Deustua, S E; Ellis, R; Fabbro, S; Fadeev, V; Folatelli, G; Gibbons, R; Goldhaber, G; Groom, D E; Hook, I; Howell, D A; Kim, A G; Knop, R A; Nugent, P; Pain, R; Perlmutter, S; Quimby, R; Raux, J; Regnault, N; Ruiz-Lapuente, P; Sainton, G; Schahmaneche, K; Smith, E; Spadafora, A L; Thomas, R C; Wang, L; Project, The Supernova Cosmology

    2005-01-01

    We present a novel technique for fitting restframe I-band light curves on a data set of 42 Type Ia supernovae (SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01< z<0.1. Adding two SNe at z~0.5 yields results consistent with a flat Lambda-dominated``concordance universe'' ($\\Omega_M,\\Omega_\\Lambda$)=(0.25,0.75). For one of these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic effects in the use of SNe Ia as distance estimators. A flat, Lambda=0, universe where the faintness of supernovae at z~0.5 is due to grey dust homogeneously distributed in the intergalactic medium is disfavoured based on the high-z Hubble diagram using this small data-set. However, the uncertainties are large and no firm conclusion may be drawn. We explore the possibility of setting limits on intergalactic dust based on B-I and B-V colour measurements, and conclude that about 20 well measured SNe are need...

  13. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    Science.gov (United States)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01–0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, i.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  14. The Hubble Diagram of the Calan/Tololo Type Ia Supernovae and the value of $H_0$

    CERN Document Server

    Hamuy, M; Suntzeff, N B; Schommer, R A; Maza, J; Avilés, R; Hamuy, Mario; Suntzeff, Nicholas B.; Schommer, Robert A.; Maza, José

    1996-01-01

    The Calan/Tololo supernova survey has discovered ~30 Type Ia supernovae out to z~0.1. Using BVI data for these objects and nearby SNe Ia, we have shown that there exists a significant dispersion in the intrinsic luminosities of these objects. We have devised a robust chisquare minimization technique simultaneously fitting the BVI light curves to parametrize the SN event as a function of (tb,m, m15(B)) where tb is the time of B maximum, m is the peak BVI magnitude corrected for luminosity variations, and m15(B) is a single parameter describing the whole light curve morphology. When properly corrected for m15(B), SNe Ia prove to be high precision distance indicators,yielding relative distances with errors 7-10%. The corrected peak magnitudes are used to construct BVI Hubble diagrams (HD), and with Cepheid distances recently measured with the HST to four nearby SNe Ia (37C, 72E, 81B, 90N) we derive a value of the Hubble constant of 63.1+/-3.4 (internal) km/s/Mpc. This value is ~10-15% larger than the value obtai...

  15. Hubble's diagram and cosmic expansion

    OpenAIRE

    Kirshner, Robert P.

    2003-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velo...

  16. Hubble's diagram and cosmic expansion

    OpenAIRE

    Kirshner, Robert P.

    2003-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velo...

  17. Extending the supernova Hubble diagram to z~1.5 with the Euclid space mission

    CERN Document Server

    Astier, P; Brescia, M; Cappellaro, E; Carlberg, R G; Cavuoti, S; Della Valle, M; Gangler, E; Goobar, A; Guy, J; Hardin, D; Hook, I M; Kessler, R; Kim, A; Linder, E; Longo, G; Maguire, K; Mannucci, F; Mattila, S; Nichol, R; Pain, R; Regnault, N; Spiro, S; Sullivan, M; Tao, C; Turatto, M; Wang, X F; Wood-Vasey, W M

    2014-01-01

    We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a z<0.35 nearby sample (8000 SNe), a 0.2Supernova Infra-Red Experiment" (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing program. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae li...

  18. Bianchi I meets the Hubble diagram

    CERN Document Server

    Schucker, Thomas; Valent, Galliano

    2014-01-01

    We improve existing fits of the Bianchi I metric to the Hubble diagram of supernovae and find an intriguing yet non-significant signal for anisotropy that should be verified or falsified in the near future by the Large Synoptic Survey Telescope. Since the literature contains two different formulas for the apparent luminosity as a function of time of flight in Bianchi I metrics, we present an independent derivation confirming the result by Saunders (1969). The present fit differs from earlier ones by Koivisto & Mota and by Campanelli et al. in that we use Saunders' formula, a larger sample of supernovae, Union 2 and JLA, and we use the general Bianchi I metric with three distinct eigenvalues.

  19. The Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Capozziello, S; Dainotti, M G; De Laurentis, M; Izzo, L; Perillo, M

    2011-01-01

    Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three different calibration methods based on the use of a fiducial LCDM model, on cosmographic parameters and on the local regression on SNeIa to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs finding any significant dependence. We then investigate the evolution of these parameters with the redshift to obtain any statistical improvement. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample arguing against any significant bias.

  20. Towards a Cosmological Hubble Diagram for Type II-PSupernovae

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, Peter; Sullivan, Mark; Ellis, Richard; Gal-Yam, Avishay; Leonard, Douglas C.; Howell, D. Andrew; Astier, Pierre; Carlberg, RaymondG.; Conley, Alex; Fabbro, Sebastien; Fouchez, Dominique; Neill, James D.; Pain, Reynald; Perrett, Kathy; Pritchet, Chris J; Regnault, Nicolas

    2006-03-20

    We present the first high-redshift Hubble diagram for Type II-P supernovae (SNe II-P) based upon five events at redshift upto z {approx}0.3. This diagram was constructed using photometry from the Canada-France-Hawaii Telescope Supernova Legacy Survey and absorption line spectroscopy from the Keck observatory. The method used to measure distances to these supernovae is based on recent work by Hamuy&Pinto (2002) and exploits a correlation between the absolute brightness of SNeII-P and the expansion velocities derived from the minimum of the Fe II 516.9 nm P-Cygni feature observed during the plateau phases. We present three refinements to this method which significantly improve the practicality of measuring the distances of SNe II-P at cosmologically interesting redshifts. These are an extinction correction measurement based on the V-I colors at day 50, across-correlation measurement for the expansion velocity and the ability to extrapolate such velocities accurately over almost the entire plateau phase. We apply this revised method to our dataset of high-redshift SNe II-P and find that the resulting Hubble diagram has a scatter of only 0.26 magnitudes, thus demonstrating the feasibility of measuring the expansion history, with present facilities, using a method independent of that based upon supernovae of Type Ia.

  1. The type Ia supernovae and the Hubble's constant

    OpenAIRE

    2004-01-01

    The Hubble's constant is usually surmised to be a constant; but the experiments show a large spread and conflicting estimates. According to the plasma-redshift theory, the Hubble's constant varies with the plasma densities along the line of sight. It varies then slightly with the direction and the distance to a supernova and a galaxy. The relation between the magnitudes of type Ia supernovae and their observed redshifts results in an Hubble's constant with an average value in intergalactic sp...

  2. Cosmic Supernova Rates and the Hubble Sequence

    CERN Document Server

    Calura, F

    2006-01-01

    We compute the type Ia, Ib/c and II supernova (SN) rates as functions of the cosmic time for galaxies of different morphological types. We use four different chemical evolution models, each one reproducing the features of a particular morphological type: E/S0, S0a/b, Sbc/d and Irr galaxies. We essentially describe the Hubble sequence by means of decreasing efficiency of star formation and increasing infall timescale. These models are used to study the evolution of the SN rates per unit luminosity and per unit mass as functions of cosmic time and as functions of the Hubble type. Our results indicate that: (i) the observed increase of the SN rate per unit luminosity and unit mass from early to late galaxy types is accounted for by our models. Our explanation of this effect is related to the fact that the latest Hubble types have the highest star formation rate per unit mass; (ii) By adopting a Scalo (1986) initial mass function in spiral disks, we find that massive single stars ending their lives as Wolf-Rayet ...

  3. Cosmological test with the QSO Hubble diagram

    CERN Document Server

    Lopez-Corredoira, M; Lusso, E; Risaliti, G

    2016-01-01

    A Hubble diagram (HD) has recently been constructed in the redshift range 099% C.L. The Quasi-Steady State Model is excluded at >95% C.L. The remaining four models (Lambda-CDM/wCDM, the R_h=ct Universe, the Friedmann open universe and a Static universe with a linear Hubble law) all pass the test. However, only Lambda-CDM/wCDM and $R_{\\rm h}=ct$ also pass the Alcock-Paczynski (AP) test. The optimized parameters in Lambda-CDM/wCDM are Omega_m=0.20^{+0.24}_{-0.20} and w_{de}=-1.2^{+1.6}_{-infinity} (the dark-energy equation-of-state). Combined with the AP test, these values become Omega_m=0.38^{+0.20}_{-0.19} and w_{de}=-0.28^{+0.52}_{-0.40}. But whereas this optimization of parameters in Lambda-CDM/wCDM creates some tension with their concordance values, the $R_{\\rm h}=ct$ Universe has the advantage of fitting the QSO and AP data without any free parameters.

  4. Type Ia Supernovae and the Hubble Constant

    CERN Document Server

    Branch, D

    1998-01-01

    The focus of this review is the work that has been done during the 1990s on using Type Ia supernovae (SNe Ia) to measure the Hubble constant ($H_0$). SNe Ia are well suited for measuring $H_0$. A straightforward maximum-light color criterion can weed out the minority of observed events that are either intrinsically subluminous or substantially extinguished by dust, leaving a majority subsample that has observational absolute-magnitude dispersions of less than $\\sigma_{obs}(M_B) \\simeq \\sigma_{obs}(M_V) \\simeq 0.3$ mag. Correlations between absolute magnitude and one or more distance-independent SN Ia or parent-galaxy observables can be used to further standardize the absolute magnitudes to better than 0.2 mag. The absolute magnitudes can be calibrated in two independent ways --- empirically, using Cepheid-based distances to parent galaxies of SNe Ia, and physically, by light curve and spectrum fitting. At present the empirical and physical calibrations are in agreement at $M_B \\simeq M_V \\simeq -19.4$ or -19....

  5. Hubble Diagram Test of Expanding and Static Cosmological Models: The Case for a Slowly Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2013-01-01

    Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.

  6. GRB Hubble diagram and constraints on a \\Lambda (t)CDM model

    CERN Document Server

    Velten, Hermano; Carneiro, Saulo

    2012-01-01

    In previous papers, a cosmological model with constant-rate particle creation and vacuum term decaying linearly with the Hubble parameter was shown to lead to a good concordance when tested against precise observations: the position of the first peak in the spectrum of anisotropies of the cosmic microwave background (CMB), the Hubble diagram for supernovas of type Ia (SNe Ia), the distribution of large-scale structures (LSS) and the distance to the baryon acoustic oscillations (BAO). That model has the same number of parameters as the spatially flat standard model and seems to alleviate some observational/theoretical tensions appearing in the later. In this letter we complement those tests with 109 gamma ray bursters (GRB), 59 of them with redshifts above z=1.4, which permits to extend the Hubble diagram to redshifts up to z ~ 8. For the calibration of the 50 GRBs with z<1.4 we use the 288 supernovas of the Sloan Digital Sky Survey (SDSS) project, calibrated with the MLCS2k2 fitter, less model-dependent th...

  7. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    CERN Document Server

    Kim, A G; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Cellier-Holzem, F; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Feindt, U; Fleury, M; Gangler, E; Greskovic, P; Guy, J; Kowalski, M; Lombardo, S; Nordin, J; Nugent, P; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Saunders, C; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Weaver, B A

    2014-01-01

    Kim et al. (2013) [K13] introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is $0.013\\pm 0.031$ mag for a supernova subsample with data coverage corresponding to the K13 training; at $\\ll 1\\sigma$, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is $0.045\\pm 0.026$ mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch para...

  8. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  9. Type Ia supernova Hubble residuals and host-galaxy properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon (France); Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon (France); and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  10. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  11. SweetSpot Data Release 1: 70 Type Ia Supernovae in the Near Infrared in the Nearby Hubble Flow

    Science.gov (United States)

    Wood-Vasey, W. Michael; Weyant, Anja; Allen, Lori; Trevino Barton, Nathan; Garnavich, Peter M.; Farhin Jahan, Nabila; Jha, Saurabh; Kroboth, Jessica Rose; Ponder, Kara Ann; Joyce, Richard R.; Matheson, Thomas; Rest, Armin

    2015-01-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that is observing 150 Type Ia supernovae (SNeIa) in the Hubble flow to obtain reliable NIR luminosities free from peculiar-velocity confusion and the uncertainties of dust.Our full SweetSpot program will (1) extend the NIR Hubble diagram past currently available samples; (2) quantitatively demonstrate the degree to which SNeIa are robust standard candles in the NIR; (3) provide key insights about the color evolution and intrinsic properties of SNeIa and their host galaxies; and (4) establish a well-calibrated low-redshift anchor for future NIR supernova surveys from JWST, Euclid, and WFIRST/NEW. By the end of the survey we will have measured the relative distance to a redshift of z~0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNeIa in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.We here present our Data Release 1 which includes 70 supernovae observed from 2011B-2013B. Along with an updated NIR Hubble diagram combining these SNeIa with those from the literature, we explore the relationships between SNIa NIR luminosity and properties of the host galaxy.

  12. Direct Determination of Hubble Parameter Using Type IIn Supernovae

    CERN Document Server

    Blinnikov, Sergei; Baklanov, Petr; Dolgov, Alexander

    2012-01-01

    We introduce a novel approach, a Dense Shell Method (DSM), for measuring distances for cosmology. It is based on original Baade idea to relate absolute difference of photospheric radii with photospheric velocity. We demonstrate that this idea works: the new method does not rely on the Cosmic Distance Ladder and gives satisfactory results for the most luminous Type IIn Supernovae. This allows one to make them good primary distance indicators for cosmology. Fixing correction factors for illustration, we obtain with this method the median distance of 68^{+19}_{-15} (68%CL) Mpc to SN 2006gy and median Hubble parameter 79^{+23}_{-17} (68%CL) km/s/Mpc.

  13. THE GAMMA-RAY BURST HUBBLE DIAGRAM AND ITS IMPLICATIONS FOR COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Wei Junjie; Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Department of Physics, Applied Math Program, and Department of Astronomy, University of Arizona, AZ 85721 (United States)

    2013-07-20

    In this paper, we continue to build support for the proposal to use gamma-ray bursts (GRBs) as standard candles in constructing the Hubble diagram at redshifts beyond the current reach of Type Ia supernova observations. We confirm that correlations among certain spectral and light-curve features can indeed be used as luminosity indicators, and demonstrate from the most up-to-date GRB sample appropriate for this work that the {Lambda}CDM model optimized with these data is characterized by parameter values consistent with those in the concordance model. Specifically, we find that ({Omega}{sub m},{Omega}{sub {Lambda}}){approx}(0.25{sub -0.06}{sup +0.05}, 0.75{sub -0.05}{sup +0.06}), which are consistent, to within 1{sigma}, with (0.29, 0.71) obtained from the 9 yr Wilkinson Microwave Anisotropy Probe data. We also carry out a comparative analysis between {Lambda}CDM and the R{sub h} = ct universe and find that the optimal {Lambda}CDM model fits the GRB Hubble diagram with a reduced {chi}{sup 2}{sub dof}{approx}2.26, whereas the fit using R{sub h} = ct results in a {chi}{sup 2}{sub dof}{approx}2.14. In both cases, about 20% of the events lie at least 2{sigma} away from the best-fit curves, suggesting that either some contamination by non-standard GRB luminosities is unavoidable or that the errors and intrinsic scatter associated with the data are being underestimated. With these optimized fits, we use three statistical tools-the Akaike information criterion, the Kullback information criterion, and the Bayes information criterion-to show that, based on the GRB Hubble diagram, the likelihood of R{sub h} = ct being closer to the correct model is {approx}85%-96%, compared to {approx}4%-15% for {Lambda}CDM.

  14. Turning noise into signal: learning from the scatter in the Hubble diagram

    CERN Document Server

    Castro, Tiago; Benitez-Herrera, Sandra

    2015-01-01

    The supernova Hubble diagram residual contains valuable information on both the present matter power spectrum and its growth history. In this paper we show that this information can be retrieved with precision by combining both peculiar velocity and weak-lensing analysis on the data. To wit, peculiar velocity induces correlations on the nearby supernovae while lensing induces a non-Gaussian dispersion in faraway objects. We show that both effects have almost orthogonal degeneracies and discuss how they can be extracted simultaneously from the data. We analyze the JLA supernova catalog in a 14-dimensional parameter space, assuming a flexible growth-rate index gamma. We arrive at the following marginalized constraints: sigma8 = $1.16^{+0.23}_{-0.47}$ and gamma = $0.80^{+0.29}_{-0.34}$. We note that these constraints complement well the ones obtained from other data sets. Assuming instead GR as the correct gravitation theory (and thus gamma = 0.55), the constraints in sigma8 tighten further: sigma8 = $0.89^{+0.1...

  15. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  16. The GRBs Hubble diagram in quintessential cosmological models

    CERN Document Server

    Demianski, Marek; Rubano, Claudio

    2010-01-01

    It has been recently empirically established that some of the directly observed pa- rameters of GRBs are correlated with their important intrinsic parameters, like the luminosity or the total radiated energy. These correlations were derived, tested and used to standardize GRBs, i.e., to derive their luminosity or radiated energy from one or more observables, in order to construct an estimated fiducial Hubble diagram, assuming that radiation propagates in the standard LambdaCDM cosmological model. We extend these analyses by considering more general models of dark energy, and an updated data set of high redshift GRBs. We show that the correlation parameters only weakly depend on the cosmological model. Moreover we apply a local regression technique to estimate, in a model independent way, the distance modulus from the recently updated SNIa sample containing 307 SNIa (Astier et al. 2006), in order to calibrate the GRBs 2D correlations, considering only GRBs with z <1.4. The derived calibration parameters are...

  17. Observing supernova 1987A with the refurbished Hubble Space Telescope.

    Science.gov (United States)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig

    2010-09-24

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  18. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    CERN Document Server

    France, Kevin; Heng, Kevin; Kirshner, Robert; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter; Larsson, Josefin; Lawrence, Stephen; Lundqvist, Peter; Panagia, Nino; Pun, Chun; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John; Wang, Lifan; Wheeler, Craig

    2010-01-01

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\\lambda\\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  19. Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory

    CERN Document Server

    Childress, M J; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Cellier-Holzem, F; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Guy, J; Hsiao, E Y; Kerschhaggl, M; Kim, A G; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Weaver, B A; Wu, C

    2013-01-01

    We examine the relationship between Type Ia Supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar masses and specific star-formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-AGN) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low and high mass hosts is 0.077 +- 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 <= log(M_*/M_Sun) <= 10.4). Although metallicity has been a favored i...

  20. Turning noise into signal: Learning from the scatter in the Hubble diagram

    Science.gov (United States)

    Castro, Tiago; Quartin, Miguel; Benitez-Herrera, Sandra

    2016-09-01

    The supernova (SN) Hubble diagram residual contains valuable information on both the present matter power spectrum and its growth history. In this paper we show that this information can be retrieved with precision by combining both peculiar velocity and weak-lensing analysis on the data. To wit, peculiar velocity induces correlations on the nearby SN while lensing induces a non-Gaussian dispersion in faraway objects. We show that both effects have almost orthogonal degeneracies and discuss how they can be extracted simultaneously from the data. We analyze the JLA supernova catalog in a 14-dimensional parameter space, assuming a flexible growth-rate index γ. We arrive at the following marginalized constraints: σ8 = 0.65-0.37+0.23 and γ = 1.38-0.65+1.7. Assuming instead GR as the correct gravitation theory (and thus γ ≡ 0.55), the constraints in σ8 tighten further: σ8 = 0.40-0.23+0.21. We show that these constraints complement well the ones obtained from other datasets and that they could improve substantially with more SNe.

  1. Systematics in the Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Cardone, V F; Capozziello, S

    2011-01-01

    Thanks to their enormous energy release which allows to detect them up to very high redshift, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernoave (SNeIa). However, lacking a local GRBs sample, calibrating the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs is not an easy task because of the need to estimate the GRBs luminosity distance in a model independent way. We consider here three different calibration methods based on the use of a fiducial $\\Lambda$CDM model, on cosmographic parameters and on the local regression on SNeIa. We find that the calibration coefficients and the intrinsic scatter do not significantly depend on the adopted calibration procedure. We then investigate the evolution of these parameters with the redshift finding no statistically motivated improvement in the likelihood so that the no evolution assumption is actually a well foun...

  2. Confronting the Hubble diagram of gamma-ray bursts with Cardassian cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera Cuesta, Herman J; Habib Dumet M; Furlanetto, Cristina, E-mail: hermanjc@cbpf.br, E-mail: hdumetm@cbpf.br, E-mail: crisf@cbpf.br [Instituto de Cosmologia, Relatividade e Astrofisica (ICRA-BR), Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Cep 22290-180, Urca, Rio de Janeiro, RJ (Brazil)

    2008-07-15

    We construct the Hubble diagram of gamma-ray bursts (GRBs) with redshifts reaching up to z{approx}6, by using five luminosity versus luminosity indicator relations calibrated with the Cardassian cosmology. This model has a major interesting feature: despite being matter dominated and flat, it can explain the present accelerated expansion of the universe. This is the first study of this class of models using high redshift GRBs. We have performed a {chi} squared statistical analysis of the GRBs calibrated with the Cardassian model, and also combined them with both the current cosmic microwave background and baryonic acoustic oscillation data. Our results show consistency between the current observational data and the model predictions; in particular, the best fit parameters obtained from that {chi}{sup 2} analysis are in agreement with those obtained from previous investigations. The influence of these best fit parameters on the redshift at which the universe would start to follow the Cardassian expansion, i.e., z{sub card}, and on both the redshift at which the universe supposedly had started to accelerate, i.e., z{sub acc}, and the age-redshift relation, H{sub 0}t{sub 0}, are also discussed. Our results also show that the universe, from the point of view of GRBs, had undergone a transition to acceleration at a redshift z Almost-Equal-To 0.2-0.7, which agrees with the type Ia supernovae results. One important point that we notice is that despite the statistical analysis being performed with a model that does not need any vacuum energy, we found that the results attained using this cosmological model are compatible with those obtained with the concordance cosmology ({Lambda}-CDM; CDM: cold dark matter), as far as GRBs are concerned. Hence, after confronting the Cardassian scenario with the GRB Hubble diagram, our main conclusion is that GRBs should indeed be considered a tool complementary to several other observational studies for doing precision cosmology.

  3. Photospheric Magnitude Diagrams for Type II Supernovae: A Promising Tool to Compute Distances

    Science.gov (United States)

    Rodríguez, Ósmar; Clocchiatti, Alejandro; Hamuy, Mario

    2014-12-01

    We develop an empirical color-based standardization for Type II supernovae (SNe II), equivalent to the classical surface brightness method given in Wesselink. We calibrate this standardization using SNe II with host galaxy distances measured using Cepheids, and a well-constrained shock breakout epoch and extinction due to the host galaxy. We estimate the reddening with an analysis of the B - V versus V - I color-color curves, similar to that of Natali et al. With four SNe II meeting the above requirements, we build a photospheric magnitude versus color diagram (similar to an H-R diagram) with a dispersion of 0.29 mag. We also show that when using time since shock breakout instead of color as the independent variable, the same standardization gives a dispersion of 0.09 mag. Moreover, we show that the above time-based standardization corresponds to the generalization of the standardized candle method of Hamuy & Pinto for various epochs throughout the photospheric phase. To test the new tool, we construct Hubble diagrams for different subsamples of 50 low-redshift (cz 3000 km s-1) and with a well-constrained shock breakout epoch we obtain values of 68-69 km s-1 Mpc-1 for the Hubble constant and a mean intrinsic scatter of 0.12 mag or 6% in relative distances.

  4. A Hubble Space Telescope Snapshot Survey of Nearby Supernovae

    CERN Document Server

    Li, W; Van Dyk, S D; Hu, J; Qiu, Y; Modjaz, M; Leonard, D C; Li, Weidong; Filippenko, Alexei V.; Dyk, Schuyler D. Van; Hu, Jingyao; Qiu, Yulei; Modjaz, Maryam; Leonard, Douglas C.

    2002-01-01

    We present photometry of 12 recent supernovae (SNe) recovered in a {\\it Hubble Space Telescope} Snapshot program, and tie the measurements to earlier ground-based observations, in order to study the late-time evolution of the SNe. Many of the ground-based measurements are previously unpublished, and were made primarily with a robotic telescope, the Katzman Automatic Imaging Telescope. Evidence for circumstellar interaction is common among the core-collapse SNe. Late-time decline rates for Type IIn SNe are found to span a wide range, perhaps due to differences in circumstellar interaction. An extreme case, SN IIn 1995N, declined by only 1.2 mag in $V$ over about 4 years following discovery. Template images of some SNe must therefore be obtained many years after the explosion, if contamination from the SN itself is to be minimized. Evidence is found against a previous hypothesis that the Type IIn SN 1997bs was actually a superoutburst of a luminous blue variable star. The peculiar SN Ic 1997ef, a "hypernova," d...

  5. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Science.gov (United States)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; hide

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  6. Quark-Novae Ia in the Hubble diagram: implications for dark energy

    Science.gov (United States)

    Ouyed, Rachid; Koning, Nico; Leahy, Denis; Staff, Jan E.; Cassidy, Daniel T.

    2014-05-01

    The accelerated expansion of the Universe was proposed through the use of Type-Ia supernovae (SNe) as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type-Ia SNe as standard candles rests on the assumption that their properties (and this correlation) do not vary with redshift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system, which forms a Quark-Nova Ia (QN-Ia). The spin-down energy injected by the Quark-Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing QN-Ia are NOT constant in redshift. Simulated QN-Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We determine a correction between the true and fitted distance moduli, which when applied to Type-Ia SNe in the Hubble diagram recovers the ΩM = 1 cosmology. We conclude that Type-Ia SNe observations do not necessitate the need for an accelerating expansion of the Universe (if the observed SNe Ia are dominated by QNe Ia) and by association the need for dark energy.

  7. Gamma-ray burst cosmology: Hubble diagram and star formation history

    CERN Document Server

    Wei, Jun-Jie

    2016-01-01

    We briefly introduce the disadvantages for Type Ia supernovae (SNe Ia) as standard candles to measure the Universe, and suggest Gamma-ray bursts (GRBs) can serve as a powerful tool for probing the properties of high redshift Universe. We use GRBs as distance indicators in constructing the Hubble diagram at redshifts beyond the current reach of SNe Ia observations. Since the progenitors of long GRBs are confirmed to be massive stars, they are deemed as an effective approach to study the cosmic star formation rate (SFR). A detailed representation of how to measure high-$z$ SFR using GRBs is presented. Moreover, first stars can form only in structures that are suitably dense, which can be parameterized by defining the minimum dark matter halo mass $M_{\\rm min}$. $M_{\\rm min}$ must play a crucial role in star formation. The association of long GRBs with the collapses of massive stars also indicates that the GRB data can be applied to constrain the minimum halo mass $M_{\\rm min}$ and to investigate star formation ...

  8. The Hubble Space Telescope Cluster Supernova Survey: VI. The Volumetric Type Ia Supernova Rate

    CERN Document Server

    Barbary, K; Amanullah, R; Brodwin, M; Connolly, N; Dawson, K S; Doi, M; Eisenhardt, P; Faccioli, L; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; Goobar, A; Hattori, T; Hsiao, E; Huang, X; Ihara, Y; Kashikawa, N; Koester, B; Konishi, K; Kowalski, M; Lidman, C; Lubin, L; Meyers, J; Morokuma, T; Oda, T; Panagia, N; Perlmutter, S; Postman, M; Ripoche, P; Rosati, P; Rubin, D; Schlegel, D J; Spadafora, A L; Stanford, S A; Strovink, M; Suzuki, N; Takanashi, N; Tokita, K; Yasuda, N

    2011-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce sig...

  9. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Science.gov (United States)

    2012-04-20

    reserved. Printed in the U.S.A. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE Xiaofeng Wang1,2,3...DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the...spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on

  10. The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids

    CERN Document Server

    Sandage, A; Panagia, N; Reindl, B; Saha, A; Tammann, G A

    2006-01-01

    This is the summary paper of our 15 year program using the Hubble Space Telescope (HST) to determine the Hubble constant using Type Ia supernovae, calibrated with Cepheid variables in nearby galaxies that hosted them. In four previous papers new metallicity-dependent P-L relations of the Cepheids in LMC and the Galaxy were defined, a Hubble diagram for a large sample of uniformly reduced SNeIa established, the secular variation of the HST photometry tested, and the revised Cepheid distances of 37 galaxies derived. The new Cepheid distances of the subset of 10 galaxies, which were hosts of normal SNe Ia, give weighted mean luminosities in B,V,I at maximum light of -19.49, -19.46, and -19.22. These calibrate the adopted SNe Ia Hubble diagram from Paper III to give H_0 = 62.3 +/- 1.3 (random) +/- 5.0 (systematic). This is a global value because it uses the Hubble diagram between redshift limits of 3000 and 20000km/s reduced to the CMB kinematic frame, well beyond the effects of any local random and streaming mot...

  11. Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated Ep,i-Eiso correlation

    Science.gov (United States)

    Demianski, Marek; Piedipalumbo, Ester; Sawant, Disha; Amati, Lorenzo

    2017-02-01

    Context. Gamma-ray bursts (GRBs) are the most energetics explosions in the Universe. They are detectable up to very high redshifts. They may therefore be used to study the expansion rate of the Universe and to investigate the observational properties of dark energy, provided that empirical correlations between spectral and intensity properties are appropriately calibrated. Aims: We used the type Ia supernova (SN) luminosity distances to calibrate the correlation between the peak photon energy, Ep,i, and the isotropic equivalent radiated energy, Eiso in GRBs. With this correlation, we tested the reliability of applying these phenomena to measure cosmological parameters and to obtain indications on the basic properties and evolution of dark energy. Methods: Using 162 GRBs with measured redshifts and spectra as of the end of 2013, we applied a local regression technique to calibrate the Ep,i-Eiso correlation against the type Ia SN data to build a calibrated GRB Hubble diagram. We tested the possible redshift dependence of the correlation and its effect on the Hubble diagram. Finally, we used the GRB Hubble diagram to investigate the dark energy equation of state (EOS). To accomplish this, we focused on the so-called Chevalier-Polarski-Linder (CPL) parametrization of the dark energy EOS and implemented the Markov chain Monte Carlo (MCMC) method to efficiently sample the space of cosmological parameters. Results: Our analysis shows once more that the Ep,i-Eiso correlation has no significant redshift dependence. Therefore the high-redshift GRBs can be used as a cosmological tool to determine the basic cosmological parameters and to test different models of dark energy in the redshift region (), which is unexplored by the SNIa and baryonic acoustic oscillations data. Our updated calibrated Hubble diagram of GRBs provides some marginal indication (at 1σ level) of an evolving dark energy EOS. A significant enlargement of the GRB sample and improvements in the accuracy of

  12. Type-Ia Supernova Rates to Redshift 2.4 from CLASH: the Cluster Lensing And Supernova survey with Hubble

    CERN Document Server

    Graur, O; Maoz, D; Riess, A G; Jha, S W; Postman, M; Dahlen, T; Holoien, T W -S; McCully, C; Patel, B; Strolger, L -G; Benitez, N; Coe, D; Jouvel, S; Medezinski, E; Molino, A; Nonino, M; Bradley, L; Koekemoer, A; Balestra, I; Blondin, S; Cenko, S B; Clubb, K I; Dickinson, M E; Filippenko, A V; Frederiksen, T F; Garnavich, P; Hjorth, J; Jones, D O; Leibundgut, B; Matheson, T; Mobasher, B; Rosati, P; Silverman, J M; U, V; Jedruszczuk, K; Li, C; Lin, K; Mirmelstein, M; Neustadt, J; Ovadia, A; Rogers, E H

    2013-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ~11 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 99% significance level.

  13. Correlations Between Hubble Residuals and Local Stellar Populations of Type Ia Supernovae

    Science.gov (United States)

    Rose, Benjamin; Garnavich, Peter M.

    2017-01-01

    There appears to be correlations between SN Ia Hubble diagram residuals and host galaxy mass, metallicity, and star formation history. An uncorrected bias may produce a systematic offset in cosmological measurements. Rigault et al. (2013) found that the local environment can correlate with Hubble residuals and possibly impact precision Hubble Constant measurements. Global properties are the luminosity average of local environments, therefore the properties of local environments may hold stronger correlations than their global counterparts. We analyze host galaxies from the SDSS-II survey using both ground-based and Hubble Space Telescope imaging. We generate local stellar environmental properties by selecting a best fit Flexible Stellar Population Synthesis model that matches the SDSS Scene Modeling data. The derived properties, such as metallicity, stellar age, and star formation history, are then compared to the SN Ia's Hubble residual in the search for correlations.

  14. Photospheric Magnitude Diagrams for Type II Supernovae: A Promising Tool to Compute Distances

    CERN Document Server

    Rodríguez, Ósmar; Hamuy, Mario

    2014-01-01

    We develop an empirical color-based standardization for Type II supernovae (SNe II), equivalent to the classical surface brightness method given in Wesselink (1969). We calibrate it with SNe II with host galaxy distance measured with Cepheids, and well-constrained shock breakout epoch and extinction due to the host galaxy. We estimate the reddening with an analysis of the B-V versus V-I color-color curves, similar to that of Natali et al. (1994). With four SNe II meeting the above requirements, we build a photospheric magnitude versus color diagram (similar to an HR diagram) with a dispersion of 0.29 mag. We also show that when using time since shock breakout instead of color as independent variable, the same standardization gives a dispersion of 0.09 mag. Moreover, we show that the above time-based standardization corresponds to the generalization of the standardized candle method of Hamuy & Pinto (2002) for various epochs throughout the photospheric phase. To test the new tool, we construct Hubble diagr...

  15. Cosmography: Extracting the Hubble series from the supernova data

    CERN Document Server

    Cattoen, C; Cattoen, Celine; Visser, Matt

    2007-01-01

    We perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. We pay particular attention to the influence of both statistical and systematic uncertainties, and also to the extent to which the choice of distance scale and manner of representing the redshift scale affect the cosmological parameters. While the "preponderance of evidence" certainly suggests an accelerating universe, we would argue that (based on the supernova data) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the graph slopes up or down. Turning to the details of the cosmographic fits, three issues in particular concern us: First, the fitted value for the deceleration parameter changes significantly depending on whether one performs a chi^2 fit to the luminosity dis...

  16. Dark energy in the environments of the Local Group, the M 81 group, and the CenA group: the normalized Hubble diagram

    Science.gov (United States)

    Teerikorpi, P.; Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.

    2008-05-01

    Context: Type Ia supernova observations on scales of thousands of Mpc show that the global expansion of the universe is accelerated by antigravity produced by the enigmatic dark energy contributing 3/4 of the total energy of the universe. Aims: Does antigravity act on small scales as well as large? As a continuation of our efforts to answer this crucial question we combine high accuracy observations of the galaxy flows around the Local Group and the nearby M 81 and CenA groups to observe the effect of the dark energy density on local scales of a few Mpc. Methods: We use an analytical model to describe non-uniform static space-time regions around galaxy groups. In this context it is useful to present the Hubble flow in a normalized Hubble diagram V/Hv Rv vs. r/R_v, where the vacuum Hubble constant Hv depends only on the cosmological vacuum density and the zero-gravity distance Rv depends on the vacuum density and on the mass of the galaxy group. We have prepared the normalized Hubble diagrams for the LG, M 81 and CenA group environments for different values of the assumed vacuum energy density, using a total of about 150 galaxies, for almost all of which the distances have been measured by the HST. Results: The normalized Hubble diagram, where we identify dynamically different regions, is in agreement with the standard vacuum density (Ωv = 0.77~h_70-2), the out-flow of galaxies clearly being controlled by the minimum energy condition imposed by the central mass plus the vacuum density. A high vacuum density 1.6~h_70-2 violates the minimum energy limit, while a low density 0.1~h_70-2 leaves the start of the Hubble flow around 1-2 Mpc with the slope close to the global value obscure. We also consider the subtle relation of the zero-gravity radius Rv to the zero-velocity distance R0 appearing in the usual retarded expansion around a mass M: in a vacuum-dominated flat universe R0 ≈ 0.76 R_v. Conclusions: The normalized Hubble diagram appears to be a good way to

  17. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    OpenAIRE

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei V.; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng,; Aldering, Greg; Antilogus, Pierre; Arnett, David; Baade, Dietrich; Barris, Brian J.; Benetti, Stefano; Bouchet, Patrice; Burrows, Adam S.

    2011-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Te...

  18. Precision Measurement of The Most Distant Spectroscopically-Confirmed Supernova Ia with the Hubble Space Telescope

    CERN Document Server

    Rubin, D; Rykoff, E; Aldering, G; Amanullah, R; Barbary, K; Burns, M S; Conley, A; Connolly, N; Deustua, S; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gibbons, R A; Goldhaber, G; Goobar, A; Hsiao, E Y; Huang, X; Kowalski, M; Lidman, C; Meyers, J; Nordin, J; Perlmutter, S; Saunders, C; Spadafora, A L; Stanishev, V; Suzuki, N; Wang, L

    2012-01-01

    We report the discovery of a redshift 1.71 supernova in the GOODS North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies, allowing us to confirm it as a Type Ia. A serendipitous HST WFC3 IR spectrum, taken after the supernova had faded, gives a host-galaxy redshift of 1.713 +/- 0.007 which matches the SN redshift. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of LambdaCDM.

  19. SweetSpot: A 3-year NOAO Survey to Observe 150 Type Ia Supernovae in the Near Infrared in the Nearby Hubble Flow

    Science.gov (United States)

    Wood-Vasey, W. M.; Weyant, A.; Allen, L.; Garnavich, P. M.; Jahan, N.; Jha, S.; Joyce, R. R.; Matheson, T.; Rest, A.

    2014-01-01

    SweetSpot is an NOAO Survey program from 2012B-2015A that will observe 150 Type Ia supernovae (SNe Ia) in the Hubble flow to obtain reliable near-infrared (NIR) luminosities free from peculiar-velocity confusion and the uncertainties of dust. A key part of the program is a focus on accurate calibration incorporating recently demonstrated techniques for characterization of telescope systems and the Earth's atmosphere. Our full SweetSpot program will (1) extend the NIR Hubble diagram past currently available samples; (2) quantitatively demonstrate the degree to which SNe Ia are robust standard candles in the NIR; (3) provide key insights about the color evolution and intrinsic properties of SNe Ia and their host galaxies; and (4) establish a well-calibrated low-redshift anchor for future NIR supernova surveys from JWST, Euclid, and WFIRST/NEW. By the end of the survey we will have measured the relative distance to a redshift of 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift. We will present the results from our pilot survey in 2011B and discuss our first year of full observations from 2012B-2013A.

  20. The HII Galaxy Hubble Diagram Strongly Favors $R_{\\rm h}=ct$ over $\\Lambda$CDM

    CERN Document Server

    Wei, Jun-Jie; Melia, Fulvio

    2016-01-01

    We continue to build support for the proposal to use HII galaxies (HIIGx) and giant extragalactic HII regions (GEHR) as standard candles to construct the Hubble diagram at redshifts beyond the current reach of Type Ia supernovae. Using a sample of 25 high-redshift HIIGx, 107 local HIIGx, and 24 GEHR, we confirm that the correlation between the emission-line luminosity and ionized-gas velocity dispersion is a viable luminosity indicator, and use it to test and compare the standard model $\\Lambda$CDM and the $R_{\\rm h}=ct$ Universe by optimizing the parameters in each cosmology using a maximization of the likelihood function. For the flat $\\Lambda$CDM model, the best fit is obtained with $\\Omega_{\\rm m}= 0.40_{-0.09}^{+0.09}$. However, statistical tools, such as the Akaike (AIC), Kullback (KIC) and Bayes (BIC) Information Criteria favor $R_{\\rm h}=ct$ over the standard model with a likelihood of $\\approx 94.8\\%-98.8\\%$ versus only $\\approx 1.2\\%-5.2\\%$. For $w$CDM (the version of $\\Lambda$CDM with a dark-energy...

  1. Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant

    CERN Document Server

    Suntzeff, N B; Covarrubias, R; Navarrete, M; Pérez, J J; Guerra, A I; Acevedo, M T; Doyle, L R; Harrison, T; Kane, S; Long, K S; Maza, J; Miller, S; Piatti, A E; Claria, J J; Ahumada, A V; Pritzl, B J; Winkler, P F; Suntzeff, Nicholas B.; Doyle, Laurance R.; Harrison, Thomas; Kane, Stephen; Long, Knox S.; Maza, Jose; Miller, Scott; Piatti, Andres E.; Claria, Juan J.; Ahumada, Andrea V.; Pritzl, Barton

    1998-01-01

    We present the UBVRI light curves of the Type Ia supernova SN 1998bu which appeared in the nearby galaxy M96 (NGC 3368). M96 is a spiral galaxy in the Leo I group which has a Cepheid-based distance. Our photometry allows us to calculate the absolute magnitude and reddening of this supernova. These data, when combined with measurements of the four other well-observed supernovae with Cepheid based distances, allow us to calculate the Hubble constant with respect to the Hubble flow defined by the distant Calan/Tololo Type Ia sample. We find a Hubble constant of 64.0 +/- 2.2(internal) +/- 3.5(external) km/s/Mpc, consistent with most previous estimates based on Type Ia supernovae. We note that the two well-observed Type Ia supernovae in Fornax, if placed at the Cepheid distance to the possible Fornax spiral NGC 1365, are apparently too faint with respect to the Calan/Tololo sample calibrated with the five Type Ia supernovae with Cepheid distances to the host galaxies.

  2. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Science.gov (United States)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  3. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  4. In Defense of an Accelerating Universe: Model Insensitivity of the Hubble Diagram

    CERN Document Server

    Ringermacher, H I

    2016-01-01

    Nielsen, Guffanti and Sarkar, in their recent Nature article, present a detailed argument that the evidence for cosmic acceleraton is marginal and that a coasting universe model, namely that of the "Milne Universe", fits the same SNe Ia data set in a Hubble diagram (distance modulus vs. redshift) nearly as well. However, we find that when the SNe data, the LCDM model and Milne model are plotted as scale factor vs. linear cosmological time in a model-independent fashion the two resulting curves separate significantly above the noise making it exceptionally clear that the universe is accelerating and the Milne model cannot fit the time-data. In this plot, the Milne model generates a straight line, while LCDM continues to show an excellent fit to acceleration. The separation of these two models on this type of plot demonstrates the efficacy of this new plot procedure.

  5. Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older Universe without Dark Energy

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion solution. This dynamics involves two constants; G and — the fine structure constant. This solution gives an excellent parameter-free fit to the recent supernova and gamma- ray burst redshift data without the need for “dark energy” or “dark matter”. The data and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter” or “dark energy”. These developments imply that a new understanding of the universe is now available.

  6. Hubble Space Telescope observations of the host galaxies and environments of calcium-rich supernovae

    CERN Document Server

    Lyman, J D; James, P A; Angus, C R; Church, R P; Davies, M B; Tanvir, N R

    2016-01-01

    Calcium-rich supernovae represent a significant challenge for our understanding of the fates of stellar systems. They are less luminous than other supernova (SN) types and they evolve more rapidly to reveal nebular spectra dominated by strong calcium lines with weak or absent signatures of other intermediate- and iron-group elements, which are seen in other SNe. Strikingly, their explosion sites also mark them out as distinct from other SN types. Their galactocentric offset distribution is strongly skewed to very large offsets (around one third are offset greater than 20 kpc), meaning they do not trace the stellar light of their hosts. Many of the suggestions to explain this extreme offset distribution have invoked the necessity for unusual formation sites such as globular clusters or dwarf satellite galaxies, which are therefore difficult to detect. Building on previous work attempting to detect host systems of nearby Ca-rich SNe, we here present Hubble Space Telescope imaging of 5 members of the class - 3 e...

  7. A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    CERN Document Server

    Kuznetsova, N; Connolly, B; Kim, A G; Pain, R; Roe, N A; Aldering, G; Amanullah, R; Dawson, K; Doi, M; Fadeev, V; Fruchter, A S; Gibbons, R; Goldhaber, G; Goobar, A; Gude, A; Knop, R A; Kowalski, M; Lidman, C; Morokuma, T; Meyers, J; Perlmutter, S; Rubin, D; Schlegel, D J; Spadafora, A L; Stanishev, V; Strovink, M; Suzuki, N; Wang, L; Yasuda, N

    2007-01-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of pos...

  8. Hubble Space Telescope Images of the Ultraluminous Supernova Remnant Complex in NGC 6946

    Science.gov (United States)

    Blair, William P.; Fesen, Robert A.; Schlegel, Eric M.

    2001-03-01

    We present Hubble Space Telescope (HST) narrow-passband Hα and [S II] images and broadband continuum images of the region around an extremely luminous optical and X-ray supernova remnant complex in the spiral galaxy NGC 6946. These images, obtained with the PC1 CCD of the Wide Field Planetary Camera 2, show a circular, limb-brightened shell of diameter 0.35" [9 d/(5.1 Mpc) pc] superposed on the edge of a larger, lower surface brightness elliptical shell (1.4"×0.8", or ~=34 pc×20 pc). The HST images allow us to see that the [S II]:Hα ratio remains high across both shells, indicating that both are collisionally heated. A brightening of the Hα and [S II] line emission arises on the eastern side of the smaller shell, where it is apparently interacting with the western edge of the larger shell. Our HST V image includes the nebula's strong [O III] λ5007 emission in the blue wing of the filter, providing a glimpse at the [O III] nebular morphology. The smaller shell looks similar, but the extended structure looks sharper than in Hα and [S II] images, reminiscent of a cavity wall. The HST and ground-based continuum images show the brightest members of the underlying and adjacent stellar population, indicating the presence of massive OB stars in and near the region. A new optical ground-based spectrum confirms that the [N II]:Hα ratio is enhanced in the region, consistent with mass loss from massive stars. These data show an average ([S II] λλ6716, 6731):Hα ratio across both shells of ~1 and a mean electron density of ~400 cm-3, indicating preshock densities of order 10 cm-3. We interpret this nebular morphology and supporting information as an indication of multiple supernova explosions in relatively close temporal and spatial proximity. We discuss possible scenarios for this complex region and the reasons for its extreme luminosity. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  9. Hubble Space Telescope Observations of M32 The Color-Magnitude Diagram

    CERN Document Server

    Grillmair, C J; Worthey, G; Faber, S M; Freedman, W L; Madore, B F; Ajhar, E A; Baum, W A; Holtzmann, J A; Lynds, C R; O'Neil, E J; Stetson, P B; Grillmair, Carl J.; Lauer, Tod R.; Worthey, Guy; Freedman, Wendy L.; Madore, Barry F.; Ajhar, Edward A.; Baum, William A.; Holtzman, Jon A.; Neil, Earl J. O'; Stetson, Peter B.

    1996-01-01

    We present a V-I color-magnitude diagram for a region 1'-2' from the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity. This distribution cannot be explained by a spread in age. The blue side of the giant branch rises to M_I ~ -4.0 and can be fitted with isochrones having [Fe/H] ~ -1.5. The red side consists of a heavily populated and dominant sequence that tops out at M_I ~ -3.2, and extends beyond V-I=4. This sequence can be fitted with isochrones with -0.2 < [Fe/H] < +0.1, for ages running from 15 Gyr to 5 Gyr respectively. We do not find the optically bright asymptotic giant branch stars seen in previous ground-based work and argue that the majority of them were artifacts of crowding. Our results are consistent with the presence of the infrared-luminous giants found in ground-based studies, though their existence cannot be directly confirmed by our data. ...

  10. Effect of GRB spectra on the empirical luminosity correlations and the GRB Hubble diagram

    CERN Document Server

    Lin, Hai-Nan; Chang, Zhe

    2016-01-01

    The spectra of gamma-ray bursts (GRBs) in a wide energy range can usually be well described by the Band function, which is a two smoothly jointed power laws cutting at a breaking energy. Below the breaking energy, the Band function reduces to a cut-off power law, while above the breaking energy it is a simple power law. However, for some detectors (such as the Swift-BAT) whose working energy is well below or just near the breaking energy, the observed spectra can be fitted to cut-off power law with enough precision. Besides, since the energy band of Swift-BAT is very narrow, the spectra of most GRBs can be fitted well even using a simple power law. In this paper, with the most up-to-date sample of Swift-BAT GRBs, we study the effect of different spectral models on the empirical luminosity correlations, and further investigate the effect on the reconstruction of GRB Hubble diagram. We mainly focus on two luminosity correlations, i.e., the Amati relation and Yonetoku relation. We calculate these two luminosity ...

  11. The K-band Hubble diagram for brightest cluster galaxies in X-ray clusters

    CERN Document Server

    Collins, C; Collins, Chris; Mann, Bob

    1997-01-01

    This paper concerns the K band Hubble diagram for the brightest cluster galaxies (BCGs) in a sample of X-ray clusters covering the redshift range $0.05 2.3 \\times 10^{44}$ erg s$^{-1}$ (in the 0.3 - 3.5 keV band) is no more than 0.22 mag, and is not significantly reduced by correcting for the BCG structure parameter, $\\alpha$, or for X-ray luminosity. This is the smallest scatter in the absolute magnitudes of any single class of galaxy and demonstrates the homogeneity of BCGs in high-$L_{\\rm X}$ clusters. By contrast, we find that the brightest members of low-$L_{\\rm X}$ systems display a wider dispersion ($\\sim 0.5$ mag) in absolute magnitude than commonly seen in previous studies, which arises from the inclusion, in X-ray flux-limited samples, of poor clusters and groups which are usually omitted from low redshift studies of BCGs in optically rich clusters....[abstract shortened].. The BCGs in our high-$L_{\\rm X}$ clusters yield a value of $\\Omega_{\\rm M}=0.28\\pm0.24$ if the cosmological constant with a 95 ...

  12. Cosmography: Supernovae Union2, Baryon Acoustic Oscillation, observational Hubble data and Gamma ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lixin, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024 (China); Korea Astronomy and Space Science Institute, Yuseong Daedeokdaero 776, Daejeon 305-348 (Korea, Republic of); Wang Yuting [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-08-11

    In this Letter, a parametrization describing the kinematical state of the universe via cosmographic approach is considered, where the minimum input is the assumption of the cosmological principle, i.e. the Friedmann-Robertson-Walker metric. A distinguished feature is that the result does not depend on any gravity theory and dark energy models. As a result, a series of cosmographic parameters (deceleration parameter q{sub 0}, jerk parameter j{sub 0} and snap parameter s{sub 0}) are constrained from the cosmic observations which include type Ia supernovae (SN) Union2, the Baryon Acoustic Oscillation (BAO), the observational Hubble data (OHD), the high redshift Gamma ray bursts (GRBs). By using Markov Chain Monte Carlo (MCMC) method, we find the best fit values of cosmographic parameters in 1{sigma} regions: H{sub 0}=74.299{sub -4.287}{sup +4.932}, q{sub 0}=-0.386{sub -0.618}{sup +0.655}, j{sub 0}=-4.925{sub -7.297}{sup +6.658} and s{sub 0}=-26.404{sub -9.097}{sup +20.964} which are improved remarkably. The values of q{sub 0} and j{sub 0} are consistent with flat {Lambda}CDM model in 1{sigma} region. But the value of s{sub 0} of flat {Lambda}CDM model will go beyond the 1{sigma} region.

  13. Second Epoch Hubble Space Telescope Observations of Kepler's Supernova Remnant: The Proper Motions of Balmer Filaments

    CERN Document Server

    Sankrit, Ravi; Blair, William P; Long, Knox S; Williams, Brian J; Borkowski, Kazimierz J; Patnaude, Daniel J; Reynolds, Stephen P

    2015-01-01

    We report on the proper motions of Balmer-dominated filaments in Kepler's supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1 [+0.8, -0.7] kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km/s and is encountering material with densities of about 8 cm^-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations amon...

  14. Confirmation of Hostless Type Ia Supernovae Using Hubble Space Telescope Imaging

    CERN Document Server

    Graham, Melissa L; Zaritsky, Dennis; Pritchet, Chris J

    2015-01-01

    We present deep Hubble Space Telescope imaging at the locations of four, potentially hostless, long-faded Type Ia supernovae (SNe Ia) in low-redshift, rich galaxy clusters that were identified in the Multi-Epoch Nearby Cluster Survey. Assuming a steep faint-end slope for the galaxy cluster luminosity function ($\\alpha_d=-1.5$), our data includes all but $\\lesssim0.2\\%$ percent of the stellar mass in cluster galaxies ($\\lesssim0.005\\%$ with $\\alpha_d=-1.0$), a factor of 10 better than our ground-based imaging. Two of the four SNe Ia still have no possible host galaxy associated with them ($M_R>-9.2$), confirming that their progenitors belong to the intracluster stellar population. The third SNe Ia appears near a faint disk galaxy ($M_V=-12.2$) which has a relatively high probability of being a chance alignment. A faint, red, point source coincident with the fourth SN Ia's explosion position ($M_V=-8.4$) may be either a globular cluster (GC) or faint dwarf galaxy. We estimate the local surface densities of GCs ...

  15. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    CERN Document Server

    Wang, Xiaofeng; Filippenko, Alexei V; Aldering, Greg; Antilogus, Pierre; Arnett, David; Baade, Dietrich; Baron, Eddie; Barris, Brian J; Benetti, Stefano; Bouchet, Patrice; Burrows, Adam S; Canal, Ramon; Cappellaro, Enrico; Carlberg, Raymond; di Carlo, Elisa; Challis, Peter; Crotts, Arlin; Danziger, John I; Della Valle, Massimo; Jack, Dennis; Fink, Michael; Foley, Ryan J; Fransson, Claes; Gal-Yam, Avishay; Garnavich, Peter; Gerardy, Chris L; Goldhaber, Gerson; Hamuy, Mario; Hillebrandt, Wolfgang; Hoeflich, Peter A; Holland, Stephen T; Holz, Daniel E; Hughes, John P; Jeffery, David J; Jha, Saurabh W; Kasen, Dan; Khokhlov, Alexei M; Kirshner, Robert P; Knop, Robert; Kozma, Cecilia; Krisciunas, Kevin; Kromer, Markus; Lee, Brian C; Leibundgut, Bruno; Lentz, Eric J; Leonard, Douglas C; Lewin, Walter H G; Li, Weidong; Livio, Mario; Lundqvist, Peter; Maoz, Dan; Matheson, Thomas; Mazzali, Paolo; Meikle, Peter; Miknaitis, Gajus; Milne, Peter; Mochnacki, Stefan; Nomoto, Ken'Ichi; Nugent, Peter E; Oran, Elaine; Panagia, Nino; Patat, Ferdinando; Perlmutter, Saul; Phillips, Mark M; Pinto, Philip; Poznanski, Dovi; Pritchet, Christopher J; Reinecke, Martin; Riess, Adam; Ruiz-Lapuente, Pilar; Scalzo, Richard; Schlegel, Eric M; Schmidt, Brian; Siegrist, James; Soderberg, Alicia M; Sollerman, Jesper; Sonneborn, George; Spadafora, Anthony; Spyromilio, Jason; Sramek, Richard A; Starrfield, Sumner G; Strolger, Louis G; Suntzeff, Nicholas B; Thomas, Rollin; Tonry, John L; Tornambe, Amedeo; Truran, James W; Turatto, Massimo; Turner, Michael; Van Dyk, Schuyler D; Weiler, Kurt; Wheeler, J Craig; Wood-Vasey, Michael; Woosley, Stan; Yamaoka, Hitoshi; Zhang, Tianmeng

    2011-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show th...

  16. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Science.gov (United States)

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng; Aldering, Greg; Antilogus, Pierre; Arnett, W. David; hide

    2012-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope, This dataset provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra (approx.2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw lIF250W filter are found to correlate with the B-band light-curve shape parameter .(Delta)m15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., approx. 0.4 mag versus approx. 0.2 mag for those with 0.8 3(sigma), being brighter than normal SNe Ia such as SN 2005cf by approx. 0,9 mag and approx. 2.0 mag in the uvwl1F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects

  17. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Wang Lifan [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Baron, Eddie [Department of Physics, University of Oklahoma, Norman, OK 73019 (United States); Kromer, Markus [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Jack, Dennis [Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg (Germany); Zhang Tianmeng [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing 100012 (China); Aldering, Greg [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Antilogus, Pierre [Laboratoire de Physique Nucleaire des Hautes Energies, Paris (France); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Baade, Dietrich [European Southern Observatory, 85748 Garching (Germany); Barris, Brian J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Benetti, Stefano; Cappellaro, Enrico [Osservatorio Astronomico di Padova, 35122 Padova (Italy); Bouchet, Patrice [CEA/DSM/DAPNIA/Service d' Astrophysique, 91191 Gif-sur-Yvette Cedex (France); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Canal, Ramon [Department d' Astronomia i Meterorologia, Universidad de Barcelona, Barcelona 8007 (Spain); Carlberg, Raymond G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3J3 (Canada); Di Carlo, Elisa [INAF, Osservatorio Astronomico di Teramo, 64100 Teramo (Italy); Challis, Peter J., E-mail: wang_xf@mail.tsinghua.edu.cn [Harvard/Smithsonian Center Astrophysics, Cambridge, MA 02138 (United States); and others

    2012-04-20

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra ({approx}2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter {Delta}m{sub 15}(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., {approx}0.4 mag versus {approx}0.2 mag for those with 0.8 mag < {Delta}m{sub 15}(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3{sigma}), being brighter than normal SNe Ia such as SN 2005cf by {approx}0.9 mag and {approx}2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.

  18. The Hubble diagram of metal-rich QSOs and deceleration parameter q0

    Institute of Scientific and Technical Information of China (English)

    XIE; Guangzhong(

    2001-01-01

    [1]Kristian, J. , Sandage, A. R. , Westphal, J., The extension of the Hubble diagram: Ⅱ. New redshifts and photometry of very distant galaxy clusters, Astrophys. J., 1978, 221: 383.[2]Sandage, A., The redshift-distant relation V. Galaxy co lors as functions of galactic latitude and redshift, Astrophys, J.,1973, 183: 711.[3]Qu, Q. Y., Qin, Z. H., Han, C. S. et al., A relation between magnitudes and redshifts of QSOs with strong interplanetary scientillation, Chinese Astron., 1979, 4: 97.[4]Tinsley, B. M. , The Galaxy counts, color-redshift relation, and related quantities as probes of cosmology and galactic evolu-tion, Astrophys. J., 1977, 211: 621.[5]Spinrad, H., Djorgovski, S., The status of the Hubble diagram in 1986 (eds. Hewitt, A. Burbidge, G. Fang, L. Z. ),Proc. IAU Symp 124 on Observational Cosmology, New York: D. Reidel Publishing Company, 1986, 129.[6]Fang, L. Z., Zhou, Y. Y., Cheng F. Z. et al., Evolution of quasars with resolved components and determination of decel-eration parameter q0, Scientia Sinica, 1979, 22: 1292.[7]Cheng, K. S., Fan, J. H., Li, Y. et al., Do γ-ray burst associated with metal-rich quasars (ed. Cheng, K. S., Singh,H. P.), Proc. of The Pacific Rim Conference on Stellar Astrophysics, August 13-16, 1997, Houg Kong, 1997.[8]Davis, M., Geller, M. J., Huchra, J., The local mean mass density of the universe: new methods for studying galaxy clus-tering, Astrophys. J., 1978, 221: 1.[9]Gott, J. R., Turner, E. L., The mean luminosity and mass densities in the universe, Astrophys. J., 1976, 209: 1.[10]Shapiro, S. L., The density of matter in the form of galaxies, Astron. J., 1971, 76: 291.[11]Fang, L. Z., Hu, F. X., The large-scale inhomogeneities in the universe (eds. Yang, J., Zhu, C. S. ), Proceeding of A-cademia Sinica--Max-Plank Socity Workshop on High Energy Astrophyics Held in Nanjing, China, April 9-17, 1982,New York: Gordon and Breach Science Publishers S.A. 1982, 425[12]Baldwin, J. A

  19. Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    CERN Document Server

    Hoffmann, Samantha L; Riess, Adam G; Yuan, Wenlong; Casertano, Stefano; Filippenko, Alexei V; Tucker, Brad E; Chornock, Ryan; Silverman, Jeffrey M; Welch, Douglas L; Goobar, Ariel; Amanullah, Rahman

    2016-01-01

    We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%.

  20. Cosmology with gamma-ray bursts: I. The Hubble diagram through the calibrated $E_{\\rm p,i}$ - $E_{\\rm iso}$ correlation

    CERN Document Server

    Demianski, Marek; Sawant, Disha; Amati, Lorenzo

    2016-01-01

    Gamma-ray bursts are the most energetic explosions in the Universe. They are detectable up to very high redshifts, therefore can be used to study the expansion rate of the Universe and to investigate the observational properties of dark energy, provided that empirical correlations between spectral and intensity properties are appropriately calibrated. We used the type Ia supernova luminosity distances to calibrate the correlation between the peak photon energy, $E_{p, i}$, and the isotropic equivalent radiated energy, $ E_{iso}$ in GRBs. With this correlation, we tested the reliability of applying GRBs to measure cosmological parameters and to obtain indications on the basic properties and evolution of dark energy. Using 162 GRBs with measured redshifts and spectra, we applied a local regression technique to calibrate the $E_{p, i}$-$E_{iso}$ correlation against the type Ia SN data to build a calibrated GRB Hubble diagram. We tested the possible redshift dependence of the correlation and its effect on the Hub...

  1. Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field

    CERN Document Server

    Hirano, Koichi; Komiya, Zen

    2008-01-01

    We have succeeded in establishing a cosmological model with a non-minimally coupled scalar field $\\phi$ that can account not only for the spatial periodicity or the {\\it picket-fence structure} exhibited by the galaxy $N$-$z$ relation of the 2dF survey but also for the spatial power spectrum of the cosmic microwave background radiation (CMB) temperature anisotropy observed by the WMAP satellite. The Hubble diagram of our model also compares well with the observation of Type Ia supernovae. The scalar field of our model universe starts from an extremely small value at around the nucleosynthesis epoch, remains in that state for sufficiently long periods, allowing sufficient time for the CMB temperature anisotropy to form, and then starts to grow in magnitude at the redshift $z$ of $\\sim 1$, followed by a damping oscillation which is required to reproduce the observed picket-fence structure of the $N$-$z$ relation. To realize such behavior of the scalar field, we have found it necessary to introduce a new form of...

  2. Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    Science.gov (United States)

    Hoffmann, Samantha L.; Macri, Lucas M.; Riess, Adam G.; Yuan, Wenlong; Casertano, Stefano; Foley, Ryan J.; Filippenko, Alexei V.; Tucker, Brad E.; Chornock, Ryan; Silverman, Jeffrey M.; Welch, Douglas L.; Goobar, Ariel; Amanullah, Rahman

    2016-10-01

    We present results of an optical search conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy) for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258. The targets include nine newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, which yielded a total of 2200 variables with well-defined selection criteria, the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  3. A Type Ia Supernova at Redshift 1.55 in Hubble Space Telescope Infrared Observations from CANDELS

    CERN Document Server

    Rodney, Steven A; Dahlen, Tomas; Strolger, Louis-Gregory; Ferguson, Henry C; Hjorth, Jens; Frederiksen, Teddy F; Weiner, Benjamin J; Mobasher, Bahram; Casertano, Stefano; Jones, David O; Challis, Peter; Faber, S M; Filippenko, Alexei V; Garnavich, Peter; Graur, Or; Grogin, Norman A; Hayden, Brian; Jha, Saurabh W; Kirshner, Robert P; Kocevski, Dale; Koekemoer, Anton; McCully, Curtis; Patel, Brandon; Rajan, Abhijith; Scarlata, Claudia

    2012-01-01

    We report the discovery of a Type Ia supernova (SNIa) at redshift z=1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field, and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SNIa with direct spectroscopic evidence for classification. It is also the first SN Ia at z>1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z>1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests f...

  4. Hubble Space Telescope Studies of Nearby Type Ia Supernovae: The Mean Maximum Light Ultraviolet Spectrum and its Dispersion

    CERN Document Server

    Cooke, Jeff; Sullivan, Mark; Nugent, Peter; Howell, D Andrew; Gal-Yam, Avishay; Lidman, Chris; Bloom, Joshua S; Cenko, S Bradley; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Law, Nicholas M; Ofek, Eran O; Quimby, Robert M

    2010-01-01

    We present the first results of an ongoing campaign using the STIS spectrograph on-board the Hubble Space Telescope (HST) whose primary goal is the study of near ultraviolet (UV) spectra of local Type Ia supernovae (SNe Ia). Using events identified by the Palomar Transient Factory and subsequently verified by ground-based spectroscopy, we demonstrate the ability to locate and classify SNe Ia as early as 16 days prior to maximum light. This enables us to trigger HST in a non-disruptive mode to obtain near UV spectra within a few days of maximum light for comparison with earlier equivalent ground-based spectroscopic campaigns conducted at intermediate redshifts, z ~ 0.5. We analyze the spectra of 12 Type Ia supernovae located in the Hubble flow with 0.01 < z < 0.08. Although a fraction of our eventual sample, these data, together with archival data, already provide a substantial advance over that previously available. Restricting samples to those of similar phase and stretch, the mean UV spectrum agrees r...

  5. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  6. Standardizing the GRBs with the Amati Ep,i - Eiso relation: the updated Hubble diagram and implications for cosmography

    CERN Document Server

    Demianski, Marek

    2011-01-01

    The correlation between the peak photon energy of the internal spectrum Ep,i and isotropic equivalent radiated energy Eiso (the Amati relation) is explored in a scalar field model of dark energy. Using an updated data set of 109 high redshift GRBs, we show that the correlation parameters only weakly depend on the cosmological model. Once the parameters of Amati relation have been determined we use this relation to construct a fiducial GRBs Hubble diagram that extends up to redshifts ~ 8. Moreover we apply a local regression technique to estimate, in a model independent way, the distance modulus from the recently updated Union SNIa sample, containing 557 SNIa spanning the redshift range of 0.015 < z <1.55. The derived calibration parameters are used to construct an updated GRBs Hubble diagram, which we call the calibrated GRBs HD. We also compare the fiducial and calibrated GRBs HDs, which turned out to be fully statistically consistent, thus indicating that they are not affected by any systematic bias i...

  7. The effects of velocities and lensing on moments of the Hubble diagram

    CERN Document Server

    Macaulay, Edward; Scovacricchi, Dario; Bacon, David; Collett, Thomas E; Nichol, Robert C

    2016-01-01

    We consider the dispersion on the supernova distance-redshift relation due to peculiar velocities and gravitational lensing, and the sensitivity of these effects to the amplitude of the matter power spectrum. We use the MeMo lensing likelihood developed by Quartin, Marra & Amendola (2014), which accounts for the characteristic non-Gaussian distribution caused by lensing magnification with measurements of the first four central moments of the distribution of magnitudes. We build on the MeMo likelihood by including the effects of peculiar velocities directly into the model for the moments. In order to measure the moments from sparse numbers of supernovae, we take a new approach using Kernel Density Estimation to estimate the underlying probability density function of the magnitude residuals. We also describe a bootstrap re-sampling approach to estimate the data covariance matrix. We then apply the method to the Joint Light-curve Analysis (JLA) supernova catalogue. When we impose only that the intrinsic disp...

  8. The Type Ia Supernova 1998bu in M96 and the Hubble Constant

    CERN Document Server

    Jha, S; Kirshner, R P; Challis, P M; Soderberg, A M; Macri, L M; Huchra, J P; Barmby, P; Barton, E J; Berlind, P; Brown, W; Caldwell, N; Calkins, M; Kannappan, S J; Koranyi, D M; Pahre, M A; Rines, K; Stanek, K Z; Stefanik, R; Szentgyorgyi, A H; Väisänen, P; Wang, Z; Zajac, J; Riess, A; Filippenko, A V; Li, W; Modjaz, M; Treffers, R R; Hergenrother, C; Grebel, E K; Seitzer, P; Jacoby, G; Benson, P; Rizvi, A; Marschall, L A; Goldader, J D; Beasley, M; Vacca, W D; Leibundgut, B; Spyromilio, J; Schmidt, B; Wood, P

    1999-01-01

    We present optical and near-infrared photometry and spectroscopy of the type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 +/- 0.8) with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of A_V = 0.94 +/- 0.15 mag, and indicates the supernova was of average luminosity compared to other normal type Ia supernovae. Using the HST Cepheid distance modulus to M96 (Tanvir et al. 1995) and the MLCS fit parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, M_V = -19.42 +/- 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. (1999). Combining SN 1998bu with three other we...

  9. The Hubble Space Telescope Cluster Supernova Survey: III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < z < 1.46

    CERN Document Server

    Meyers, J; Barbary, K; Barrientos, L F; Brodwin, M; Dawson, K S; Deustua, S; Doi, M; Eisenhardt, P; Faccioli, L; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; Gonzalez, A H; Hattori, T; Hsiao, E; Ihara, Y; Kashikawa, N; Koester, B; Konishi, K; Lidman, C; Lubin, L; Morokuma, T; Oda, T; Perlmutter, S; Postman, M; Ripoche, P; Rosati, P; Rubin, D; Rykoff, E; Spadafora, A; Stanford, S A; Suzuki, N; Takanashi, N; Tokita, K; Yasuda, N

    2012-01-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the GOODS fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify six SN Ia hosts that are early-type cluster members and eleven SN Ia hosts that are early-type field galaxies. We confirm for the first time at z>0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions (SEDs) expected for passive galaxies enable us to measure stellar masses of ea...

  10. Nearby Supernova Rates from the Lick Observatory Supernova Search. III. The Rate-Size Relation, and the Rates as a Function of Galaxy Hubble Type and Colour

    CERN Document Server

    Li, Weidong; Leaman, Jesse; Filippenko, Alexei V; Poznanski, Dovi; Wang, Xiaofeng; Ganeshalingam, Mohan; Mannucci, Filippo

    2010-01-01

    This is the third paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). We have considered a sample of about 1000 SNe and used an optimal subsample of 726 SNe (274 SNe Ia, 116 SNe Ibc, and 324 SNe II) to determine our rates. We study the trend of the rates as a function of a few quantities available for our galaxy sample, such as luminosity in the B and K bands, stellar mass, and morphological class. We discuss different choices (SN samples, input SN luminosity functions, inclination correction factors) and their effect on the rates and their uncertainties. A comparison between our SN rates and the published measurements shows that they are consistent with each other to within uncertainties when the rate calculations are done in the same manner. Nevertheless, our data demonstrate that the rates cannot be adequately described by a single parameter using either galaxy Hubble types or B...

  11. The Hubble Space Telescope Cluster Supernova Survey. III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < Z < 1.46

    Science.gov (United States)

    Meyers, J.; Aldering, G.; Barbary, K.; Barrientos, L. F.; Brodwin, M.; Dawson, K. S.; Deustua, S.; Doi, M.; Eisenhardt, P.; Faccioli, L.; Fakhouri, H. K.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goldhaber, G.; Gonzalez, A. H.; Hattori, T.; Hsiao, E.; Ihara, Y.; Kashikawa, N.; Koester, B.; Konishi, K.; Lidman, C.; Lubin, L.; Morokuma, T.; Oda, T.; Perlmutter, S.; Postman, M.; Ripoche, P.; Rosati, P.; Rubin, D.; Rykoff, E.; Spadafora, A.; Stanford, S. A.; Suzuki, N.; Takanashi, N.; Tokita, K.; Yasuda, N.; Supernova Cosmology Project, The

    2012-05-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) candles than other SNe Ia. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555. The observations are associated with program 10496.

  12. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Lin, Hai-Nan [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Wang, Sai [Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2015-05-15

    We propose a Finsler spacetime scenario of the anisotropic universe. The Finslerian universe requires both the fine-structure constant and the accelerating cosmic expansion to have a dipole structure and the directions of these two dipoles to be the same. Our numerical results show that the dipole direction of the SnIa Hubble diagram locates at (l,b) = (314.6 {sup circle} ± 20.3 {sup circle},-11.5 {sup circle} ± 12.1 {sup circle}) with magnitude B = (-3.60 ± 1.66) x 10{sup -2}. The dipole direction of the fine-structure constant locates at (l,b) = (333.2 {sup circle} ± 8.8 {sup circle},-12.7 {sup circle} ± 6.3 {sup circle}) with magnitude B = (0.97 ± 0.21) x 10{sup -5}. The angular separation between the two dipole directions is about 18.2 {sup circle}. (orig.)

  13. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe

    CERN Document Server

    Li, Xin; Wang, Sai; Chang, Zhe

    2015-01-01

    We propose a Finsler spacetime scenario of the anisotropic universe. The Finslerian universe requires both the fine-structure constant and accelerating cosmic expansion have dipole structure, and the directions of these two dipoles are the same. Our numerical results show that the dipole direction of SnIa Hubble diagram locates at $(l,b)=(314.6^\\circ\\pm20.3^\\circ,-11.5^\\circ\\pm12.1^\\circ)$ with magnitude $B=(-3.60\\pm1.66)\\times10^{-2}$. And the dipole direction of the fine-structure constant locates at $(l,b)=(333.2^\\circ\\pm8.8^\\circ,-12.7^\\circ\\pm6.3^\\circ)$ with magnitude $B=(0.97\\pm0.21)\\times10^{-5}$. The angular separation between the two dipole directions is about $18.2^\\circ$.

  14. The effects of velocities and lensing on moments of the Hubble diagram

    Science.gov (United States)

    Macaulay, E.; Davis, T. M.; Scovacricchi, D.; Bacon, D.; Collett, T.; Nichol, R. C.

    2017-05-01

    We consider the dispersion on the supernova distance-redshift relation due to peculiar velocities and gravitational lensing, and the sensitivity of these effects to the amplitude of the matter power spectrum. We use the Method-of-the-Moments (MeMo) lensing likelihood developed by Quartin et al., which accounts for the characteristic non-Gaussian distribution caused by lensing magnification with measurements of the first four central moments of the distribution of magnitudes. We build on the MeMo likelihood by including the effects of peculiar velocities directly into the model for the moments. In order to measure the moments from sparse numbers of supernovae, we take a new approach using Kernel density estimation to estimate the underlying probability density function of the magnitude residuals. We also describe a bootstrap re-sampling approach to estimate the data covariance matrix. We then apply the method to the joint light-curve analysis (JLA) supernova catalogue. When we impose only that the intrinsic dispersion in magnitudes is independent of redshift, we find σ _8=0.44^{+0.63}_{-0.44} at the one standard deviation level, although we note that in tests on simulations, this model tends to overestimate the magnitude of the intrinsic dispersion, and underestimate σ8. We note that the degeneracy between intrinsic dispersion and the effects of σ8 is more pronounced when lensing and velocity effects are considered simultaneously, due to a cancellation of redshift dependence when both effects are included. Keeping the model of the intrinsic dispersion fixed as a Gaussian distribution of width 0.14 mag, we find σ _8 = 1.07^{+0.50}_{-0.76}.

  15. The Hubble diagram for a system within dark energy: influence of some relevant quantities

    CERN Document Server

    Saaristo, Joonas

    2014-01-01

    We study the influence of relevant quantities, including the density of dark energy (DE), to the predicted Hubble outflow around a system of galaxies. In particular, we are interested in the difference between two models: 1) The standard $\\Lambda$CDM model, with the everywhere constant DE density, and 2) the "Swiss cheese model", where the universe is as old as the standard model, but the DE density is zero on short scales, including the environment of the system. We calculate the current predicted outflow patterns of dwarf galaxies around the Local Group-like system, using different values for the mass of the group, the local dark energy density, and the time of ejection of the dwarf galaxies, treated as test particles. These results are compared with the observed Hubble flow around the Local Group. The predicted distance-velocity relations around galaxy groups are not alone very sensitive indicators of the dark energy density, due to the obsevational scatter and the uncertainties caused by the used mass of ...

  16. Improved Hubble Space Telescope Proper Motions for Tycho-G and Other Stars in the Remnant of Tycho's Supernova 1572

    CERN Document Server

    Bedin, L R; Hernandez, J I Gonzalez; Canal, R; Filippenko, A V; Mendez, J; .,

    2013-01-01

    With archival and new Hubble Space Telescope observations we have refined the space-velocity measurements of the stars in the central region of the remnant of Tycho's supernova (SN) 1572, one of the historical Galactic Type Ia supernova remnants (SNRs). We derived a proper motion for Tycho-G of (mu_RA_cos_dec;mu_dec)=(-2.63;-3.98)+/-(0.06;0.04)[formal errors]+/-(0.18;0.10)[expected errors] mas/yr. We also reconstruct the binary orbit that Tycho-G should have followed if it were the surviving companion of SN 1572. We redetermine the Ni abundance of this star and compare it with new abundance data from stars of the Galactic disk, finding that [Ni/Fe] is about 1.7 sigma above the Galactic trend. From the high velocity (v_b = -50+/-14 km/s) of Tycho-G perpendicular to the Galactic plane, its metallicity, and its Ni excess, we find the probability of its being a chance interloper to be P < 0.00037 at most. The projected rotational velocity of the star should be below current observational limits. The projected ...

  17. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    Science.gov (United States)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  18. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K. [E.O. Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lidman, C. [Australian Astronomical Observatory, Epping, NSW 1710 (Australia); Amanullah, R.; Botyanszki, J. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Connolly, N. [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dey, A. [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Doi, M. [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Deustua, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ellingson, E. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Fadeyev, V., E-mail: nsuzuki@lbl.gov, E-mail: rubind@berkeley.edu, E-mail: clidman@aao.gov.au [Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA 94064 (United States); Collaboration: Supernova Cosmology Project; and others

    2012-02-10

    We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, {rho}{sub DE}(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat {Lambda}CDM universe, we find {Omega}{sub {Lambda}} = 0.729 {+-} 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013{sup +0.068}{sub -0.073} (68% CL). Curvature is constrained to {approx}0.7% in the owCDM model and to {approx}2% in a model in which dark energy is allowed to vary with parameters w{sub 0} and w{sub a} . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

  19. The Hubble diagram of metal-rich QSOs and deceleration parameter q0

    Institute of Scientific and Technical Information of China (English)

    谢光中; 梅东成; 郑广生; 樊军辉

    2001-01-01

    For 163 metal-rich Quasars, the mv-logZ diagram shows a very close correlation. Using multiple regression analysis for these sources ( N = 163), we obtained q0 = 1. 142 and correlation coef-ficient γ = 0.69. These results suggested that the Universe is closed and all metal-rich quasars are of a single category. On the other hand, the evolution is very small at Z≤2 for metal-rich quasars.

  20. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, J.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Aldering, G.; Faccioli, L.; Hsiao, E. [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Barrientos, L. F. [Departmento de Astronomia, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Deustua, S.; Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Doi, M.; Ihara, Y. [Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Gilbank, D. G. [Department of Physics and Astronomy, University Of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohaku Place, Hilo, HI 96720 (United States); Kashikawa, N., E-mail: jmeyers314@berkeley.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Collaboration: Supernova Cosmology Project; and others

    2012-05-01

    Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson and Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) {approx}< 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.

  1. The Hubble Space Telescope Cluster Supernova Survey: The Type Ia Supernova Rate in High-Redshift Galaxy Clusters

    CERN Document Server

    Barbary, K; Amanullah, R; Brodwin, M; Connolly, N; Dawson, K S; Doi, M; Eisenhardt, P; Faccioli, L; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; Goobar, A; Hattori, T; Hsiao, E; Huang, X; Ihara, Y; Kashikawa, N; Koester, B; Konishi, K; Kowalski, M; Lidman, C; Lubin, L; Meyers, J; Morokuma, T; Oda, T; Panagia, N; Perlmutter, S; Postman, M; Ripoche, P; Rosati, P; Rubin, D; Schlegel, D J; Spadafora, A L; Stanford, S A; Strovink, M; Suzuki, N; Takanashi, N; Tokita, K; Yasuda, N

    2010-01-01

    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.31 +0.55-0.40, consistent with measurements of the delay time distribution in the field. This measurement is also consistent with the value of s ~ -1 typically expected for the "double degenerate" SN Ia progenitor scenario, and inconsistent with some models for the "single degenerat...

  2. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    CERN Document Server

    McCully, Curtis; Foley, Ryan J; Chornock, Ryan; Holtzman, Jon A; Balam, David D; Branch, David; Filippenko, Alexei V; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M; Graham, Melissa L; Hsiao, Eric Y; Leloudas, Giorgos; Leonard, Douglas C; Li, Weidong; Riess, Adam G; Sako, Masao; Schneider, Donald P; Silverman, Jeffrey M; Sollerman, Jesper; Steele, Thea N; Thomas, Rollin C; Wheeler, J Craig; Zheng, Chen

    2013-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). These objects are peculiar cousins of normal Type Ia SNe, with SN 2002cx as the prototype. Here we focus on late-time observations, where these objects deviate most dramatically from normal SNe Ia. Instead of the dominant nebular emission lines that are observed in normal SNe Ia at late phases (and indeed, in SNe of all other types), spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n_e >~ 10^9 cm^-3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photom...

  3. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  4. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  5. Cosmology with Superluminous Supernovae

    CERN Document Server

    Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon

    2015-01-01

    We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...

  6. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  7. First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project

    CERN Document Server

    Walker, E S; Campillay, A; Citrenbaum, C; Contreras, C; Ellman, N; Feindt, U; Gonzalez, C; Graham, M L; Hadjiyska, E; Hsiao, E Y; Krisciunas, K; McKinnon, R; Ment, K; Morrell, N; Nugent, P; Phillips, M; Rabinowitz, D; Rostami, S; Seron, J; Stritzinger, M; Sullivan, M; Tucker, B E

    2016-01-01

    The LaSilla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low redshift (z < 0.1) Type Ia supernovae. The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data and presents the light curves for the first 31 Type Ia supernovae obtained in the survey. The SALT 2.4 supernova light curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%.

  8. The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample

    CERN Document Server

    Suzuki, N; Lidman, C; Aldering, G; Amanullah, R; Barbary, K; Barrientos, L F; Botyanszki, J; Brodwin, M; Connolly, N; Dawson, K S; Dey, A; Doi, M; Donahue, M; Deustua, S; Eisenhardt, P; Ellingson, E; Faccioli, L; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; Gonzalez, A H; Goobar, A; Gude, A; Hattori, T; Hoekstra, H; Hsiao, E; Huang, X; Ihara, Y; Jee, M J; Johnston, D; Kashikawa, N; Koester, B; Konishi, K; Kowalski, M; Linder, E V; Lubin, L; Melbourne, J; Meyers, J; Morokuma, T; Munshi, F; Mullis, C; Oda, T; Panagia, N; Perlmutter, S; Postman, M; Pritchard, T; Rhodes, J; Ripoche, P; Rosati, P; Schlegel, D J; Spadafora, A; Stanford, S A; Stanishev, V; Stern, D; Strovink, M; Takanashi, N; Tokita, K; Wagner, M; Wang, L; Yasuda, N; Yee, H K C

    2011-01-01

    We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.

  9. Importance of Supernovae at z<0.1 for Probing Dark Energy

    CERN Document Server

    Linder, E V

    2006-01-01

    Supernova experiments to characterize dark energy require a well designed low redshift program; we consider this for both ongoing/near term (e.g. Supernova Legacy Survey) and comprehensive future (e.g. SNAP) experiments. The derived criteria are: a supernova sample centered near z=0.05 comprising 150-500 (in the former case) and 300-900 (in the latter case) well measured supernovae. Low redshift Type Ia supernovae play two important roles for cosmological use of the supernova distance-redshift relation: as an anchor for the Hubble diagram and as an indicator of possible systematics. An innate degeneracy in cosmological distances implies that 300 nearby supernovae nearly saturate their cosmological leverage for the first use, and their optimum central redshift is z=0.05. This conclusion is strengthened upon including velocity flow and magnitude offset systematics. Limiting cosmological parameter bias due to supernova population drift (evolution) systematics plausibly increases the requirement for the second us...

  10. Characterising Dark Energy through supernovae

    CERN Document Server

    Davis, Tamara M

    2016-01-01

    Type Ia supernovae are a powerful cosmological probe, that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first summarise the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, LambdaCDM), non-parametric models, dark fluid models such as quintessence, and extensions to standard gravity. We also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history. Finally, we review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection.

  11. THE LOW-REDSHIFT CARNEGIE SUPERNOVA PROJECT

    Directory of Open Access Journals (Sweden)

    G. Folatelli

    2009-01-01

    Full Text Available We present the low-redshift Carnegie Supernova Project (CSP, an undergoing program to follow up about 250 nearby supernovae (SNe of all types. We brie y describe the observations which yield well-sampled, highly precise optical and near-infrared light curves in a well-understood photometric system, complemented with optical spectroscopy. As one of the main goals of the CSP, we preliminarily present the rst Hubble diagram using a sample of 30 Type-Ia SNe (SNe Ia.

  12. Shock Revival in Core-Collapse Supernovae: A Phase-Diagram Analysis

    CERN Document Server

    Gabay, Daniel; Keshet, Uri

    2015-01-01

    We examine the conditions for the revival of the stalled accretion shock in core-collapse supernovae, in the context of the neutrino heating mechanism. We combine one dimensional simulations of the shock revival process with a derivation of a quasi-stationary approximation, which is both accurate and efficient in predicting the flow. In particular, this approach is used to explore how the evolution of the system depends on the shock radius, $R_S$, and velocity, $V_S$ (in addition to other global properties of the system). We do so through a phase space analysis of the shock acceleration, $a_S$, in the $R_S-V_S$ plane, shown to provide quantitative insights into the initiation of runaway expansion and its nature. In the particular case of an initially stationary ($V_S=0,\\;a_S=0$) profile, the prospects for an explosion can be reasonably assessed by the initial signs of the partial derivatives of the shock acceleration, in analogy to a linear damped/anti-damped oscillator. If $\\partial a_S/\\partial R_S0$, runaw...

  13. Supernovae

    Science.gov (United States)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  14. Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: A low-energy delayed detonation of a white dwarf with Z

    CERN Document Server

    Mazzali, Paolo; Hachinger, Stephan; Ellis, Richard; Nugent, Peter E; Howell, D Andrew; Gal-Yam, Avishay; Maguire, Kate; Cooke, Jeff; Thomas, Rollin

    2013-01-01

    Hubble Space Telescope spectroscopic observations of the nearby type Ia supernova (SN Ia) SN 2011fe, taken on 10 epochs from -13.5 to +41 days relative to B-band maximum light, and spanning the far-ultraviolet (UV) to the near-infrared (IR) are presented. This spectroscopic coverage makes SN 2011fe the best-studied local SN Ia to date. SN 2011fe is a typical moderately-luminous SN Ia with no evidence for dust extinction. Its near-UV spectral properties are representative of a larger sample of local events studied in Maguire et al. (2012). As a result, conclusions inferred from our detailed investigations are likely representative of those for other normal SNe Ia. The near-UV to optical spectra of SN 2011fe are modelled with a Monte Carlo radiative transfer code using the technique of 'abundance tomography', providing tight constraints on the density structure and abundance stratification of the event. SN 2011fe was a relatively weak explosion, with moderate Fe-group yields. Although its density structure is c...

  15. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy

    CERN Document Server

    Riess, A G; Casertano, S; Ferguson, H C; Mobasher, B; Gold, B; Challis, P J; Filippenko, A V; Jha, S; Li, W; Tonry, J; Foley, R; Kirshner, R P; Dickinson, M; MacDonald, E; Eisenstein, D; Livio, M; Younger, J; Xu, C; Dahlen, T; Stern, D; Riess, Adam G.; Strolger, Louis-Gregory; Casertano, Stefano; Ferguson, Henry C.; Mobasher, Bahram; Gold, Ben; Challis, Peter J.; Filippenko, Alexei V.; Jha, Saurabh; Li, Weidong; Tonry, John; Foley, Ryan; Kirshner, Robert P.; Dickinson, Mark; Donald, Emily Mac; Eisenstein, Daniel; Livio, Mario; Younger, Josh; Xu, Chun; Dahlen, Tomas; Stern, Daniel

    2006-01-01

    We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion years. These objects, which include 13 spectroscopically confirmed SNe Ia at z > 1, were discovered during 14 epochs of reimaging of the GOODS fields North and South over two years with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HST-discovered SNe Ia, the full sample of 23 SNe Ia at z > 1 provides the highest-redshift sample known. Combined with previous SN Ia datasets, we measured H(z) at discrete, uncorrelated epochs, reducing the uncertainty of H(z>1) from 50% to under 20%, strengthening the evidence for a cosmic jerk--the transition from deceleration in the past to acceleration in the present. The unique leverage of the HST high-redshift SNe Ia provides the first meaningful constraint on the dark energy equation-of-state parameter at z >1. The result remains consistent with a cosmological ...

  16. The Latest Version of the Standardized Candle Method for Type II Supernovae

    CERN Document Server

    Hamuy, M

    2003-01-01

    I use the largest available sample of Type II plateau supernovae to examine the previously reported luminosity-velocity relation. This study confirms such relation which permits one to standardize the luminosities of these objects from a spectroscopic measurement of their envelope velocities, and use them as extragalactic distance indicators. The "standard candle method" (SCM) yields a Hubble diagram with a dispersion of 0.3 mag, which implies that the SCM produces distances with a precision of 15%. Using two nearby supernovae with Cepheid distances I find Ho=81+/-10 km/s/Mpc, which compares with Ho=74 derived from Type Ia supernovae.

  17. Constraining dust and color variations of high-z SNe using NICMOS on Hubble Space Telescope

    CERN Document Server

    Nobili, S; Aldering, G; Amanullah, R; Barbary, K; Burns, M S; Dawson, K S; Deustua, S E; Faccioli, L; Fruchter, A S; Goldhaber, G; Goobar, A; Hook, I; Howell, D A; Kim, A G; Knop, R A; Lidman, C; Meyers, J; Nugent, P E; Pain, R; Panagia, N; Perlmutter, S; Rubin, D; Spadafora, A L; Strovink, M; Suzuki, N; Swift, H

    2009-01-01

    We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Omega_Matter, Omega_Lambda= 0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5 sigma confidence level, if the SN host galaxy reddening is corrected assuming R_V=1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z=0.863) which shows a peculiar color behavior. We also present spectra obtained from ground ...

  18. Confirmation of a Star Formation Bias in Type Ia Supernova Distances and its Effect on Measurement of the Hubble Constant

    CERN Document Server

    Rigault, M; Kowalski, M; Copin, Y; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Baugh, D; Bongard, S; Boone, K; Buton, C; Chen, J; Chotard, N; Fakhouri, H K; Feindt, U; Fagrelius, P; Fleury, M; Fouchez, D; Gangler, E; Hayden, B; Kim, A G; Leget, P -F; Lombardo, S; Nordin, J; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Runge, K; Rubin, D; Saunders, C; Smadja, G; Sofiatti, C; Suzuki, N; Tao, C; Weaver, B A

    2014-01-01

    Previously we used the Nearby Supernova Factory sample to show that SNe~Ia having locally star-forming environments are dimmer than SNe~Ia having locally passive environments.Here we use the \\constitution\\ sample together with host galaxy data from \\GALEX\\ to independently confirm that result. The effect is seen using both the SALT2 and MLCS2k2 lightcurve fitting and standardization methods, with brightness differences of $0.094 \\pm 0.037\\ \\mathrm{mag}$ for SALT2 and $0.155 \\pm 0.041\\ \\mathrm{mag}$ for MLCS2k2 with $R_V=2.5$. When combined with our previous measurement the effect is $0.094 \\pm 0.025\\ \\mathrm{mag}$ for SALT2. If the ratio of these local SN~Ia environments changes with redshift or sample selection, this can lead to a bias in cosmological measurements. We explore this issue further, using as an example the direct measurement of $H_0$. \\GALEX{} observations show that the SNe~Ia having standardized absolute magnitudes calibrated via the Cepheid period--luminosity relation using {\\textit{HST}} orig...

  19. Like vs. Like: Strategy and Improvements in Supernova Cosmology Systematics

    CERN Document Server

    Linder, Eric V

    2008-01-01

    Control of systematic uncertainties in the use of Type Ia supernovae as standardized distance indicators can be achieved through contrasting subsets of observationally-characterized, like supernovae. Essentially, like supernovae at different redshifts reveal the cosmology, and differing supernovae at the same redshift reveal systematics, including evolution not already corrected for by the standardization. Here we examine the strategy for use of empirically defined subsets to minimize the cosmological parameter risk, the quadratic sum of the parameter uncertainty and systematic bias. We investigate the optimal recognition of subsets within the sample and discuss some issues of observational requirements on accurately measuring subset properties. Neglecting like vs. like comparison (i.e. creating only a single Hubble diagram) can cause cosmological constraints on dark energy to be biased by 1\\sigma or degraded by a factor 1.6 for a total drift of 0.02 mag. Recognition of subsets at the 0.016 mag level (relativ...

  20. The expansion of the universe observed with supernovae.

    Science.gov (United States)

    Astier, Pierre

    2012-11-01

    Over the last 20 years, supernovae have become a key tool to constrain the expansion history of the Universe through the construction of Hubble diagrams, using luminosity distances to supernovae belonging to the 'Ia' subtype. This technique was key for the discovery that the expansion of the Universe is now accelerating. We review the principle and difficulties of the measurements, the classification and diversity of supernovae, and the physics of explosion. We discuss the systematic uncertainties affecting the cosmological conclusions with some emphasis on photometric calibration. We describe the major supernova cosmology surveys, the presented analyses and their conclusions, together with the present status of the field. We conclude on the expectations for the near future.

  1. Prospective Type Ia Supernova Surveys From Dome A

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; /LBL, Berkeley; Bonissent, A.; /Marseille, CPPM; Christiansen, J.L.; /Cal. Poly.; Ealet, A.; /Marseille, CPPM; Faccioli, L.; /UC, Berkeley; Gladney, L.; /Pennsylvania U.; Kushner, G.; /LBL, Berkeley; Linder, E.; /UC, Berkeley; Stoughton, C.; /Fermilab; Wang, L.; /Texas A-M /Purple Mountain Observ.

    2010-02-01

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over five years can yield a spectro-photometric time series of {approx}1000 z < 0.08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture ({approx}>4-m) telescopes are capable of discovering supernovae shortly after explosion out to z {approx} 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  2. Prospective Type Ia supernova surveys from Dome A

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; Bonissent, A.; Christiansen, J. L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.

    2010-03-10

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over 5 years can yield a spectro-photometric time series of ~;; 1000 z< 0:08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture (>=4-m) telescopes are capable of discovering supernovae shortly after explosion out to z ~;; 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  3. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    Science.gov (United States)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  4. The phase diagram of QCD, third families of proto-compact stars, and the possibility of core-collapse supernova explosions

    CERN Document Server

    Hempel, Matthias; Yudin, Andrey; Iosilevskiy, Igor; Liebendörfer, Matthias; Thielemann, Friedrich-Karl

    2015-01-01

    A phase transition (PT) to quark matter can lead to interesting phenomenological consequences in core-collapse supernovae, e.g., triggering an explosion in spherically symmetric models. However, until now this explosion mechanism was only shown to be working for equations of state that are in contradiction with recent pulsar mass measurements. Here we identify that this explosion mechanism is related to the existence of a third family of compact stars that is present only in the hot, early stages of their evolution. Its existence is a result of unusual thermal properties of the two-phase coexistence region of the PT, e.g., characterized by a decrease of temperature with increasing density for isentropes, and which can be related to a negative slope of the PT line in the temperature-pressure phase diagram.

  5. Gravitational lensing in the Supernova Legacy Survey (SNLS)

    CERN Document Server

    Kronborg, T; Guy, J; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hook, I M; Howell, D A; Jönsson, J; Pain, R; Pedersen, K; Perrett, K; Pritchet, C J; Regnault, N; Rich, J; Sullivan, M; Palanque-Delabrouille, N; Ruhlmann-Kleider, V

    2010-01-01

    The observed brightness of Type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. We find evidence of a lensing signal with a 2.3 sigma significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing...

  6. Importance of supernovae at z<0.1 for probing dark energy

    Science.gov (United States)

    Linder, Eric V.

    2006-11-01

    Supernova experiments to characterize dark energy require a well designed low redshift program; we consider this for both ongoing/near term (e.g. Supernova Legacy Survey) and comprehensive future (e.g. SNAP) experiments. The derived criteria are: a supernova sample centered near z≈0.05 comprising 150 500 (in the former case) and 300 900 (in the latter case) well measured supernovae. Low redshift Type Ia supernovae play two important roles for cosmological use of the supernova distance-redshift relation: as an anchor for the Hubble diagram and as an indicator of possible systematics. An innate degeneracy in cosmological distances implies that 300 nearby supernovae nearly saturate their cosmological leverage for the first use, and their optimum central redshift is z≈0.05. This conclusion is strengthened upon including velocity flow and magnitude offset systematics. Limiting cosmological parameter bias due to supernova population drift (evolution) systematics plausibly increases the requirement for the second use to less than about 900 supernovae.

  7. Cosmology with superluminous supernovae

    Science.gov (United States)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  8. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey

    CERN Document Server

    Bazin, G; Palanque-Delabrouille, N; Rich, J; Aubourg, E; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M; Fourmanoit, N; Gonzalez-Gaitan, S; Lidman, C; Perlmutter, S; Ripoche, P; Walker, E S

    2011-01-01

    We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the g_M, r_M, i_M and z_M filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with ...

  9. Edwin Hubble

    Institute of Scientific and Technical Information of China (English)

    泓傑

    2006-01-01

    Edwin Powell Hubble(1889—1953)was an American astronomer, renowned for his discovery of galaxies beyond the Milky Way and the cosmological Redshift. Hubble was a tall,elegant,athletic man who at age 30 had an

  10. Cepheid Calibration of the Peak Brightness of Type IA Supernovae: Calibration of SN 1990N in NGC 4639 Averaged with Six Earlier Type IA Supernova Calibrations to Give H 0 Directly

    Science.gov (United States)

    Sandage, Allan; Saha, A.; Tammann, G. A.; Labhardt, Lukas; Panagia, N.; Macchetto, F. D.

    1996-03-01

    Periods and light curves have been measured with the Hubble Space Telescope for 20 Cepheids in NGC 4639, parent galaxy to the Type Ia, prototypical supernova SN 1990N. The periods range from 17 to 69 days. The mean apparent magnitudes, averaged over the light curves, range from = 25.6 to = 27.3. Well-determined period-luminosity relations exist in V and I. Corrected for differential extinction, these give a true modulus for NGC 4639 of (m - M)0 = 32.00 +/- 0.23. Combining the light curves for SN 1990N with this modulus gives MB(max) = -19.30 +/- 0.23 and MV(max) = -19.39 +/- 0.23. This, together with six previous calibrations of Type Ia supernovae, gives the mean calibrations of "Branch normal" supernovae to date as = -19.47 +/- 0.07 and = -19.48 +/- 0.07. The resulting Hubble constants, reading the Type Ia supernova Hubble diagrams at very large redshifts beyond any possible local velocity anomalies, give global values of the Hubble constant of H0(B) = 56 +/- 4 (internal) km s-1 Mpc-1 and H0(V) = 58 +/- 4 (internal) km s-1 Mpc-1.

  11. Correcting a statistical artifact in the estimation of the Hubble; constant based on Type Ia Supernovae results in a change in estimate; of 1.2%

    DEFF Research Database (Denmark)

    Petersen, JH; Holst, KK; Budtz-Jørgensen, Esben

    2010-01-01

    The Hubble constant enters big bang cosmology by quantifying the expansion rate of the universe. Existing statistical methods used to estimate Hubble’s constant only partially take into account random measurement errors. As a consequence, estimates of Hubble’s constant are statistically...

  12. The Search for Lensed Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  13. Cosmological model with local symmetry of very special relativity and constraints on it from supernovae

    CERN Document Server

    Chang, Zhe; Li, Xin; Wang, Sai

    2013-01-01

    Based on Cohen & Glashow's very special relativity [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. {\\bf 97} (2006) 021601], we propose an anisotropic modification to the Friedmann-Robertson-Walker (FRW) line element. An arbitrarily oriented 1-form is introduced and the FRW spacetime becomes of the Randers-Finsler type. The 1-form picks out a privileged axis in the universe. Thus, the cosmological redshift as well as the Hubble diagram of the type Ia supernovae (SNe Ia) becomes anisotropic. By directly analyzing the Union2.1 compilation, we obtain the privileged axis pointing to ((l,b)=({242^\\circ}\\pm{44^\\circ},{-42^\\circ}\\pm{23^\\circ})) ((68%\\rm{C.L.})). This privileged axis is close to those obtained by comparing the best-fit Hubble diagrams in pairs of hemispheres.

  14. The influence of host galaxy morphology on the properties of Type Ia supernovae from the JLA compilation

    Science.gov (United States)

    Henne, V.; Pruzhinskaya, M. V.; Rosnet, P.; Léget, P.-F.; Ishida, E. E. O.; Ciulli, A.; Gris, P.; Says, L.-P.; Gangler, E.

    2017-02-01

    The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found.   We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant.   We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.

  15. Multi-Color Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram a Novel Step Toward More Precise Distance and Extinction Estimates

    CERN Document Server

    Wang, L; Aldering, G; Perlmutter, S; Wang, Lifan; Goldhaber, Gerson; Aldering, Greg; Perlmutter, Saul

    2003-01-01

    We show empirically that fits to the color-magnitude relation of Type Ia supernovae after optical maximum can provide accurate relative extragalactic distances. We report the discovery of an empirical color relation for Type Ia light curves: During much of the first month past maximum, the magnitudes of Type Ia supernovae defined at a given value of color index have a very small magnitude dispersion; moreover, during this period the relation between $B$ magnitude and $B-V$ color (or $B-R$ or $B-I$ color) is strikingly linear, to the accuracy of existing well-measured data. These linear relations can provide robust distance estimates, in particular, by using the magnitudes when the supernova reaches a given color. After correction for light curve strech factor or decline rate, the dispersion of the magnitudes taken at the intercept of the linear color-magnitude relation are found to be around 0$^m$.08 for the sub-sample of supernovae with \\BVm $\\le 0^m.05$, and around 0$^m$.11 for the sub-sample with \\BVm $\\le...

  16. A Matter Dominated Navigation Universe in Accordance with the Type Ia Supernova Data

    Institute of Scientific and Technical Information of China (English)

    李昕; 常哲; 李明华

    2012-01-01

    We investigate a matter dominated navigation cosmological model. The influence of a possible drift (wind) in the navigation cosmological model makes the spacetime geometry change from Riemannian to Finslerian. The evolution of the Finslerian Universe is governed by the same gravitational field equation with the familiar Friedmann-Robertson- Walker one. However, the change of space geometry from Riemannian to Finslerian supplies us a new relation between the luminosity distant and redshift. It is shown that the Hubble diagram based on this new relation could account for the observations on distant Type Ia supernovae.

  17. Type II-P Supernovae as Standard Candles: The SDSS-II Sample Revisited

    OpenAIRE

    Poznanski, Dovi; Nugent, Peter E.; Filippenko, Alexei V.

    2010-01-01

    We revisit the observed correlation between Hbeta and FeII velocities for Type II-P supernovae (SNe~II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km/s. Using this correlation, we reanalyze the publicly available sample of SNe II-P compiled by D'Andrea et al. and find a Hubble diagram with an intrinsic scatter of 11% in distance, which is nearly as tight as that measured before their sample is added to ...

  18. Preparatory studies for the WFIRST supernova cosmology measurements

    Science.gov (United States)

    Perlmutter, Saul

    tune details, like the wavelength coverage and S/N requirements, of the WFIRST IFS to capitalize on these systematic error reduction methods. b) Supernova extraction and host galaxy subtractions. The underlying light of the host galaxy must be subtracted from the supernova images making up the lightcurves. Using the IFS to provide the lightcurve points via spectrophotometry requires the subtraction of a reference spectrum of the galaxy taken after the supernova light has faded to a negligible level. We plan to apply the expertise obtained from the SNfactory to develop galaxy background procedures that minimize the systematic errors introduced by this step in the analysis. c) Instrument calibration and ground to space cross calibration. Calibrating the entire supernova sample will be a challenge as no standard stars exist that span the range of magnitudes and wavelengths relevant to the WFIRST survey. Linking the supernova measurements to the relatively brighter standards will require several links. WFIRST will produce the high redshift sample, but the nearby supernova to anchor the Hubble diagram will have to come from ground based observations. Developing algorithms to carry out the cross calibration of these two samples to the required one percent level will be an important goal of our proposal. An integral part of this calibration will be to remove all instrumental signatures and to develop unbiased measurement techniques starting at the pixel level. We then plan to pull the above studies together in a synthesis to produce a correlated error matrix. We plan to develop a Fisher Matrix based model to evaluate the correlated error matrix due to the various systematic errors discussed above. A realistic error model will allow us to carry out a more reliable estimates of the eventual errors on the measurement of the cosmological parameters, as well as serve as a means of optimizing and fine tuning the requirements for the instruments and survey strategies.

  19. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam,D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; Hook, I.M.; Howell, D.A.; Lafoux, H.; Neill, J.D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C.J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R.S.; Filiol, M.; Goncalves, A.C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  20. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda and w from the First Year Data Set

    CERN Document Server

    Astier, Pierre; Regnault, N; Pain, R; Aubourg, E; Balam, D; Basa, S; Carlberg, R G; Fabbro, S; Fouchez, D; Hook, I M; Howell, D A; Lafoux, H; Neill, J D; Palanque-Delabrouille, Nathalie; Perrett, K; Pritchet, C J; Rich, J; Sullivan, M; Taillet, R; Aldering, G; Antilogus, P; Arsenijevic, V; Balland, C; Baumont, S; Bronder, J; Courtois, H; Ellis, Richard S; Filiol, M; Gonçalves, A C; Goobar, A; Guide, D; Hardin, D; Lusset, V; Lidman, C; McMahon, R; Mouchet, M; Mourao, A; Perlmutter, S; Ripoche, P; Tao, C; Walton, N

    2006-01-01

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z=1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multi-band photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results : Omega_M = 0.263 +/- 0.042(stat) +/- 0.032(sys) for a flat LambdaCDM model; and w = -1.023 +/- 0.090(stat) +/- 0.054(sys) for a flat cosmology with constant equation of state w when combined ...

  1. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda, and w from the First Year Data Set

    Science.gov (United States)

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  2. Standardizing Type Ia supernovae using Near Infrared rebrightening time

    CERN Document Server

    Shariff, Hikmatali; Jiao, Xiyun; Leibundgut, Bruno; Trotta, Roberto; van Dyk, David A

    2016-01-01

    Accurate standardisation of Type Ia supernovae (SNIa) is instrumental to the usage of SNIa as distance indicators. We analyse a homogeneous sample of 22 low-z SNIa, observed by the Carnegie Supernova Project (CSP) in the optical and near infra-red (NIR). We study the time of the second peak in the NIR band due to re-brightening, t2, as an alternative standardisation parameter of SNIa peak brightness. We use BAHAMAS, a Bayesian hierarchical model for SNIa cosmology, to determine the residual scatter in the Hubble diagram. We find that in the absence of a colour correction, t2 is a better standardisation parameter compared to stretch: t2 has a 1 sigma posterior interval for the Hubble residual scatter of [0.250, 0.257] , compared to [0.280, 0.287] when stretch (x1) alone is used. We demonstrate that when employed together with a colour correction, t2 and stretch lead to similar residual scatter. Using colour, stretch and t2 jointly as standardisation parameters does not result in any further reduction in scatte...

  3. Optical and Infrared Photometry of the Type Ia Supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo

    CERN Document Server

    Krisciunas, K; Phillips, M M; Candia, P; Prieto, J L; Antezana, R; Chassagne, R; Chen, H W; Dickinson, M; Eisenhardt, P R M; Espinoza, J; Garnavich, P M; González, D; Harrison, T E; Hamuy, M; Ivanov, V D; Krzeminski, W; Kulesa, C; McCarthy, P; Moro-Martin, A; Muena, C; Noriega-Crespo, A; Persson, S E; Pinto, P A; Roth, M; Rubenstein, E P; Stanford, S A; Stringfellow, G B; Zapata, A; Porter, A; Wischnjewsky, M; Krisciunas, Kevin; Suntzeff, Nicholas B.; Phillips, Mark M.; Candia, Pablo; Prieto, Jose Luis; Porter, Alain; Wischnjewsky, Marina

    2004-01-01

    We present optical and/or infrared photometry of the Type Ia supernovae SN 1991T, SN 1991bg, SN 1999ek, SN 2001bt, SN 2001cn, SN 2001cz, and SN 2002bo. All but one of these supernovae have decline rate parameters Delta m_15(B) close to the median value of 1.1 for the whole class of Type Ia supernovae. The addition of these supernovae to the relationship between the near-infrared absolute magnitudes and Delta m_15(B) strengthens the previous relationships we have found, in that the maximum light absolute magnitudes are essentially independent of the decline rate parameter. (SN 1991bg, the prototype of the subclass of fast declining Type Ia supernovae, is a special case.) The dispersion in the Hubble diagram in JHK is only ~0.15 mag. The near-infrared properties of Type Ia supernovae continue to be excellent measures of the luminosity distances to the supernova host galaxies, due to the need for only small corrections from the epoch of observation to maximum light, low dispersion in absolute magnitudes at maxim...

  4. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    CERN Document Server

    Kim, Alex

    2011-01-01

    I present an analysis for fitting cosmological parameters from a Hubble Diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data themselves, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for sub-types and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently-used fitters are negligibly small for existing and projected supernova data sets.

  5. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    Science.gov (United States)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  6. How to Find Gravitationally Lensed Type Ia Supernovae

    CERN Document Server

    Goldstein, Daniel A

    2016-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ($z\\gtrsim 2$), probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $\\Omega_m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to have an elliptical galaxy as their host with an absolute magnitude implied by the host's photometric redshift that is far brighter than the absolute magnitude of a normal SN Ia (the brightest type of supernova found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. The primary sources of contamination that affect...

  7. Hubble, Hubble's law and the expanding universe

    OpenAIRE

    Bagla, J. S.

    2009-01-01

    Hubble's name is associated closely with the idea of an expanding universe as he discovered the relation between the recession velocity and distances of galaxies. Hubble also did a lot of pioneering work on the distribution of galaxies in the universe. In this article we take a look at Hubble's law and discuss how it relates with models of the universe. We also give a historical perspective of the discoveries that led to the Hubble's law.

  8. Hubble, Hubble's law and the expanding universe

    OpenAIRE

    Bagla, J. S.

    2009-01-01

    Hubble's name is associated closely with the idea of an expanding universe as he discovered the relation between the recession velocity and distances of galaxies. Hubble also did a lot of pioneering work on the distribution of galaxies in the universe. In this article we take a look at Hubble's law and discuss how it relates with models of the universe. We also give a historical perspective of the discoveries that led to the Hubble's law.

  9. Supernova detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakahata, Masayuki [Kamioka Observatory, Institute for Cosmic Ray research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu, Japan, 506-1205 (Japan)], E-mail: nakahata@suketto.icrr.u-tokyo.ac.jp

    2008-11-01

    The detection of supernova neutrinos is reviewed, focusing on the current status of experiments to detect supernova burst neutrinos and supernova relic neutrinos. The capabilities of each detector currently operating and in development are assessed and the likely neutrino yield for a future supernova is estimated. It is expected that much more information will be obtained if a supernova burst were to occur in our Galaxy than was obtained for supernova SN1987A. The detection of supernova relic neutrinos is considered and it is concluded that a large volume detector with a neutron tagging technique is necessary.

  10. Hubble parameter data constraints on dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yun, E-mail: chenyun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Ratra, Bharat, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)

    2011-09-20

    We use Hubble parameter versus redshift data from Stern et al. (2010) and Gaztanaga et al. (2009) to place constraints on model parameters of constant and time-evolving dark energy cosmological models. These constraints are consistent with (through not as restrictive as) those derived from supernova Type Ia magnitude-redshift data. However, they are more restrictive than those derived from galaxy cluster angular diameter distance, and comparable with those from gamma-ray burst and lookback time data. A joint analysis of the Hubble parameter data with more restrictive baryon acoustic oscillation peak length scale and supernova Type Ia apparent magnitude data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude time-varying dark energy.

  11. The influence of host galaxy morphology on the properties of Type Ia supernovae from the JLA compilation

    CERN Document Server

    Henne, Vincent; Rosnet, Philippe; Leget, Pierre-Francois; Ishida, Emille; Ciulli, Alexandre; Gris, Philippe; Says, Louis-Pierre; Gangler, Emmanuel

    2016-01-01

    The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our r...

  12. On the Evolution of Cosmological Type Ia Supernovae and the Gravitational Constant

    CERN Document Server

    García-Berro, E; Isern, J; Benvenuto, O G; Althaus, L G

    1999-01-01

    There are at least three ways in which a varying gravitational constant $G$ could affect the interpretation of the recent high-redhisft Type Ia supernovae results. If the local value of $G$ at the space-time location of distant supernovae is different, it would change both the thermonuclear energy release and the time scale of the supernova outburst. In both cases the effect is related to a change in the Chandrasekhar mass $M_{\\rm Ch}\\propto G^{-3/2}$. Moreover the integrated variation of $G$ with time would also affect cosmic evolution and therefore the luminosity distance relation. Here we investigate in a consistent way how these different effects of a varying $G$ could change the current interpretation of the Hubble diagram of Type Ia supernovae. We parametrize the variation of $G$ using scalar-tensor theories of gravity, such as the Jordan-Brans-Dicke theory or its extensions. It is remarkable that Dirac's hypothesis that $G$ should decrease with time can qualitatively explain the observed $\\Delta m \\sim...

  13. Hubble trouble or Hubble bubble?

    CERN Document Server

    Romano, Antonio Enea

    2016-01-01

    The recent analysis of low-redshift supernovae (SN) has increased the apparent tension between the value of $H_0$ estimated from low and high red-shift observations such as the cosmic microwave background (CMB) radiation. On the other hand other observations have provided strong evidence for the existence of a local underdensity extending up to a red-shift of about $0.07$. We compute with different methods the effects of this local void on the low-redshift luminosity distance using an exact solution of the Einstein's equations, linear perturbation theory and a low-redshift expansion. The correction is proportional to the volume averaged density contrast and to the comoving distance form the center and is able to completely resolve the apparent $H_0$ tension. The void does not affect the high red-shift luminosity distance because the volume averaged density contrast tends to zero asymptotically. Since all the Cepheids used for the luminosity distance calibration are inside this local void, not properly taking ...

  14. Hubble Tarantula Treasury Project. IV. The extinction law

    CERN Document Server

    De Marchi, Guido; Sabbi, Elena; Lennon, Daniel; Anderson, Jay; van der Marel, Roeland; Cignoni, Michele; Grebel, Eva K; Larsen, Soeren; Zaritsky, Dennis; Zeidler, Peter; Gouliermis, Dimitrios; Aloisi, Alessandra

    2015-01-01

    We report on the study of interstellar extinction across the Tarantula nebula (30 Doradus), in the Large Magellanic Cloud, using observations from the Hubble Tarantula Treasury Project in the 0.3 - 1.6 micron range. The considerable and patchy extinction inside the nebula causes about 3500 red clump stars to be scattered along the reddening vector in the colour-magnitude diagrams, thereby allowing an accurate determination of the reddening slope in all bands. The measured slope of the reddening vector is remarkably steeper in all bands than in the the Galactic diffuse interstellar medium. At optical wavelengths, the larger ratio of total-to-selective extinction, namely Rv = 4.5 +/- 0.2, implies the presence of a grey component in the extinction law, due to a larger fraction of large grains. The extra large grains are most likely ices from supernova ejecta and will significantly alter the extinction properties of the region until they sublimate in 50 - 100 Myr. We discuss the implications of this extinction la...

  15. Hubble Tarantula Treasury Project - IV. The extinction law

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino; Sabbi, Elena; Lennon, Daniel; Anderson, Jay; van der Marel, Roeland; Cignoni, Michele; Grebel, Eva K.; Larsen, Søren; Zaritsky, Dennis; Zeidler, Peter; Gouliermis, Dimitrios; Aloisi, Alessandra

    2016-02-01

    We report on the study of interstellar extinction across the Tarantula Nebula (30 Doradus), in the Large Magellanic Cloud, using observations from the Hubble Tarantula Treasury Project in the 0.3-1.6 μm range. The considerable and patchy extinction inside the nebula causes about 3500 red clump stars to be scattered along the reddening vector in the colour-magnitude diagrams, thereby allowing an accurate determination of the reddening slope in all bands. The measured slope of the reddening vector is remarkably steeper in all bands than in the the Galactic diffuse interstellar medium. At optical wavelengths, the larger ratio of total-to-selective extinction, namely RV = 4.5 ± 0.2, implies the presence of a grey component in the extinction law, due to a larger fraction of large grains. The extra large grains are most likely ices from supernova ejecta and will significantly alter the extinction properties of the region until they sublimate in 50-100 Myr. We discuss the implications of this extinction law for the Tarantula Nebula and in general for regions of massive star formation in galaxies. Our results suggest that fluxes of strongly star-forming regions are likely to be underestimated by a factor of about 2 in the optical.

  16. Host Galaxy Identification for Supernova Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  17. Host Galaxy Identification for Supernova Surveys

    CERN Document Server

    Gupta, Ravi R; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A; Liotine, Camille; Pomian, Katarzyna; D'Andrea, Chris B; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J; Nichol, Robert C; Finley, David A; Fischer, John A; Foley, Ryan J; Kim, Alex G; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M; Smith, Mathew; Tucker, Brad E; Uddin, Syed; Wolf, Rachel C; Yuan, Fang; Abbott, Tim M C; Abdalla, Filipe B; Benoit-Levy, Aurelien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E; da Costa, Luiz N; Desai, Shantanu; Doel, Peter; Eifler, Tim F; Evrard, August E; Flaugher, Brenna; Fosalba, Pablo; Gaztanaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A G; Marshall, Jennifer L; Miquel, Ramon; Plazas, Andres A; Romer, A Kathy; Sanchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E C; Tarle, Gregory; Walker, Alistair R; Wester, William

    2016-01-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated alg...

  18. Host Galaxy Identification for Supernova Surveys

    Science.gov (United States)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D'Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  19. Host Galaxy Identification for Supernova Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; et al.

    2016-04-20

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  20. Near-infrared absolute magnitudes of Type Ia Supernovae

    Science.gov (United States)

    Avelino, Arturo; Friedman, Andrew S.; Mandel, Kaisey; Kirshner, Robert; Challis, Peter

    2017-01-01

    Type Ia Supernovae light curves (SN Ia) in the near infrared (NIR) exhibit low dispersion in their peak luminosities and are less vulnerable to extinction by interstellar dust in their host galaxies. The increasing number of high quality NIR SNe Ia light curves, including the recent CfAIR2 sample obtained with PAIRITEL, provides updated evidence for their utility as standard candles for cosmology. Using NIR YJHKs light curves of ~150 nearby SNe Ia from the CfAIR2 and CSP samples, and from the literature, we determine the mean value and dispersion of the absolute magnitude in the range between -10 to 50 rest-frame days after the maximum luminosity in B band. We present the mean light-curve templates and Hubble diagram for YJHKs bands. This work contributes to a firm local anchor for supernova cosmology studies in the NIR which will help to reduce the systematic uncertainties due to host galaxy dust present in optical-only studies. This research is supported by NSF grants AST-156854, AST-1211196, Fundacion Mexico en Harvard, and CONACyT.

  1. Hubble Tarantula Treasury Project V. The star cluster Hodge 301: the old face of 30 Doradus

    CERN Document Server

    Cignoni, M; van der Marel, R P; Lennon, D J; Tosi, M; Grebel, E K; Gallagher, J S; Aloisi, A; de Marchi, G; Gouliermis, D A; Larsen, S; Panagia, N; Smith, L J

    2016-01-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history (SFH) of Hodge~301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge~301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 supernovae Type-II exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of $\\approx 8800\\,\\pm 800$M$_{\\odot}$ and average reddening E(B$-$V) $\\approx 0.22-0.24$ mag, with a differential reddening $\\delta$E(B$-$V...

  2. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  3. The Nearby Supernova Factory

    CERN Document Server

    Wood-Vasey, W M; Lee Byung Cheol; Loken, S; Nugent, P; Perlmutter, S; Siegrist, J L; Wang, L; Antilogus, P; Astier, Pierre; Hardin, D; Pain, R; Copin, Y; Smadja, G; Gangler, E; Castera, A; Adam, G; Bacon, R; Lemonnier, J P; Pecontal, A; Pécontal, E; Kessler, R

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.

  4. Supernova VLBI

    Science.gov (United States)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  5. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  6. Supernova 1987A: The Supernova of a Lifetime

    Science.gov (United States)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  7. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    CERN Document Server

    Aldering, G; Amanullah, R; Annis, J; Astier, Pierre; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergström, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R D; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, Eugene D; Craig, W; Day, C; De Jongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J A; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P N; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Lefèvre, O; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J P; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Olus, H; Pain, R; Palaio, N; Pankow, D; Peoples, John; Perlmutter, S; Prieto, E; Rabinowitz, D; Réfrégier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, R M; Smoot, George F; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Von der Lippe, H; Walder, J P; Wang, G; Wester, W

    2004-01-01

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and ...

  8. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  9. Aspherical supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3

  10. Determination of the Hubble constant, the intrinsic scatter of luminosities of Type Ia SNe, and evidence for non-standard dust in other galaxies

    CERN Document Server

    Wang, X; Pain, R; Wang, L; Zhou, X; Li, Zongwei; Pain, Reynald; Wang, Lifan; Wang, Xiaofeng; Zhou, Xu

    2006-01-01

    A sample of 109 type Ia supernovae (SNe Ia) with recession velocity < 30,000 km s^{-1}, is compiled from published SNe Ia light curves to explore the expansion rate of the local Universe. Based on the color parameter \\Delta C_{12}, we found that the average absorption to reddening ratio for SN Ia host galaxies to be R_{UBVI} = 4.37+/-0.25, 3.33+/-0.11, 2.30+/-0.11, 1.18+/-0.11, which are systematically lower than the standard values in the Milky Way. We investigated the correlations of the intrinsic luminosity with light curve decline rate, color index, and supernova environmental parameters. In particular, we found SNe Ia in E/S0 galaxies to be brighter close to the central region than those in the outer region, which may suggest a possible metallicity effect on SN luminosity. The dependence of SN luminosity on galactic environment disappears after corrections for the extinction and \\Delta C_{12}. The Hubble diagrams constructed using 73 Hubble flow SNe Ia yield a 1-$\\sigma$ scatter of <0.12 mag in BVI...

  11. How to Find Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.

  12. A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set

    Science.gov (United States)

    Scalzo, R.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.; Nearby Supernova Factory, The

    2012-09-01

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including 56Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  13. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET

    Energy Technology Data Exchange (ETDEWEB)

    Scalzo, R. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Institut de Physique Nucleaire, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Nugent, P., E-mail: rscalzo@mso.anu.edu.au [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Collaboration: Nearby Supernova Factory; and others

    2012-09-20

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M{sub V} < -20) and the velocity of the Si II {lambda}6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including {sup 56}Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  14. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  15. Hubble Deep Fields

    Science.gov (United States)

    Ferguson, H.; Murdin, P.

    2000-11-01

    The Hubble Deep Fields are two small areas of the sky that were carefully selected for deep observations by the HUBBLE SPACE TELESCOPE (HST). They represent the deepest optical observations to date and reveal galaxies as faint as V=30, 4 billion times fainter than can be seen with the unaided eye....

  16. SCADA Diagram

    OpenAIRE

    Rose, Matthew

    2004-01-01

    Matthew Rose worked at the Naval Postgraduate School as a graphic designer from February 2002-November 2011. His work for NPS included logos, brochures, business packs, movies/presentations, posters, the CyberSiege video game and many other projects. This material was organized and provided by the artist, for inclusion in the NPS Archive, Calhoun. Includes these files: Plan_ver.ai; powerline.jpg; SCADA diagram.ai; SCADA diagram.pdf; SCADA diagramsmall.pdf; SCADA2.pdf

  17. Dismantling Hubble's Legacy?

    Science.gov (United States)

    Way, Michael J.

    2014-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and even the general public. The origins of three of the most well-known discoveries are examined: The distances to nearby spiral nebulae, the classification of extragalactic-nebulae and the Hubble constant. In the case of the first two a great deal of supporting evidence was already in place, but little credit was given. The Hubble Constant had already been estimated in 1927 by Georges Lemaitre with roughly the same value that Hubble obtained in 1929 using redshifts provided mostly by Vesto M. Slipher. These earlier estimates were not adopted or were forgotten by the astronomical community for complex scientific, sociological and psychological reasons.

  18. Delimiting diagrams

    NARCIS (Netherlands)

    Oostrom, V. van

    2008-01-01

    We introduce the unifying notion of delimiting diagram. Hitherto unrelated results such as: Minimality of the internal needed strategy for orthogonal first-order term rewriting systems, maximality of the limit strategy for orthogonal higher-order pattern rewrite systems (with maximality of the strat

  19. The Hubble effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, T.M.; Miao, S.P.; Prokopec, T. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Woodard, R.P., E-mail: T.M.Janssen@uu.nl, E-mail: S.Miao@uu.nl, E-mail: T.Prokopec@uu.nl, E-mail: woodard@phys.ufl.edu [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2009-05-15

    We generalize the effective potential to scalar field configurations which are proportional to the Hubble parameter of a homogeneous and isotropic background geometry. This may be useful in situations for which curvature effects are significant. We evaluate the one loop contribution to the Hubble Effective Potential for a massless scalar with arbitrary conformal and quartic couplings, on a background for which the deceleration parameter is constant. Among other things, we find that inflationary particle production leads to symmetry restoration at late times.

  20. Angular Momentum across the Hubble sequence from the CALIFA survey

    NARCIS (Netherlands)

    Falcón-Barroso, Jesús; Lyubenova, Mariya; van de Ven, Glenn

    We investigate the stellar angular momentum of galaxies across the Hubble sequence from the CALIFA survey. The distribution of CALIFA elliptical and lenticular galaxies in the λRe - ɛe diagram is consistent with that shown by the Atlas3D survey. Our data, however, show that the location of spiral

  1. Bayesian Approach to the Best Estimate of the Hubble Constant

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 陈黎; 李宗伟

    2001-01-01

    A Bayesian approach is used to derive the probability distribution (PD) of the Hubble constant H0 from recent measurements including supernovae Ia, the Tully-Fisher relation, population Ⅱ and physical methods. The discrepancies among these PDs are briefly discussed. The combined value of all the measurements is obtained,with a 95% confidence interval of 58.7 < Ho < 67.3 (km·s-1.Mpc-1).

  2. The Hubble Relation for a Comprehensive Sample of QSOs

    Indian Academy of Sciences (India)

    D. Basu

    2003-03-01

    A correlation between redshifts () and apparent magnitudes () (Hubble relation) of Quasi Stellar Objects (QSOs) has long been sought. Such a correlation exists for galaxies whose redshifts are of cosmological origin. However, a plot of the two quantities representing the Hubble diagram for QSOs exhibits, in general, a wild scatter. This raises the question whether redshifts of QSOs are cosmological. On the other hand, most luminous QSOs in groups, and subsamples with particular properties, have been reported to show the Hubble relation. In the present paper, we analyse all optically non-variable QSOs in a comprehensive sample. In our analysis we grouped the objects into certain intervals of apparent magnitudes. Correlations obtained between redshifts and magnitudes are all statistically robust. Also, the Hubble relation in the usual form = 5 log +C is obeyed very convincingly for QSOs with < 19.5.

  3. Cepheid Calibration of the Peak Brightness of Type IA Supernovae. VI. SN 1960F in NGC 4496A

    Science.gov (United States)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Tammann, G. A.; Macchetto, F. D.; Panagia, N.

    1996-12-01

    Cepheid variables have been found in the SBcII galaxy NGC 4496A, parent to the Type Ia supernova 1960F. Of the 130 variables discovered with the Hubble Space Telescope (HST) over a 70 day observing internal from 1994 June to August, comprising 17 epochs in the F555W band and four epochs in the F814W band, 95 are bona fide Cepheids. The periods range from 7 days to greater than 70 days, with the mean magnitudes ranging from = 24.4 to 26.8. The distance modulus of NGC 4496A, based on the Cepheids, is (rn-Al)0 = 31.03±0.14, where a formal reddening of E(V-I) = 0.04±0.06 derived from the colors of the Cepheids has been used to account for possible extinction. There is no measurable differential reddening over the field. The absolute magnitudes of SN 1960F at maximum are M(B)max = -19.43±0.17 and M(V)max =-19.52±0.21. Combining these absolute magnitudes with the Hubble diagrams of "Branch normal" Type Ia supernovae (SNe Ia), determined earlier, gives Hubble constants, based on SN 1960F alone, of HO(B)=56±9 km s-1, (1) and H0(V) = 55±9 km s-1. (2) Combining the calibration of SN 1960F here with six other extant calibrations set out in Paper VII gives interim mean absolute magnitude calibrations of M(B) = -19.45±0.07 and 4M(V) max = -19.47±0.07, with no evidence for appreciable dependence on the light-curve decay rate. These mean interim calibrations require H0(B) = 57±4 km s-1 and H0(V) = 58±4 km s-1 Mpc-1.

  4. Smoking Supernovae

    CERN Document Server

    Gomez, H L; Dunne, L

    2007-01-01

    The question "Are supernovae important sources of dust?" is a contentious one. Observations with the Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) only detected very small amounts of hot dust in supernova remnants. Here, we review observations of two young Galactic remnants with the Submillimetre Common User Bolometer Array (SCUBA), which imply that large quantities of dust are produced by supernovae. The association of dust with the Cassiopeia A remnant is in question due to the contamination of foreground material. In this article, we compare the emission from cold dust with CO emission towards Kepler's supernova remnant. We detect very little CO at the location of the submillimetre peaks. A comparison of masses from the CO and the dust clouds are made, and we estimate the 3 sigma upper limit on the gas-to-dust ratios to range from 25 - 65 suggesting that we cannot yet rule out freshly-formed or swept up circumstellar dust in Kepler's supernova remnant.

  5. Recurring X-ray Outbursts in the Supernova Impostor SN~2010da in NGC~300

    CERN Document Server

    Binder, B; Kong, A K H; Gaetz, T J; Plucinsky, P P; Skillman, E D; Dolphin, A

    2016-01-01

    We present new observations of the "supernova impostor" SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be $\\sim5\\times10^{38}$ erg s$^{-1}$ and faded by a factor of $\\sim$25 in a four month period. Our two new Chandra observations show a factor of $\\sim$10 increase in the 0.35-8 keV X-ray flux, from $\\sim$4$\\times10^{36}$ erg s$^{-1}$ to $4\\times10^{37}$ erg s$^{-1}$ in $\\sim$6 months, and the X-ray spectrum is consistent in both observations with a power law photon index of $\\Gamma\\sim0$. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder ($\\Gamma\\sim0$) compared to the low-luminosity state ($\\Gamma\\sim1.2\\pm0.8$). Using our Hubble observations, we fit the color magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of $\\lesssim$5 Myr. Our observations are ...

  6. The Dependence of Type Ia Supernova Luminosities on their Host Galaxies

    CERN Document Server

    Sullivan, M; Howell, D A; Neill, J D; Astier, P; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Pain, R; Palanque-Delabrouille, N; Perrett, K M; Pritchet, C J; Regnault, N; Rich, J; Ruhlmann-Kleider, V; Baumont, S; Hsiao, E; Kronborg, T; Lidman, C; Perlmutter, S; Walker, E S

    2010-01-01

    (Abridged) Precision cosmology with Type Ia supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08mag (~4.0sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star-formation rates (sSFR). SNe Ia in galaxies with a low sSFR also have a smaller slope ("beta") between their luminosities and colours with ~2.7sigma significance, and a smaller scatter on SN Ia Hubble diagrams (at 95% confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is in...

  7. Hubble's Nobel Prize

    CERN Document Server

    Soares, D S L

    2001-01-01

    Astronomy is not in the list of natural sciences aimed at by the Nobel awards. In spite of that, there were, throughout the 1930s until the early 1950s, effective moves by important scientists to distinguish Hubble with the Prize. A short report on these attempts is made as well as speculation on what would be the citation for the prize in view of the broad range of Hubble's scientific achievements. Within this context, the opportunity is also taken for publicizing the Crafoord Prize which does consider astronomy.

  8. Did Edwin Hubble plagiarize?

    CERN Document Server

    Shaviv, Giora

    2011-01-01

    Recently Block published an astro-ph [arXiv:1106.3928 (2011)] insinuating that Hubble censored a prior publication of his famous and seminal discovery of the expansion of the universe. This issue was investigated by us in detail as part of the book: The Quest for Chemical Element Genesis and What the Chemical Elements Tell about the Universe (Accepted for publication, Springer Pub. Heidelberg, 2011.) Since the book is due in few months, we extract here the relevant parts. Our summary: We exonerate Hubble from the charge that he censored or ignored or plagiarized Lemaitre's earlier theoretical discovery.

  9. SOUSA's Swift Supernova Siblings

    CERN Document Server

    Brown, Peter J

    2015-01-01

    Swift has observed over three hundred supernovae in its first ten years. Photometry from the Ultra-Violet Optical Telescope (UVOT) is being compiled in the Swift Optical/Ultraviolet Supernovae Archive (SOUSA). The diversity of supernovae leads to a wide dynamic range of intrinsic properties. The intrinsic UV brightness of supernovae as a function of type and epoch allows one to understand the distance ranges at which Swift can reliably detect supernovae. The large Swift sample also includes supernovae from the same galaxy as other Swift supernovae. Through the first ten years, these families include 34 supernovae from 16 host galaxies (two galaxies have each hosted three Swift supernovae).

  10. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  11. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  12. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NARCIS (Netherlands)

    Van Dyk, S.D.; Lee, J.C.; Anderson, J.; Andrews, J.E.; Calzetti, D.; Bright, S.N.; Ubeda, L.; Smith, L.J.; Sabbi, E.; Grebel, E.K.; Herrero, A.; de Mink, S.E.

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic

  13. Type Ia SNe along redshift: the R(Si II) ratio and the expansion velocities in intermediate z supernovae

    CERN Document Server

    Altavilla, G; Balastegui, A; Méndez, J; Irwin, M; Espana-Bonet, C; Schamaneche, K; Balland, C; Ellis, Richard S; Fabbro, S; Folatelli, G; Goobar, A; Hillebrandt, W; McMahon, R M; Mouchet, M; Mourao, A; Nobili, S; Pain, R; Stanishev, V; Walton, N A

    2006-01-01

    We study intermediate--z SNe Ia using the empirical physical diagrams which enable to learn about those SNe explosions. This information can be very useful to reduce systematic uncertainties of the Hubble diagram of SNe Ia up to high z. The study of the expansion velocities and the measurement of the ratio $\\mathcal{R}$(\\SiII) allow to subtype those SNe Ia as done for nearby samples. The evolution of this ratio as seen in the diagram $\\mathcal{R}$(\\SiII)--(t) together with $\\mathcal{R}$(\\SiII)$_{max}$ versus (B-V)$_{0}$ indicate consistency of the properties at intermediate z compared with local SNe. At intermediate--z, the expansion velocities of Ca II and Si II are similar to the nearby counterparts. This is found in a sample of 6 SNe Ia in the range 0.033$\\leq z \\leq$0.329 discovered within the {\\it International Time Programme} (ITP) of {\\it Cosmology and Physics with SNe Ia} during the spring of 2002. Those supernovae were identified using the 4.2m William Herschel Telescope. Two SNe Ia at intermediate z...

  14. Overview of the nearby supernova factory

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  15. Supernova Forensics

    Science.gov (United States)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  16. Is Hubble's Expansion due to Dark Energy

    CERN Document Server

    Gupta, R C

    2010-01-01

    {\\it The universe is expanding} is known (through Galaxy observations) since 1929 through Hubble's discovery ($V = H D$). Recently in 1999, it is found (through Supernovae observations) that the universe is not simply expanding but is accelerating too. We, however, hardly know only $4\\%$ of the universe. The Wilkinson Microwave Anisotropy Probe (WMAP) satellite observational data suggest $73\\%$ content of the universe in the form of dark-energy, $23\\%$ in the form of non-baryonic dark-matter and the rest $4\\%$ in the form of the usual baryonic matter. The acceleration of the universe is ascribed to this dark-energy with bizarre properties (repulsive-gravity). The question is that whether Hubble's expansion is just due to the shock of big-bang & inflation or it is due to the repulsive-gravity of dark-energy? Now, it is believed to be due to dark-energy, say, by re-introducing the once-discarded cosmological-constant $\\Lambda$. In the present paper, it is shown that `the formula for acceleration due to dark...

  17. The Hubble Exoplanet Classroom

    Science.gov (United States)

    Stevens, Laura; Carson, J.; Ruwadi, D.; Low, K.; Jordan, S.; Schneider, G.

    2013-01-01

    We present a status report on the Hubble Exoplanet Classroom, an interactive website designed to engage 8-12th grade students in physical science concepts using the exciting field of exoplanet studies. Addressing national teaching standards, the webpage allows educators to enhance their physical science, physics, and astronomy curriculum with student-driven lessons. The webpage records students' performance on lessons and quizzes and compiles the results, which can be accessed by the instructor using a secure website.

  18. Dismantling Hubble's Legacy?

    CERN Document Server

    Way, Michael J

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  19. Dismantling Hubble's Legacy?

    Science.gov (United States)

    Way, Michael Joseph

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  20. Connecting supernovae with their environments

    Science.gov (United States)

    Galbany, L.

    2017-03-01

    We present MUSE observations of galaxy NGC 7469 from its Science Verification to show how powerful is the combination of high-resolution wide-field integral field spectroscopy with both photometric and spectroscopic observations of supernova (SN) explosions. Using STARLIGHT and H II explorer, we selected all H II regions of the galaxy and produced 2-dimensional maps of the Hα equivalent width, average luminosity-weighted stellar age, and oxygen abundance. We measured deprojected galactocentric distances for all H II regions, and radial gradients for all above-mentioned parameters. We positioned the type Ia SN2008ec in the Branch et al. diagram, and finally discussed the characteristics of the SN parent H II region compared to all other H II regions in the galaxy. In a near future, the AMUSING survey will be able to reproduce this analysis and construct statistical samples to enable the characterization of the progenitors of different supernova types.

  1. The Hubble Constant.

    Science.gov (United States)

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72-74 km s(-1) Mpc(-1), with typical errors of 2-3 km s(-1) Mpc(-1). This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s(-1) Mpc(-1) and typical errors of 1-2 km s(-1) Mpc(-1). The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  2. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Filippenko, Alexei Vladimir [Univ. of California, Berkeley, CA (United States)

    2014-05-09

    led to the identification of subsamples of SNe Ia that can be used to provide the most reliable cosmological distances, and we developed ways to deal with the dust that makes SNe Ia appear fainter than they really are. Using the KAIT/LOSS sample, we produced an excellent Hubble diagram (galaxy recession speed vs. distance), accurately showing the expansion of the Universe. Even smaller scatter was achieved when spectroscopic characteristics were taken into account. Another high-quality Hubble diagram was constructed with SNe Ia from the Sloan Digital Sky Survey (SDSS). These Hubble diagrams provide useful new constraints on the nature of the dark energy that is accelerating the expansion of the Universe. As an added bonus of our research, we also studied core-collapse SNe, which differ fundamentally from SNe Ia.

  3. From State Diagram to Class Diagram

    DEFF Research Database (Denmark)

    Borch, Ole; Madsen, Per Printz

    2009-01-01

    UML class diagram and Java source code are interrelated and Java code is a kind of interchange format. Working with UML state diagram in CASE tools, a corresponding xml file is maintained. Designing state diagrams is mostly performed manually using design patterns and coding templates - a time...

  4. The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II

    CERN Document Server

    Beaton, Rachael L; Madore, Barry F; Bono, Giuseppe; Carlson, Erika K; Clementini, Gisella; Durbin, Meredith J; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J; Rich, Jeffrey A; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-01-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3 per cent measurement of the Hubble constant using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to the Hubble constant using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble Type, of any inclination, and, utilizing old stars in low density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of the Hubble constant via the distance ladder. Initially, the accuracy of our value of the Hubble constant will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both...

  5. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    Science.gov (United States)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  6. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  7. Detection of Supernova Neutrinos

    OpenAIRE

    Bekman, B.; Holeczek, J.; Kisiel, J4

    2004-01-01

    Matter effects on neutrino oscillations in both, a supernova and the Earth, change the observed supernova neutrino spectra. We calculate the expected number of supernova neutrino interactions for ICARUS, SK and SNO detectors as a function of the distance which they traveled in the Earth. Calculations are performed for supernova type II at 10kpc from the Earth, using standard supernova neutrino fluxes described by thermal Fermi--Dirac distributions and the PREM I Earth matter density profile.

  8. The Carnegie Hubble Program

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  9. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  10. The Carnegie Hubble Program

    CERN Document Server

    Freedman, Wendy L; Scowcroft, Vicky; Monson, Andy; Persson, S E; Seibert, Mark; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, whi...

  11. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  12. Cosmology: From Hubble to HST

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S.

    1997-03-01

    The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.

  13. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  14. Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, E.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, C.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; Craig, W.; Day, C.; DeJongh, F.; Deustua, S.; Diehl, T.; Dodelson, S.; Ealet, A.; Ellis, R.; Emmet, W.; Fouchez, D.; Frieman, J.; Fruchter, A.; Gerdes, D.; Gladney, L.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Hoff, M.; Holland, S.; Huffer, M.; Hui, L.; Huterer, D.; Jain, B.; Jelinsky, P.; Karcher, A.; Kent, S.; Kahn, S.; Kim, A.; Kolbe, W.; Krieger, B.; Kushner, G.; Kuznetsova, N.; Lafever, R.; Lamoureux, J.; Lampton, M.; Le Fevre, O.; Levi, M.; Limon, P.; Lin, H.; Linder, E.; Loken, S.; Lorenzon, W.; Malina, R.; Marriner, J.; Marshall, P.; Massey, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Peoples, J.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Roe, N.; Rusin, D.; Scarpine, V.; Schubnell, M.; Sholl, M.; Samdja, G.; Smith, R.M.; Smoot, G.; Snyder, J.; Spadafora, A.; Stebbine, A.; Stoughton, C.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Tucker, D.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.; Wester, W.

    2004-05-12

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  15. Supernova / Acceleration Probe: a Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; /LBL, Berkeley /SLAC /Stockholm U. /Fermilab /Paris U., VI-VII /Yale U.

    2005-08-15

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark

  16. Supernova constraints on decaying vacuum cosmology

    CERN Document Server

    Carneiro, S; Borges, H A; Alcaniz, J S

    2006-01-01

    There is mounting observational evidence that the expansion of our Universe is undergoing a late-time acceleration. Among many proposals to describe this phenomenon, the cosmological constant seems to be the simplest and the most natural explanation. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we consider a cosmological scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We show that this model is indistinguishable from the standard one in that the early radiation phase is followed by a long dust-dominated era, and only recently the varying cosmological term becomes dominant, accelerating the cosmic expansion. In order to test the viability of this scenario we have used the most recent type Ia supernova data, i.e., the High-Z SN Search (HZS) Team and the Supernova Legacy Survey (...

  17. Optical Spectra and Light Curves of Supernovae

    CERN Document Server

    Filippenko, A V

    2003-01-01

    I review recent optical observations of supernovae (SNe) conducted by my group. The Lick Observatory Supernova Search with the 0.76-m Katzman Automatic Imaging Telescope is currently the world's most successful search for nearby SNe. We also use this telescope to obtain multicolor light curves of SNe. One of the more interesting SNe we discovered is SN 2000cx, which differs from all previously observed SNe Ia. Another very strange SN Ia that we studied is SN 2002cx, many of whose properties are opposite those of SN 2000cx. Extensive data on SNe II-P 1999em and 1999gi were used to derive distances with the expanding photosphere method. Results from spectropolarimetry suggest that the deeper we peer into the ejecta of core-collapse SNe, the greater the asphericity. We are using Hubble Space Telescope data to identify, or set limits on, the progenitors of core-collapse SNe.

  18. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  19. Luminous Supernovae

    CERN Document Server

    Gal-Yam, Avishay

    2012-01-01

    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). Thes...

  20. HUBBLE VISION: A Planetarium Show About Hubble Space Telescope

    Science.gov (United States)

    Petersen, Carolyn Collins

    1995-05-01

    In 1991, a planetarium show called "Hubble: Report From Orbit" outlining the current achievements of the Hubble Space Telescope was produced by the independent planetarium production company Loch Ness Productions, for distribution to facilities around the world. The program was subsequently converted to video. In 1994, that program was updated and re-produced under the name "Hubble Vision" and offered to the planetarium community. It is periodically updated and remains a sought-after and valuable resource within the community. This paper describes the production of the program, and the role of the astronomical community in the show's production (and subsequent updates). The paper is accompanied by a video presentation of Hubble Vision.

  1. More Supernova Surprises

    Science.gov (United States)

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  2. SNO and Supernovae

    CERN Document Server

    Virtue, C J

    2001-01-01

    The Sudbury Neutrino Observatory (SNO) has unique capabilities as a supernova detector. In the event of a galactic supernova there are opportunities, with the data that SNO would collect, to constrain certain intrinsic neutrino properties significantly, to test details of the various models of supernova dynamics, and to provide prompt notification to the astronomical community through the Supernova Early Warning System (SNEWS). This paper consists of a discussion of these opportunities illustrated by some preliminary Monte Carlo results.

  3. Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory

    CERN Document Server

    Feindt, U; Kowalski, M; Aldering, G; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Cellier-Holzem, F; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Guy, J; Kim, A; Nugent, P; Nordin, J; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Saunders, C; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Weaver, B A; Wu, C

    2013-01-01

    Context. Our Local Group of galaxies appears to be moving relative to the Cosmic Microwave Background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the weight of type Ia supernovae (SNe Ia) has increased recently with the continuously improving statistics of available low-redshift supernovae. Aims. We measured the bulk flow in the nearby universe (0.015 < z < 0.1) using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the Union2 compilation of SN Ia data already in the literature. Methods. The bulk flow velocity was determined from SN data binned in redshift shells by including a coherent motion (dipole) in a cosmological fit. Additionally, a method of spatially smoothing the Hubble residuals was used to verify the results of the dipole fit. To constrain the location and mass of a potential mass concentration (e.g. the Shapley Supercluster) responsible for the peculiar motion, we fit a Hubble l...

  4. FORM, Diagrams and Topologies

    CERN Document Server

    Herzog, Franz; Ueda, Takahiro; Vermaseren, J A M; Vogt, Andreas

    2016-01-01

    We discuss a number of FORM features that are essential in the automatic processing of very large numbers of diagrams as used in the Forcer program for 4-loop massless propagator diagrams. Most of these features are new.

  5. The Rate of Core Collapse Supernovae to Redshift 2.5 From The CANDELS and CLASH Supernova Surveys

    CERN Document Server

    Strolger, Louis-Gregory; Rodney, Steven A; Graur, Or; Riess, Adam G; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A Kristin

    2015-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to $z\\approx2.5$. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, $R_{CC}$, in six redshift bins in the range $0.195\\%$ confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8 to 50 $M_{\\odot}$ range. It is not supportive, however, of an upper mass limit for progenitors at $<20\\,M_{\\odot}$.

  6. Extrinsic Curvature Embedding Diagrams

    CERN Document Server

    Lu, J L

    2003-01-01

    Embedding diagrams have been used extensively to visualize the properties of curved space in Relativity. We introduce a new kind of embedding diagram based on the {\\it extrinsic} curvature (instead of the intrinsic curvature). Such an extrinsic curvature embedding diagram, when used together with the usual kind of intrinsic curvature embedding diagram, carries the information of how a surface is {\\it embedded} in the higher dimensional curved space. Simple examples are given to illustrate the idea.

  7. Type II-P Supernovae as Standard Candles: The SDSS-II Sample Revisited

    CERN Document Server

    Poznanski, Dovi; Filippenko, Alexei V

    2010-01-01

    We revisit the observed correlation between Hbeta and FeII velocities for Type II-P supernovae (SNe~II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km/s. Using this correlation, we reanalyze the publicly available sample of SNe II-P compiled by D'Andrea et al. and find a Hubble diagram with an intrinsic scatter of 11% in distance, which is nearly as tight as that measured before their sample is added to the existing set. The larger scatter reported in their work is found to be systematic, and most of it can be alleviated by measuring Hbeta rather than FeII velocities, due to the low signal-to-noise ratios and early epochs at which many of the optical spectra were obtained. Their sample, while supporting the mounting evidence that SNe II-P are good cosmic rulers, is biased toward intrinsically brighter objects and is not a suitable set to improve upon SN II-P correlation parameters. This will await a dedicated survey.

  8. Improved Standardization of Type II-P Supernovae: Application to an Expanded Sample

    CERN Document Server

    Poznanski, Dovi; Filippenko, Alexei V; Ganeshalingam, Mohan; Li, Weidong; Bloom, Joshua S; Chornock, Ryan; Foley, Ryan J; Nugent, Peter E; Silverman, Jeffrey M; Cenko, S Bradley; Gates, Elinor L; Leonard, Douglas C; Miller, Adam A; Modjaz, Maryam; Serduke, Frank J D; Smith, Nathan; Swift, Brandon J; Wong, Diane S

    2008-01-01

    In the epoch of precise and accurate cosmology, cross-confirmation using a variety of cosmographic methods is paramount to circumvent systematic uncertainties. Owing to progenitor histories and explosion physics differing from those of Type Ia SNe (SNe Ia), Type II-plateau supernovae (SNe II-P) are unlikely to be affected by evolution in the same way. Based on a new analysis of 17 SNe II-P, and on an improved methodology, we find that SNe II-P are good standardizable candles, almost comparable to SNe Ia. We derive a tight Hubble diagram with dispersion of 10% in distance, using the simple correlation between luminosity and photospheric velocity introduced by Hamuy & Pinto 2002. We show that the descendent method of Nugent et al. 2006 can be further simplified and that the correction for dust extinction has low statistical impact. We find that our SN sample favors, on average, a very steep dust law with total to selective extinction R_V<2. Such an extinction law has been recently inferred for many SNe I...

  9. Constraints for the progenitor masses of 17 historic core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Peterson, Skyler; Gilbert, Karoline; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Murphy, Jeremiah [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Jennings, Zachary G., E-mail: ben@astro.washington.edu, E-mail: peters8@uw.edu, E-mail: jd@astro.washington.edu, E-mail: jeremiah@physics.fsu.edu, E-mail: kgilbert@stsci.edu, E-mail: dolphin@raytheon.com, E-mail: zgjennin@ucsc.edu [University of California Observatories, Santa Cruz, CA 95064 (United States)

    2014-08-20

    Using resolved stellar photometry measured from archival Hubble Space Telescope imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae (SNe) that took place in galaxies within 8 Mpc. We fit these color-magnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SN. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SN progenitor masses are <20 M {sub ☉}. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.

  10. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA (color)

    Science.gov (United States)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This colorful photo shows a ground-based image of the entire Crab Nebula, the remnant of a supernova explosion witnessed over 900 years ago. The nebula, which is 10 light-years across, is located 7,000 light-years away in the constellation Taurus. The green, yellow and red filaments concentrated toward the edges of the nebula are remnants of the star that were ejected into space by the explosion. At the center of the Crab Nebula lies the Crab Pulsar -- the collapsed core of the exploded star. The Crab Pulsar is a rapidly rotating neutron star -- an object only about six miles across, but containing more mass than our Sun. As it rotates at a rate of 30 times per second the Crab Pulsar's powerful magnetic field sweeps around, accelerating particles, and whipping them out into the nebula at speeds close to that of light. The blue glow in the inner part of the nebula -- light emitted by energetic electrons as they spiral through the Crab's magnetic field -- is powered by the Crab Pulsar. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  11. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Omer; Mania, Data; Ratra, Bharat, E-mail: omer@phys.ksu.edu, E-mail: mania@phys.ksu.edu, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)

    2013-02-20

    We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.

  12. Hubble parameter measurement constraints on dark energy

    CERN Document Server

    Farooq, Omer; Ratra, Bharat

    2012-01-01

    We use 21 Hubble parameter versus redshift data points, from Gazta\\~{n}aga et al. (2009), Stern et al. (2010), and Moresco et al. (2012), to place constraints on model parameters of constant and time-evolving dark energy cosmologies. This is the largest set of H(z) data considered to date. The inclusion of the 8 new Moresco et al. (2012) measurements results in H(z) constraints more restrictive than those derived by Chen & Ratra (2011b). These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data (Suzuki et al. 2012), which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize however that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially-flat cosmological model cu...

  13. Phase Equilibria Diagrams Database

    Science.gov (United States)

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  14. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... analysis with operational safety management....

  15. Pre-supernova mass loss predictions for massive stars

    NARCIS (Netherlands)

    J.S. Vink; A. de Koter; R. Kotak

    2006-01-01

    Massive stars and supernovae (SNe) have a huge impact on their environment. Despite their importance, a comprehensive knowledge of which massive stars produce which SNe is hitherto lacking. We use a Monte Carlo method to predict the mass-loss rates of massive stars in the Hertzsprung-Russell Diagram

  16. A Newly Recognized Very Young Supernova Remnant in M83

    CERN Document Server

    Blair, William P; Long, Knox S; Whitmore, Bradley C; Kim, Hwihyun; Soria, Roberto; Kuntz, K D; Plucinsky, Paul P; Dopita, Michael A; Stockdale, Christopher

    2015-01-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at H$\\alpha$, [O~I] 6300,6363, and [O~III] 4959,5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was missed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 $\\rm M_{sun}$, and the presence of broad H$\\alpha$ in the spectrum makes a type II supernova likely....

  17. THE SUNYAEV-ZELDOVICH EFFECT IN CLUSTERS OF GALAXIES AND THE HUBBLE CONSTANT

    Directory of Open Access Journals (Sweden)

    N. Falcón

    2009-01-01

    Full Text Available The large scale expansion rate of the Universe is given by the value of the Hubble constant. Several methods have been used to determine the Hubble constant: CMB anisotropies, supernovae observations, and AGN at high redshift. In this work we use the Grainge method to estimate the Hubble constant by using the Sunyaev- Zeldovich e ect with data from the VSA interferometer (Observatorio El Teide and the X-Ray data from ROSAT. The derived h = 0:78 is consistent with the reported value obtained with a di erent set of clusters of galaxies, and it is slightly higher than the h = 0:71 derived with other methods. We discuss the possible discrepancies in terms of the isothermal and spherical cluster hypothesis, and the the Sunyaev-Zeldovich kinetic e ect.

  18. The First Maximum-light Ultraviolet through Near-infrared Spectrum of a Type Ia Supernova

    DEFF Research Database (Denmark)

    Foley, Ryan J.; Kromer, Markus; Howie Marion, G.

    2012-01-01

    We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data...

  19. The First Maximum-light Ultraviolet through Near-infrared Spectrum of a Type Ia Supernova

    DEFF Research Database (Denmark)

    Foley, Ryan J.; Kromer, Markus; Howie Marion, G.;

    2012-01-01

    We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data...

  20. Supernovae neutrino pasta interaction

    Science.gov (United States)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  1. Supernova Neutrino Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Botella, Ines, E-mail: ines.gil@ciemat.es [CIEMAT, Basic Research Department, Avenida Complutense, 22, 28040 Madrid (Spain)

    2011-07-25

    The neutrino burst from a core collapse supernova can provide information about the explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extend can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The possibility to probe the neutrino mixing angle {theta}{sub 13} and the type of mass hierarchy from the detection of supernova neutrinos with liquid argon detectors is discussed in this paper. Moreover, a quantitatively study about the possibility to constrain the supernova parameters is presented. A very massive liquid argon detector ({approx} 100 kton) is needed to perform accurate measurements of these parameters. Finally the possible detection of the diffuse supernova neutrino background in liquid argon detectors is also described.

  2. Planck Scale to Hubble Scale

    CERN Document Server

    Sidharth, B G

    1998-01-01

    Within the context of the usual semi classical investigation of Planck scale Schwarzchild Black Holes, as in Quantum Gravity, and later attempts at a full Quantum Mechanical description in terms of a Kerr-Newman metric including the spinorial behaviour, we attempt to present a formulation that extends from the Planck scale to the Hubble scale. In the process the so called large number coincidences as also the hitherto inexplicable relations between the pion mass and the Hubble Constant, pointed out by Weinberg, turn out to be natural consequences in a consistent description.

  3. The historical supernovae

    CERN Document Server

    Clark, David H

    1977-01-01

    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  4. Atomic and molecular supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  5. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  6. Type Ia Supernova Progenitors, Environmental Effects and Cosmic Supernova Rates

    CERN Document Server

    Nomoto, K; Hachisu, I; Kato, M; Kobayashi, C; Tsujimoto, T; Nomoto, Ken'ichi; Umeda, Hideyuki; Hachisu, Izumi; Kato, Mariko; Kobayashi, Chiaki; Tsujimoto, Takuji

    1999-01-01

    Relatively uniform light curves and spectral evolution of Type Ia supernovae (SNe Ia) have led to the use of SNe Ia as a ``standard candle'' to determine cosmological parameters, such as the Hubble constant, the density parameter, and the cosmological constant. Whether a statistically significant value of the cosmological constant can be obtained depends on whether the peak luminosities of SNe Ia are sufficiently free from the effects of cosmic and galactic evolutions. Here we first review the single degenerate scenario for the Chandrasekhar mass white dwarf (WD) models of SNe Ia. We identify the progenitor's evolution and population with two channels: (1) the WD+RG (red-giant) and (2) the WD+MS (near main-sequence He-rich star) channels. In these channels, the strong wind from accreting white dwarfs plays a key role, which yields important age and metallicity effects on the evolution. We then address the questions whether the nature of SNe Ia depends systematically on environmental properties such as metalli...

  7. The age of the universe, the Hubble constant, the accelerated expansion and the Hubble effect

    OpenAIRE

    Soares,Domingos

    2009-01-01

    The idea of an accelerating universe comes almost simultaneously with the determination of Hubble's constant by one of the Hubble Space Telescope Key Projects. The age of the universe dilemma is probably the link between these two issues. In an appendix, I claim that "Hubble's law" might yet to be investigated for its ultimate cause, and suggest the "Hubble effect" as the searched candidate.

  8. The age of the universe, the Hubble constant, the accelerated expansion and the Hubble effect

    OpenAIRE

    Soares, Domingos

    2009-01-01

    The idea of an accelerating universe comes almost simultaneously with the determination of Hubble's constant by one of the Hubble Space Telescope Key Projects. The age of the universe dilemma is probably the link between these two issues. In an appendix, I claim that "Hubble's law" might yet to be investigated for its ultimate cause, and suggest the "Hubble effect" as the searched candidate.

  9. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  10. Difference Decision Diagrams

    DEFF Research Database (Denmark)

    Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif;

    1999-01-01

    This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y......This paper describes a new data structure, difference decision diagrams (DDDs), for representing a Boolean logic over inequalities of the form $x-y...

  11. The 1% concordance Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L.; Larson, D.; Weiland, J. L. [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Hinshaw, G., E-mail: cbennett@jhu.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2014-10-20

    The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.

  12. Neutrinos from Supernovae

    CERN Document Server

    Choubey, S; Choubey, Sandhya; Kar, Kamales

    2002-01-01

    In this review, the effect of flavor oscillations on the neutrinos released during supernova explosion after core collapse is described. In some scenarios there are large enhancement of the number of events compared to the no oscillation case. Various other features associated with supernova neutrinos are also discussed.

  13. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  14. Galaxy Zoo Supernovae

    CERN Document Server

    Smith, A M; Sullivan, M; Lintott, C J; Nugent, P E; Botyanszki, J; Kasliwal, M; Quimby, R; Bamford, S P; Fortson, L F; Schawinski, K; Hook, I; Blake, S; Podsiadlowski, P; Joensson, J; Gal-Yam, A; Arcavi, I; Howell, D A; Bloom, J S; Jacobsen, J; Kulkarni, S R; Law, N M; Ofek, E O; Walters, R

    2010-01-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive iden...

  15. Molecules in supernova ejecta

    CERN Document Server

    Cherchneff, Isabelle

    2011-01-01

    The first molecules detected at infrared wavelengths in the ejecta of a Type II supernova, namely SN1987A, consisted of CO and SiO. Since then, confirmation of the formation of these two species in several other supernovae a few hundred days after explosion has been obtained. However, supernova environments appear to hamper the synthesis of large, complex species due to the lack of microscopically-mixed hydrogen deep in supernova cores. Because these environments also form carbon and silicate dust, it is of importance to understand the role played by molecules in the depletion of elements and how chemical species get incorporated into dust grains. In the present paper, we review our current knowledge of the molecular component of supernova ejecta, and present new trends and results on the synthesis of molecules in these harsh, explosive events.

  16. HUBBLE WATCHES STAR TEAR APART ITS NEIGHBORHOOD

    Science.gov (United States)

    2002-01-01

    ,000 years. Then the stellar wind collided with the material around the star and swept it up into a thin shell. That shell broke apart into the network of bright clumps seen in the image. The present-day strong wind of the Wolf-Rayet star has only now caught up with the outer edge of the shell, and is stripping away matter as it flows past [the tongue-shaped material in the upper right of the Hubble image]. The stellar wind continues moving outside the shell, slamming into more material and creating a shock wave. This powerful force produces an extremely hot, glowing skin [seen in blue], which envelops the bright nebula. A shock wave is analogous to the sonic boom produced by a jet plane that exceeds the speed of sound; in a cosmic setting, this boom is seen rather than heard. The outer material is too thin to see in the image until the shock wave hits it. The cosmic collision and subsequent shock wave implies that a large amount of matter resides outside the visible shell. The discovery of this material may explain the discrepancy between the mass of the entire shell (four solar masses) and the amount of matter the star lost when it was a red super-giant (15 solar masses). The nebula's short-term fate is less spectacular. As the stellar wind muscles past the clumps of material, the pressure around them drops. A decrease in pressure means that the clumps expand, leading to a steady decline in brightness and fading perhaps to invisibility. Later, the shell may be compressed and begin glowing again, this time as the powerful blast wave of the Wolf-Rayet star completely destroys itself in a powerful supernova explosion. The nebula resides in the constellation Cygnus, 4,700 light-years from Earth. If the nebula were visible to the naked eye, it would appear in the sky as an ellipse one-quarter the size of the full moon. The observations were taken in June 1995 with the Wide Field and Planetary Camera 2. Scientists selected the colors in this composite image to correspond with

  17. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    Science.gov (United States)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  18. Inductively generating Euler diagrams.

    Science.gov (United States)

    Stapleton, Gem; Rodgers, Peter; Howse, John; Zhang, Leishi

    2011-01-01

    Euler diagrams have a wide variety of uses, from information visualization to logical reasoning. In all of their application areas, the ability to automatically layout Euler diagrams brings considerable benefits. In this paper, we present a novel approach to Euler diagram generation. We develop certain graphs associated with Euler diagrams in order to allow curves to be added by finding cycles in these graphs. This permits us to build Euler diagrams inductively, adding one curve at a time. Our technique is adaptable, allowing the easy specification, and enforcement, of sets of well-formedness conditions; we present a series of results that identify properties of cycles that correspond to the well-formedness conditions. This improves upon other contributions toward the automated generation of Euler diagrams which implicitly assume some fixed set of well-formedness conditions must hold. In addition, unlike most of these other generation methods, our technique allows any abstract description to be drawn as an Euler diagram. To establish the utility of the approach, a prototype implementation has been developed.

  19. Three Gravitationally Lensed Supernovae Behind CLASH Galaxy Clusters

    CERN Document Server

    Patel, Brandon; Jha, Saurabh W; Rodney, Steven A; Jones, David O; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G; Matheson, Thomas; Sako, Masao; Holoien, Thomas W -S; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, S Bradley; Donahue, Megan; Filippenko, Alexei V; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G; Umetsu, Keiichi; Zheng, Wei

    2013-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and Abell 383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope (HST) optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while SN CLA11Tib is probably a core-collapse SN. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approximately 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approximately 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates ...

  20. The Hubble series: Convergence properties and redshift variables

    CERN Document Server

    Cattoen, Celine

    2007-01-01

    In cosmography, cosmokinetics, and cosmology it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available, for instance we have supernova data at least back to redshift z=1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift? Based on a combination of mathematical and physical reasoning, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z>1, corresponding to a universe less than half its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parameterization y=z/(1+z). In terms of the y-redshift we again argue that the radius of con...

  1. The Hubble series: convergence properties and redshift variables

    Energy Technology Data Exchange (ETDEWEB)

    Cattoen, Celine; Visser, Matt [School of Mathematics, Statistics, and Computer Science, Victoria University of Wellington, PO Box 600, Wellington (New Zealand)

    2007-12-07

    In cosmography, cosmokinetics and cosmology, it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available; for instance, we have supernova data at least back to redshift z {approx} 1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift. Based on a combination of mathematical and physical reasonings, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z > 1, corresponding to a universe less than half of its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parametrization y = z/(1 + z). In terms of the y-redshift, we again argue that the radius of convergence of any series expansion in y is less than or equal to 1, so that y-based expansions are likely to be good all the way back to the big bang (y = 1), but that y-based expansions must break down for y < -1, now corresponding to a universe more than twice its current size.

  2. Hubble Law: Measure and Interpretation

    Science.gov (United States)

    Paturel, Georges; Teerikorpi, Pekka; Baryshev, Yurij

    2017-09-01

    We have had the chance to live through a fascinating revolution in measuring the fundamental empirical cosmological Hubble law. The key progress is analysed: (1) improvement of observational means (ground-based radio and optical observations, space missions); (2) understanding of the biases that affect both distant and local determinations of the Hubble constant; (3) new theoretical and observational results. These circumstances encourage us to take a critical look at some facts and ideas related to the cosmological red-shift. This is important because we are probably on the eve of a new understanding of our Universe, heralded by the need to interpret some cosmological key observations in terms of unknown processes and substances.

  3. Galaxy Zoo Supernovae

    Science.gov (United States)

    Smith, A. M.; Lynn, S.; Sullivan, M.; Lintott, C. J.; Nugent, P. E.; Botyanszki, J.; Kasliwal, M.; Quimby, R.; Bamford, S. P.; Fortson, L. F.; Schawinski, K.; Hook, I.; Blake, S.; Podsiadlowski, P.; Jönsson, J.; Gal-Yam, A.; Arcavi, I.; Howell, D. A.; Bloom, J. S.; Jacobsen, J.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Walters, R.

    2011-04-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14 000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ˜130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project ().

  4. Hubble multi-scalar inflation

    CERN Document Server

    Abedi, Habib

    2016-01-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolution. Then we focus on obtaining derivatives of number of $e$-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  5. Engineering holographic phase diagrams

    Science.gov (United States)

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-10-01

    By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.

  6. Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey

    CERN Document Server

    Conley, A; Sullivan, M; Regnault, N; Astier, P; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Palanque-Delabrouille, N; Perrett, K M; Pritchet, C J; Rich, J; Ruhlmann-Kleider, V; Balam, D; Baumont, S; Ellis, R S; Fabbro, S; Fakhouri, H K; Fourmanoit, N; Gonzalez-Gaitan, S; Graham, M L; Hudson, M J; Hsiao, E; Kronborg, T; Lidman, C; Mourao, A M; Neill, J D; Perlmutter, S; Ripoche, P; Suzuki, N; Walker, E S; 10.1088/0067-0049/192/1/1

    2011-01-01

    We combine high redshift Type Ia supernovae from the first 3 years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-$z$, 93 SDSS, 242 SNLS, and 14 {\\it Hubble Space Telescope}). SN data alone require cosmic acceleration at >99.9% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least $z=1.4$) in a flat universe, we find $w = -0.91^{+0.16}_{-0.20}(\\mathrm{stat}) ^{+0.07}_{-0.14} (\\mathrm{sys})$ from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematics covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we ...

  7. The Hubble Catalog of Variables

    Science.gov (United States)

    Sokolovsky, K.; Bonanos, A.; Gavras, P.; Yang, M.; Hatzidimitriou, D.; Moretti, M. I.; Karampelas, A.; Bellas-Velidis, I.; Spetsieri, Z.; Pouliasis, E.; Georgantopoulos, I.; Charmandaris, V.; Tsinganos, K.; Laskaris, N.; Kakaletris, G.; Nota, A.; Lennon, D.; Arviset, C.; Whitmore, B.; Budavari, T.; Downes, R.; Lubow, S.; Rest, A.; Strolger, L.; White, R.

    2017-09-01

    We aim to construct an exceptionally deep (V ≲ 27) catalog of variable objects in selected Galactic and extragalactic fields visited multiple times by the Hubble Space Telescope (HST). While HST observations of some of these fields were searched for specific types of variables before (most notably, the extragalactic Cepheids), we attempt a systematic study of the population of variable objects of all types at the magnitude range not easily accessible with ground-based telescopes. The variability timescales that can be probed range from hours to years depending on how often a particular field has been visited. For source extraction and cross-matching of sources between visits we rely on the Hubble Source Catalog which includes 107 objects detected with WFPC2, ACS, and WFC3 HST instruments. The lightcurves extracted from the HSC are corrected for systematic effects by applying local zero-point corrections and are screened for bad measurements. For each lightcurve we compute variability indices sensitive to a broad range of variability types. The indices characterize the overall lightcurve scatter and smoothness. Candidate variables are selected as having variability index values significantly higher than expected for objects of similar brightness in the given set of observations. The Hubble Catalog of Variables will be released in 2018.

  8. The Hubble Catalog of Variables

    Directory of Open Access Journals (Sweden)

    Sokolovsky K.

    2017-01-01

    Full Text Available We aim to construct an exceptionally deep (V ≲ 27 catalog of variable objects in selected Galactic and extragalactic fields visited multiple times by the Hubble Space Telescope (HST. While HST observations of some of these fields were searched for specific types of variables before (most notably, the extragalactic Cepheids, we attempt a systematic study of the population of variable objects of all types at the magnitude range not easily accessible with ground-based telescopes. The variability timescales that can be probed range from hours to years depending on how often a particular field has been visited. For source extraction and cross-matching of sources between visits we rely on the Hubble Source Catalog which includes 107 objects detected with WFPC2, ACS, and WFC3 HST instruments. The lightcurves extracted from the HSC are corrected for systematic effects by applying local zero-point corrections and are screened for bad measurements. For each lightcurve we compute variability indices sensitive to a broad range of variability types. The indices characterize the overall lightcurve scatter and smoothness. Candidate variables are selected as having variability index values significantly higher than expected for objects of similar brightness in the given set of observations. The Hubble Catalog of Variables will be released in 2018.

  9. The Hubble-Depth Survey

    Directory of Open Access Journals (Sweden)

    Changbom Park

    2007-01-01

    Full Text Available Mediante una simulaci n de N cuerpos de un modelo ACDM hemos desarrollado una b squeda de galaxias ficticias hasta la profundidad del Hubble. Para encontrar las galaxias en la distribuci on de part culas, identificamos los halos estables y autoligados mediante un m todo de b squeda de halos en el espacio real y en el cono de luz. Suponemos que cada halo contiene solamente una galaxia con un brillo monot nicamente proporcional a la masa del halo, para as ajustar la funci n de masa con la funci n de luminosidad gal actica obtenida en el Sloan Digital Sky Survey (SDSS. Despu s de aplicar la correcciones K, y de evoluci n a las luminosidades observadas de las galaxias ficticias, hicimos estudios del corrimiento al rojo bajo varias restricciones observacionales. En particular, proponemos un nuevo estudio de corrimientos al rojo, llamado el Hubble Depth Survey, el cual est limitado hasta la magnitud r = 22 y alcanza la distancia de Hubble dH = 3000 h -1 Mpe

  10. It's Alive! The Supernova Impostor 1961V

    CERN Document Server

    Van Dyk, Schuyler D

    2011-01-01

    Reports of the death of the precursor of Supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as "Object 7," lies at the greatest proximity to SN 1961V and is the likely survivor of the "SN impostor" super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent Luminous Blue Variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is yet a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off.

  11. Feynman Diagrams for Beginners

    CERN Document Server

    Kumericki, Kresimir

    2016-01-01

    We give a short introduction to Feynman diagrams, with many exercises. Text is targeted at students who had little or no prior exposure to quantum field theory. We present condensed description of single-particle Dirac equation, free quantum fields and construction of Feynman amplitude using Feynman diagrams. As an example, we give a detailed calculation of cross-section for annihilation of electron and positron into a muon pair. We also show how such calculations are done with the aid of computer.

  12. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

  13. Automated search for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  14. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  15. A very faint core-collapse supernova in M85.

    Science.gov (United States)

    Pastorello, A; Della Valle, M; Smartt, S J; Zampieri, L; Benetti, S; Cappellaro, E; Mazzali, P A; Patat, F; Spiro, S; Turatto, M; Valenti, S

    2007-10-18

    An anomalous transient in the early Hubble-type (S0) galaxy Messier 85 (M85) in the Virgo cluster was discovered by Kulkarni et al. on 7 January 2006 that had very low luminosity (peak absolute R-band magnitude M(R) of about -12) that was constant over more than 80 days, red colour and narrow spectral lines, which seem inconsistent with those observed in any known class of transient events. Kulkarni et al. suggest an exotic stellar merger as the possible origin. An alternative explanation is that the transient in M85 was a type II-plateau supernova of extremely low luminosity, exploding in a lenticular galaxy with residual star-forming activity. This intriguing transient might be the faintest supernova that has ever been discovered.

  16. Supernova 1954J (Variable 12) in NGC 2403 Unmasked

    CERN Document Server

    Van Dyk, S D; Chornock, R; Li, W; Challis, P M

    2005-01-01

    We have confirmed that the precursor star of the unusual Supernova 1954J (also known as Variable 12) in NGC 2403 survived what appears to have been a super-outburst, similar to the 1843 Great Eruption of eta Carinae in the Galaxy. The apparent survivor has changed little in brightness and color over the last eight years, and a Keck spectrum reveals characteristics broadly similar to those of eta Car. This is further suggested by our identification of the actual outburst-surviving star in high-resolution images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope. We reveal this ``supernova impostor'' as a highly luminous (M_V^0 ~ -8.0 mag), very massive (M_initial >~ 25 Msun) eruptive star, now surrounded by a dusty (A_V ~ 4 mag) nebula, similar to eta Car's famous Homunculus.

  17. Hubble Systems Optimize Hospital Schedules

    Science.gov (United States)

    2009-01-01

    Don Rosenthal, a former Ames Research Center computer scientist who helped design the Hubble Space Telescope's scheduling software, co-founded Allocade Inc. of Menlo Park, California, in 2004. Allocade's OnCue software helps hospitals reclaim unused capacity and optimize constantly changing schedules for imaging procedures. After starting to use the software, one medical center soon reported noticeable improvements in efficiency, including a 12 percent increase in procedure volume, 35 percent reduction in staff overtime, and significant reductions in backlog and technician phone time. Allocade now offers versions for outpatient and inpatient magnetic resonance imaging (MRI), ultrasound, interventional radiology, nuclear medicine, Positron Emission Tomography (PET), radiography, radiography-fluoroscopy, and mammography.

  18. Friedmann equation and Hubble condition

    CERN Document Server

    Baumgaertel, Hellmut

    2014-01-01

    The note presents results on the solutions of the Friedmann equation, which satisfy the Hubble condition, where the radiation term is taken into account. For these solutions the equation $\\sigma=\\sigma_{cr}$, where $\\sigma$ is the radiation invariant of the Friedmann equation and $\\sigma_{cr}$ the "critical radiation parameter", introduced in [5], is an analytic relation between the matter density and the radiation density at the present time and the cosmological constant which can be represented by two function branches, expressing the cosmological constant as unique functions of the matter and radiation density. These functions are the "frontier lines" between regions of constant type.

  19. Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy

    OpenAIRE

    Liu, Jian-Miin

    2005-01-01

    In the framework of the solvable model of cosmology constructed in the Earth-related coordinate system, we derive the modified Hubble law. This law carries the slowly time-varying Hubble parameter. The modified Hubble law eliminates the need for dark energy.

  20. Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy

    OpenAIRE

    Liu, Jian-Miin

    2005-01-01

    In the framework of the solvable model of cosmology constructed in the Earth-related coordinate system, we derive the modified Hubble law. This law carries the slowly time-varying Hubble parameter. The modified Hubble law eliminates the need for dark energy.

  1. Twin Supernova Studies with SNe Ia from SNfactory

    Science.gov (United States)

    Fakhouri, Hannah; Aldering, G.; Aragon, C.; Hsiao, E.; Loken, S.; Nugent, P.; Perlmutter, S.; Runge, K.; Thomas, R. C.; Antilogous, P.; Bongard, S.; Canto, A.; Pain, R.; Wu, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.; Pecontal, E.; Baltay, C.; Rabinowitz, D.; Scalzo, R.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Tao, C.

    2011-01-01

    We present a study of twin supernovae with spectrophotometric timeseries of nearby Type Ia supernova from the Nearby Supernova Factory (Aldering, et al. 2002). One advantage of "twins” is they offer the best opportunity for having objects with the same intrinsic luminosities and colors, ostensibly leaving only extrinsic factors such as dust to explain any observed differences in brightness and color. Using well-sampled timeseries data for over 100 nearby Hubble-flow SNe Ia, we study the impact of dust on the brightness differences of SN Ia twins in order to improve the standardization of these standardizable candles that have been and will continue to be a primary tool in the determination of cosmological parameters. Specifically we are able to solve for the relative extinction and RV needed to bring the twins into near-perfect agreement. We will present a study of the resulting distribution of RV. In searching for twin supernovae we have found groups of SNe, again differing only by a dust law that accounts for the brightness differences. These groups allow us to look for similarities in subsets of SNe and explore spectrophotometric differences from group to group.

  2. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets

    CERN Document Server

    Kowalski, M; Aldering, G; Agostinho, R J; Amadon, A; Amanullah, R; Balland, C; Barbary, K; Blanc, G; Challis, P J; Conley, A; Connolly, N V; Covarrubias, R; Dawson, K S; Deustua, S E; Ellis, R; Fabbro, S; Fadeev, V; Fan, X; Farris, B; Folatelli, G; Frye, B L; Garavini, G; Gates, E L; Germany, L; Goldhaber, G; Goldman, B; Goobar, A; Groom, D E; Haïssinski, J; Hardin, D; Hook, I; Kent, S; Kim, A G; Knop, R A; Lidman, C; Linder, E V; Méndez, J; Meyers, J; Miller, G J; Moniez, M; Mourão, A M; Newberg, H; Nobili, S; Nugent, P E; Pain, R; Perdereau, O; Perlmutter, S; Phillips, M M; Prasad, V; Quimby, R; Regnault, N; Rich, J; Rubenstein, E P; Ruiz-Lapuente, P; Santos, F D; Schaefer, B E; Schommer, R A; Smith, R C; Soderberg, A M; Spadafora, A L; Strolger, L -G; Strovink, M; Suntzeff, N B; Suzuki, N; Thomas, R C; Walton, N A; Wang, L; Wood-Vasey, W M; Yun, J L

    2008-01-01

    We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This ``Union'' compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST. A single, consistent and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is $\\Omega_\\Lambda= 0.713^{+0.027}_{-0.029} (stat)}^{+0.036}_{-0.039} (sys)}...

  3. THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Brian T.; Garnavich, Peter M. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Gupta, Ravi R.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Mannucci, Filippo [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Largo E Fermi 5, I-50125 Firenze (Italy); Nichol, Robert C. [Institute of Cosmology and Gravitation, Portsmouth University, Dennis Sciama Building, Po1 3FX Portsmouth (United Kingdom)

    2013-02-20

    Type Ia supernova Hubble residuals have been shown to correlate with host galaxy mass, imposing a major obstacle for their use in measuring dark energy properties. Here, we calibrate the fundamental metallicity relation (FMR) of Mannucci et al. for host mass and star formation rates measured from broadband colors alone. We apply the FMR to the large number of hosts from the SDSS-II sample of Gupta et al. and find that the scatter in the Hubble residuals is significantly reduced when compared with using only stellar mass (or the mass-metallicity relation) as a fit parameter. Our calibration of the FMR is restricted to only star-forming galaxies and in the Hubble residual calculation we include only hosts with log(SFR) > - 2. Our results strongly suggest that metallicity is the underlying source of the correlation between Hubble residuals and host galaxy mass. Since the FMR is nearly constant between z = 2 and the present, use of the FMR along with light-curve width and color should provide a robust distance measurement method that minimizes systematic errors.

  4. THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Pasadena CA 91125 (United States); Li, Weidong; Cenko, S. Bradley; Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kasliwal, Mansi M.; Horesh, Assaf; Ofek, Eran O.; Quimby, Robert M.; Kulkarni, Shrinivas R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Polishook, David, E-mail: vandyk@ipac.caltech.edu [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2011-11-10

    We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius {approx} 10{sup 11} cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M{sup 0}{sub V} Almost-Equal-To -7.7 and effective temperature {approx}6000 K. The star's radius, {approx}10{sup 13} cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitor's companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17-19 M{sub Sun }. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot ({approx}10{sup 5} K), nitrogen-rich Wolf-Rayet star progenitor.

  5. Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples

    Science.gov (United States)

    Kessler, R.; Scolnic, D.

    2017-02-01

    We present a new technique to create a bin-averaged Hubble diagram (HD) from photometrically identified SN Ia data. The resulting HD is corrected for selection biases and contamination from core-collapse (CC) SNe, and can be used to infer cosmological parameters. This method, called “BEAMS with Bias Corrections” (BBC), includes two fitting stages. The first BBC fitting stage uses a posterior distribution that includes multiple SN likelihoods, a Monte Carlo simulation to bias-correct the fitted SALT-II parameters, and CC probabilities determined from a machine-learning technique. The BBC fit determines (1) a bin-averaged HD (average distance versus redshift), and (2) the nuisance parameters α and β, which multiply the stretch and color (respectively) to standardize the SN brightness. In the second stage, the bin-averaged HD is fit to a cosmological model where priors can be imposed. We perform high-precision tests of the BBC method by simulating large (150,000 event) data samples corresponding to the Dark Energy Survey Supernova Program. Our tests include three models of intrinsic scatter, each with two different CC rates. In the BBC fit, the SALT-II nuisance parameters α and β are recovered to within 1% of their true values. In the cosmology fit, we determine the dark energy equation of state parameter w using a fixed value of {{{Ω }}}{{M}} as a prior: averaging over all six tests based on 6 × 150,000 = 900,000 SNe, there is a small w-bias of 0.006+/- 0.002. Finally, the BBC fitting code is publicly available in the SNANA package.

  6. Cosmic Supernova Rate History and Type Ia Supernova Progenitors

    OpenAIRE

    Kobayashi, Chiaki; Nomoto, Ken'ichi; Tsujimoto, Takuji

    2001-01-01

    Adopting a single degenerate scenario for Type Ia supernova progenitors with the metallicity effect, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in spiral and elliptical galaxies, and compare with the recent observational data up to z ~ 0.55.

  7. The Hubble Ultra Deep Field

    CERN Document Server

    Beckwith, S V W; Koekemoer, A M; Caldwell, J A R; Ferguson, H C; Hook, R; Lucas, R A; Bergeron, L E; Corbin, M; Jogee, S; Panagia, N; Robberto, M; Royle, P; Somerville, R S; Sosey, M; Beckwith, Steven V. W.; Stiavelli, Massimo; Koekemoer, Anton M.; Caldwell, John A. R.; Ferguson, Henry C.; Hook, Richard; Lucas, Ray A.; Bergeron, Louis E.; Corbin, Michael; Jogee, Shardha; Panagia, Nino; Robberto, Massimo; Royle, Patricia; Somerville, Rachel S.; Sosey, Megan

    2006-01-01

    This paper presents the Hubble Ultra Deep Field (HUDF), a one million second exposure of an 11 square minute-of-arc region in the southern sky with the Hubble Space Telescope. The exposure time was divided among four filters, F435W (B435), F606W (V606), F775W (i775), and F850LP (z850), to give approximately uniform limiting magnitudes mAB~29 for point sources. The image contains at least 10,000 objects presented here as a catalog. Few if any galaxies at redshifts greater than ~4 resemble present day spiral or elliptical galaxies. Using the Lyman break dropout method, we find 504 B-dropouts, 204 V-dropouts, and 54 i-dropouts. Using these samples that are at different redshifts but derived from the same data, we find no evidence for a change in the characteristic luminosity of galaxies but some evidence for a decrease in their number densities between redshifts of 4 and 7. The ultraviolet luminosity density of these samples is dominated by galaxies fainter than the characteristic luminosity, and the HUDF reveal...

  8. Modeling Core Collapse Supernovae

    Science.gov (United States)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  9. The Most Luminous Supernovae

    Science.gov (United States)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  10. Equational binary decision diagrams

    NARCIS (Netherlands)

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  11. Limits of Voronoi Diagrams

    NARCIS (Netherlands)

    Lindenbergh, R.C.

    2002-01-01

    The classic Voronoi diagram of a configuration of distinct points in the plane associates to each point that part of the plane that is closer to the point than to any other point in the configuration. In this thesis we no longer require all points to be distinct. After the introduction in

  12. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  13. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  14. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  15. On Argument and Diagrams.

    Science.gov (United States)

    Kneupper, Charles W.

    1978-01-01

    Responds to Charles Willard's recommendations (in an article in "Communication Monographs," November 1976) that argument be viewed as an attempt to establish formal relationships among symbolic structures. Demonstrates flaws in this redefinition and shows argument diagrams to be theoretically and practically justifiable. (JMF)

  16. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  17. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tauto

  18. Hubble 2008: Science Year in Review

    Science.gov (United States)

    2009-01-01

    Hubbles remarkable mission has now spanned 18 years. During that time, it has been at the nexus of perhaps the most exciting period of discovery in the history of astronomy. Simultaneously, Hubble has offered up some of the most daunting engineering challenges to humans working in space, and success in meeting those challenges has been among NASAs greatest triumphs.

  19. Nearby supernova factory announces 34 supernovae in one year'; best Rookie year ever for supernova search

    CERN Multimedia

    2003-01-01

    The Nearby Supernova Factory (SNfactory), an international collaboration based at Lawrence Berkeley National Laboratory, announced that it had discovered 34 supernovae during the first year of the prototype system's operation (2 pages).

  20. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  1. Galaxies at z > 1: Shaping the Hubble sequence

    CERN Document Server

    Talia, M; Mignoli, M; Pozzetti, L; Renzini, A; Kurk, J; Halliday, C

    2013-01-01

    We investigate the morphological properties of 494 galaxies at z>1 from the GMASS survey, in their optical rest-frame, using HST/WFC3-IR images from CANDELS. The fractions of ellipticals and disks decline between z=1 to z=3, while at higher z the galaxy population is dominated by irregulars. Ellipticals have the highest concentration and Gini values, while irregulars assume the lowest ones. However, at 1Hubble types as they are at low z. No significant morphological k-correction was found to be required for the Hubble type classification. From a quantitative point of view, however, there are some differences between the optical and UV morphologies. Different morphological types occupy the two peaks of the (U-B) colour distribution: the majority of irregulars are found in the blue peak, while ellipticals mainly populate the red one. Disks have a smoother colour distribution. We also found that, in an UVJ diagram, the quie...

  2. Distant Supernovae Indicate Ever-Expanding Universe

    Science.gov (United States)

    1998-12-01

    ESO Astronomers Contribute towards Resolution of Cosmic Puzzle Since the discovery of the expansion of the Universe by American astronomer Edwin Hubble in the 1920's, by measurement of galaxy velocities, astronomers have tried to learn how this expansion changes with time. Until now, most scientists have been considering two possibilities: the expansion rate is slowing down and will ultimately either come to a halt - whereafter the Universe would start to contract, or it will continue to expand forever. However, new studies by two independent research teams, based on observations of exploding stars ( supernovae ) by ESO astronomers [1] with astronomical telescopes at the La Silla Observatory as well as those of their colleagues at other institutions, appear to show that the expansion of the Universe is accelerating . The results take the discovery of the cosmological expansion one step further and challenge recent models of the Universe. If the new measurements are indeed correct, they show that the elusive "cosmological constant" , as proposed by Albert Einstein , contributes significantly to the evolution of the Universe. The existence of a non-zero cosmological constant implies that a repulsive force, counter-acting gravity, currently dominates the universal expansion , and consequently leads to an ever-expanding Universe. This new research is being named as the "Breakthrough of the Year" by the renowned US science journal Science in the December 18, 1998, issue. A Press Release is published by the journal on this occasion. "Fundamental Parameters" of the Universe Three fundamental parameters govern all cosmological models based on the theory of General Relativity. They are 1. the current expansion rate as described by Hubble's constant , i.e. the proportionality factor between expansion velocity and distance 2. the average matter density in the Universe, and 3. the amount of "other energy" present in space. From the measured values of these fundamental

  3. Physics of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  4. Demonstrating Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, Denis A.; Williams, Jacqueline

    2017-01-01

    We have created a software tool to calculate at display supernova remnant evolution which includes all stages from early ejecta dominated phase to late-time merging with the interstellar medium. The software was created using Python, and can be distributed as Python code, or as an executable file. The purpose of the software is to demonstrate the different phases and transitions that a supernova remnant undergoes, and will be used in upper level undergraduate astrophysics courses as a teaching tool. The usage of the software and its graphical user interface will be demonstrated.

  5. BVRI Photometry of Supernovae

    OpenAIRE

    Ho, Wynn C. G.; Van Dyk, Schuyler D.; Peng, Chien Y.; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas; Treffers, Richard R.; Richmond, Michael W.

    2001-01-01

    We present optical photometry of one Type IIn supernova (1994Y) and nine Type Ia supernovae (1993Y, 1993Z, 1993ae, 1994B, 1994C, 1994M, 1994Q, 1994ae, and 1995D). SN 1993Y and SN 1993Z appear to be normal SN Ia events with similar rates of decline, but we do not have data near maximum brightness. The colors of SN 1994C suggest that it suffers from significant reddening or is intrinsically red. The light curves of SN 1994Y are complicated; they show a slow rise and gradual decline near maximum...

  6. An Intensive HST Survey for z>1 Supernovae by Targeting Galaxy Clusters

    CERN Document Server

    Dawson, K S; Amanullah, R; Barbary, K; Barrientos, L F; Brodwin, M; Connolly, N; Dey, A; Doi, M; Donahue, M; Eisenhardt, P; Ellingson, E; Faccioli, L; Fadeev, V; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; González, A H; Goobar, A; Gude, A; Hattori, T; Hoekstra, H; Huang, X; Ihara, Y; Jannuzi, B T; Johnston, D; Kashikawa, K; Koester, B; Konishi, K; Kowalski, M; Lidman, C; Linder, E V; Lubin, L; Meyers, J; Morokuma, T; Munshi, F; Mullis, C; Oda, T; Panagia, N; Perlmutter, S; Postman, M; Pritchard, T; Rhodes, J; Rosati, P; Rubin, D; Schlegel, D J; Spadafora, A; Stanford, S A; Stanishev, V; Stern, D; Strovink, M; Suzuki, N; Takanashi, N; Tokita, K; Wagner, M; Wang, L; Yasuda, N; Yee, H K C

    2009-01-01

    We present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.90.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

  7. Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey

    CERN Document Server

    Rest, A; Foley, R J; Huber, M E; Chornock, R; Narayan, G; Tonry, J L; Berger, E; Soderberg, A M; Stubbs, C W; Riess, A; Kirshner, R P; Smartt, S J; Schlafly, E; Rodney, S; Botticella, M T; Brout, D; Challis, P; Czekala, I; Drout, M; Hudson, M J; Kotak, R; Leibler, C; Lunnan, R; Marion, G H; McCrum, M; Milisavljevic, D; Pastorello, A; Sanders, N E; Smith, K; Stafford, E; Thilker, D; Valenti, S; Wood-Vasey, W M; Zheng, Z; Burgett, W S; Chambers, K C; Denneau, L; Draper, P W; Flewelling, H; Hodapp, K W; Kaiser, N; Kudritzki, R P; Magnier, E A; Metcalfe, N; Price, P A; Sweeney, W; Wainscoat, R; Waters, C

    2013-01-01

    We present griz light curves of 146 spectroscopically confirmed Type Ia Supernovae (0.03Hubble diagram is constructed with a subset of 112 SNe Ia (out of the 146) that pass our light curve quality cuts. The cosmological fit to 313 SNe Ia (112 PS1 SNe Ia + 201 low-z SNe Ia), using only SNe and assuming a constant dark energy equation of state and flatness, yields w = -1.015^{+0.319}_{-0.201}(Stat)+{0.164}_{-0....

  8. COSMOS Hubble Space Telescope Observations

    CERN Document Server

    Scoville, N Z; Blain, A W; Calzetti, D; Comastri, A; Capak, P; Carilli, C; Carlstrom, J E; Carollo, C M; Colbert, J; Daddi, E; Ellis, Richard S; Elvis, M; Ewald, S P; Fall, M; Franceschini, A; Giavalisco, M; Green, W; Griffiths, R E; Guzzo, L; Hasinger, G; Impey, C; Kneib, J P; Koda, J; Koekemoer, A; Lefèvre, O; Lilly, S; Liu, C T; McCracken, H J; Massey, R; Mellier, Y; Miyazaki, S; Mobasher, B; Mould, J; Norman, C; Réfrégier, A; Renzini, A; Rhodes, J; Rich, M; Sanders, D B; Schiminovich, D; Schinnerer, E; Scodeggio, M; Sheth, K; Shopbell, P L; Taniguchi, Y; Tyson, N; Urry, C M; Van Waerbeke, L; Vettolani, P; White, S D M; Yan, L

    2006-01-01

    The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8$\\sq$\\deg) has been imaged with single-orbit ACS I-F814W exposures with 50% completeness for sources 0.5\\arcsec in diameter at I$_{AB} $ = 26.0 mag. The ACS imaging is a key part of the COSMOS survey, providing very high sensitivity and high resolution (0.09\\arcsec FWHM, 0.05\\arcsec pixels) imaging and detecting a million objects. These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak lensing investigations of the dark matter distribution.

  9. The Hubble Sphere Hydrogen Survey

    CERN Document Server

    Peterson, J B; Pen, U L; Peterson, Jeffrey B.; Bandura, Kevin; Pen, Ue Li

    2006-01-01

    An all sky redshift survey, using hydrogen 21 cm emission to locate galaxies, can be used to track the wavelength of baryon acoustic oscillations imprints from z ~ 1.5 to z = 0. This will allow precise determination of the evolution of dark energy. A telescope made of fixed parabolic cylindrical reflectors offers substantial benefit for such a redshift survey. Fixed cylinders can be built for low cost, and long cylinders also allow low cost fast fourier transform techniques to be used to define thousands of simultaneous beams. A survey made with fixed reflectors naturally covers all of the sky available from it's site with good uniformity, minimizing sample variance in the measurement of the acoustic peak wavelength. Such a survey will produce about a billion redshifts, nearly a thousand times the number available today. The survey will provide a three dimensional mapping of a substantial fraction of the Hubble Sphere.

  10. The Hubble Tarantula Treasury Project

    Science.gov (United States)

    Sabbi, Elena; Lennon, D. J.; Anderson, J.; Van Der Marel, R. P.; Aloisi, A.; Boyer, M. L.; Cignoni, M.; De Marchi, G.; de Mink, S. E.; Evans, C. J.; Gallagher, J. S.; Gordon, K. D.; Gouliermis, D.; Grebel, E.; Koekemoer, A. M.; Larsen, S. S.; Panagia, N.; Ryon, J. E.; Smith, L. J.; Tosi, M.; Zaritsky, D. F.

    2014-01-01

    The Tarantula Nebula (a.k.a. 30 Doradus) in the Large Magellanic Cloud is one of the most famous objects in astronomy, with first astronomical references being more than 150 years old. Today the Tarantula Nebula and its ionizing cluster R136 are considered one of the few known starburst regions in the Local Group and an ideal test bed to investigate the temporal and spatial evolution of a prototypical starburst on a sub-cluster scale. The Hubble Tarantula Treasury Project (HTTP) is a panchromatic imaging survey of the stellar populations and ionized gas in the Tarantula Nebula that reaches into the sub-solar mass regime (eBook that explains how stars form and evolve using images from HTTP. The eBook utilizes emerging technology that works in conjunction with the built-in accessibility features in the Apple iPad to allow totally blind users to interactively explore complex astronomical images.

  11. Hubble Space Telescope-Illustration

    Science.gov (United States)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hulgaard, Henrik

    2002-01-01

    This paper presents a new data structure called boolean expression diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of binary decision diagrams (BDDs) which can represent any Boolean circuit in linear space. Two algorithms are described for transforming...... a BED into a reduced ordered BDD. One is a generalized version of the BDD apply-operator while the other can exploit the structural information of the Boolean expression. This ability is demonstrated by verifying that two different circuit implementations of a 16-bit multiplier implement the same...... Boolean function. Using BEDs, this verification problem is solved efficiently, while using standard BDD techniques this problem is infeasible. Generally, BEDs are useful in applications, for example tautology checking, where the end-result as a reduced ordered BDD is small. Moreover, using operators...

  13. Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hulgaard, Henrik

    1997-01-01

    This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable...... properties of BDDs. Two algorithms are described for transforming a BED into a reduced ordered BDD. One closely mimics the BDD apply-operator while the other can exploit the structural information of the Boolean expression. The efficacy of the BED representation is demonstrated by verifying...... that the redundant and non-redundant versions of the ISCAS 85 benchmark circuits are identical. In particular, it is verified that the two 16-bit multiplication circuits (c6288 and c6288nr) implement the same Boolean functions. Using BEDs, this verification problem is solved in less than a second, while using...

  14. Peircean diagrams of time

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter

    2011-01-01

    Some very good arguments can be given in favor of the Augustinean wisdom, according to which it is impossible to provide a satisfactory definition of the concept of time. However, even in the absence of a proper definition, it is possible to deal with conceptual problems regarding time. It can...... be done in terms of analogies and metaphors. In particular, it is attractive to make use of Peirce's diagrams by means of which various kinds of conceptual experimentation can be carried out. This paper investigates how Peircean diagrams can be used within the study of time. In particular, we discuss 1......) the topological properties of time, 2) the implicative structure in tense logic, 3) the notions of open future and branching time models, and finally 4) tenselogical alternatives to branching time models....

  15. TEP process flow diagram

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  16. Technology Logic Diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J. [Univ. of Nevada, Las Vegas NV (United States); O`Brien, M.C. [Univ. of Arizona, Tucson, AZ (United States)

    1995-04-01

    A planning and management tool was developed that relates environmental restoration and waste management problems to technologies that can be used to remediate these problems. Although the Technology Logic Diagram has been widely used within the US Department of Energy`s Office of Environmental Restoration and Waste Management, it can be modified for use during the planning of any waste management and environmental cleanup effort.

  17. Construcción de un diagrama de Hubble: Una herramienta para la Enseñanza de la Astronomía

    Directory of Open Access Journals (Sweden)

    Giovanni Cardona Rodriguez

    2016-06-01

    Full Text Available Se presenta una actividad que puede apoyar el trabajo de los docentes que dirigen  clubes de Astronomía y quieren abordar el tema de evolución del Universo, ya que   se  reconstruye  la ley de Hubble  a partir de la construcción de un Diagrama de Hubble con  datos  tomados del Sloan Digital Sky Survey   (SDSS ,  del  cual se obtiene el valor del parámetro de Hubble y se infiere la expansión del Universo. Esta actividad  didáctica permite a los profesores orientar a sus estudiantes por el camino que siguió Hubble  para determinar su ley, en este sentido se exponen algunas implicaciones de aplicación de la misma en el contexto de la formación de profesores de física y de los clubes de Astronomía.  Construction of a Hubble Diagram: A tool for teaching astronomy This article presents the construction and analysis of an activity that can support the work of teachers who run Astronomy clubs and want to address the issue of evolution of the Universe. Here Hubble's law is reconstructed by reproducing a Hubble diagram with Sloan Digital Sky Survey's (SDSS data, from which the Hubble parameter value is obtained and the expansion of the Universe is inferred. This educational activity allows teachers to guide their students along the path followed by Hubble to determine his law. In this sense some implications of applying the latter are discussed in the context of teacher's training in Physics and Astronomy clubs. Construção de um diagrama de Hubble: Uma ferramenta para ensino de astronomía Se apresenta uma actividade que pode apoiar o trabalho dos professores que dirigem clubes de Astronomia e querem abordar a questão da evolução do Universo, como a lei de Hubble é reconstruída a partir da reprodução de um diagrama de Hubble com os dados tomados do Sloan digital Sky Survey (SDSS, é achado o parâmetro de Hubble e inferida a expansão do universo. Esta actividade educativa permite aos professores orientar seus alunos ao

  18. Zero CTE Glass in the Hubble Space Telescope

    Science.gov (United States)

    Wood, H. John

    2008-01-01

    Orbiting high above the turbulence of the Earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies fainter than 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13.7 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are "standard candles," astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion. The Hubble Space Telescope is a two-mirror Ritchey-Chretien telescope of 2.4m aperture in low earth orbit. The mirrors are made of Ultra Low Expansion (ULE) glass by Corning Glass Works. This material allows rapid figuring and outstanding performance in space astronomy applications. The paper describes how the primary mirror was mis-figured in manufacturing and later corrected in orbit. Outstanding astronomical images taken over the last 17 years show how the application of this new technology has advanced our knowledge of the universe. Not only has the acceleration of the expansion been discovered, the excellent imaging capability of HST has allowed gravitational lensing to become a tool to study the distribution of dark matter and dark energy in distant clusters of galaxies. The HST has touched practically every field of astronomy enabling astronomers to solve many long-standing puzzles. It will be a long time until the end of the universe when the density is near zero and all of the stars have long since evaporated. It is remarkable that humankind has found the technology and developed the ability to interpret the measurements in order to understand this dramatic age we live in.

  19. The Massive Thermal Basketball Diagram

    CERN Document Server

    Andersen, J O; Strickland, Michael T; Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-01-01

    The "basketball diagram" is a three-loop vacuum diagram for a scalar fieldtheory that cannot be expressed in terms of one-loop diagrams. We calculatethis diagram for a massive scalar field at nonzero temperature, reducing it toexpressions involving three-dimensional integrals that can be easily evaluatednumerically. We use this result to calculate the free energy for a massivescalar field with a phi^4 interaction to three-loop order.

  20. Feynman diagram drawing made easy

    Science.gov (United States)

    Baillargeon, Marc; Nogueira, P.

    1997-02-01

    We present a drawing package optimised for Feynman diagrams. These can be constructed interactively with a mouse-driven graphical interface or from a script file, more suitable to work with a diagram generator. It provides most features encountered in Feynman diagrams and allows to modify every part of a diagram after its creation. Special attention has been paid to obtain a high quality printout as easily as possible. This package is written in Tcl/Tk and in C.

  1. Testing the Standardizability of Type Ia Supernovae with the Cepheid Distance of a Twin Supernova

    Science.gov (United States)

    Foley, Ryan

    2014-10-01

    Having nearly identical optical light-curve shapes, colors, and spectra, SN 2011by and 2011fe are "twin" Type Ia supernovae (SN Ia). As such, these "standardizable candles" should have identical luminosities. But using independent distance measurements to these SN, their peak luminosity differs by 0.6 mag --- significantly larger than the typical scatter amongst all SN Ia. Differences in their UV spectra indicate that the SN have different metallicities, which could account for the luminosity difference. On the other hand, the distance to SN 2011by, from a Tully-Fisher measurement, may be wrong. We propose to measure a Cepheid distance to SN 2011by to determine if metallicity or an imprecise measurement is causing this large difference.The implications are far reaching for SN cosmology. If the current distance is correct, changing progenitor metallicity could cause large distance biases with redshift. If the distance is revised to bring SN 2011by in line with SN 2011fe, we will infer that metallicity differences are not a large bias for SN cosmology.In the latter case, these data will also provide an additional SN with which we can measure the Hubble constant. Since the number of SN calibrators (only 8 published) limits the precision of our measurement of the Hubble constant, these observations can have a large impact on this measurement.

  2. Theoretical models for supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  3. Supernova 2013by

    DEFF Research Database (Denmark)

    Valenti, S.; Sand, D.; Stritzinger, M.

    2015-01-01

    We present multiband ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have...

  4. QCD and Supernovas

    Science.gov (United States)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  5. The Most Luminous Supernovae

    CERN Document Server

    Sukhbold, Tuguldur

    2016-01-01

    Recent observations have revealed an amazing diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider here the physical limits of what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar. Such models can reach a peak luminosity of $\\rm 2\\times10^{46}\\ erg\\ s^{-1}$ and radiate a total energy of $\\rm 4 \\times10^{52}\\ erg$. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, and pair-instability supernovae. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near $\\rm 1\\times10^{44}\\ erg\\ s^{-1}$ for the brightest models. The corresponding limits on total radiated power are $\\rm3 \\times 10^{51}\\ erg$ (Type I) and $\\rm1 \\times 10^{51}\\ ...

  6. Supernovae and Dark Energy

    Science.gov (United States)

    Domínguez, I.; Bravo, E.; Piersanti, L.; Straniero, O.; Tornambé, A.

    2009-08-01

    A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.

  7. Hubble Gallery of Jupiter's Galilean Satellites

    Science.gov (United States)

    1995-01-01

    This is a Hubble Space Telescope 'family portrait' of the four largest moons of Jupiter, first observed by the Italian scientist Galileo Galilei nearly four centuries ago. Located approximately one-half billion miles away, the moons are so small that, in visible light, they appear as fuzzy disks in the largest ground-based telescopes. Hubble can resolve surface details seen previously only by the Voyager spacecraft in the early 1980s. While the Voyagers provided close-up snapshots of the satellites, Hubble can now follow changes on the moons and reveal other characteristics at ultraviolet and near-infrared wavelengths.Over the past year Hubble has charted new volcanic activity on Io's active surface, found a faint oxygen atmosphere on the moon Europa, and identified ozone on the surface of Ganymede. Hubble ultraviolet observations of Callisto show the presence of fresh ice on the surface that may indicate impacts from micrometeorites and charged particles from Jupiter's magnetosphere.Hubble observations will play a complementary role when the Galileo spacecraft arrives at Jupiter in December of this year.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Voronoi diagrams on the sphere

    NARCIS (Netherlands)

    Na, H.-S.; Lee, C.-N.; Cheong, O.

    2001-01-01

    Given a set of compact sites on a sphere, we show that their spherical Voronoi diagram can be computed by computing two planar Voronoi diagrams of suitably transformed sites in the plane. We also show that a planar furthest-site Voronoi diagram can always be obtained as a portion of a

  9. Re-accelerating expansion of the universe revealed by supernovae Ia and {\\it Planck} data

    CERN Document Server

    Zhang, Shuang-Nan

    2013-01-01

    The possibility that we are living in a fast expanding and underdensed local bubble has made many to debate if dark energy is needed to explain the apparent over-dimming of distant supernovae Ia (SNe Ia). Recently the {\\it Planck} team has reported a lower value of Hubble constant and a larger matter density than known previously. Here we show that the lower Hubble constant is inconsistent with SNe Ia data, and the local bubble density is too low, unless it is also a global property of the universe at the present cosmic time. We suggest a new scenario that the universe expands at initially a low, then slightly higher, and finally much higher rate at present, corresponding to increasing Hubble constant with cosmic time. Therefore these data provide evidence for re-accelerating expansion of the universe, deviating from accelerating expansion described by the concordant cosmological model, but still not requiring preferred observers.

  10. Measuring Type Ia Supernova Populations of Stretch and Color and Predicting Distance Biases

    CERN Document Server

    Scolnic, Daniel

    2016-01-01

    Simulations of Type Ia Supernovae (SNIa) surveys are a critical tool for correcting biases in the analysis of SNIa to infer cosmological parameters. Large scale Monte Carlo simulations include a thorough treatment of observation history, measurement noise, intrinsic scatter models and selection effects. In this paper, we improve simulations with a robust technique to evaluate the underlying populations of SNIa color and stretch that correlate with luminosity. In typical analyses, the standardized SNIa brightness is determined from linear `Tripp' relations between the light curve color and luminosity and between stretch and luminosity. However, this solution produces Hubble residual biases because intrinsic scatter and measurement noise result in measured color and stretch values that do not follow the Tripp relation. We find a $10\\sigma$ bias (up to 0.3 mag) in Hubble residuals versus color and $5\\sigma$ bias (up to 0.2 mag) in Hubble residuals versus stretch in a joint sample of 920 spectroscopically confirm...

  11. Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66

    Science.gov (United States)

    Kochanek, C. S.; Fraser, M.; Adams, S. M.; Sukhbold, T.; Prieto, J. L.; Müller, T.; Bock, G.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Khan, R.; Shappee, B. J.; Stanek, K. Z.

    2017-05-01

    We identify a pre-explosion counterpart to the nearby Type IIP supernova ASASSN-16fq (SN 2016cok) in archival Hubble Space Telescope data. The source appears to be a blend of several stars that prevents obtaining accurate photometry. However, with reasonable assumptions about the stellar temperature and extinction, the progenitor almost certainly had an initial mass M* ≲ 17 M⊙, and was most likely in the mass range of M* = 8-12 M⊙. Observations once ASASSN-16fq has faded will have no difficulty accurately determining the properties of the progenitor. In 8 yr of Large Binocular Telescope (LBT) data, no significant progenitor variability is detected to rms limits of roughly 0.03 mag. Of the six nearby supernova (SN) with constraints on the low-level variability, SN 1987A, SN 1993J, SN 2008cn, SN 2011dh, SN 2013ej and ASASSN-16fq, only the slowly fading progenitor of SN 2011dh showed clear evidence of variability. Excluding SN 1987A, the 90 per cent confidence limit implied by these sources on the number of outbursts over the last decade before the SN that last longer than 0.1 yr (full width at half-maximum) and are brighter than MR < -8 mag is approximately Nout ≲ 3. Our continuing LBT monitoring programme will steadily improve constraints on pre-SN progenitor variability at amplitudes far lower than achievable by SN surveys.

  12. Hubble expansion is not a velocity

    Science.gov (United States)

    Ma, Yin-Zhe; Zhang, Shuang-Nan

    2016-11-01

    In this paper, we clarify the difference between the Hubble expansion and the Doppler shift pedagogically and illustrate both physically and mathematically why the Hubble expansion cannot be regarded as a velocity. Therefore, we suggest to replace the misleading word ‘recession velocity’ to be ‘Hubble recession’ to describe the cosmic expansion. We further derive how the peculiar velocity of a galaxy is related to its observed redshift and proper distance, which has practical use in the galaxy redshift and distance surveys.

  13. SHOES-Supernovae, HO, for the Equation of State of Dark energy

    Science.gov (United States)

    Riess, Adam

    2006-07-01

    The present uncertainty in the value of the Hubble constant {resulting in anuncertainty in Omega_M} and the paucity of Type Ia supernovae at redshiftsexceeding 1 are now the leading obstacles to determining the nature of darkenergy. We propose a single, integrated set of observations for Cycle 15 thatwill provide a 40% improvement in constraints on dark energy. This programwill observe known Cepheids in six reliable hosts of Type Ia supernovae withNICMOS, reducing the uncertainty in H_0 by a factor of two because of thesmaller dispersion along the instability strip, the diminished extinction, andthe weaker metallicity dependence in the infrared. In parallel with ACS, atthe same time the NICMOS observations are underway, we will discover andfollow a sample of Type Ia supernovae at z > 1. Together, these measurements,along with prior constraints from WMAP, will provide a great improvement inHST's ability to distinguish between a static, cosmological constant anddynamical dark energy. The Hubble Space Telescope is the only instrument inthe world that can make these IR measurements of Cepheids beyond the LocalGroup, and it is the only telescope in the world that can be used to find andfollow supernovae at z > 1. Our program exploits both of these uniquecapabilities of HST to learn more about one of the greatest mysteries inscience.

  14. A consistent scalar-tensor cosmology for inflation, dark energy and the Hubble parameter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.H.-T., E-mail: c.wang@abdn.ac.uk [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Reid, J.A. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Murphy, A.St.J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Rodrigues, D.; Al Alawi, M. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom); Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mendonça, J.T. [IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Davies, T.B. [Department of Physics, University of Aberdeen, King' s College, Aberdeen AB24 3UE (United Kingdom)

    2016-11-25

    A Friedman cosmology is investigated based on scalar-tensor gravitation with general metric coupling and scalar potential functions. We show that for a broad class of such functions, the scalar field can be dynamically trapped using a recently suggested mechanism. The trapped scalar can drive inflation and accelerated cosmic expansion, compatible with standard requirements. The inflationary phase admits a natural exit with a value of the Hubble parameter dictated by the duration of inflation in a parameter independent manner. For inflationary duration consistent with the GUT description, the resulting Hubble parameter is found to be consistent with its observed value. - Highlights: • First model for inflation and dark energy in cosmology and core-collapse supernovae in astronomy to be unified under the same theory. • Achieved with a natural simple extension of Einstein's General Relativity using a new scalar field. • Potentially far-researching consequences in cosmology for dark matter, dark energy and inflation, testable through core-collapse supernovae.

  15. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Scolnic, D.; Riess, A.; Rodney, S.; Brout, D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT71NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Botticella, M. T. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); and others

    2014-11-01

    We present griz {sub P1} light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=−1.120{sub −0.206}{sup +0.360}(Stat){sub −0.291}{sup +0.269}(Sys). When combined with BAO+CMB(Planck)+H {sub 0}, the analysis yields Ω{sub M}=0.280{sub −0.012}{sup +0.013} and w=−1.166{sub −0.069}{sup +0.072} including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H {sub 0} constraint, though it is strongest when including the H {sub 0} constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=−1.124{sub −0.065}{sup +0.083}, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ∼three times as many SNe should provide more conclusive results.

  16. Multiple Images of a Highly Magnified Supernova Formed by an Early-Type Cluster Galaxy Lens

    CERN Document Server

    Kelly, Patrick L; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2014-01-01

    We report the discovery of the first multiply-imaged gravitationally-lensed supernova. The four images form an Einstein cross with over 2" diameter around a z=0.544 elliptical galaxy that is a member of the cluster MACSJ1149.6+2223. The supernova appeared in Hubble Space Telescope exposures taken on 3-20 November 2014 UT, as part of the Grism Lens-Amplified Survey from Space. The images of the supernova coincide with the strongly lensed arm of a spiral galaxy at z=1.491, which is itself multiply imaged by the cluster potential. A measurement of the time delays between the multiple images and their magnification will provide new unprecedented constraints on the distribution of luminous and dark matter in the lensing galaxy and in the cluster, as well as on the cosmic expansion rate.

  17. Comparison of cosmological parameter inference methods applied to supernovae lightcurves fitted with SALT2

    CERN Document Server

    March, M C; Feroz, F; Hobson, M P

    2012-01-01

    We present a comparison of two methods for cosmological parameter inference from supernovae Ia lightcurves fitted with the SALT2 technique. The standard chi-square methodology and the recently proposed Bayesian hierarchical method (BHM) are each applied to identical sets of simulations based on the 3-year data release from the Supernova Legacy Survey (SNLS3), and also data from the Sloan Digital Sky Survey (SDSS), the Low Redshift sample and the Hubble Space Telescope (HST), assuming a concordance LCDM cosmology. For both methods, we find that the recovered values of the cosmological parameters, and the global nuisance parameters controlling the stretch and colour corrections to the supernovae lightcurves, suffer from small biasses. The magnitude of the biasses is similar in both cases, with the BHM yielding slightly more accurate results, in particular for cosmological parameters when applied to just the SNLS3 single survey data sets. Most notably, in this case, the biasses in the recovered matter density $\\...

  18. The SHOES Program: Supernovae and HO for the Dark Energy Equation of State

    Science.gov (United States)

    Riess, Adam G.; Macri, L.

    2007-12-01

    The present uncertainty in the value of the Hubble constant (resulting in an uncertainty in OmegaM) and the paucity of Type Ia supernovae at redshifts exceeding 1 are leading obstacles to determining the nature of dark energy. We conducted a single, integrated set of observations in Cycle 15 to provide a 40% improvement in constraints on dark energy. This program observed known Cepheids in six reliable hosts of Type Ia supernovae with NICMOS, to reduce the uncertainty in H0 by a factor of two because of the smaller dispersion along the instability strip, the diminished extinction, and the weaker metallicity dependence in the infrared. In parallel with ACS, at the same time the NICMOS observations were underway, we discovered and followed a sample of Type Ia supernovae at z > 1. Together, these measurements, along with prior constraints from WMAP, should provide a significant improvement in our ability to distinguish between a static, cosmological constant and dynamical dark energy.

  19. SHIELD: Distance Estimates from Hubble Space Telescope Imaging

    Science.gov (United States)

    Cave, Ian; Cannon, J. M.; Larson, E.; Marshall, M.; Moody, S.; Adams, E. A.; Dolphin, A. E.; Elson, E. C.; Giovanelli, R.; Haynes, M. P.; McQuinn, K. B.; Ott, J.; Saintonge, A.; Salzer, J. J.; Skillman, E. D.

    2013-01-01

    The Survey of HI in Extremely Low-mass Dwarfs (SHIELD) is an ongoing study of twelve galaxies with HI masses between 106 and 107 Solar masses, detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. Here we present new Hubble Space Telescope (HST) imaging of the SHIELD galaxies. The primary goal is to determine the distance of each galaxy. We apply two techniques to measure the apparent magnitude of the tip of the red giant branch (TRGB) feature in the HST color magnitude diagrams. First, a custom designed edge detection filter was written to determine the TRGB magnitude based on a user-selected region of the color magnitude diagram. Second, we apply the maximum likelihood technique implemented in the "TRGBtool" software package (Makarov et al. 2006). In addition to the distances based on the TRGB feature, we also use the MATCH software (Dolphin 2002) to determine the best-fit distance based on the overall CMD morphology. We compare these distance estimates for all members of the SHIELD galaxies, and present a final table of distances that is used in each of the companion SHIELD presentations.

  20. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY

    Energy Technology Data Exchange (ETDEWEB)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip; Weisz, Daniel R.; Gilbert, Karoline M.; Gogarten, Stephanie M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Lauer, Tod R.; Dong Hui [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Kalirai, Jason S.; Boyer, Martha L.; Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dorman, Claire E.; Guhathakurta, Puragra [University of California Observatories/Lick Observatory, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2012-06-01

    The Panchromatic Hubble Andromeda Treasury is an ongoing Hubble Space Telescope Multi-Cycle Treasury program to image {approx}1/3 of M31's star-forming disk in six filters, spanning from the ultraviolet (UV) to the near-infrared (NIR). We use the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to resolve the galaxy into millions of individual stars with projected radii from 0 to 20 kpc. The full survey will cover a contiguous 0.5 deg{sup 2}area in 828 orbits. Imaging is being obtained in the F275W and F336W filters on the WFC3/UVIS camera, F475W and F814W on ACS/WFC, and F110W and F160W on WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The data produce photometry with a signal-to-noise ratio of 4 at m{sub F275W} = 25.1, m{sub F336W} = 24.9, m{sub F475W} = 27.9, m{sub F814W} = 27.1, m{sub F110W} = 25.5, and m{sub F160W} = 24.6 for single pointings in the uncrowded outer disk; in the inner disk, however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 mag brighter. Observations are carried out in two orbits per pointing, split between WFC3/UVIS and WFC3/IR cameras in primary mode, with ACS/WFC run in parallel. All pointings are dithered to produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products available for the survey, along with extensive testing of photometric stability, crowding errors, spatially dependent photometric biases, and telescope pointing control. We also report on initial fits to the structure of M31's disk, derived from the density of red giant branch stars, in a way that is independent of assumed mass-to-light ratios and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical

  1. New Galactic supernova remnants discovered with IPHAS

    CERN Document Server

    Sabin, L; Contreras, M E; Olguín, L; Frew, D J; Stupar, M; Vázquez, R; Wright, N J; Corradi, R L M; Morris, R A H

    2013-01-01

    As part of a systematic search programme of a 10-degree wide strip of the Northern Galactic plane we present preliminary evidence for the discovery of four (and possibly five) new supernova remnants (SNRs). The pilot search area covered the 19-20 hour right ascension zone sampling from +20 to +55 degrees in declination using binned mosaic images from the INT Photometric H-alpha Survey (IPHAS). The optical identification of the candidate SNRs was based mainly on their filamentary and arc-like emission morphologies, their apparently coherent, even if fractured structure and clear disconnection from any diffuse neighbouring HII region type nebulosity. Follow-up optical spectroscopy was undertaken, sampling carefully across prominent features of these faint sources. The resulting spectra revealed typical emission line ratios for shock excited nebulae which are characteristic of SNRs, which, along with the latest diagnostic diagrams, strongly support the likely SNR nature of these sources: G038.7-1.3 (IPHASX J1906...

  2. Knot probabilities in random diagrams

    Science.gov (United States)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  3. Collective neurodynamics: Phase diagram

    OpenAIRE

    Ovchinnikov, Igor V.; Li, Wenyuan; Schwartz, Robert N.; Hudson, Andrew E.; Meier, Karlheinz; Wang, Kang L.

    2016-01-01

    Here, we conceptualize the phase diagram of collective short-term bio-chemo-electric component of neurodynamics (S-ND) on the parameter space of externally, e.g., pharmacologically, controllable single-neuron parameters such as the resting potential and/or firing threshold, repolarization time, etc. This concept may become a useful tool for the systematization of knowledge in anesthesiology and provide a fruitful venue for future studies of the high-level S-ND functionalities such as short-te...

  4. Diagramming Complex Activities

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh

    2005-01-01

    We increasingly live in heterogeneous ever-changing webs of activities where human actions are intertwined with events created by automatic machines.  In order to make such webs understandable to its human participants, their structure should be represented by displays emphasizing their action as...... aspect. The paper suggests thematic roles as a semantics for actions, argues that a selection of well-known diagramming techniques can be defined within this theory, and uses the theory to discuss new issues related to process control and mobile technology....

  5. Petersen diagram revolution

    Science.gov (United States)

    Smolec, Radoslaw; Dziembowski, Wojciech; Moskalik, Pawel; Netzel, Henryka; Prudil, Zdenek; Skarka, Marek; Soszynski, Igor

    2017-09-01

    Over the recent years, the Petersen diagram for classical pulsators, Cepheids and RR Lyr stars, populated with a few hundreds of new multiperiodic variables. We review our analyses of the OGLE data, which resulted in a significant extension of the known, and in the discovery of a few new and distinct forms of multiperiodic pulsation. The showcase includes not only radial mode pulsators, but also radial-non-radial pulsators and stars with significant modulation observed on top of the beat pulsation. First theoretical models explaining the new forms of stellar variability are briefly discussed.

  6. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    Science.gov (United States)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  7. The Panchromatic Hubble Andromeda Treasury

    CERN Document Server

    Dalcanton, J J; Lang, D; Lauer, T R; Kalirai, J S; Seth, A C; Dolphin, A; Rosenfield, P; Weisz, D R; Bell, E F; Bianchi, L C; Boyer, M L; Caldwell, N; Dong, H; Dorman, C E; Gilbert, K M; Girardi, L; Gogarten, S M; Gordon, K D; Guhathakurta, P; Hodge, P W; Holtzman, J A; Johnson, L; Larsen, S S; Lewis, A; Melbourne, J L; Olsen, K A G; Rix, H -W; Rosema, K; Saha, A; Sarajedini, A; Skillman, E D; Stanek, K Z

    2012-01-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the...

  8. New Explanation of Hubble's Red Shift

    Science.gov (United States)

    Cao, Dayong

    2016-03-01

    The balance system between dark massenergy (with a spacetime center) and stellar massenergy (with a massenergy center) cause a flat universe. In the flat universe, the Hubble 's redshift is caused by the Lorentz transformation (Einstein transformation). This paper will discuss about the relationship among Einstein transformation, Doppler effect, and Hubble 's redshift under the balanced and flat universe model. http://meetings.aps.org/link/BAPS.2014.APR.Y9.1

  9. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    nearly 20 years for this result, and I expect the arguments will go on for a while longer," Gustav Tammann says. "In 1979 I asserted that a key task for the space telescope should be to use variable stars to fix the distances to nearby galaxies in which standard supernovae have been seen. Then the supernovae become candles lighting our way far out into the Universe. Well we've done it now, with stars in seven galaxies, and their supernovae give us wonderfully consistent answers. So we're in no mood to compromise, or to split the difference with Wendy Freedman's Hubble Constant. Time will tell us who is closer to the right answer." * Note to TV editors : A betacam tape on this subject is available from ESA Public Relations Office (Tel: 33(0)01.53.69.7155 Fax : 33(0)01.53.69.7690)

  10. The ultraviolet properties of supernovae

    Science.gov (United States)

    Brown, Peter J.

    2009-09-01

    Ultraviolet (UV) observations of supernovae (SNe) probe an important wavelength region where hot temperatures, extinction, and metallicity have strong effects. In addition, they provide a comparison set against which to compare and better understand rest frame UV observations of high redshift SNe observed in the optical. UV observations, however, are rare due to the need for telescopes above the atmosphere and the difficulty in observing transient objects with space based observatories. Limited observations with space based observatories, primarily the International Ultraviolet Explorer and the Hubble Space Telescope, are reviewed, after which the Ultra-Violet/Optical Telescope (UVOT) on the Swift spacecraft is introduced. With Swift we have observed more SNe than all previous UV missions combined. Case studies of two individual SNe are first presented: SNe 2005am and 2005cs. SN 2005am is the first young SN observed with Swift, and the near-UV (uvw1: central wavelength ~ 2600 λ) light curve is consistent with the previous "template" derived from IUE and HST observations of SNe 1990N and 1992A. SN 2005cs is the first plateau-type II (IIP) with a well observed UV light curve. UVOT observations show a dramatic drop in the UV brightness and shift in the spectral energy distribution from blue to red caused by the dropping temperature and resulting line blanketing in the UV. These case studies demonstrate the information available from the UV data for individual SNe. A photometry method for proper accounting of coincidence loss, aperture corrections, and subtraction of the underlying galaxy is detailed. This method is then applied to a large sample of SNe observed with UVOT. We present 25 light curves and compare SNe by type and across types. The SNe Ia, with a few exceptions, are shown to have very similar light curves in the near UV, whereas, the three SNe Ib/c we have observed are very different. The SNe IIP all have rapidly fading UV light curves, though with

  11. Supernova Photometric Classification Challenge

    CERN Document Server

    Kessler, Richard; Jha, Saurabh; Kuhlmann, Stephen

    2010-01-01

    We have publicly released a blinded mix of simulated SNe, with types (Ia, Ib, Ic, II) selected in proportion to their expected rate. The simulation is realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). We challenge scientists to run their classification algorithms and report a type for each SN. A spectroscopically confirmed subset is provided for training. The goals of this challenge are to (1) learn the relative strengths and weaknesses of the different classification algorithms, (2) use the results to improve classification algorithms, and (3) understand what spectroscopically confirmed sub-...

  12. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  13. ADIDAS SUPERNOVA CTR10

    Institute of Scientific and Technical Information of China (English)

    刘楠

    2008-01-01

    ADIDAS SUPERNOVA CTR10作为ADIDAS控制型跑鞋中的佼佼者,鞋款结合了如立体FORMOTION,大面积的PRO-MODERATOR特殊材质,以及强化型的07款鞋模(EL-07),前脚掌大块ADIPRENE+等诸多ADIDAS的当家技术,但在实际的跑步过程中,这些技术点能否真正为跑步者带来明显的感受?请随我们进入到ADIDAS SUPERNOVA CONTROL10评测环节。

  14. Galaxy Outflows Without Supernovae

    CERN Document Server

    Sur, Sharanya; Ostriker, Eve C

    2016-01-01

    High surface density, rapidly star-forming galaxies are observed to have $\\approx 50-100\\,{\\rm km\\,s^{-1}}$ line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds $\\approx 35\\,{\\rm km\\...

  15. Supernova Science Center

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  16. Nurseries of Supernovae

    DEFF Research Database (Denmark)

    Frederiksen, Teddy

    Type Ia supernovae (SNe) have long been the gold standard for precision cosmology and after several decades of intense research the supernova (SN) community was in 2011 honored by giving the Nobel Prize in physics for the discovery of Dark Energy to the leaders of the two big SN collaborations...... the gasphase metallicity, stellar mass and stellar age for this z = 1.55 host galaxy. I am also able to rule out the presence of any AGN though emission-line ratios. The host is classified as a highly star forming, low mass, low metallicity galaxy. It is a clear outlier in star formation and stellar mass...... compared to most low redshift (z 1) redshift SNe. This is mainly due to the change in specific star-formation rate as a function of redshift. This can potentially impact the use of high redshift SN Ia as standard candels...

  17. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Science.gov (United States)

    Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.

    1997-12-16

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

  18. ASASSN-15lh: A Superluminous Ultraviolet Rebrightening Observed by Swift and Hubble

    CERN Document Server

    Brown, Peter J; Cooke, Jeff; Olaes, Melanie; Quimby, Robert M; Baade, Dietrich; Gehrels, Neil; Hoeflich, Peter; Maund, Justyn; Mould, Jeremy; Patat, Ferdinando; Wang, Lifan; Wheeler, J Craig

    2016-01-01

    We present and discuss ultraviolet (UV) and optical photometry from the Ultraviolet/Optical Telescope (UVOT) and X-ray limits from the X-Ray Telescope on Swift and imaging polarimetry and UV/optical spectroscopy with the Hubble Space Telescope (HST) of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I) more luminous than any other supernova observed. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the UV, with a UV luminosity a hundred times greater than the hydrogen-rich, UV-bright SLSN II SN~2008es. A late rebrightening -- most prominent at shorter wavelengths -- is seen about two months after the peak brightness, which by itself is as bright as a superluminous supernova. ASASSN-15lh is not detected in the X-rays in individual observations or when the data are summed into two separate bins for the early phase and the rebrightening. The HST UV spectrum during the rebrightening is do...

  19. Limits from the Hubble Space Telescope on a Point Source in SN 1987A

    CERN Document Server

    Graves, G J M; Chevalier, R A; Crotts, A; Filippenko, A V; Fransson, C; Garnavich, P M; Kirshner, R P; Li, W; Lundqvist, P; McCray, R; Panagia, N; Phillips, M M; Pun, C J S; Schmidt, B P; Sonneborn, G; Suntzeff, N B; Wang, L; Wheeler, J C; Wheeler, and J. C.

    2005-01-01

    We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September, and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. No point source is observed in the remnant. We obtain a limiting flux of F_opt < 1.6 x 10^{-14} ergs/s/cm^2 in the wavelength range 2900-9650 Angstroms for any continuum emitter at the center of the supernova remnant (SNR). It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of ~35% due to dust absorption in the SNR. Taking into account dust absorption in the remnant, we find a limit of L_opt < 8 x 10^{33} ergs/s. We compare this upper bound with empirical evidence from point sources in other supernova remnants, and with theoretical models for possible compact sources. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Of the young pulsars known to be associated...

  20. Program Synthesizes UML Sequence Diagrams

    Science.gov (United States)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  1. Dipole Analysis of 249 High-Z SCP Union Supernovae According to the Expansion Center Model

    CERN Document Server

    Lorenzi, Luciano

    2011-01-01

    The topic of the paper is a preliminary analysis of 1743 data calculated for 249 High-z SCP Union supernovae, according to the expansion center model. The analysis of the ECM data set in Hubble units begins with 13 listed normal points corresponding to 13 z-bin samples at as many Hubble depths. Here the novel finding is a resulting clear drop in the average scattering of the SNe Ia absolute magnitudes M with the ECM Hubble depth D, after using the average trend computed in paper IX and here reconfirmed. Other correlations of the M scattering with the position in the sky are proposed as pointers for future investigations. Consequently, 13 ECM dipole tests on the 13 z-bin samples were carried out both with unweighed and weighed fittings. A further check was made through another ECM dipole test on the same 13 z bins, with Hubble depths D obtained by assuming M= according to paper IX and X. In conclusion the analysis of 249 SCP SNe confirms once again the expansion center model at any Hubble depth, including a s...

  2. Observations and Theory of Supernovae

    CERN Document Server

    Wheeler, J C

    2003-01-01

    This Resource Letter provides a guide to the literature on the observations of supernovae and the theory of their explosion mechanisms. Journal articles and books are cited for the following topics: observations of the spectra, spectropolarimetry, and light curves of supernovae of various types, theory of thermonuclear explosions, core collapse, and radioactive decay, applications to cosmology, and possible connections to gamma-ray bursts.

  3. Collective neutrino oscillations in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  4. Mass Varying Neutrinos in Supernovae

    CERN Document Server

    Rossi-Torres, F; de Holanda, P C; Peres, O L G

    2010-01-01

    We study limits for the mass varying neutrino model, using constrains from supernova neutrinos placed by the r-process condition, $Y_e<0.5$. Also, we use this model in a supernova environment to study the regions of survival probability in the oscillation space parameter ($\\tan^2\\theta$ and $\\Delta m^2_0$), considering the channel $\

  5. Version 1 of the Hubble Source Catalog

    CERN Document Server

    Whitmore, Bradley C; Budavari, Tamas; Casertano, Stefano; Downes, Ronald A; Donaldson, Thomas; Fall, S Michael; Lubow, Stephen H; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L

    2016-01-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160 thousand HST exposures. Source lists from Data Release 8 of the Hubble Legacy Archive are matched using an algorithm developed by Budavari & Lubow (2012). The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (i.e., most common value) of 2.3 mas. The absolute astro...

  6. Star Clusters as Type Ia Supernova Factories

    CERN Document Server

    Shara, M M; Shara, Michael M.; Hurley, Jarrod R.

    2002-01-01

    We find a remarkably enhanced production rate in star clusters (relative to the field) of very short period, massive double-white-dwarf stars and of giant-white dwarf binaries. These results are based on N-body simulations performed with the new GRAPE-6 special purpose hardware and are important in identifying and characterizing the progenitors of type Ia supernovae. The high incidence of very close double-white-dwarf systems is the result of dynamical encounters between (mostly) primordial binaries and other cluster stars. Orbital hardening rapidly drives these degenerate binaries to periods under ~10 hours. Gravitational radiation emission and mergers producing supra-Chandrasekhar objects follow in less than a Hubble time. If most stars are born in clusters then estimates of the double white dwarf merger rates in galaxies (due to cluster dynamical interaction) must be increased more than tenfold. A majority of the Roche lobe overflow giant-white dwarf binaries are not primordial; they are produced in exchan...

  7. H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion

    Science.gov (United States)

    Sandage, A.; Tammann, G. A.

    1982-01-01

    An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.

  8. Hubble Space Telescope Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and Magnification Models and Systematic Uncertainties

    CERN Document Server

    Zitrin, Adi; Merten, Julian; Melchior, Peter; Meneghetti, Massimo; Koekemoer, Anton; Coe, Dan; Maturi, Matteo; Bartelmann, Matthias; Postman, Marc; Umetsu, Keiichi; Seidel, Gregor; Sendra, Irene; Broadhurst, Tom; Balestra, Italo; Biviano, Andrea; Grillo, Claudio; Mercurio, Amata; Nonino, Mario; Rosati, Piero; Bradley, Larry; Carrasco, Mauricio; Donahue, Megan; Ford, Holland; Frye, Brenda L; Moustakas, John

    2014-01-01

    [ABRIDGED] We present results from an HST lensing analysis of the complete Cluster Lensing And Supernova survey with Hubble (CLASH) cluster sample. We identify various new multiple-images previously undiscovered, allowing improved or first constraints on the cluster inner mass distributions and profiles. We combine these strong-lensing constraints with weak lensing shape measurements within the HST FOV to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass for both galaxies and dark matter while the other adopts an analytical, elliptical NFW form for the dark matter), to provide a better assessment of the underlying systematics - which is most important for deep lensing surveys such as CLASH and the Hubble Frontier Fields, especially when studying high-redshift magnified objects. We find that the typical (median), relative systematic differences throughout the central FOV are $\\sim40\\%$ in the (dimensionless) mass density,...

  9. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams

    Science.gov (United States)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-09-01

    According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.

  10. Quark-Novae Ia in the Hubble diagram: Implications For Dark Energy

    CERN Document Server

    Ouyed, Rachid; Leahy, Denis; Staff, Jan E; Cassidy, Daniel T

    2013-01-01

    The accelerated expansion of the Universe was proposed through the use of Type-Ia SNe as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type Ia SN as standard candles rests on the assumption that their properties (and this correlation) do not vary with red-shift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system; a Quark-Nova Ia. The spin-down energy injected by the Quark Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing Quark-Novae Ia are NOT constant in red-shift. Simulated Quark-Nova Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We d...

  11. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  12. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  13. Diagrams and Proofs in Analysis

    DEFF Research Database (Denmark)

    Carter, Jessica M H Grund

    2010-01-01

    The article discusses the role of diagrams in mathematical reasoning based on a case study in analysis.   In the presented example certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures are replaced by reasoning about permutation groups...

  14. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process

  15. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process improv

  16. Supernovae anisotropy power spectrum

    CERN Document Server

    Ghodsi, Hoda; Habibi, Farhang

    2016-01-01

    We contribute another anisotropy study to this field of research using Supernovae Type Ia (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Our simulations are constructed with the characteristics of the upcoming survey of the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipole anisotropy or anisotropy in higher multipole moments that would be detectable by the LSST.

  17. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  18. Testing the Copernican Principle with Hubble Parameter

    CERN Document Server

    Zhang, Tong-Jie; Ma, Cong

    2012-01-01

    By way of expressing the Hubble expansion rate for the general Lema\\^{i}tre-Tolman-Bondi (LTB) metric as a function of cosmic time, we test the scale on which the Copernican Principle holds in the context of a void model. By performing parameter estimation on the CGBH void model, we show the Hubble parameter data favors a void with characteristic radius of $2 \\sim 3$ Gpc. This brings the void model closer, but not yet enough, to harmony with observational indications given by the background kinetic Sunyaev-Zel'dovich effect and the normalization of near-infrared galaxy luminosity function. However, the test of such void models may ultimately lie in the future detection of the discrepancy between longitudinal and transverse expansion rates, a touchstone of inhomogeneous models. With the proliferation of observational Hubble parameter data and future large-scale structure observation, a definitive test could be performed on the question of cosmic homogeneity.

  19. Genus Ranges of Chord Diagrams.

    Science.gov (United States)

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  20. A new candidate supernova remnant G 70.5+1.9

    CERN Document Server

    Mavromatakis, F; Meaburn, J; Caulet, A

    2009-01-01

    A compact complex of line emission filaments in the galactic plane has the appearance of those expected of an evolved supernova remnant though non-thermal radio and X-ray emission have not yet been detected. This optical emission line region has now been observed with deep imagery and both low and high-dispersion spectroscopy. Diagnostic diagrams of the line intensities from the present spectra and the new kinematical observations both point to a supernova origin. However, several features of the nebular complex still require an explanation within this interpretation.

  1. Role of clusters in nuclear astrophysics with Cluster Nucleosynthesis Diagram (CND)

    Science.gov (United States)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, H.; Kahl, D.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Chen, A.; Cherubini, S.; Choi, S. H.; Hahn, I. S.; He, J. J.; Khiem, Le Hong; Lee, C. S.; Kwon, Y. K.; Wanajo, S.; Janka, H.-T.

    2013-04-01

    The role of nuclear clustering in stellar reactions is discussed, with Cluster Nucleosynthesis Diagram (CND) proposed before, for nucleosynthesis in stellar evolution and explosive stellar phenomena. Special emphasis is placed on α-induced stellar reactions. We report here the first experimental evidence that a cluster resonances dominate the (α,p) stellar reaction cross sections that is crucial for the vp-process in core-collapse supernovae.

  2. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  3. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample

    CERN Document Server

    Li, Weidong; Chornock, Ryan; Filippenko, Alexei V; Poznanski, Dovi; Ganeshalingam, Mohan; Wang, Xiaofeng; Modjaz, Maryam; Jha, Saurabh; Foley, Ryan J; Smith, Nathan

    2010-01-01

    This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volume-limited sample of 175 SNe, collect photometry for every object, and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10%), IIb (...

  4. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  5. Fitting the Supernova Type Ia Data with the Chaplygin Gas

    CERN Document Server

    Fabris, J C; De Souza, P E

    2002-01-01

    The supernova type Ia observational data are fitted using a model with cold dark matter and the Chaplygin gas. The Chaplygin gas, which is characterized by a negative pressure varying with the inverse of density, represents in this model the dark energy responsible for the accelaration of the universe. The fitting depends essentially on four parameters: the Hubble constant, the velocity of sound of the Chaplygin gas and the fraction density of the Chaplygin gas and the cold dark matter. The best fitting model is obtained with H_0 = 65 km/Mpc.s, $c_s^2 \\sim 0.92c$ and Omega_{c0} = 1, Omega_{m0} = 0, that is, a universe completely dominated by the Chaplygin gas. This reinforces the possibility that the Chaplygin gas may unify dark matter and dark energy, as it has already been claimed in the literature.

  6. The Genesis of Feynman Diagrams

    CERN Document Server

    Wuthrich, Adrian

    2011-01-01

    In a detailed reconstruction of the genesis of Feynman diagrams the author reveals that their development was constantly driven by the attempt to resolve fundamental problems concerning the uninterpretable infinities that arose in quantum as well as classical theories of electrodynamic phenomena. Accordingly, as a comparison with the graphical representations that were in use before Feynman diagrams shows, the resulting theory of quantum electrodynamics, featuring Feynman diagrams, differed significantly from earlier versions of the theory in the way in which the relevant phenomena were concep

  7. Farthest-Polygon Voronoi Diagrams

    CERN Document Server

    Cheong, Otfried; Glisse, Marc; Gudmundsson, Joachim; Hornus, Samuel; Lazard, Sylvain; Lee, Mira; Na, Hyeon-Suk

    2010-01-01

    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region.

  8. Scattering equations and Feynman diagrams

    Science.gov (United States)

    Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-09-01

    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in φ 3-theory. We also discuss the generalization to general scalar field theories with φ p interactions, corresponding to polygonal graphs involving vertices of order p. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.

  9. Scattering Equations and Feynman Diagrams

    CERN Document Server

    Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H

    2015-01-01

    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in $\\phi^3$-theory. We also discuss the generalization to general scalar field theories with $\\phi^p$ interactions, corresponding to polygonal graphs involving vertices of order $p$. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.

  10. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    CERN Document Server

    Albert, J; Allam, S; Althouse, W E; Amanullah, R; Annis, J; Astier, Pierre; Aumeunier, M; Bailey, S; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergström, L; Bernstein, G; Bester, M; Besuner, B; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Cole, D; Commins, Eugene D; Craig, W; Davis, T; Dawson, K; Day, C; De Harveng, M; De Jongh, F; Deustua, S; Diehl, H; Dobson, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Figer, D; Fouchez, D; Frerking, M; Frieman, J A; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Juramy, C; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Lefèvre, O; Lebrun, V; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marian, L; Marriner, J P; Marshall, P; Massey, R; Mazure, A; McGinnis, B; McKay, T; McKee, S; Miquel, R; Mobasher, B; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nakajima, R; Nugent, P; Olus, H; Pain, R; Palaio, N; Pankow, D; Peoples, John; Perlmutter, S; Peterson, D; Prieto, E; Rabinowitz, D; Réfrégier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Seiffert, M; Sholl, M; Shukla, H; Smadja, G; Smith, R M; Smoot, George F; Snyder, J; Spadafora, A; Stabenau, F; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Von der Lippe, H; Walder, J P; Wang, G; Weinstein, A; Wester, W; White, M

    2005-01-01

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a companion White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties lead to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. SNAP has achieved technological readiness and the collaboration is poised to begin construction.

  11. Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Pascal, S; Rich, J; Guy, J; Bazin, G; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M

    2009-01-01

    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision $\\sigma_{\\Delta z/(1+z)} = 0.022$ on average up to a redshift of 1.0, with a higher precision of 0.016 for z0.45. The rate of events with $|\\Delta z|/(1+z)>0.15$ (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.

  12. The Hubble Flow of Plateau Inflation

    NARCIS (Netherlands)

    Coone, Dries; Roest, Diederik; Vennin, Vincent

    2015-01-01

    In the absence of CMB precision measurements, a Taylor expansion has often been invoked to parametrize the Hubble flow function during inflation. The standard "horizon flow" procedure implicitly relies on this assumption. However, the recent Planck results indicate a strong preference for plateau

  13. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA

    Science.gov (United States)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This picture shows a Hubble Space Telescope image of the inner parts of the Crab. The pulsar itself is visible as the left of the pair of stars near the center of the frame. Surrounding the pulsar is a complex of sharp knots and wisp-like features. This image is one of a sequence of Hubble images taken over the course of several months. This sequence shows that the inner part of the Crab Nebula is far more dynamic than previously understood. The Crab literally 'changes it stripes' every few days as these wisps stream away from the pulsar at half the speed of light. The Hubble Space Telescope photo was taken Nov. 5, 1995 by the Wide Field and Planetary Camera 2 at a wavelength of around 550 nanometers, in the middle of the visible part of the electromagnetic spectrum. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  14. The Hubble Flow of Plateau Inflation

    NARCIS (Netherlands)

    Coone, Dries; Roest, Diederik; Vennin, Vincent

    2015-01-01

    In the absence of CMB precision measurements, a Taylor expansion has often been invoked to parametrize the Hubble flow function during inflation. The standard "horizon flow" procedure implicitly relies on this assumption. However, the recent Planck results indicate a strong preference for plateau in

  15. The Hubble Space Telescope: Problems and Solutions.

    Science.gov (United States)

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  16. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    Science.gov (United States)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  17. Dark Energy and the Hubble Law

    Science.gov (United States)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  18. Local gravitational physics of the Hubble expansion

    CERN Document Server

    Kopeikin, Sergei

    2014-01-01

    We study physical consequences of the Hubble expansion of FLRW manifold on measurement of space, time and light propagation in the local inertial frame. We analyse the solar system radar ranging and Doppler tracking experiments, and time synchronization. FLRW manifold is covered by global coordinates (t,y^i), where t is the cosmic time coinciding with the proper time of the Hubble observers. We introduce local inertial coordinates x^a=(x^0,x^i) in the vicinity of a world line of a Hubble observer with the help of a special conformal transformation. The local inertial metric is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being at rest with respect to the local spatial coordinates x^i. We consider geodesic motion of test particles and notice that the local coordinate time x^0=x^0(t) taken as a parameter along the world line of particle, is a function of the Hubble's observer time t. This function changes smoothly from x^0=t for a particle at rest (observer's c...

  19. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    OpenAIRE

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that red...

  20. Particles, Feynman Diagrams and All That

    Science.gov (United States)

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  1. Hubble Space Telescope Astrometry of the Procyon System

    CERN Document Server

    Bond, Howard E; Schaefer, Gail H; Demarque, Pierre; Girard, Terrence M; Holberg, Jay B; Gudehus, Donald; Mason, Brian D; Kozhurina-Platais, Vera; Burleigh, Matthew R; Barstow, Martin A; Nelan, Edmund P

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is ~2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming ...

  2. HUBBLE SEES A VAST 'CITY' OF STARS

    Science.gov (United States)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  3. Causal diagrams for physical models

    CERN Document Server

    Kinsler, Paul

    2015-01-01

    I present a scheme of drawing causal diagrams based on physically motivated mathematical models expressed in terms of temporal differential equations. They provide a means of better understanding the processes and causal relationships contained within such systems.

  4. The Vela Supernova Remnant

    Science.gov (United States)

    Raymond, John C.

    We wish to obtain both emission and absorption line observations of the Vela Supernova remnant. The filament we wish to study in emission is the brightest filament in the SNR, so it will provide a spectrum twice the quality of any in existence. It is also located at the edge of an unusual bulge in the SNR, and it can be used to test the level of departure from pressure equilibrium in the remnant, which is useful as a test of evaporative models of SNR evolution. The absorption line studies will look for evidence of the drastically unstable behavior of shocks above 150 km/s predicted by Innes and Giddings. Four of the stars studied by Jenkins, Silk and Wallerstein showed marginal evidence for two positive or two negative high velocity components. If these multiple velocity components are confirmed, they support the secondary shock predictions of Innes and Giddings.

  5. Estimation of the Hubble Constant and Constraint on Descriptions of Dark Energy

    CERN Document Server

    Greenhill, Lincoln; Hu, Wayne; Macri, Lucas; Murphy, David; Masters, Karen; Hagiwara, Yoshiaki; Kobayashi, Hideyuki; Murata, Yasuhiro

    2009-01-01

    Joint analysis of Cosmic Microwave Background, Baryon Acoustic Oscillation, and supernova data has enabled precision estimation of cosmological parameters. New programs will push to 1% uncertainty in the dark energy equation of state and tightened constraint on curvature, requiring close attention to systematics. Direct 1% measurement of the Hubble constant (H0) would provide a new constraint. It can be obtained without overlapping systematics directly from recessional velocities and geometric distance estimates for galaxies via the mapping of water maser emission that traces the accretion disks of nuclear black holes. We identify redshifts 0.020.02, out of ~100 known masers. A single-dish discovery survey of >10,000 nuclei (>2500 hours on the GBT) would build a sample of tens of potential distance anchors. Beyond 2020, a high-frequency SKA could provide larger maser samples, enabling estimation of H0 from individually less accurate distances, and possibly without the need for peculiar motion corrections.

  6. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  7. The Diffuse Supernova Neutrino Background

    CERN Document Server

    Beacom, John F

    2010-01-01

    The Diffuse Supernova Neutrino Background (DSNB) is the weak glow of MeV neutrinos and antineutrinos from distant core-collapse supernovae. The DSNB has not been detected yet, but the Super-Kamiokande (SK) 2003 upper limit on the electron antineutrino flux is close to predictions, now quite precise, based on astrophysical data. If SK is modified with dissolved gadolinium to reduce detector backgrounds and increase the energy range for analysis, then it should detect the DSNB at a rate of a few events per year, providing a new probe of supernova neutrino emission and the cosmic core-collapse rate. If the DSNB is not detected, then new physics will be required. Neutrino astronomy, while uniquely powerful, has proven extremely difficult -- only the Sun and the nearby Supernova 1987A have been detected to date -- so the promise of detecting new sources soon is exciting indeed.

  8. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

     Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...

  9. Wind Diagrams in Medieval Iceland

    DEFF Research Database (Denmark)

    Kedwards, Dale

    2014-01-01

    This article presents a study of the sole wind diagram that survives from medieval Iceland, preserved in the encyclopaedic miscellany in Copenhagen's Arnamagnæan Institute with the shelf mark AM 732b 4to (c. 1300-25). It examines the wind diagram and its accompanying text, an excerpt on the winds...... from Isidore of Seville's Etymologies. It also examines the perimeter of winds on two medieval Icelandic world maps, and the visual traditions from which they draw....

  10. Toward a Standard Model of Core Collapse Supernovae

    OpenAIRE

    Mezzacappa, A.

    2000-01-01

    In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.

  11. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  12. The Panchromatic Hubble Andromeda Treasury X. Ultraviolet to Infrared Photometry of 117 Million Equidistant Stars

    CERN Document Server

    Williams, Benjamin F; Dalcanton, Julianne J; Dolphin, Andrew E; Weisz, Daniel R; Bell, Eric F; Bianchi, Luciana; Byler, Eleanor; Gilbert, Karoline M; Girardi, Leo; Gordon, Karl; Gregersen, Dylan; Johnson, L C; Kalirai, Jason; Lauer, Tod R; Monachesi, Antonela; Rosenfield, Philip; Seth, Anil; Skillman, Evan

    2014-01-01

    We have measured stellar photometry with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, we measured photometry with simultaneous point spread function fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 milliarcsecond accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W~28, while in the crowded, high surface brightness bulge, the photometry reaches F475W~25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest resolution filters (WFC3/IR) providing color-magnitude diagrams that are up to 2.5 magnitudes deeper when compared with color-magnitude diagrams from WFC3/IR photometry alone. We pres...

  13. Supernovae and Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    M. Della Valle

    2007-01-01

    Full Text Available Se revisa el estatus observacional de la conexi on Supernova (SN/Estallido de Rayos-Gamma (GRB. Recientes (y no tan recientes observaciones de GRBs largos sugieren que una fracci on signi cativa de ellos (pero no todos est an asociados con supernovas brillantes del tipo Ib/c. Estimaciones actuales de las tasas de producci on de GRBs y SNs dan una raz on para GRB/SNe-Ibc en el rango 0:4%

  14. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  15. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  16. The Extragalactic Distance Database: Color-Magnitude Diagrams

    Science.gov (United States)

    Jacobs, Bradley A.; Rizzi, Luca; Tully, R. Brent; Shaya, Edward J.; Makarov, Dmitry I.; Makarova, Lidia

    2009-08-01

    The color-magnitude diagrams/tip of the red giant branch (CMDs/TRGB) section of the Extragalactic Distance Database contains a compilation of observations of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and increasing) galaxies in the Local Volume have CMDs and the stellar photometry tables used to produce them available through the Web. Various stellar populations that make up a galaxy are visible in the CMDs, but our primary purpose for collecting and analyzing these galaxy images is to measure the TRGB in each. We can estimate the distance to a galaxy by using stars at the TRGB as standard candles. In this paper, we describe the process of constructing the CMDs and make the results available to the public.

  17. Testing Lambda and the Limits of Cosmography with the Union2.1 Supernova Compilation

    Science.gov (United States)

    Bochner, Brett; Pappas, Damon; Dong, Menglu

    2015-11-01

    We present a cosmographic study designed to test the simplest type of accelerating cosmology: a flat universe with matter and a cosmological constant (Λ). Hubble series expansions are fit to the SCP Union2.1 supernova data set to estimate the Hubble Constant (H0), the deceleration parameter (q0), and the jerk parameter (j0). Flat ΛCDM models always require {j}0=1, providing a single-parameter test of the entire paradigm. Because of convergence issues for z≳ 1, we focus on expansions using the newer redshift variable y; and to estimate the effects of “model-building uncertainties”—the dependence of the output results upon the fitting function and parameters used—we perform fits using five different distance indicator functions, and four different polynomial orders. We find that one cannot yet use the supernova data to reliably obtain more than four cosmological parameters; and that cosmographic estimates of j0 remain dominated by model-building uncertainties, in conjunction with statistical and other error sources. While {j}0=1 remains consistent with Union2.1, the most restrictive bound that we can place is {j}0∼ [-7.6,8.5]. To test the future prospects of cosmography with new standard candle data, ensembles of mock supernova data sets are created; and it is found that the best way to reduce model-building uncertainties on lower-order Hubble parameters (such as \\{{H}0,{q}0,{j}0\\}) is by limiting the redshift range of the data. Thus more and better z≲ 1 data, not higher-redshift data, are needed to sharpen cosmographic tests of flat ΛCDM.

  18. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    Science.gov (United States)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  19. The need for accurate redshifts in supernova cosmology

    Science.gov (United States)

    Calcino, Josh; Davis, Tamara

    2017-01-01

    Recent papers have shown that a small systematic redshift shift (Δ z~ 10‑5) in measurements of type Ia supernovae can cause a significant bias (~1%) in the recovery of cosmological parameters. Such a redshift shift could be caused, for example, by a gravitational redshift due to the density of our local environment. The sensitivity of supernova data to redshift shifts means supernovae make excellent probes of inhomogeneities. We therefore invert the analysis, and try to diagnose the nature of our local gravitational environment by fitting for Δ z as an extra free parameter alongside the usual cosmological parameters. Using the Joint Light-curve SN Ia dataset we find the best fit includes a systematic redshift shift of Δ z = (2.6+2.7‑2.8) × 10‑4. This is a larger shift than would be expected due to gravitational redshifts in a standard Λ-Cold Dark Matter universe (though still consistent with zero), and would correspond to a monopole Doppler shift of about 100 km s‑1 moving away from the Milky-Way. However, since most supernova measurements are made to a redshift precision of no better than 10‑3, it is possible that a systematic error smaller than the statistical error remains in the data and is responsible for the shift; or that it is an insignificant statistical fluctuation. We find that when Δ z is included as a free parameter while fitting to the JLA SN Ia data, the constraints on the matter density shifts to Ωm = 0.313+0.042‑0.040, bringing it into better agreement with the CMB cosmological parameter constraints from Planck. A positive Δ z~ 2.6×10‑4 would also cause us to overestimate the supernova measurement of Hubble's constant by Δ H0 ~ 1 kms‑1Mpc‑1. However this overestimation should diminish as one increases the low-redshift cutoff, and this is not seen in the most recent data.

  20. The Axially Symmetric Ejecta of Supernova 1987A

    CERN Document Server

    Wang, L; Höflich, P; Khokhlov, A; Baade, D; Branch, D; Challis, P M; Filippenko, A V; Fransson, C; Garnavich, P M; Kirshner, R P; Lundqvist, P; McCray, R; Panagia, N; Pun, C S J; Phillips, M M; Sonneborn, G; Suntzeff, N B

    2002-01-01

    Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of $^{56}$Ni, and the late-time image, the locus of excitation by $^{44}$Ti, are most naturally accounted for by sharing a common position angle of about 14\\degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45\\degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geo...

  1. Lensed Type Ia Supernovae as Probes of Cluster Mass Models

    CERN Document Server

    Nordin, J; Richard, J; Rykoff, E; Aldering, G; Amanullah, R; Atek, H; Barbary, K; Deustua, S; Fakhouri, H K; Fruchter, A S; Goobar, A; Hook, I; Hsiao, E Y; Huang, X; Kneib, J -P; Lidman, C; Meyers, J; Perlmutter, S; Saunders, C; Spadafora, A L; Suzuki, N

    2013-01-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind massive CLASH clusters (Abell~383, MACSJ1532 and MACSJ1720) observed using the Hubble Space Telescope (HST), we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next generation HST cluster surveys (e.g. FRONTIER) provide magnification maps that will, in turn, form the basis for the exploration of the high redshift universe. We demonstrate that supernovae can be used as "test beams" for this purpose. We use a combination of spectroscopic and photometric methods to classify the SNe and then determine the SN amplification factors using the SALT2/Union2.1 framework. We find SNe with significant amplification, up to a factor of 1.7 at $\\sim5\\sigma$ significance for SN-L2 behind MACSJ1720. We initially conducted this as a blind study to avoid fine tuning of parameters, and there we found a mean amplification dif...

  2. Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae

    CERN Document Server

    Morokuma, Tomoki; Lidman, Christopher; Doi, Mamoru; Yasuda, Naoki; Aldering, Greg; Amanullah, Rahman; Barbary, Kyle; Dawson, Kyle; Fadeyev, Vitaliy; Fakhouri, Hannah K; Goldhaber, Gerson; Goobar, Ariel; Hattori, Takashi; Hayano, Junji; Hook, Isobel M; Howell, D Andrew; Furusawa, Hisanori; Ihara, Yutaka; Kashikawa, Nobunari; Knop, Rob A; Konishi, Kohki; Meyers, Joshua; Oda, Takeshi; Pain, Reynald; Perlmutter, Saul; Rubin, David; Spadafora, Anthony L; Suzuki, Nao; Takanashi, Naohiro; Totani, Tomonori; Utsunomiya, Hiroyuki; Wang, Lifan

    2009-01-01

    We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope (CFHT), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These SN surveys specifically targeted z>1 Type Ia supernovae (SNe Ia). From the spectra of 39 candidates, we obtain redshifts for 32 candidates and spectroscopically identify 7 active candidates as probable SNe Ia, including one at z=1.35, which is the most distant SN Ia to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates are identified as likely SNe Ia from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe Ia, either being SNe of another type or active galactic nuclei. When SNe Ia are observed within a week of maximum light, we find that we can spectroscopically identify most of them up to z=1.1. Beyond...

  3. IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fakhouri, H. K.; Boone, K.; Aldering, G.; Aragon, C.; Bailey, S.; Fagrelius, P. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Fleury, M. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Barbary, K. [Department of Physics, University of California Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300 (United States); Baugh, D.; Chen, J. [Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Buton, C.; Chotard, N.; Copin, Y. [Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, F-69622, Lyon (France); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Feindt, U. [Institut fur Physik, Humboldt-Universitat zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Fouchez, D. [Centre de Physique des Particules de Marseille, Aix-Marseille Université, CNRS/IN2P3, 163 avenue de Luminy—Case 902—F-13288 Marseille Cedex 09 (France); Gangler, E. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Collaboration: Nearby Supernova Factory; and others

    2015-12-10

    We introduce a method for identifying “twin” Type Ia supernovae (SNe Ia) and using them to improve distance measurements. This novel approach to SN Ia standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of SNe, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of SNe with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory SNe to 0.083 ± 0.012 mag, implying a dispersion of 0.072 ± 0.010 mag in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g., using the final SNfactory spectrophotometric data set as a reference, this method will be capable of standardizing high-redshift SNe to within 0.06–0.07 mag. These results imply that at least 3/4 of the variance in Hubble residuals in current SN cosmology analyses is due to previously unaccounted-for astrophysical differences among the SNe.

  4. The Population of Supernova Remnants in M51

    Science.gov (United States)

    Long, Knox S.; Blair, William P.; Kuntz, K. D.; Winkler, P. Frank

    2017-08-01

    The nearby, actively star-forming, nearly face-on spiral galaxy, M51 (NGC 5194/5), has been the site of four supernovae since 1941. As a result it should have a rich population of young supernova remnants (SNRs). Here we describe a search for optical SNRs in M51 among the 298 X-ray sources discovered inside the D25 contour in deep Chandra observations. The search uses interference filter images obtained with the WFC3 on Hubble Space Telescope and more recent images from GMOS on Gemini North. Of 80 emission nebulae identified in the HST images as SNR candidates based on elevated [SII]: Ha ratios compared to HII regions, 40 have X-ray counterparts. The diameters of the SNRs and SNR candidates detected with HST are systematically smaller than seen in SNR populations of other galaxies at comparable distances. However, this is most likely an instrumental effect, which our ongoing analysis of the new GMOS images will correct. At that point, we will be able to make of fair multi-wavelength comparison of the SNR population in M51 with other nearby, actively star-forming spiral galaxies, such as M83 and NGC6946.

  5. Supernova Progenitors, Their Variability, and the Type IIP Supernova ASASSN-16fq in M66

    CERN Document Server

    Kochanek, C S; Adams, S M; Sukhbold, T; Prieto, J L; Muller, T; Bock, G; Brown, J S; Dong, Subo; Holoien, T W -S; Khan, R; Shappee, B J; Stanek, K Z

    2016-01-01

    We identify a pre-explosion counterpart to the nearby Type IIP supernova ASASSN-16fq (SN 2016cok) in archival Hubble Space Telescope (HST) data. The source appears to be a blend of several stars that prevents obtaining accurate photometry. However, with reasonable assumptions about the stellar temperature and extinction, the progenitor almost certainly had an initial mass M<17Msun, and was most likely in the mass range 8-12Msun. Observations once ASASSN-16fq has faded will have no difficulty accurately determining the properties of the progenitor. In 8 years of Large Binocular Telescope (LBT) data, no significant progenitor variability is detected to RMS limits of roughly 0.03 mag. Of the six nearby SN with constraints on low level variability, SN 1987A, SN 1993J, SN 2008cn, SN 2011dh, SN 2013ej and ASASSN-16fq, only the slowly fading progenitor of SN 2011dh showed clear evidence of variability. Excluding SN 1987A, the 90% confidence limit implied by these sources on the number of outbursts over the last d...

  6. The supernova impostor PSN J09132750+7627410 and its progenitor

    CERN Document Server

    Tartaglia, L; Pastorello, A; Benetti, S; Taubenberger, S; Cappellaro, E; Cortini, G; Granata, V; Ishida, E E O; Morales-Garoffolo, A; Noebauer, U M; Ochner, P; Tomasella, L; Zaggia, S

    2016-01-01

    We report the results of our follow-up campaign of the supernova impostor PSN J09132750+7627410, based on optical data covering $\\sim250\\,\\rm{d}$. From the beginning, the transient shows prominent narrow Balmer lines with P-Cygni profiles, with a blue-shifted absorption component becoming more prominent with time. Along the $\\sim3\\,\\rm{months}$ of the spectroscopic monitoring, broad components are never detected in the hydrogen lines, suggesting that these features are produced in slowly expanding material. The transient reaches an absolute magnitude $M_r=-13.60\\pm0.19\\,\\rm{mag}$ at maximum, a typical luminosity for supernova impostors. Amateur astronomers provided $\\sim4\\,\\rm{years}$ of archival observations of the host galaxy, NGC 2748. The detection of the quiescent progenitor star in archival images obtained with the Hubble Space Telescope suggests it to be an $18-20$\\msun white-yellow supergiant.

  7. A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Murphy, Simon J.; Bessell, Michael S. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Simon, Joshua D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeffery, C. Simon [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Anderson, Jay [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Podsiadlowski, Philipp [Department of Astrophysics, University of Oxford, Oxford, OX1 3RH (United Kingdom); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Venn, Kim A. [Department of Physics and Astronomy, University of Victoria, Elliott Building, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Foley, Ryan J., E-mail: wkerzend@mso.anu.edu.au [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-10

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  8. The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant

    CERN Document Server

    Beutler, Florian; Colless, Matthew; Jones, D Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred

    2011-01-01

    We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a Baryon Acoustic Oscillation (BAO) signal. The 6dFGS BAO detection allows us to constrain the distance-redshift relation at z_{\\rm eff} = 0.106. We achieve a distance measure of D_V(z_{\\rm eff}) = 456\\pm27 Mpc and a measurement of the distance ratio, r_s(z_d)/D_V(z_{\\rm eff}) = 0.336\\pm0.015 (4.5% precision), where r_s(z_d) is the sound horizon at the drag epoch z_d. The low effective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H_0 = 67\\pm3.2 km s^{-1} Mpc^{-1} (4.8% precision) that depends only on the WMAP-7 calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H_0 can be used to break the degeneracy between the dark energy equation of state pa...

  9. Constraints on a φCDM model from strong gravitational lensing and updated Hubble parameter measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yun; Geng, Chao-Qiang [Department of Physics, National Tsing Hua University, Hsinchu, 300 Taiwan (China); Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong, E-mail: chenyun@bao.ac.cn, E-mail: geng@phys.nthu.edu.tw, E-mail: caoshuo@bnu.edu.cn, E-mail: huangymei@gmail.com, E-mail: zhuzh@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2015-02-01

    We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.

  10. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  11. Frames of most uniform Hubble flow

    CERN Document Server

    Kraljic, David

    2016-01-01

    It has been observed that the locally measured Hubble parameter converges quickest to the background value and the dipole structure of the velocity field is smallest in the reference frame of the Local Group of galaxies. We study the statistical properties of Lorentz boosts with respect to the Cosmic Microwave Background frame which make the Hubble flow look most uniform around a particular observer. We use a very large N-Body simulation to extract the dependence of the boost velocities on the local environment such as underdensities, overdensities, and bulk flows. We find that the observation is not unexpected if we are located in an underdensity, which is indeed the case for our position in the universe. The amplitude of the measured boost velocity for our location is consistent with the expectation in the standard cosmology.

  12. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  13. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C.; Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Förster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, José Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s{sup –1} for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M {sub ☉}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  14. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  15. Hubble space telescope onboard battery performance

    Science.gov (United States)

    Rao, Gopalakrishna M.; Wajsgras, Harry; Vaidyanathan, Hari; Armontrout, Jon D.

    1996-01-01

    The performance of six 88 Ah Nickel-Hydrogen (Ni-H2) batteries that are used onboard in the Hubble Space Telescope (Flight Spare Module (FSM) and Flight Module 2 (FM2)) is discussed. These batteries have 22 series cells per battery and a common bus that would enable them to operate at a common voltage. It is launched on April 24, 1990. This paper reviews: the cell design, battery specification, system constraints, operating parameters, onboard battery management, and battery performance.

  16. Perfect orderings on Bratteli diagrams

    CERN Document Server

    Bezuglyi, Sergey; Yassawi, Reem

    2012-01-01

    Given a Bratteli diagram B, we study the set O(B) of all possible orderings w on a Bratteli diagram B and its subset P(B) consisting of `perfect' orderings that produce Bratteli-Vershik dynamical systems (Vershik maps). We give necessary and sufficient conditions for w to be perfect. On the other hand, a wide class of non-simple Bratteli diagrams that do not admit Vershik maps is explicitly described. In the case of finite rank Bratteli diagrams, we show that the existence of perfect orderings with a prescribed number of extreme paths affects significantly the values of the entries of the incidence matrices and the structure of the diagram B. Endowing the set O(B) with product measure, we prove that there is some j such that almost all orderings on B have j maximal and minimal paths, and that if j is strictly greater than the number of minimal components that B has, then almost all orderings are imperfect.

  17. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    CERN Document Server

    Barbary, K; Tokita, K; Aldering, G; Amanullah, R; Connolly, N V; Doi, M; Faccioli, L; Fadeev, V; Fruchter, A S; Goldhaber, G; Goobar, A; Gude, A; Huang, X; Ihara, Y; Konishi, K; Kowalski, M; Lidman, C; Meyers, J; Morokuma, T; Nugent, P; Perlmutter, S; Rubin, D; Schlegel, D; Spadafora, A L; Suzuki, N; Swift, H K; Takanashi, N; Thomas, R C; Yasuda, N; Project, for the Supernova Cosmology

    2008-01-01

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~100 days, reached a peak magnitude of ~21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  18. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    The Supernova Cosmology Project; Barbary, Kyle; Dawson, Kyle S.; Tokita, Kouichi; Aldering, Greg; Amanullah, Rahman; Connolly, Natalia V.; Doi, Mamoru; Faccioli, Lorenzo; Fadeyev, Vitaliy; Fruchter, Andrew S.; Goldhaber, Gerson; Goobar, Ariel; Gude, Alexander; Huang, Xiaosheng; Ihara, Yutaka; Konishi, Kohki; Kowalski, Marek; Lidman, Chris; Meyers, Josh; Morokuma, Tomoki; Nugent, Peter; Perlmutter, Saul; Rubin, David; Schlegel, David; Spadafora, Anthony L.; Suzuki, Nao; Swift, Hannah K.; Takanashi, Naohiro; Thomas, Rollin C.; Yasuda, Naoki

    2008-09-08

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  19. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    The Supernova Cosmology Project; Barbary, Kyle; Dawson, Kyle S.; Tokita, Kouichi; Aldering, Greg; Amanullah, Rahman; Connolly, Natalia V.; Doi, Mamoru; Faccioli, Lorenzo; Fadeyev, Vitaliy; Fruchter, Andrew S.; Goldhaber, Gerson; Goobar, Ariel; Gude, Alexander; Huang, Xiaosheng; Ihara, Yutaka; Konishi, Kohki; Kowalski, Marek; Lidman, Chris; Meyers, Josh; Morokuma, Tomoki; Nugent, Peter; Perlmutter, Saul; Rubin, David; Schlegel, David; Spadafora, Anthony L.; Suzuki, Nao; Swift, Hannah K.; Takanashi, Naohiro; Thomas, Rollin C.; Yasuda, Naoki

    2008-09-08

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  20. CHP-II: The Carnegie Hubble Program to Measure Ho to 3% Using Population II

    Science.gov (United States)

    Rich, Jeffrey; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Scowcroft, Victoria; Beaton, Rachael; Kollmeier, Juna A.; Seibert, Mark; Bono, Giuseppe; Clementini, Gisella; Yang, Soung-Chul; Lee, Myung Gyoon; Jang, In Sung

    2015-01-01

    There has been great progress in the measurement of cosmological parameters in recent years, but controversy has arisen over the Planck/WMAP versus the direct measurement of the Hubble constant. The goal of our Carnegie Hubble Program (CHP) is to obtain a direct measure of Ho to 3%. In CHP I, we used Cepheid variables to calibrate the extragalactic distance scale. In the second phase, CHP II, we are establishing a completely independent route to Ho using RR Lyrae variables, the tip of the red giant branch (TRGB) and Type Ia supernovae (SNe Ia). Not only is the RR Lyrae route independent of the Cepheids, but its PL relation has a scatter that is a factor of 2 smaller. Unlike the Cepheids, the RR Lyrae / TRGB distance scale can be applied to both elliptical and spiral galaxies. This is a great systematic advantage, given the small number of galaxies (9 in total) close enough to have measured Cepheid calibrators within the SNIa hosts. By providing a new calibration using a Pop II distance scale, we will immediately double the number of SN Ia distances based on geometry, linking to over 200 SNe in the pure Hubble flow out to z = 0.7. Four calibrators containing both Cepheids and TRGB stars provide an important cross-check on systematics. Initially, the accuracy of our value of Ho will be set by four galactic RR Lyrae calibrators with HST/FGS parallaxes. With Gaia, both the RR Lyrae zero point and TRGB method will be independently calibrated with at least an order of magnitude more calibrators, each having precisions of 1% or better. This will allow the highest accuracy measurement of Ho to date using the "Distance Ladder" method.

  1. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; /KIPAC, Menlo Park /SLAC; Hicken, Malcolm; /Harvard-Smithsonian Ctr. Astrophys.; Burke, David L.; /KIPAC, Menlo Park /SLAC; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  2. Improving modeling with layered UML diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Layered diagrams are diagrams whose elements are organized into sets of layers. Layered diagrams are routinely used in many branches of engineering, except Software Engineering. In this paper, we propose to add layered diagrams to UML modeling tools, and elaborate the concept by exploring usage...

  3. Three gravitationally lensed supernovae behind clash galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Merten, Julian [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, Pasadena, CA 91109 (United States); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Postman, Marc; Coe, Dan; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Institut für Theoretische Astrophysik, Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Balestra, Italo [INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), Camino Bajo de Huétor 24, E-18008 Granada (Spain); Bouwens, Rychard [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Broadhurst, Tom, E-mail: bpatel02@physics.rutgers.edu [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); and others

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  4. Light-echo spectroscopy of historic Supernovae

    Science.gov (United States)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  5. Nonabelian cut diagrams and their applications

    CERN Document Server

    Lam, C S

    1996-01-01

    A new kind of cut diagram is introduced to sum Feynman diagrams with nonabelian vertices. Unlike the Cutkosky diagrams which compute the discontinuity of single Feynman diagrams, the nonabelian cut diagrams represent a resummation of both the real and the imaginary parts of Feynman diagrams related by permutations. Several applications of the technique are reported, including a resolution of the apparent inconsistency of the baryon problem in large-N_c QCD, a simplified calculation of high-energy low-order QCD diagrams, and progress made with this technique on the unitarization of the BFKL equation.

  6. Visualizing spacetimes via embedding diagrams

    CERN Document Server

    Hledik, Stanislav; Cipko, Alois

    2016-01-01

    It is hard to imagine curved spacetimes of General Relativity. A simple but powerful way how to achieve this is visualizing them via embedding diagrams of both ordinary geometry and optical reference geometry. They facilitate to gain an intuitive insight into the gravitational field rendered into a curved spacetime, and to assess the influence of parameters like electric charge and spin of a black hole, magnetic field or cosmological constant. Optical reference geometry and related inertial forces and their relationship to embedding diagrams are particularly useful for investigation of test particles motion. Embedding diagrams of static and spherically symmetric, or stationary and axially symmetric black-hole and naked-singularity spacetimes thus present a useful concept for intuitive understanding of these spacetimes' nature. We concentrate on general way of embedding into 3-dimensional Euclidean space, and give a set of illustrative examples.

  7. Supernova Physics at DUNE

    CERN Document Server

    Ankowski, Artur; Benhar, Omar; Chen, Sun; Cherry, John; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu

    2016-01-01

    The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE's potential to reconstruct low-energy particles in the 10-100 MeV energy range will bring significant benefits for all DUNE's science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE's long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE's far detectors the world's best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star's central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to `boosted dark matter' models that are not observable in traditional direc...

  8. A Supernova's Shockwaves

    Science.gov (United States)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them. This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains. In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight. N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud. In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  9. The Shape of Superluminous Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  10. Supernova Remnant Progenitor Masses in M31

    CERN Document Server

    Jennings, Zachary G; Murphy, Jeremiah W; Dalcanton, Julianne J; Gilbert, Karoline M; Dolphin, Andrew E; Fouesneau, Morgan; Weisz, Daniel R

    2012-01-01

    Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped ...

  11. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble

  12. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    Science.gov (United States)

    Senchyna, Peter; Johnson, L. Clifton; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F.; Rosenfield, Philip; Larsen, Søren S.

    2015-11-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the Hubble Space Telescope (HST) catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 mag offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single-age stellar population fits to their color-magnitude diagrams excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  13. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    to reach the telescope, had indeed passed through helium, and not only that, the helium was of just the right variety to match the established theory. Dr Jakobsen has spent more than 20 years working on this subject. His recent efforts concentrated on seeking out a quasar unobscured by clouds of hydrogen, which block the tell-tale signature of helium. His search drew him to the Space Telescope project and during the telescope's early years in orbit he studied 25 likely quasars and found one promising candidate. Dr Jacobsen then had to wait for the telescope's new optics before he could get the quality of data he needed to prove the existence of helium. "We were looking for a break in the cloud cover, so to speak," the astronomer said. "We had a tantalising glimpse of the quasar with the aberrated telescope but it was only after we fixed it that we could really get a clear answer. One of the first things that we did once we had the corrective optics in place was look at this object and it was exactly as we'd hoped." Getting the Universe to measure up When it comes to studying the expansion of the Universe, however, the telescope has raised morn; questions than answers. By determining how fast the Universe is expanding astronomers will be able to calculate its age and size. It may then become possible to discover what is the ultimate fate of the Universe; will it simply continue to expand until it evaporates? Will the expansion come to a complete stop? Or will the Universe stop expanding, start contracting and end in a "big crunch"? The rate at which the Universe expands is known as the Hubble Constant or H0. To measure this value, astronomers need to calculate how far away a galaxy is and how fast it is moving away from us. The former is difficult to determine because reliable distance indicators, sometimes known as "cosmic yardsticks ", such as variable stars and supernovae, must be found in the galaxies. An international team of astronomers recently used the Hubble

  14. Featured Image: Modeling Supernova Remnants

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  15. Standardization of type Ia supernovae

    CERN Document Server

    Coelho, Rodrigo C V; Reis, Ribamar R R; Siffert, Beatriz B

    2014-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to its great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded for the discovery of the accelerating expansion of the Universe through observations of distant supernovae. This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fi?tter, the stretch, applying it to real data from the Carnegie Supernova Project.

  16. Dynamics of Kepler's supernova remnant

    Science.gov (United States)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  17. Late-Time Photometry of Type Ia Supernova SN2012cg Reveals the Radioactive Decay of $^{57}$Co

    CERN Document Server

    Graur, Or; Shara, Michael M; Riess, Adam G

    2015-01-01

    Seitenzahl et al. (2009) have predicted that $\\sim 3$ years after its explosion, the light we receive from a Type Ia supernova will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain $^{57}{\\rm Co}~\\to~^{57}{\\rm Fe}$, instead of positrons from the decay chain $^{56}{\\rm Co}~\\to~^{56}{\\rm Fe}$ that dominates the supernova light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the Type Ia supernova SN2012cg out to $1055$ days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of $^{57}$Co. This provides conclusive evidence that $^{57}$Co is produced in Type Ia supernova explosions. The ratio of luminosities produced by the decays of $^{57}$Co and $^{56}$Co, a strong constraint on any Type Ia supernova explosion model, is in the range $(0.4$ - $8.5)\\times10^{-3}$.

  18. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  19. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...

  20. Electrical elementary diagrams and operators

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.K. [Human Factors Practical Inc., Dipper Harbour, New Brunswick (Canada)]. E-mail: HumanFactors@netscape.ca

    2005-07-01

    After 40 years of reading and interrupting electrical elementary logic drawings, I have concluded that we need to make a change. We need to write and express our nuclear power plant logic in some other language than relay ladder logic, solid state logic or computer mnemonics. The language should be English, or your native language, and the format should be Descriptive Block Diagrams. (author)

  1. The diagram for phyllotactic series

    Directory of Open Access Journals (Sweden)

    Joanna Szymanowska-Pułka

    2014-01-01

    Full Text Available Many authors studying phyllotaxis in various plant species have reported the occurrence of many different numbers of contact parastichy pairs that are members of different Fibonacci-like series. On the basis of these reports a diagram was constructed in which any theoretically possible series was represented by the two first members of a given series.

  2. BIHOURLY DIAGRAMS OF FORBUSH DECREASES

    Science.gov (United States)

    Bihourly diagrams were made of Forbush decreases of cosmic ray intensity as observed at Uppsala from 31 Aug 56 to 31 Dec 59, at Kiruna from Nov 56 to 31 Dec 59, and at Murchison Bay from 26 Aug 57 to 30 Apr 59. (Author)

  3. Phase diagram of Hertzian spheres

    NARCIS (Netherlands)

    Pàmies, J.C.; Cacciuto, A.; Frenkel, D.

    2009-01-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of wea

  4. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...

  5. Multi-currency Influence Diagrams

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn V.

    2007-01-01

    When using the influence diagrams framework for solving a decision problem with several different quantitative utilities, the traditional approach has been to convert the utilities into one common currency. This conversion is carried out using a tacit transformation, under the assumption that the...

  6. Multi-currency Influence Diagrams

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2004-01-01

    that the converted problem is equivalent to the original one. In this paper we present an extension of the Influence Diagram framework, which allows for these decision problems to be modelled in their original form. We present an algorithm that, given a conversion function between the currencies, discovers...

  7. Software Based Supernova Recognition

    Science.gov (United States)

    Walters, Stephen M.

    2014-05-01

    This paper describes software for detecting Supernova (SN) in images. The software can operate in real-time to discover SN while data is being collected so the instrumentation can immediately be re-tasked to perform spectroscopy or photometry of a discovery. Because the instrumentation captures two images per minute, the realtime budget is constrained to 30 seconds per target, a challenging goal. Using a set of two to four images, the program creates a "Reference" (REF) image and a "New" (NEW) image where all images are used in both NEW and REF but any SN survives the combination process only in the NEW image. This process produces good quality images having similar noise characteristics but without artifacts that might be interpreted as SN. The images are then adjusted for seeing and brightness differences using a variant of Tomaney and Crotts method of Point Spread Function (PSF) matching after which REF is subtracted from NEW to produce a Difference (DIF) image. A Classifier is then trained on a grid of artificial SN to estimate the statistical properties of four attributes and used in a process to mask false positives that can be clearly identified as such. Further training to avoid any remaining false positives sets the range, in standard deviations for each attribute, that the Classifier will accept as a valid SN. This training enables the Classifier to discriminate between SN and most subtraction residue. Lastly, the DIF image is scanned and measured by the Classifier to find locations where all four properties fall within their acceptance ranges. If multiple locations are found, the one best conforming to the training estimates is chosen. This location is then declared as a Candidate SN, the instrumentation re-tasked and the operator notified.

  8. Dust around Type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  9. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  10. HUBBLE SPACE TELESCOPE ASTROMETRY OF THE PROCYON SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gilliland, Ronald L.; Kozhurina-Platais, Vera; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Demarque, Pierre; Girard, Terrence M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520 (United States); Holberg, Jay B. [Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721 (United States); Gudehus, Donald [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Mason, Brian D. [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC 20392 (United States); Burleigh, Matthew R.; Barstow, Martin A., E-mail: heb11@psu.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-11-10

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 ± 0.012 M{sub ⊙} and 0.592 ± 0.006 M{sub ⊙} for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A’s age is ∼2.7 Gyr. Procyon B’s location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass–radius plane is also consistent with theory, assuming a carbon–oxygen core and a helium-dominated atmosphere. Its progenitor’s mass was 1.9–2.2 M{sub ⊙}, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ∼5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (∼0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  11. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  12. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    CERN Document Server

    Chen, Ke-Jung; Sukhbold, Tuguldur

    2016-01-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g...

  13. Hubble Deep Fever A faint galaxy diagnosis

    CERN Document Server

    Driver, S P

    1998-01-01

    The longstanding faint blue galaxy problem is gradually subsiding as a result of technological advancement, most notably from high-resolution Hubble Space Telescope imaging. In particular two categorical facts have recently been established, these are: 1) The excess faint blue galaxies are of irregular morphologies, and, 2) the majority of these irregulars occur at redshifts 1 2. Taking these facts together we favour a scenario where the faint blue excess is primarily due to the formation epoch of spiral systems via merging at redshifts 1 < z < 2. The final interpretation now awaits refinements in our understanding of the local galaxy population !

  14. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  15. Hubble Parameter Corrected Interactions in Cosmology

    Directory of Open Access Journals (Sweden)

    J. Sadeghi

    2014-01-01

    character opening a room for different kinds of manipulations. In this paper we will consider a modification of an interaction Q, where we accept that interaction parameter b1 (order of unity in Q=3Hb1ρ is time dependent and presented as a linear function of Hubble parameter H of the form b0+btH, where b and b0 are constants. We consider two different models including modified Chaplygin gas and polytropic gas which have bulk viscosity. Then, we investigate problem numerically and analyze behavior of different cosmological parameters concerning fluids and behavior of the universe.

  16. Are Supernovae Recorded in Indigenous Astronomical Traditions?

    CERN Document Server

    Hamacher, Duane W

    2014-01-01

    Novae and supernovae are rare astronomical events that would have had an influence on the sky-watching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral and material culture, and claims from around the world are discussed to determine if they meet these criteria. Australian Aboriginal traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Indigenous traditions, and an account of a nova in Aboriginal traditions has been confirmed, there are currently no confirmed accounts of supernovae in Indigenous oral or material traditions.

  17. Hubble Unveils Colorful and Turbulent Star-Birth Region on 100,000th Orbit Milestone

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for orientation annotation In commemoration of NASA's Hubble Space Telescope completing its 100,000th orbit in its 18th year of exploration and discovery, scientists at the Space Telescope Science Institute in Baltimore, Md., have aimed Hubble totake a snapshot of a dazzling region of celestial birth and renewal. Hubble peered into a small portion of the nebula near the star cluster NGC 2074 (upper, left). The region is a firestorm of raw stellar creation, perhaps triggered by a nearby supernova explosion. It lies about 170,000 light-years away near the Tarantula nebula, one of the most active star-forming regions in our Local Group of galaxies. The three-dimensional-looking image reveals dramatic ridges and valleys of dust, serpent-head 'pillars of creation,' and gaseous filaments glowing fiercely under torrential ultraviolet radiation. The region is on the edge of a dark molecular cloud that is an incubator for the birth of new stars. The high-energy radiation blazing out from clusters of hot young stars already born in NGC 2074 is sculpting the wall of the nebula by slowly eroding it away. Another young cluster may be hidden beneath a circle of brilliant blue gas at center, bottom. In this approximately 100-light-year-wide fantasy-like landscape, dark towers of dust rise above a glowing wall of gases on the surface of the molecular cloud. The seahorse-shaped pillar at lower, right is approximately 20 light-years long, roughly four times the distance between our Sun and the nearest star, Alpha Centauri. The region is in the Large Magellanic Cloud (LMC), a satellite of our Milky Way galaxy. It is a fascinating laboratory for observing star-formation regions and their evolution. Dwarf galaxies like the LMC are considered to be the primitive building blocks of larger galaxies. This representative color image was taken on August 10, 2008, with Hubble's Wide Field Planetary Camera 2. Red shows emission

  18. Hubble Unveils Colorful and Turbulent Star-Birth Region on 100,000th Orbit Milestone

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for orientation annotation In commemoration of NASA's Hubble Space Telescope completing its 100,000th orbit in its 18th year of exploration and discovery, scientists at the Space Telescope Science Institute in Baltimore, Md., have aimed Hubble totake a snapshot of a dazzling region of celestial birth and renewal. Hubble peered into a small portion of the nebula near the star cluster NGC 2074 (upper, left). The region is a firestorm of raw stellar creation, perhaps triggered by a nearby supernova explosion. It lies about 170,000 light-years away near the Tarantula nebula, one of the most active star-forming regions in our Local Group of galaxies. The three-dimensional-looking image reveals dramatic ridges and valleys of dust, serpent-head 'pillars of creation,' and gaseous filaments glowing fiercely under torrential ultraviolet radiation. The region is on the edge of a dark molecular cloud that is an incubator for the birth of new stars. The high-energy radiation blazing out from clusters of hot young stars already born in NGC 2074 is sculpting the wall of the nebula by slowly eroding it away. Another young cluster may be hidden beneath a circle of brilliant blue gas at center, bottom. In this approximately 100-light-year-wide fantasy-like landscape, dark towers of dust rise above a glowing wall of gases on the surface of the molecular cloud. The seahorse-shaped pillar at lower, right is approximately 20 light-years long, roughly four times the distance between our Sun and the nearest star, Alpha Centauri. The region is in the Large Magellanic Cloud (LMC), a satellite of our Milky Way galaxy. It is a fascinating laboratory for observing star-formation regions and their evolution. Dwarf galaxies like the LMC are considered to be the primitive building blocks of larger galaxies. This representative color image was taken on August 10, 2008, with Hubble's Wide Field Planetary Camera 2. Red shows emission

  19. Interpreting the strongly lensed supernova iPTF16geu: time delay predictions, microlensing, and lensing rates

    CERN Document Server

    More, Anupreeta; Oguri, Masamune; More, Surhud; Lee, Chien-Hsiu

    2016-01-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well-known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the {\\it Hubble Space Telescope} F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hours reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. Howev...

  20. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Science.gov (United States)

    More, Anupreeta; Suyu, Sherry H.; Oguri, Masamune; More, Surhud; Lee, Chien-Hsiu

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  1. The Carnegie Supernova Project: Light-curve Fitting with SNooPy

    Science.gov (United States)

    Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  2. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  3. The Supernova - A Stellar Spectacle.

    Science.gov (United States)

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  4. Strange matter, detonations and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E.; Vucetich, H.

    1989-01-01

    The authors present a possible scenario driven by QCD deconfinement in a high density nuclear matter medium. Some expected consequences for type II supernovae explosions are also given, particularly, the output energy that might be enough to account for the observed events.

  5. The Standardized Candle Method for Type II Plateau Supernovae

    Science.gov (United States)

    Olivares E., Felipe; Hamuy, Mario; Pignata, Giuliano; Maza, José; Bersten, Melina; Phillips, Mark M.; Suntzeff, Nicholas B.; Filippenko, Alexei V.; Morrel, Nidia I.; Kirshner, Robert P.; Matheson, Thomas

    2010-06-01

    In this paper, we study the "standardized candle method" using a sample of 37 nearby (redshift z color curves, and velocity curves. We find that the V-I color toward the end of the plateau can be used to estimate the host-galaxy reddening with a precision of σ(AV ) = 0.2 mag. The correlation between plateau luminosity and expansion velocity previously reported in the literature is recovered. Using this relation and assuming a standard reddening law (RV = 3.1), we obtain Hubble diagrams (HDs) in the BVI bands with dispersions of ~0.4 mag. Allowing RV to vary and minimizing the spread in the HDs, we obtain a dispersion range of 0.25-0.30 mag, which implies that these objects can deliver relative distances with precisions of 12%-14%. The resulting best-fit value of RV is 1.4 ± 0.1.

  6. Globular Cluster Systems along the Hubble Sequence

    Science.gov (United States)

    Huizinga, Edwin

    1996-07-01

    Globular Cluster Systems {GCSs} provide a powerful tool to differentiate between competing galaxy formation- and evolution scenarios. However, our current knowledge of GCS in spiral galaxies is based mainly on studies of the Galaxy and M31. Even though GCSs have been detected in other spiral galaxies, ground-based observations barely reach the peak of the Globular-Cluster luminosity function, and do not provide accurate colors. We propose a systematic study of the GCSs in 6 edge-on L* spiral galaxies beyond the Local Group, using WFPC2. These galaxies were carefully selected to meet several stringent criteria. With the new dithering techniques, it will be possible to resolve any faint background galaxies and obtain a clean sample of globular clusters for all galaxies in our sample. This will allow us to study the complete luminosity functions, {V-I} color distributions, and GCS richness for L* galaxies as a function of Hubble type {Sa, Sb, Sc}. These data will be used to study the relations between the galaxies' bulge and {thin/thick} disk properties and their GCSs. If, for example, GCS properties correlate with bulge properties, this will rule out any strong evolution along the Hubble Sequence towards earlier type spirals, from Sc to Sa, as has recently been proposed by Pfenniger et al. {1994}.

  7. Inverse Hubble Flows in Molecular Clouds

    CERN Document Server

    Toalá, Jesús A; Colín, Pedro; Gómez, Gilberto C

    2014-01-01

    Motivated by recent numerical simulations of molecular cloud (MC)evolution, in which the clouds engage in global gravitational contraction, and local collapse events culminate significantly earlier than the global collapse, we investigate the growth of density perturbations embedded in a collapsing background, to which we refer as an Inverse Hubble Flow (IHF). We use the standard procedure for the growth of perturbations in a universe that first expands (the usual Hubble Flow) and then recollapses (the IHF). We find that linear density perturbations immersed in an IHF grow faster than perturbations evolving in a static background (the standard Jeans analysis). A fundamental distinction between the two regimes is that, in the Jeans case, the time $\\tau_\\mathrm{nl}$ for a density fluctuation to become nonlinear increases without limit as its initial value approaches zero, while in the IHF case $\\tau_\\mathrm{nl} \\le \\tau_\\mathrm{ff}$ always, where $\\tau_\\mathrm{ff}$ is the free-fall time of the background densit...

  8. Hero's journey in bifurcation diagram

    Science.gov (United States)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  9. Anatomy of geodesic Witten diagrams

    Science.gov (United States)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2017-05-01

    We revisit the so-called "Geodesic Witten Diagrams" (GWDs) [1], proposed to be the holographic dual configuration of scalar conformal partial waves, from the perspectives of CFT operator product expansions. To this end, we explicitly consider three point GWDs which are natural building blocks of all possible four point GWDs, discuss their gluing procedure through integration over spectral parameter, and this leads us to a direct identification with the integral representation of CFT conformal partial waves. As a main application of this general construction, we consider the holographic dual of the conformal partial waves for external primary operators with spins. Moreover, we consider the closely related "split representation" for the bulk to bulk spinning propagator, to demonstrate how ordinary scalar Witten diagram with arbitrary spin exchange, can be systematically decomposed into scalar GWDs. We also discuss how to generalize to spinning cases.

  10. HUBBLE SNAPSHOT CAPTURES LIFE CYCLE OF STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a nearly face-on view of a swirling disk of dust and gas surrounding a developing star called AB Aurigae. The Hubble telescope image, taken in visible light by the Space Telescope Imaging Spectrograph, shows unprecedented detail in the disk, including clumps of dust and gas that may be the seeds of planet formation. Normally, a young star's bright light prevents astronomers from seeing material closer to it. That's why astronomers used a coronograph in these two images of AB Aurigae to block most of the light from the star. The rest of the disk material is illuminated by light reflected from the gas and dust surrounding the star. The image on the left represents the best ground-based coronographic observation of AB Aurigae. Paul Kalas of the Space Telescope Science Institute took the image with the University of Hawaii's 2.2-meter telescope. The telescope's coronograph eclipsed a 33.5-billion-mile (53.6-billion-kilometer) area centered on the star. This area is nine times larger than our solar system. The picture shows that the star resides in a region of dust clouds - the semicircular-shaped material to the left of the star. The Hubble telescope image on the right shows a windowpane-shaped occulting bar -- the dark bands running vertically through the middle of the image and horizontally across the upper part of it. The occulting bar covers the innermost part of the disk and star, about 7.1 billion miles (11.5 billion kilometers) or 1.4 times our solar system's diameter. The diagonal lines are the remnants of the diffraction spikes produced in Hubble telescope images of bright stars. The disk is extremely wide: its diameter is roughly 1,300 times Earth's distance from the Sun. The disk material seen in this image is at a distance equivalent to well beyond Pluto's orbit. One faint background star is visible at 5 o'clock. The star's disk shows a wealth of structure, with bright spiral-shaped bands from 9 o'clock to 6 o

  11. Reliability computation from reliability block diagrams

    Science.gov (United States)

    Chelson, P. O.; Eckstein, E. Y.

    1975-01-01

    Computer program computes system reliability for very general class of reliability block diagrams. Four factors are considered in calculating probability of system success: active block redundancy, standby block redundancy, partial redundancy, and presence of equivalent blocks in the diagram.

  12. Phase diagram of crushed powders

    Science.gov (United States)

    Bodard, Sébastien; Jalbaud, Olivier; Saurel, Richard; Burtschell, Yves; Lapebie, Emmanuel

    2016-12-01

    Compression of monodisperse powder samples in quasistatic conditions is addressed in a pressure range such that particles fragmentation occurs while the solid remains incompressible (typical pressure range of 1-300 MPa for glass powders). For a granular bed made of particles of given size, the existence of three stages is observed during compression and crush up. First, classical compression occurs and the pressure of the granular bed increases along a characteristic curve as the volume decreases. Then, a critical pressure is reached for which fragmentation begins. During the fragmentation process, the granular pressure stays constant in a given volume range. At the end of this second stage, 20%-50% of initial grains are reduced to finer particles, depending on the initial size. Then the compression undergoes the third stage and the pressure increases along another characteristic curve, in the absence of extra fragmentation. The present paper analyses the analogies between the phase transition in liquid-vapour systems and powder compression with crush-up. Fragmentation diagram for a soda lime glass is determined by experimental means. The analogues of the saturation pressure and latent heat of phase change are determined. Two thermodynamic models are then examined to represent the crush-up diagram. The first one uses piecewise functions while the second one is of van der Waals type. Both equations of state relate granular pressure, solid volume fraction, and initial particle diameter. The piecewise functions approach provides reasonable representations of the phase diagram while the van der Waals one fails.

  13. Scheil-Gulliver Constituent Diagrams

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-03-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  14. Astronauts give Hubble a new lease of life

    Science.gov (United States)

    Banks, Michael

    2009-06-01

    Astronauts successfully repaired and upgraded the Hubble Space Telescope last month by performing five space walks each lasting more than six hours. The mission will improve Hubble's "observational power" by up to a factor of 100. The upgrade will also enable the 19-year-old instrument to carry on obtaining images of the early universe until 2014.

  15. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates...

  16. Panchromatic Hubble Andromeda Treasury XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    CERN Document Server

    Johnson, L Clifton; Dalcanton, Julianne J; Beerman, Lori C; Fouesneau, Morgan; Lewis, Alexia R; Weisz, Daniel R; Williams, Benjamin F; Bell, Eric F; Dolphin, Andrew E; Larsen, Søren S; Sandstrom, Karin; Skillman, Evan D

    2016-01-01

    We use the Panchromatic Hubble Andromeda Treasury (PHAT) survey dataset to perform spatially resolved measurements of star cluster formation efficiency ($\\Gamma$), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda's cluster and field populations over the last $\\sim$300 Myr. We measure $\\Gamma$ of 4-8% for young, 10-100 Myr old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These $\\Gamma$ measurements expand the range of well-studied galactic environments, providing precise constraints in an HI-dominated, low intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where $\\Gamma$ increases with increasing star formation r...

  17. Hubble Space Telescope: Snapshot Survey for Resolved Companions of Galactic Cepheids

    CERN Document Server

    Evans, Nancy Remage; Schaefer, Gail H; Mason, Brian D; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-01-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera~3 (WFC3) of 70 Galactic Cepheids, typically within 1~kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color--magnitude diagrams, and having separations $\\geq$5$"$ from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3\\% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K\

  18. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions

    CERN Document Server

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent data sets accumulated on young, ejecta dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I will review the most relevant results on supernova remnants obtained during the first...

  19. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  20. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…