WorldWideScience

Sample records for superluminescent diode sld

  1. The effect of proton radiation on a superluminescent diode (SLD)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M. [Optoelectronics R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)]. E-mail: miaozhao@mail.semi.ac.cn; Tan, M.Q. [Optoelectronics R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China); Wu, X.M. [Optoelectronics R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China); Sun, M.X. [Optoelectronics R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)

    2007-07-15

    The effect of proton radiation on a superluminescent diode (SLD) was studied, and the radiation damage from different energies was compared. The results reveal that the optical power degradation is greater from 350 KeV protons than from 1 MeV protons. Analysis of SLD characteristics after irradiation shows that the main effect of radiation is damage within the active region. At the same time, the results also show that quantum-well (QW) SLDs are far less sensitive to radiation than double-heterojunction (DH) SLDs.

  2. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  3. Quantum noise in superluminescent diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yuvek, A.M.; Taylor, H.F.; Goldberg, L.; Weller, J.F.; Dandridge, A.

    1986-04-01

    Intensity noise in a superluminescent diode (SLD) has been studied over the frequency range from 100 Hz to 2 MHz. The ''1/F'' noise which dominates at low frequencies (<59 kHz) is superceded by a flat ''white noise'' spectrum at higher frequencies (> 500 5Hz). A more extensive investigation has been carried out in this higher frequency regime, where the intensity noise is assumed to result from quantum fluctuation effects. For a given SLD driving current, the excess noise power is found to be a linear function of photodetector current to the maximum observed level of 12 db. These results agree well with the behavior predicted by a quantum amplifier model for the SLD.

  4. 1.3μm Superluminescence Diode with Butterfly Package for Fiber Gyroscope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superluminescence diode(SLD) modules with wide spectrum characteristics are required in fiber gyroscopes. A 1.3μm butterfly packaged superluminescence diode with the spectrum width over 30nm is reported and recent advances in process of SLD is described in the paper. The SLD modules have been applied to fiber gyroscopes.

  5. Angled stripe superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, L.; Morrison, C.B.; Zinkiewicz, L.M.; Niesen, J.W.

    1989-08-08

    This patent describes a superluminescent light-emitting diode device having high power output and high spectral bandwidth. The device comprising: a semiconductor structure including at least one channel region formed in a semiconductor substrate and filled with a first semiconductor cladding layer of material having a higher index of refraction than substrate material outside the channel region, to provide lateral index-guiding of light within the channel region. The semiconductor structure also including a second semiconductor cladding layer of opposite conductivity type to the first, an active semiconductor layer at a junction between the first and second semiconductor cladding layers, and at least one emitting facet formed at a channel end; means for applying an electrical forward-bias voltage across the junction to produce emission of light; and wherein the channel is slightly inclined to a direction normal to the facet, to suppress lasing within the device, which can then operated at high powers and a broad spectral width.

  6. Superluminescent Diode Light Sources for OCT

    Science.gov (United States)

    Shidlovski, Vladimir R.

    Contrary to laser diodes, the path of superluminescent diodes (SLDs) to widespread practical use was much longer. There was always a scientific interest in "superluminescent" light output from laser diode structures slightly below threshold that might be considerably enhanced by "damping" of the laser resonator. SLD design efforts were intensified in early 1980s when it was proved that they are "light sources of choice" for fiber-optic gyroscopes. The next wave of interest to SLDs as a "stand-alone" type of semiconductor emitters was related to advances in OCT technologies. Challenging OCT requirements, e.g. simultaneous high-power, high brightness and very low coherence length of a light source, resulted in the development of new generation of SLDs characterized by output power and brightness the same as that of medium-to-high power laser diodes, but with the spectral width and flatness of edge-emitting LEDs. In this chapter, the main principles of the development of powerful broadband SLDs and ultra-low-coherence SLD-based light sources in 650-1600 nm spectral range, and the main parameters reported to date, are reviewed. Important aspects of SLD use in practice are discussed.

  7. Crossed-beam superluminescent diode.

    Science.gov (United States)

    Vaissié, Laurent; Smolski, Oleg V; Johnson, Eric G

    2005-07-01

    We investigate a novel surface-emitting superluminescent diode configuration that uses two detuned grating outcouplers to suppress lasing. This device exhibits a shaped beam with a peak power of 1.5 W quasi-continuous wave with an 11 nm bandwidth centered on 970 nm.

  8. Optical properties of a GaAlAs superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, N.K.; Deimel, P.

    1983-04-01

    The optical properties of a GaAlAs superluminescent diode (SLD) are described. The spectra of this device exhibit a large number of longitudinal modes. The coupling efficiency into a 0.23 NA 50 ..mu..m diameter graded index fiber is about 30 percent. The current required for constant light output at a temperature T can be written as I(T) about I /SUB o/ exp (T/T/sub 2/) where T/sub 2/ about 120 K. A model of the SLD is described.

  9. Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Kaminow, I.P.; Eisenstein, G.; Stulz, L.W.

    1983-04-01

    A method for measuring the modal reflectivity of the antireflection coating applied to a laser diode is described and demonstrated. It is based on measurements of the Fabry-Perot modulation depth of the resulting superluminescent diode (SLD) output spectrum at the threshold current of the original laser. A modal reflectivity of less than 2 X 10/sup -4/ has been obtained.

  10. A high-performance quantum dot superluminescent diode with a two-section structure.

    Science.gov (United States)

    Li, Xinkun; Jin, Peng; An, Qi; Wang, Zuocai; Lv, Xueqin; Wei, Heng; Wu, Jian; Wu, Ju; Wang, Zhanguo

    2011-12-12

    Based on InAs/GaAs quantum dots [QDs], a high-power and broadband superluminescent diode [SLD] is achieved by monolithically integrating a conventional SLD with a semiconductor optical amplifier. The two-section QD-SLD device exhibits a high output power above 500 mW with a broad emission spectrum of 86 nm. By properly controlling the current injection in the two sections of the QD-SLD device, the output power of the SLD can be tuned over a wide range from 200 to 500 mW while preserving a broad emission spectrum based on the balance between the ground state emission and the first excited state emission of QDs. The gain process of the two-section QD-SLD with different pumping levels in the two sections is investigated.

  11. Superluminescent diode and single mode laser

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S.K.; Lau, K.Y.; BarChim, N.; Ury, I.

    1989-06-27

    A buried heterostructure superluminescent diode is described comprising: an elongated active gain layer having an output end and a non-output end; a first n-type cladding layer on one face of the gain layer and a second p-type cladding layer on the other face of the gain layer for pumping the active gain layer, the cladding layer having a lower index of refraction than the active gain layer; a blocking layer having a lower index of refraction than the active gain layer along each longitudinal edge of the active gain layer; and a light absorbing medium at the non-output end of the active gain layer.

  12. Superluminescent diode versus Fabry-Perot laser diode seeding in pulsed MOPA fiber laser systems for SBS suppression

    Science.gov (United States)

    Melo, M.; Sousa, J. M.; Salcedo, J. R.

    2015-03-01

    We demonstrate the use of a pulsed superluminescent diode (SLD) through direct current injection modulation as seeding source in a master oscillator power amplifier (MOPA) configuration when compared to a Fabry-Perot (FP) laser diode in the same system. The performance limitations imposed by the use of the Fabry-Perot lasers, caused by the backward high peak power pulses triggered due to stimulated Brillouin scattering (SBS) are not observed in the case of the SLD. Compared to conventional Fabry-Perot laser diodes, the SLD provides a smooth and broad output spectrum which is independent of the input pulse parameters. Moreover, the spectrum can be sliced and tailored to the application. Thus, free SBS operation is shown when using the SLD seeder in the same system, allowing for a significant increase on the extractable power and energy.

  13. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode.

    Science.gov (United States)

    Chan, Ming-Che; Su, Yi-Shin; Lin, Ching-Fuh; Sun, Chi-Kuang

    2006-01-01

    We demonstrate 2.2 microm axial resolution optical coherence tomography (OCT) in 1.1-1.7 microm wavelength regime by using a nonidentical multiple-quantum-well (MQW) superluminescent diode (SLD) with record-bandwidth emission. The compact, low-cost, and reliable light source with extreme broadband emission demonstrates significant potentials for spectroscopic and commercial OCT applications requiring ultrahigh spatial resolution.

  14. Unselective regrowth buried heterostructure long-wavelength superluminescent diode realized with MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Ding Ying [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)]. E-mail: yingding@red.semi.ac.cn; Zhou Fan [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Chen Weixi [School of Physics, Peking University, Beijing 100871 (China); Wang Wei [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2007-01-15

    A novel unselective regrowth buried heterostructure (BH) long-wavelength superluminescent diode (SLD), which has a grade-strained bulk InGaAs active region, was developed by metalorganic vapor-phase epitaxy (MOVPE). The 3 dB emission spectrum bandwidth of the SLD is about 65 nm with the range from 1596 to 1661 nm at 90 mA and from 1585 to 1650 nm at 150 mA.An output power of 3.5 mW is obtained at 200 mA injection current under CW operation at room temperature.

  15. InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate.

    Science.gov (United States)

    Jiang, Qi; Tang, Mingchu; Chen, Siming; Wu, Jiang; Seeds, Alwyn; Liu, Huiyun

    2014-09-22

    We report the first InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) monolithically grown on a Ge substrate by molecular beam epitaxy. The QD SLD exhibits a 3 dB emission bandwidth of ~60 nm centered at 1252 nm with output power of 27 mW at room temperature. The 3 dB bandwidth is very stable over the temperature range from 20 °C to 100 °C, which highlights the potential for integration with high performance ICs.

  16. Gain saturation in InGaN superluminescent diodes

    Science.gov (United States)

    Kafar, Anna; Stanczyk, Szymon; Targowski, Grzegorz; Suski, Tadek; Perlin, Piotr

    2014-03-01

    The gain saturation is a crucial factor limiting achievable output power of superluminescent diodes (SLD), as it exponentially depends on optical gain value. Contrary to laser diodes, in SLDs gain is increasing with the increasing current even much above the transparency conditions. Therefore, SLDs provide us with an unique possibility to examine gain under high current densities (high carrier injection). In our work we examined SLDs fabricated in a "j-shape" ridge-waveguide geometry having chips of the length of 700 μm and 1000 μm, emitting in the blue-violet region. By comparing the amplified spontaneous emission measured along the device waveguide with true spontaneous emission measured in perpendicular direction, we are able to extract optical gain as a function of injected current. We show, that in our devices spontaneous emission exhibits a square-root-like dependence on current which is commonly associated with the presence of "droop" in case of nitride light emitting diodes. However, along the waveguide axis, fast processes of stimulated recombination dominate which eliminates the efficiency reduction. Calculated optical gain shows a substantial saturation for current densities above 8 kA/cm2.

  17. Active multi-mode-interferometer broadband superluminescent diodes

    Science.gov (United States)

    Feifei, Wang; Peng, Jin; Ju, Wu; Yanhua, Wu; Fajie, Hu; Zhanguo, Wang

    2016-01-01

    We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi-mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode-interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging. Project supported by the National Natural Science Foundation of China (No. 61274072) and the National High Technology Research and Development Program of China (No. 2013AA014201).

  18. Superluminescent diode and single mode laser

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S.K.; Lau, K.Y.; Bar-Chaim, N.; Ury, I.

    1988-08-16

    A buried heterostructure superluminescent diode comprising: an elongated active gain layer having an output end and a non-output end; a first n-type cladding layer on one face of the gain layer and a second p-type cladding layer on the other face of the gain layer for pumping the active gain layer, the cladding layer having a lower index of refraction than the active gain layer; a blocking layer having a lower index of refraction than the active gain layer along each longitudinal edge of the active gain layer, a transparent window at the output end of the active gain layer; an antireflective coating on the window layer; and a light absorbing medium at the non-output end of the active gain layer.

  19. High power, high efficiency window buried heterostructure GaAlAs superluminescent diode with an integrated absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, N.S.K.; Lau, K.Y.; Bar-Chaim, N.; Ury, I.; Lee, K.J.

    1987-12-07

    A superluminescent diode (SLD) based on a proven high power, high efficiency ''window-'' type index-guided buried heterostructure laser is demonstrated. Lasing is suppressed for SLD operation by antireflection coating and by incorporating an unpumped absorber section. The resulting device emits high optical power (14 mW) in the SLD mode at very low injection current (50 mA). The spectral modulation depth is below 14% over the entire emission spectral bandwidth of 20 nm, with a symmetrical beam divergence (20/sup 0/ x 40/sup 0/) and a stable transverse mode.

  20. High-Optical-Power InGaN Superluminescent Diodes with “j-shape” Waveguide

    Science.gov (United States)

    Kafar, Anna; Stanczyk, Szymon; Targowski, Grzegorz; Oto, Takao; Makarowa, Irina; Wisniewski, Przemek; Suski, Tadek; Perlin, Piotr

    2013-09-01

    We demonstrate blue-violet InGaN superluminescent diodes (SLDs) with bent-waveguide (j-shape) geometry, emitting optical power exceeding 200 mW for SLD with 1-mm-long waveguide. The adopted j-shape geometry prevents devices from lasing, even at the highest applied currents (450 mA). However, high-resolution measurements reveal the appearance of spectral ripples at currents on the order of 250 mA. The maximum output power increases with the waveguide length.

  1. Room-temperature cw operation of an efficient miniaturized Nd:YAG laser end-pumped by a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Washio, K.; Iwamoto, K.; Inoue, K.; Hino, I.; Matsumoto, S.; Saito, F.

    1976-12-01

    A miniaturized Nd:YAG laser is described, in which a 3-mm-diam x 5.4-mm-long laser rod is end-pumped by a single Al/sub x/Ga/sub 1-x/As superluminescent diode (SLD) having 20-..mu..m x 1.4-nm stripe geometry. A 4.5-mW laser power was obtained at room temperature in a 1-ms pulse operation. Emitted power from the SLD was 50 mW with 1.7% external power efficiency. When continuously pumped, a 1.5-mW laser power was obtained at room temperature. (AIP)

  2. Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    Wu Jian; Lü Xue-Qin; Jin Peng; Meng Xian-Quan; Wang Zhan-Guo

    2011-01-01

    A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.

  3. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging.

    Science.gov (United States)

    Zhu, Dexi; Shen, Meixiao; Jiang, Hong; Li, Ming; Wang, Michael R; Wang, Yuhong; Ge, Lili; Qu, Jia; Wang, Jianhua

    2011-12-01

    Spectral domain optical coherence tomography (SD-OCT) with ultrahigh resolution can be used to measure precise structures in the context of ophthalmic imaging. We designed an ultrahigh resolution SD-OCT system based on broadband superluminescent diode (SLD) as the light source. An axial resolution of 2.2 μm in tissue, a scan depth of 1.48 mm, and a high sensitivity of 93 dB were achieved by the spectrometer designed. The ultrahigh-resolution SD-OCT system was employed to image the human cornea and retina with a cross-section image of 2048 × 2048 pixels. Our research demonstrated that ultrahigh -resolution SD-OCT can be achieved using broadband SLD in a simple way.

  4. Enhanced spectrum superluminescent diodes fabricated by infrared laser rapid thermal annealing

    Science.gov (United States)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2013-12-01

    We report on the fabrication of superluminescent diodes (SLD) from a graded bandgap quantum well intermixed (QWI) material obtained by an infrared laser rapid thermal annealing (IR Laser-RTA) technique. The processed semiconductor wafer consisted of an InGaAs/InGaAsP/InP (001) QW laser heterostructure originally emitting at 1.55 μm. The combined beams of a 150 W laser diode operating at 980 nm and a 30 W Nd:YAG laser operating at 1064 nm are used to heat the sample. While the laser diode is used for back-side heating of the wafer, the Nd:YAG laser beam is swept along the sample surface, resulting in temperature gradient changing in the direction perpendicular to the scan. This contactless RTA approach, allowed to obtain a graded bandgap material that was employed for the fabrication of SLD devices with a broadened emission bandwidth. The lasing effect in a series of 3 mm long broad area injection diodes was suppressed by tilting their facets by 7.5° with respect to the [110] direction. The best SLD devices had their FWHM (full-width-at-half-maximum) emission increased by 33% in comparison to the FWHM of 36 nm observed for devices made from the as grown material at an equal output power of 0.8 mW.

  5. High-power 1. 3. mu. m superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, N.S.K.; Bar-Chaim, N.; Chen, T.

    1989-01-23

    Superluminescent diodes with high output power (10 mW at 175 mA), wide spectral width (28 nm), low spectral modulation depth (<15%), wide frequency modulation bandwidth (570 MHz), and high single-mode fiber coupling efficiency (40%) are reported. The structure is based on a buried crescent laser structure with an antireflection coating and a ''short-circuit'' absorber to suppress lasing.

  6. Near-infrared superluminescent diode using stacked self-assembled InAs quantum dots with controlled emission wavelengths

    Science.gov (United States)

    Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Watanabe, Eiichiro; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.

    2014-01-01

    A near-infrared superluminescent diode (SLD) using stacked InAs/GaAs quantum dots (QDs) was developed. The emission wavelength of each QD layer was controlled by varying the thickness of a strain-reducing layer deposited on the QD. The controlled ground state emission peaks enabled formation of a dipless broadband spectrum with the contributions of the first excited state emissions. The bandwidth of the resulting emission was approximately 170 nm with a peak wavelength of 1280 nm. The integrated electroluminescence intensity exhibited a superlinear relation with respect to the injected current density, indicating an SLD emission behavior owing to contributions of stimulated emissions from QDs. The developed broadband SLD was found to be suitable as a potential light source for optical coherence tomography (OCT) leading to improved resolution of OCT images. The axial resolution estimated from the Fourier-transformed spectrum is 4.1 µm.

  7. Tunable continuous-wave dual-wavelength laser by external-cavity superluminescent diode with a volume Bragg grating and a diffraction grating

    Science.gov (United States)

    Zheng, Yujin; Kurita, Takashi; Sekine, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2016-10-01

    We demonstrate the tunable continuous-wave dual-wavelength laser based on a double external-cavity superluminescent diode (SLD). The double external cavity consisted of a volume Bragg grating (VBG) and a diffraction grating bracketing the SLD's two facets. The VBG was used as an output coupler to enable the external-cavity SLD to achieve a stable wavelength. A narrow bandwidth of 0.25 nm was achieved in single-wavelength operation. The diffraction grating served as an end mirror to create another tunable wavelength external cavity for the SLD. A wavelength tuning range of 23 nm was achieved. The laser output of the double external-cavity SLD had a tunable spectral separation with dual-wavelengths from +6.42 to -16.94 nm. An output power of up to 37.7 mW was achieved with a frequency difference of 7.1 THz.

  8. Tunable external cavity laser employing uncooled superluminescent diode.

    Science.gov (United States)

    Oh, Su Hwan; Kim, Ki Soo; Ju, Jung Jin; Kim, Min-Su; Yoon, Ki-Hong; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2009-06-08

    We have fabricated a tunable external cavity laser (T-ECL) based on a superluminescent diode and a polymeric waveguide Bragg reflector, providing a cost-effective solution for wavelength division multiplexing-passive optical network (WDM-PON) systems. The wavelength of the T-ECL is tuned through 100 GHz-spacing 16 channels by the thermo-optic tuning of the refractive index of the polymer waveguide at a low input power of 70 mW. The maximum output power and the slope efficiency of the uncooled diode at 20 (75) degrees C are 8.83 (3.80) mW and 0.107 (0.061) W/A, respectively. The T-ECL operated successfully in the direct modulation for 1.25 Gbit/s transmissions over 20 km.

  9. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    Science.gov (United States)

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Leonard, John T.; Nakamura, Shuji; Speck, James S.; Denbaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-02-01

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the "efficiency droop" effect and the high-speed performance is limited by a relatively small -3 dB modulation bandwidth (superluminescent diodes (SLDs) as a high-brightness and high-speed light source, combining the advantages of LEDs and LDs. Utilizing the integrated passive absorber configuration, an InGaN/GaN quantum well (QW) based SLD was fabricated on semipolar GaN substrate. Using SLD to excite a YAG:Ce phosphor, white light can be generated, exhibiting a color rendering index of 68.9 and a color temperature of 4340 K. Besides, the opto-electrical properties of the SLD, the emission pattern of the phosphor-converted white light, and the high-speed (Gb/s) visible light communication link using SLD as the transmitter have been presented and discussed in this paper.

  10. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.

    Science.gov (United States)

    Ko, Tony; Adler, Desmond; Fujimoto, James; Mamedov, Dmitry; Prokhorov, Viatcheslav; Shidlovski, Vladimir; Yakubovich, Sergei

    2004-05-17

    Ultrahigh resolution optical coherence tomography imaging is performed with a compact broadband superluminescent diode light source. The source consists of two multiplexed broadband superluminescent diodes and has a power output of 4 mW with a spectral bandwidth of 155 nm, centered at a wavelength of 890 nm. In vivo imaging was performed with approximately 2.3 microm axial resolution in scattering tissue and approximately 3.2 microm axial resolution in the retina. These results demonstrate that it is possible to perform in vivo ultrahigh resolution optical coherence tomography imaging using a superluminescent diode light source that is inexpensive, compact, and easy to operate.

  11. Performance-enhanced superluminescent diode with surface plasmon waveguide.

    Science.gov (United States)

    Ranjbaran, Mehdi; Li, Xun

    2009-12-21

    Super luminescent Diode (SLD) with a new structure is proposed in which light is guided by surface plasmon waveguide (SPWG) rather than by the conventional dielectric waveguide. This results in a great increase of the spontaneous emission coupling. Other parameters important to the device operation such as the confinement factor, waveguide loss and waveguide facets reflectivities are also considered. It is shown that the new design outperforms the conventional ones using dielectric waveguides in both the output power and optical spectral width.

  12. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    KAUST Repository

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  13. Analysis of Noise Failure Characteristics for Superluminescent Diode Fiber-Optic Gyroscopes in Space Applications

    Science.gov (United States)

    Li, Min; Huang, Xiaokai; Jin, Jing; Chen, Yunxia; Kang, Rui

    Noise failure, particularly due to random walk error (RWE) degradation behavior, is one of the critical failure modes for fiber-optic gyroscopes (FOGs) in space applications. In this paper, firstly, the analytical model of RWE is presented and the affected parameters are listed according to the gamma irradiation damage mechanism. In addition, the influence of temperature is also included. The deterioration of affected parameters is determined through a 60Co radiation experiment on optic and optoelectronic components. Based on the parameters’ deterioration range and assumed distribution properties, their importance to the noise failure is calculated through the Sobol method, a global sensitivity analysis method. In the computation steps, the Latin Hyper Sampling (LHS) based Monte-Carlo numerical simulation technique is adopted. It is determined from calculation results that the detected light power (DLP) is the noise failure characteristic which is the most sensitive parameter in the space environment. Finally, another 60Co radiation experiment with the same conditions is performed on a superluminescent diode (SLD) FOG. The original noise degradation behavior is compared to the simulated RWE, calculated according to DLP, and the result shows that they follow trend almost identical. This supports the conclusion that DLP is the most sensitive noise failure characteristic for SLD-based FOGs.

  14. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode.

    Science.gov (United States)

    Takahashi, Y; Yoshino, T

    1997-09-20

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz.

  15. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Yoshino, T. [Department of Electronic Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376 (Japan)

    1997-09-01

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz. {copyright} 1997 Optical Society of America

  16. L-band tunable external cavity laser based on 1.58 μm superluminescent diode integrated with spot-size converter.

    Science.gov (United States)

    Oh, Su Hwan; Yoon, Ki-Hong; Kim, Ki Soo; Kim, Jongbae; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-09-13

    We report a 1.58 μm superluminescent diode (SLD) with a spot-size converter (SSC) designed and fabricated as a light source for a tunable external cavity laser (T-ECL). The active section of the SLD is fabricated by using a planar buried heterostructure (PBH) for low-threshold current and high-output power operation at a low injection current. The SSC structure of the SLD is designed to possess a buried deep-ridge waveguide (BD-RWG) and show a beam of less divergence. The full-width at half maximum (FWHM) of the horizontal and vertical far-field patterns (FFPs), due to the beam of the less divergence, are 14° and 13°, respectively. We also confirm that an L-band T-ECL employing the SSC SLD operates well enough to prove the characteristics of high performance.

  17. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao

    2016-05-25

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  18. GaN-based superluminescent diodes with long lifetime

    Science.gov (United States)

    Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.

    2016-02-01

    We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.

  19. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  20. Fabrication and characteristics of high speed InGaAs/GaAs quantum-wells superluminescent diode emitting at 1053 nm

    Science.gov (United States)

    Duan, L. H.; Fang, L.; Zhang, J.; Zhou, Y.; Guo, H.; Luo, Q. C.; Zhang, S. F.

    2014-05-01

    A high speed 1053 nm superluminescent diode (SLD) with a ridge-waveguide structure has been fabricated for the first time to the best of our knowledge. InGaAs/GaAs quantum well epitaxial structure, the etched depth of the insulation channel and the area of p-side electrode were optimized to enhance the modulation bandwidth of the SLD. Bend-waveguide unpumped absorbing region structure and facet coating methods have been adopted to suppress the lasing oscillation. As a result, a -3 dB cutoff frequency of 1.7 GHz is obtained at a dc bias current of 100 mA and 25 °C heat-sink temperature, corresponding to 2.5 mW output power from single-mode fiber with spectral modulation of less than 0.15 dB and spectral width of 24 nm. The SLD module shows a good reliability.

  1. Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape

    Science.gov (United States)

    Shibata, Hiroshi; Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Ohsato, Hirotaka; Watanabe, Eiichiro; Sugimoto, Yoshimasa; Furuki, Kenji; Miyaji, Kunio; Hogg, Richard A.

    2015-04-01

    We developed a low-coherence light source based on self-assembled InAs quantum dots (QDs) with controlled emission wavelengths and applied it to optical coherence tomography (OCT) imaging. A current-driven superluminescent diode (SLD) light source including four layers of QDs exhibits a broadband (80-nm-bandwidth) emission centered at approximately 1.2 µm with a Gaussian-like spectral shape at room temperature. Spectral-domain OCT (SD-OCT) using the QD-SLD as a light source was developed and imaging with the SD-OCT was demonstrated. The axial resolution was estimated to be approximately 8 µm in air and no apparent side lobes appeared beside the point spread function, indicating the effectiveness of the QD-SLD for high-resolution, noise-reduced OCT imaging.

  2. Parametric amplification of broadband radiation of a cw superluminescent diode under picosecond pumping

    Science.gov (United States)

    Vereshchagin, K. A.; Il'chenko, S. N.; Morozov, V. B.; Olenin, A. N.; Tunkin, V. G.; Yakovlev, D. V.; Yakubovich, S. D.

    2016-09-01

    It is proposed to use cw superluminescent diodes with a spectral width of about 300 cm-1 and high spatial coherence as seed radiation sources in parametric amplifiers with picosecond pumping in order to form broadband picosecond pulses. A two-cascade parametric amplifier based on BaB2O4 (BBO) crystals is pumped by 20-ps pulses of the second harmonic of an Nd : YAG laser. For a superluminescent diode spectral width of 275 cm-1 (centre wavelength 790 nm), the spectral width of picosecond pulses at the parametric amplifier output is 203 cm-1. At a total pump energy of 7.2 mJ for BBO crystals, the energy of the enhanced emission of the superluminescent diode is found to be 0.6 mJ.

  3. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' ichenko, S N; Kostin, Yu O; Lapin, P I [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company ' M.F. Stel' makh Polyus Research and Development Institute' , Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-08-31

    Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)

  4. GaAs-based superluminescent diodes with window-like facet structure for low spectral modulation at high output powers

    Science.gov (United States)

    Ghazal, O. M. S.; Childs, D. T.; Stevens, B. J.; Babazadeh, N.; Hogg, R. A.; Groom, K. M.

    2016-04-01

    We demonstrate a GaAs-based superluminescent diode (SLD) based on the incorporation of a window-like back facet into a self-aligned stripe structure in order to reduce the effective facet reflectivity. This allows the realisation of SLDs with low spectral modulation depth (SMD) at high power spectral density (PSD), without the application of anti-reflection coatings to either facet. This approach is therefore compatible with ultra-broadband gain active elements. We show that 30 mW output power can be attained in a narrow bandwidth, corresponding to 2.2 mW nm-1 PSD with only 5% SMD, centred about 990 nm. We discuss the design criteria for high power and low SMD and the deviation from a linear dependence of SMD on output power, resulting from Joule heating in the self-aligned stripe.

  5. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    Science.gov (United States)

    Andreeva, E. V.; Il'ichenko, S. N.; Kostin, Yu O.; Ladugin, M. A.; Lapin, P. I.; Marmalyuk, A. A.; Yakubovich, S. D.

    2013-08-01

    Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 - 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 - 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm.

  6. The effects of carrier transport phenomena on the spectral and power characteristics of blue superluminescent light emitting diodes

    Science.gov (United States)

    Moslehi Milani, N.; Asgari, A.

    2015-05-01

    In this article, the effects of carrier escape, capture, and diffusion rates, and also carrier leakage term on the spectral and power characteristics of In0.2Ga0.8N/GaN multiple quantum well (MQW) superluminescent light emitting diodes (SLDs or SLEDs) has been investigated. The investigation is done by means of numerical analysis of the rate equations at steady state. In the model, a wide range of escape, capture, and diffusion times and also drift leakage coefficient correspond to the reported values have been examined in modeling procedure. The simulation is implemented at 300 K and at a constant current density of 15 kA/cm2. Our modeling results show that the escape times do not affect the SLD characteristics, but the variation of capture and diffusion times have moderate effects on output characteristics, while the increasing of the drift leakage coefficient decreases the output power significantly.

  7. GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures

    Science.gov (United States)

    Chen, Siming; Li, Wei; Zhang, Ziyang; Childs, David; Zhou, Kejia; Orchard, Jonathan; Kennedy, Ken; Hugues, Maxime; Clarke, Edmund; Ross, Ian; Wada, Osamu; Hogg, Richard

    2015-08-01

    A high-performance superluminescent light-emitting diode (SLD) based upon a hybrid quantum well (QW)/quantum dot (QD) active element is reported and is assessed with regard to the resolution obtainable in an optical coherence tomography system. We report on the appearance of strong emission from higher order optical transition from the QW in a hybrid QW/QD structure. This additional emission broadening method contributes significantly to obtaining a 3-dB linewidth of 290 nm centered at 1200 nm, with 2.4 mW at room temperature.

  8. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications.

    Science.gov (United States)

    Li, Zhenhua; Wu, Jiang; Wang, Zhiming M; Fan, Dongsheng; Guo, Aqiang; Li, Shibing; Yu, Shui-Qing; Manasreh, Omar; Salamo, Gregory J

    2010-04-22

    The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100), (210), (311), and (731) substrates. A broad photoluminescence emission peak (~950 nm) with a full width at half maximum (FWHM) of 48 nm is obtained from the sample grown on (210) substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100) substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311) with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications.

  9. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate.

    Science.gov (United States)

    Kafar, A; Stanczyk, S; Sarzynski, M; Grzanka, S; Goss, J; Targowski, G; Nowakowska-Siwinska, A; Suski, T; Perlin, P

    2016-05-01

    We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

  10. Blue Superluminescent Light-Emitting Diodes with Output Power above 100 mW for Picoprojection

    Science.gov (United States)

    Kopp, Fabian; Eichler, Christoph; Lell, Alfred; Tautz, Sönke; Ristić, Jelena; Stojetz, Bernhard; Höß, Christine; Weig, Thomas; Schwarz, Ulrich T.; Strauss, Uwe

    2013-08-01

    We present a blue InGaN research and development superluminescent light-emitting diode (SLED) that is suitable for picoprojection. The SLED reaches an output power of >100 mW with a peak wavelength of 443 nm and a spectral bandwidth of >2.6 nm as well as a single-mode far-field driven in cw mode at 25 °C. In order to figure out an optimized waveguide design, which enables such a high output power at lowest operation current, we compare the performance of diodes with curved and tilted shaped ridges in detail, using the lasing threshold current as a criterion for lasing or superluminescence, respectively.

  11. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    Directory of Open Access Journals (Sweden)

    Wu Jiang

    2010-01-01

    Full Text Available Abstract The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100, (210, (311, and (731 substrates. A broad photoluminescence emission peak (~950 nm with a full width at half maximum (FWHM of 48 nm is obtained from the sample grown on (210 substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100 substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311 with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications.

  12. High performance 1.3 μm InGaAsN superluminescent diodes

    Institute of Scientific and Technical Information of China (English)

    QU Yi; LI Hui; J.X.Zhang; BO BaoXue; GAO Xin; LIU GuoJun

    2009-01-01

    High performance 1.3 μm InGaAsN superluminescent diodes(SLDs)were fabricated with Schottkycontact.The structure was grown by metal organic chemical vapor deposition(MOCVD).Output power of 3 mW was obtained in continuous wave(CW)mode at room temperature.The full width at half maximum(FWHM)of the emission spectrum was 30 nm.The devices operated up to 100℃.

  13. High performance 1.3 μm InGaAsN superluminescent diodes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High performance 1.3 μm InGaAsN superluminescent diodes (SLDs) were fabricated with Schottky contact. The structure was grown by metal organic chemical vapor deposition (MOCVD). Output power of 3 mW was obtained in continuous wave (CW) mode at room temperature. The full width at half maximum (FWHM) of the emission spectrum was 30 nm. The devices operated up to 100℃.

  14. Numerical analysis of AlGaAs/GaAs multi-quantum well superluminescent diodes

    Science.gov (United States)

    Navaeipour, Parvin; Asgari, Asghar

    2014-09-01

    In this paper, we have investigated numerically AlGaAs/GaAs multi-quantum well superluminescent diodes. In these devices the dependence of optical gain, output power on the cavity length and the density states have been analyzed. It is observed that the optical gain and its FWHM bandwidth increase with the increasing density state. Furthermore, the output power increases with the increasing cavity length, whereas the FWHM bandwidth decreases.

  15. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source

    Science.gov (United States)

    Ozaki, Nobuhiko; Childs, David T. D.; Sarma, Jayanta; Roberts, Timothy S.; Yasuda, Takuma; Shibata, Hiroshi; Ohsato, Hirotaka; Watanabe, Eiichiro; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.

    2016-02-01

    We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ˜4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source.

  16. Generation of incoherent light from a laser diode based on the injection of an emission from a superluminescent diode

    CERN Document Server

    Takamizawa, Akifumi; Ikegami, Takeshi

    2013-01-01

    In this study, incoherent light with a spectral linewidth of 7 nm and 140 mW of power was generated from a laser diode into which incoherent light emitted from a superluminescent diode was injected with 2.7 mW of power. The spectral linewidth of the light from the laser diode was broadened to 12 nm when the diode's output power was reduced to 15 mW. In the process of transformation from single-mode laser light to incoherent light with a broad spectrum by increasing injection-light power, multimode laser oscillation and a noisy spectrum were found in the light from the laser diode. This optical system can be used not only for amplification of incoherent light but also as a coherence-convertible light source.

  17. Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal

    Science.gov (United States)

    Kurzke, Henning; Kiethe, Jan; Heuer, Axel; Jechow, Andreas

    2017-05-01

    The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, {{g}(2)}(0)=1.9+/- 0.1 , indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find application in imaging, metrology and quantum optics experiments.

  18. High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, N.S.K.; Lau, K.Y.; Bar-Chaim, N.

    1989-04-01

    The operation principles of a high-power high-efficiency GaAlAs superluminescent diode based on an internal absorber for lasing suppression will be described. The absorber is based on an unpumped/reverse biased section in the device, and the superluminescent diode characteristic depends heavily on the bias condition on the absorber section. The very high efficiency of the device arises from the strong waveguiding effect of the buried heterostructure. A theory which accurately describes the various device characteristics will be described.

  19. InAs/GaAs submonolayer quantum-dot superluminescent diodes with active multimode interferometer configuration

    Institute of Scientific and Technical Information of China (English)

    Li Xin-Kun; Jin Peng; Liang De-Chun; Wu Ju; Wang Zhan-Guo

    2013-01-01

    With a chirped InAs/GaAs SML-QD (quantum dot) structure serving as the active region,the superluminescent diodes emitting at wavelength of around 970 nm are fabricated.By using an active multimode interferometer configuration,these devices exhibit high continue-wave output powers from the narrow ridge waveguides.At continue-wave injection current of 800 mA,an output power of 18.5 mW,and the single Gaussian-like emission spectrum centered at 972 nm with a full width at half maximum of 18 nm are obtained.

  20. Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement.

    Science.gov (United States)

    Sasaki, O; Ikeada, Y; Suzuki, T

    1998-08-01

    We propose an interferometer in which the relationship between the degree of coherence (DCH) and the optical path difference (OPD) is utilized for determining an OPD longer than a wavelength. A superluminescent diode is employed as the source of the interferometer, and sinusoidal phase-modulating interferometry is used to detect the DCH and the phase of the interference signal. The combination of the OPD determined from the DCH and the phase of an interference signal enables us to measure an OPD longer than a wavelength with a high accuracy of a few nanometers. Experimental results show clearly the usefulness of the interferometer for a step-profile measurement.

  1. Highly reliable high-power superluminescent diodes with three single-mode active channels

    Science.gov (United States)

    Andreeva, E. V.; Il'chenko, S. N.; Kurnyavko, Yu V.; Luk'yanov, V. N.; Shidlovskii, V. R.; Yakubovich, S. D.

    2016-07-01

    We report superluminescent diodes (SLDs) with three ridged active channels, each having a width of 3.5 μm, based on one 'bulk' and two quantum-well heterostructures. At a cw output power greater than 100 mW, the emission spectra of these SLDs possess a quasi-Gaussian shape with centre wavelengths near 840, 860 and 1060 nm and widths about 15, 25 and 40 nm, respectively. In the above operating conditions, the median service life of the SLDs amounted to approximately 50000, 25000 and more than 60000 h, respectively.

  2. INFLUENCE OF THE ORTHOGONALLY POLARIZED BACK REFLECTIONS ON THE POWER AND RADIATION SPECTRUM OF SUPERLUMINESCENT DIODES

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-01-01

    Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.

  3. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    Science.gov (United States)

    Andreeva, E. V.; Il'chenko, S. N.; Kostin, Yu O.; Yakubovich, S. D.

    2014-10-01

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated.

  4. Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height.

    Science.gov (United States)

    Haffouz, S; Barrios, P J; Normandin, R; Poitras, D; Lu, Z

    2012-03-15

    An ultrawide-bandwidth, superluminescent light-emitting diode (SLED) utilizing multiple layers of dots of tuned height is reported. Due to thermal effect, the superluminescent phenomenon is observed only under pulse-mode operation. The device exhibits a 3 dB bandwidth of 190 nm with central wavelength of 1020 nm under continuous-wave (cw) conditions. The maximum corresponding output power achieved in this device under cw and pulsed operation conditions are 0.54 mW and 17 mW, respectively.

  5. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  6. Sinusoidal wavelength-scanning interferometer with a superluminescent diode for step-profile measurement.

    Science.gov (United States)

    Sasaki, O; Murata, N; Suzuki, T

    2000-09-01

    In sinusoidal phase-modulating interferometry an optical path length (OPD) larger than a wavelength is measured by detection of sinusoidal phase-modulation amplitude Z(b) of the interference signal that is produced by sinusoidal scanning of the wavelength of a light source. A light source with a large scanning width of wavelength is created by use of a superluminescent laser diode for the error in the measured value obtained by Z(b) to be smaller than half of the central wavelength. In this situation the measured value can be combined with a fractional value of the OPD obtained from the conventional phase of the interference signal. A sinusoidal wavelength-scanning interferometer with the light source measures an OPD over a few tens of micrometers with a high accuracy of a few nanometers.

  7. Wavelength characteristics of chirped quantum dot superluminescent diodes for broad spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyung-Chul; Park, Hong-Lee [Yonsei University, Seoul (Korea, Republic of); You, Young-Chae [Sungkyunkwan University, Suwon (Korea, Republic of); Han, Il-Ki [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2006-04-15

    A chirped InAs quantum dot superluminescent diode both with and without a In{sub 0.15}Ga{sub 0.85}As cap layer was fabricated for a broad-band spectrum. This study shows that the cap layer reduces strain and operates as a carrier capturer and that carriers excited by lattice heating also affect the radiative recombination in the quantum dots (QDs) as well as the cap layer through the characteristic temperature (T{sub 0}). In addition, by surveying peaks of each QD layers, the characteristics of carriers in QDs, such as band-filling effect and the thermal effect, were analyzed, in QDs, and a more effective method for creating a wider spectrum is proposed.

  8. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    Science.gov (United States)

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  9. Estimation of the optical loss in bent-waveguide superluminescent diodes by an analytical method

    Science.gov (United States)

    Qi, An; Peng, Jin; Zhanguo, Wang

    2015-06-01

    The optical loss in the bent region is one of the key features for bent-waveguide superluminescent diodes that affects the device performance greatly under some conditions. For the purpose of device fabrication and optimization, it will be helpful if this bend loss can be estimated. In this letter, we have derived an analytical formula which can be used to get the bend-loss coefficient by fitting the P-I curves of the devices. It is proved that the formula is successful in estimating the loss coefficients from the P-I curves simulated from a complicated quantum-dot device model. We expect this method could also be valid in estimating bend losses of actual devices. Project supported by the National Natural Science Foundation of China (Nos. 61274072, 60976057).

  10. Equivalence of displacement radiation damage in superluminescent diodes induced by protons and heavy ions

    Science.gov (United States)

    Li, Xingji; Liu, Chaoming; Lan, Mujie; Xiao, Liyi; Liu, Jianchun; Ding, Dongfa; Yang, Dezhuang; He, Shiyu

    2013-07-01

    The degradation of optical power for superluminescent diodes is in situ measured under exposures of protons with various energies (170 keV, 3 MeV and 5 MeV), and 25 MeV carbon ions for several irradiation fluences. Experimental results show that the optical power of the SLDs decreases with increasing fluence. The protons with lower energies cause more degradation in the optical power of SLDs than those with higher energies at a given fluence. Compared to the proton irradiation with various energies, the 25 MeV carbon ions induce more severe degradation to the optical power. To characterize the radiation damage of the SLDs, the displacement doses as a function of chip depth in the SLDs are calculated by SRIM code for the protons and carbon ions. Based on the irradiation testing and calculation results, an approach is given to normalize the equivalence of displacement damage induced by various charged particles in SLDs.

  11. Fabrication and characterization of broadband superluminescent diodes for 2 μm wavelength

    Science.gov (United States)

    Zia, Nouman; Viheriälä, Jukka; Koskinen, Riku; Koskinen, Mervi; Suomalainen, Soile; Guina, Mircea

    2016-03-01

    Single-mode superluminescent diodes operating at 2 μm wavelength are reported. The structures are based on GaSb material systems and were fabricated by molecular beam epitaxy. Several waveguide designs have been implemented. A continuous-wave output power higher than 35 mW is demonstrated for a spectrum centered at around 1.92 μm. We show that the maximum output power of the devices is strongly linked to spectrum width. Device having low output power exhibit a wide spectrum with a full-width half-maximum (FWHM) as large as 209 nm, while devices with highest output power exhibit a narrower spectrum with about 61 nm FWHM.

  12. GaAs-based self-aligned stripe superluminescent diodes processed normal to the cleaved facet

    Science.gov (United States)

    Ghazal, O. M. S.; Lei, D.; Childs, D. T.; Stevens, B. J.; Babazadeh, N.; Hogg, R. A.; Groom, K. M.

    2016-03-01

    We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate.

  13. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes

    Institute of Scientific and Technical Information of China (English)

    LI Lan; FU Li-Wei; YANG Rui-Xia; LI Guang-Min; TAO Yi; ZHANG Na; ZHANG Xiao-Song

    2005-01-01

    @@ Using a two-dimensional thermal flow model, we calculate the thermal resistance and the temperature distribution of In GaAsP/InP multi-quantum-well superluminescent diodes. The influence of lateral chip size and composition are evaluated. The results reveal that when the injection power reaches 1 W, temperatures in the active region rises up to almost 50K. The width and length of the chip also have strong influence on the thermal resistance that can reach two orders of magnitude. The thermal resistance will change from 290 K/W to 68 K/W when the chip width increases from 500μm to 2500 μm, and a similar result exists for the length. There is small effect on thermal resistance for active width. In view of the characteristics of output power versus the input current under pulsed and continues currents, the fitted experimental thermal resistance matches well with the measured results.

  14. Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires

    Science.gov (United States)

    Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.; Nadar, M. B.; Ganguly, S.; Saha, D.

    2016-07-01

    We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperature variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm2.

  15. Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode

    Science.gov (United States)

    Kiethe, Jan; Heuer, Axel; Jechow, Andreas

    2017-08-01

    We study the degree of second-order coherence of the emission of a high-power multi-quantum well superluminescent diode with a lateral tapered amplifier section with and without optical feedback. When operated in an external cavity, the degree of second-order coherence changed from the almost thermal case of g(2)(0)≈1.9 towards the mostly coherent case of g(2)(0)≈1.2 when the injection current at the tapered section was increased. We found good agreement with semi-classical laser theory near and below threshold while above laser threshold a slightly higher g (2)(0) was observed. As a free running device, the superluminescent diode yielded more than 400 mW of optical output power with good spatial beam quality of M^2_slow < 1.6 . In this case, the degree of second-order coherence dropped only slightly from 1.9 at low powers to 1.6 at the maximum output power. To our knowledge, this is the first investigation of a high-power tapered superluminescent diode concerning the degree of second-order coherence. Such a device might be useful for real-world applications probing the second order coherence function, such as ghost imaging.

  16. Intensity noise and spontaneous emission coupling in superluminescent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.F. (Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (US))

    1990-01-01

    A simple expression for the noise in the photocurrent generated by the detection of light from an ideal superluminescent source is derived using a quantum amplifier model. The excess noise factor {ital X} is found to be related to the photocurrent {ital I{sub d}}, electronic charge, {ital e}, spontaneous emission coupling factor {ital K}, and full width at half maximum power of the emission spectrum {Delta}{ital v}{sub 1/2} by the expression {ital X} = 0.664 {ital I{sub d}/eK}{Delta}{ital v}{sub 1/2}. Implications of this result for the performance of fiberoptic gyroscopes using superluminescent diode (SLD) light sources and for the design of low-noise SLD's are discussed.

  17. The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes

    Science.gov (United States)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-07-01

    The effects of temperature dependent radiative and nonradiative recombination (Shockley-Read-Hall, spontaneous radiative, and Auger coefficients) on the spectral and power characteristics of a blue multiple quantum well (MQW) superluminescent light emitting diode (SLD or SLED) have been studied. The study is based on the rate equations model, where three rate equations corresponding to MQW active region, separate confinement heterostructure (SCH) layer, and spectral density of optical power are solved self-consistently with no k-selection energy dependent gain and quasi-Fermi level functions at steady state. We have taken into account the temperature effects on Shockley-Read-Hall (SRH), spontaneous radiative, and Auger recombination in the rate equations and have investigated the effects of temperature rising from 300 K to 375 K at a fixed current density. We examine this procedure for a moderate current density and interpret the spectral radiation power and light output power diagrams. The investigation reveals that the main loss due to temperature is related to Auger coefficient.

  18. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    Science.gov (United States)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-01

    A broadband superluminescent light emitting diode with In0.2Ga0.8N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ˜120 mA (˜7.5 kA/Cm2) at 300 K. The range of peak emission wavelengths for different currents is 423-426 nm and the emission bandwidth is ˜5 nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600 mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  19. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Moslehi Milani, N. [Photonics-Electronics Group, Aras International Campus, University of Tabriz, Tabriz 51666-14766 (Iran, Islamic Republic of); Mohadesi, V. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51665-163 (Iran, Islamic Republic of); Asgari, A., E-mail: asgari@tabrizu.ac.ir [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51665-163 (Iran, Islamic Republic of); School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA 6009 (Australia)

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ∼120 mA (∼7.5 kA/Cm{sup 2}) at 300 K. The range of peak emission wavelengths for different currents is 423–426 nm and the emission bandwidth is ∼5 nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600 mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  20. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    胡发杰; 金鹏; 吴艳华; 王飞飞; 魏恒; 王占国

    2015-01-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

  1. High performance superluminescent diode with InAs quantum-dashes and chirped AlGaInAs barriers active region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-01-01

    The demonstration of high power, ultra-low ripple superluminescent diode using multiple quantum-dash-in-a-well layers with variable barrier thickness is reported. The device exhibits >20 mW power, < 0.3dB ripple, and > 80 nm 3dB bandwidth at ~1.55 μm.

  2. Performance improvement by a broadband super-luminescent diode light source in 1.7-μm spectroscopic spectral-domain optical coherence tomography for lipid distribution imaging in a coronary artery

    Science.gov (United States)

    Tanaka, M.; Okuno, T.; Obi, H.; Hattori, I.; Hirano, M.; Ueno, T.; Tonosaki, S.; Murashima, K.; Yamaguchi, R.; Hasegawa, T.

    2014-03-01

    We develop a 1.7-μm optical coherence tomography (OCT) system using a broadband light source based on superluminescent diodes (SLDs) and investigated the possibility of plaque detection by a spectroscopic OCT (S-OCT) method. The SLD-based light source realizes an output power about 20mW and a 3-dB bandwidth over 120nm for optimization of driving current in each SLD. Regarding performance of the 1.7-μm spectral-domain OCT system with the light source, the system sensitivity is 104dB in maximum at the A-scan rate of 47kHz, which is fifty times as high as that in the previous study with a super-continuum light source. Moreover, we perform visualization of lipid distribution at the A-scan frame of 47kHz by an in-vitro artery model which is made of a piece of porcine coronary artery and a lardfilled nylon tube as a plaque phantom. We confirm that the sensitivity and specificity between artery and plaque area in optimal condition for lipid detection at a specific frame image is over 90% and there are high lipid scores at the inside of plaque phantom in other frame images at the same condition. It indicates the possibility of plaque detection in intravascular OCT.

  3. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    Science.gov (United States)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  4. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Science.gov (United States)

    Hu, Fa-Jie; Jin, Peng; Wu, Yan-Hua; Wang, Fei-Fei; Wei, Heng; Wang, Zhan-Guo

    2015-10-01

    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied. Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

  5. First demonstration of InGaP/InAlGaP based 608nm orange laser and 583nm yellow superluminescent diode

    KAUST Repository

    Majid, M. A.

    2015-11-12

    We report on the first demonstration of InGaP/InAlGaP based orange semiconductor laser (OSL) and yellow superluminescent diode (YSLD) emitting at a wavelength of 608nm and 583nm respectively. The total output power of YSLD is ∼4.5mW which is the highest ever reported power on this material system at room-temperature.

  6. Characterization of silica-based waveguides with an interferometric optical time-domain reflectometry system using a 1.3-microm-wavelength superluminescent diode.

    Science.gov (United States)

    Takada, K; Takato, N; Noda, J; Noguchi, Y

    1989-07-01

    Backscattering of silica-based glass waveguides is characterized for the first time to our knowledge by using an interferometric optical time-domain reflectometry system. High spatial resolution, as short as 15 microm, is obtained by using a newly developed 1.3-microm-wavelength superluminescent diode. Scattering centers produced by waveguide irregularities are clearly observed in glass optical waveguides. Waveguide loss and bend loss in the curved regions are estimated from the backscattered light intensity distribution.

  7. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules

    Science.gov (United States)

    Wootten, M. B.; Tan, J.; Chien, Y. J.; Olesberg, J. T.; Prineas, J. P.

    2014-11-01

    High power, high radiance, broadband light sources emitting in the 2.0-2.5 μm wavelength range are important for optical sensing of biomolecules such as glucose in aqueous solutions. Here we demonstrate and analyze superluminescent diodes with output centered at 2.4 μm (range ~2.2-2.5 μm) from GaInAsSb/AlGaAsSb quantum wells in a separate confinement structure. Pulsed wave output of 1 mW (38 kW cm2 Sr-1) is achieved at room temperature for 40 μm × 2 mm devices. Superluminescence is evidenced in superlinear increase in emission, spectral narrowing, and angular narrowing of light output with increasing current injection. Optical output is analyzed and modeled with rate equations. Potential routes for future improvements are explored, such as additional Auger suppression and photonic mode engineering.

  8. Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model

    Science.gov (United States)

    Jansz, Paul Vernon; Richardson, Steven; Wild, Graham; Hinckley, Steven

    2014-08-01

    The axial resolution is a critical parameter in determining whether optical coherent tomography (OCT) can be used to resolve specific features in a sample image. Typically, measures of resolution have been attributed to the light source characteristics only, including the coherence length and the point spread function (PSF) width of the OCT light sources. The need to cost effectively visualize the generated PSF and OCT cross-correlated interferogram (A-scan) using many OCT light sources have led to the extrinsic evolution of the OCT simulation model presented. This research indicated that empirical resolution in vivo, as well as depending on the light source's spectral characteristics, is also strongly dependent on the optical characteristics of the tissue, including surface reflection. This research showed that this reflection could be digitally removed from the A-scan of an epithelial model, enhancing the stratum depth resolution limit (SDRL) of the subsurface tissue. Specifically, the A-scan portion above the surface, the front surface interferogram, could be digitally subtracted, rather than deconvolved, from the subsurface part of each A-scan. This front surface interferogram subtraction resulted in considerably reduced empirical SDRLs being much closer to the superluminescent diodes' resolution limits, compared to the untreated A-scan results.

  9. Measurement of junction temperature and thermal resistance in InGaAlAs/AlGaAs quantum-well superluminescent diodes (SLDs)

    Science.gov (United States)

    Zhou, Shuai; Zhang, Jing; Duan, Li-Hua; Tang, Zu-Rong; Deng, Guang-Hua

    2016-02-01

    This paper reports on the experimental method of the determination of junction temperature and thermal resistance in 840 nm InGaAlAs/AlGaAs compressive strained single quantum well (SQW) superluminescent diodes (SLDs). The linear relation between forward voltage and junction temperature clearly occurs by utilizing the forward voltage-temperature (V-T) method. The temperature coefficient dV/dT has been determined. Under 100 mA continuous-wave (CW) operation condition, the thermal resistance is measured to be 81.6∘C/W, which is not significantly different with the theoretical calculation result.

  10. InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm

    Institute of Scientific and Technical Information of China (English)

    Li Xin-Kun; Liang De-Chun; Jin Peng; An Qi; Wei Heng; Wu Jian; Wang Zhan-Guo

    2012-01-01

    According to the InAs/GaAs submonolayer quantum dot active region,we demonstrate a bent-waveguide superlnminescent diode emitting at a wavelength of around 970 nm.At a pulsed injection current of 0.5 A,the device exhibits an output power of 24 mW and an emission spectrum centred at 971 nm with a full width at half maximum of 16 nm.

  11. High-Power and High-Efficiency 1.3- µm Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2015-02-01

    We report on a flat-top and ultrawide emission bandwidth of 125 nm from InGaAsP/InP multiple quantum-well (MQW) superluminescent diode with antireflection coated and tilted ridge-waveguide device configuration. A total output power in excess of 70 mW with an average power spectral density of 0.56 mW/nm and spectral ripple ≤ 1.2 ± 0.5 dB is measured from the device. Wall-plug efficiency and output power as high as 14% and 80 mW, respectively, is demonstrated from this batch of devices. We attribute the broad emission to the inherent inhomogeneity of the electron-heavy-hole (e-hh) and electron-light-hole (e-lh) recombination of the ground state and the first excited state of the MQWs and their simultaneous emission.

  12. High-Performance 1.55-µm Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash Active Region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2014-08-01

    We report on the high-performance characteristics from superluminescent diodes (SLDs) based on four-stack InAs/InGaAlAs chirped-barrier thickness quantum dash (Qdash) in a well structure. The active region exhibits a measured broad gain spectrum of 140 nm, with a peak modal gain of ~41 cm-1. The noncoated two-section gainabsorber broad-area and ridge-waveguide device configuration exhibits an output power of > 20 mW and > 12 mW, respectively. The corresponding -3-dB bandwidths span ~82 nm and ~72 nm, with a small spectral ripple of <; 0.2 dB, related largely to the contribution from dispersive height dash ensembles of the highly inhomogeneous active region. These C-L communication band devices will find applications in various cross-disciplinary fields of optical metrology, optical coherent tomography, etc.

  13. High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element

    Science.gov (United States)

    Zia, Nouman; Viheriälä, Jukka; Koskinen, Riku; Aho, Antti; Suomalainen, Soile; Guina, Mircea

    2016-12-01

    The characteristics and the fabrication of a 1.9 μm superluminescent diode utilizing a cavity suppression element are reported. The strong suppression of reflections allows the device to reach high gain without any sign of lasing modes. The high gain enables strong amplified spontaneous emission and output power up to 60 mW in a single transverse mode. At high gain, the spectrum is centered around 1.9 μm and the full width at half maximum is as large as 60 nm. The power and spectral characteristics pave the way for demonstrating compact and efficient light sources for spectroscopy. In particular, the light source meets requirements for coupling to silicon waveguides and fills a need for leveraging to mid-IR applications photonics integration circuit concepts exploiting hybrid integration to silicon technology.

  14. Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    We report on the quantitative evidence of simultaneous amplified spontaneous emission from the AlGaInAs/InAs/ InP-based quantum-well (Qwell) and quantum-dashes (Qdash) in a multistack dash-in-an-asymmetric-well superluminescent diode heterostructure. As a result, an emission bandwidth (full width at half-maximum) of 700 nm is achieved, covering entire O-E-S-C-L-U communication bands, and a maximum continuous wave output power of 1.3 mW, from this device structure. This demonstration paves a way to bridge entire telecommunication bands through proper optimization of device gain region, bringing significant advances and impact to a variety of cross-disciplinary field applications. © 2013 Optical Society of America.

  15. Broadband superluminescent diode–based ultrahigh resolution optical coherence tomography for ophthalmic imaging

    Science.gov (United States)

    Zhu, Dexi; Shen, Meixiao; Jiang, Hong; Li, Ming; Wang, Michael R.; Wang, Yuhong; Ge, Lili; Qu, Jia; Wang, Jianhua

    2011-01-01

    Spectral domain optical coherence tomography (SD-OCT) with ultrahigh resolution can be used to measure precise structures in the context of ophthalmic imaging. We designed an ultrahigh resolution SD-OCT system based on broadband superluminescent diode (SLD) as the light source. An axial resolution of 2.2 μm in tissue, a scan depth of 1.48 mm, and a high sensitivity of 93 dB were achieved by the spectrometer designed. The ultrahigh-resolution SD-OCT system was employed to image the human cornea and retina with a cross-section image of 2048 × 2048 pixels. Our research demonstrated that ultrahigh -resolution SD-OCT can be achieved using broadband SLD in a simple way. PMID:22191923

  16. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  17. Low spectral modulation high-power output from a new AlGaAs superluminescent diode/optical amplifier structure

    Energy Technology Data Exchange (ETDEWEB)

    Alphonse, G.A.; Connolly, J.C.; Dinkel, N.A.; Palfrey, S.L.; Gilbert, D.B. (David Sarnoff Research Center, Princeton, New Jersey 08543-5300 (US))

    1989-11-27

    A double-heterojunction angled stripe AlGaAs device consisting of an index-guided ridge waveguide with gain-guided facet regions has produced cw output powers of 20 mW with less than 1% spectral modulation from a 300-{mu}m-long diode. These properties enable these devices to have important use in high-sensitivity fiber optic gyroscopes and as broadband traveling-wave optical amplifiers.

  18. Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure.

    Science.gov (United States)

    Li, Xinkun; Jin, Peng; An, Qi; Wang, Zuocai; Lv, Xueqin; Wei, Heng; Wu, Jian; Wu, Ju; Wang, Zhanguo

    2012-05-21

    In this work, a high-power and broadband quantum dot superluminescent diode (QD-SLD) is achieved by using a two-section structure. The QD-SLD device consists of a tapered titled ridge waveguide section supplying for high optical gain and a straight titled ridge waveguide section to tune optical feedback from the rear facet of the device. The key point of our design is to achieve the wavelength-selective optical feedback to the emission of the QDs' ground state (GS) and 1st excited state (ES) by tuning the current densities injected in the straight titled section. With GS-dominant optical feedback under proper current-injection of the straight titled region, a high output power of 338 mW and a broad bandwidth of 65 nm is obtained simultaneously by the contribution associated to the QDs' GS and 1st ES emission.

  19. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95-2.45 μm wavelength range

    Science.gov (United States)

    Vizbaras, K.; Dvinelis, E.; ŠimonytÄ--, I.; TrinkÅ«nas, A.; Greibus, M.; Songaila, R.; Žukauskas, T.; Kaušylas, M.; Vizbaras, A.

    2015-07-01

    We present high-power single-spatial mode electrically pumped GaSb-based superluminescent diodes (SLDs) operating in the 1.95 to 2.45 μm wavelength range in continuous-wave (CW). MBE grown GaSb-based heterostructures were fabricated into single-angled facet ridge-waveguide devices that demonstrate more than 40 mW CW output power at 2.05 μm, to >5 mW at 2.40 μm at room-temperature. We integrated these SLDs into an external cavity (Littrow configuration) as gain chips and achieved single-mode CW lasing with maximum output powers exceeding 18 mW. An extremely wide tuning range of 120 nm per chip with side-mode-suppression-ratios >25 dB was demonstrated while maintaining optical output power level above 3 mW across the entire tuning range.

  20. Ultrahigh resolution optical coherence tomography using a superluminescent light source

    NARCIS (Netherlands)

    Kowalevicz, Andrew M.; Ko, Tony; Hartl, Ingmar; Fujimoto, James G.; Pollnau, Markus; Salathé, René P.

    2002-01-01

    A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al

  1. Time-delayed laser oscillation of a DH diode having an unpumped region

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, K.; Hino, I.

    1977-04-01

    An Al/sub x/Ga/sub 1//sub - x/As-Al/sub y/Ga/sub 1//sub - y/As double-heterostructure (DH) superluminescent diode (SLD) having an unpumped absorbing region has shown laser oscillation with a long time delay, amounting to as much as microseconds at a low pumping level. It has been confirmed that this lasing is made possible by two types of band-gap shrinkage, one resulting from the many-body interaction of excited carriers and the other from the temperature rise in the excited region.

  2. Scandium oxide antireflection coatings for superluminescent LEDs

    Science.gov (United States)

    Ladany, I.; Zanzucchi, P. J.; Andrews, J. T.; Kane, J.; Depiano, E.

    1986-01-01

    For an employment of laser diodes as superluminescent LEDs (SLDs) or amplifiers, the facets of the diodes must be coated with antireflection films. In the work reported, scandium oxide was evaporated from an e-beam source onto Supersil II fused silica substrates. The obtained samples were used for measurements of absorption and reflectivity. Results of index measurements on e-beam evaporated films are presented. It is shown that excellent coatings with reflectivities of 0.00025 can be obtained using these films. Attention is given to the refractive indices for scandium oxide films as a function of wavelength, the power output vs current for laser before coating and after coating with Sc2O3.

  3. Anti-Stokes effect CCD camera and SLD based optical coherence tomography for full-field imaging in the 1550nm region

    Science.gov (United States)

    Kredzinski, Lukasz; Connelly, Michael J.

    2012-06-01

    Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.

  4. Ultrahigh resolution optical coherence tomography using a superluminescent light source.

    Science.gov (United States)

    Kowalevicz, Andrew; Ko, Tony; Hartl, Ingmar; Fujimoto, James; Pollnau, Markus; Salathé, René

    2002-04-08

    A superluminescent Ti:Al2O(3) crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 microW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O(3) crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 microm axial resolution in air, or 1.7 microm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging.

  5. SLD electroweak physics results

    CERN Document Server

    De Groot, N

    2001-01-01

    In this paper we present three updates to heavy flavour results from the SLD detector at SLAC. These results are preliminary, based on our full 1993-1998 dataset of 550 000 hadronic Z0 decays produced with an average electron polarisation of 73%. The new measurements are of the hadronic branching fractions into heavy quarks (Rb, Rc), the b quark asymmetry (Ab) using jet charge, and the heavy quark asymmetries (Ab and Ac) using vertex charge and kaons.

  6. QCD at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Plano, R. [Rutgers Univ., New Brunswick, NJ (United States)

    1997-01-01

    This talk reviews seven SLD papers, which provide useful, unique, and precise contributions to our understanding of hadron production in the decay of Z{sup 0} produced in e{sup +}e{sup -} collisions. The data were gathered by the SLAC Large Detector (SLD) at the SLAC Linear Collider (SLC). This accelerator/detector is able to systematic advantages including a tiny and stable interaction region combined with a precise high-resolution vertex detector, excellent particle identification, and a high-resolution vertex detector, excellent particle identification, and a highly polarized electron beam. The papers include studies of: (1) factorial and cumulant moments, (2) charged multiplicities produced by b, c, and uds quarks, (3) rapidity gaps, orientations and energy partitions of three-jet events, (4) jet handedness, (5) triple-product correlation in polarized Z{sup 0} decays to three jets, and {pi}{sup {+-}}, K{sup {+-}}, p, K{sup 0}, and {Lambda} production in Z{sup 0} decays. Comparisons are made to LEP results where appropriate.

  7. 与单模光纤高效耦合的超辐射二极管优化设计%Optimization Design of Superluminescent Diodes with RWG Structure for High Efficiency Coupling with SMFs

    Institute of Scientific and Technical Information of China (English)

    钟馨; 黄翊东; 赵涵; 张巍; 彭江得

    2006-01-01

    With the aim of achieving high coupling power of RWG SLDs into SMFs, the structure dependences of the output power and the near field pattern are investigated. The thicknesses of the layers between the active region and the ridge waveguide are optimized by taking into account the injected carrier distribution and local material gain in the SLD cross section.%为了提高脊波导结构的超辐射二极管(SLD)与单模光纤的耦合功率,研究了有源区与脊之间的残留层和上光限制层的厚度对SLD输出功率和近场光斑的影响.考虑了注入载流子横向分布的不均匀,较准确地计算了模式增益.结果表明,通过对残留层和上光限制层厚度的优化,可以有效提高SLD与单模光纤的耦合功率.

  8. SLD Trip Report

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, G.T.; /Fermilab

    1990-04-13

    The author visited the facility to gain an insight in the experience of the LAr filling of the SLD Barrel and North End Cap, and the cooldown of the South End Cap. Cryogenic commissioning began mid-September, 1989, and continued to Cooldown, January 3, 1990. Cryogenic commissioning followed the construction and installation of the piping. The checkout was serial and problems found 'as we were going along'. There was a clear message to work in parallel and certify subsystems in advance of their need. Typical problems were VJ line external bellows and ball valves that were not He leak tight. The early preparations concentrated on the relief (singular) of the LAr 100,000 I dewar (sound familiar?). About one month was lost to the refurbishing of valves. After commissioning the dewar they accepted four LAr transfers for a total of 15,000 gallons, each in the range of 0.4-0.6 ppm O{sub 2} measurement with equipment accurate to +/- 0.1 ppm. As I watched, tests were concluding that qualified the Barrel calorimeter as having LAr with 0.6 +/- 0.1 ppm O{sub 2} to the delight of those making the measurement. There was real satisfaction in the recent HV measurement that only 55 of 40,000 channels had shorts. The ratio is essentially that predicted from the early module testing experience and another reason to celebrate. Twelve of the twenty-four Barrel feedthroughs flanges (one end, total is forty-eight) had been fitted with Pre-Amps and that installation seemed to be going very well. There are hermetic feedthroughs at the PV wall, a length of manganin wire in the vacuum space to a warm hermetic feedthrough flange that is double 'O' ring sealed in the vacuum vessel closure plate. The Pre-Amps mount directly to the atmospheric side of these feedthrough flanges. The instrumentation is 'Bare Bones'. There was a need for flow meters when concerns for cooling loop flows arose and it would have been very helpful to be able to measure the flow in the

  9. Scalable parallel physical random number generator based on a superluminescent LED

    CERN Document Server

    Li, Xiaowen; Murphy, Thomas E; Roy, Rajarshi

    2011-01-01

    We describe an optoelectronic system for simultaneously generating parallel, independent streams of random bits using spectrally separated noise signals obtained from a single optical source. Using a pair of non-overlapping spectral filters and a fiber-coupled superluminescent light-emitting diode (SLED), we produced two independent 10 Gb/s random bit streams, for a cumulative generation rate of 20 Gb/s. The system relies principally on chip-based optoelectronic components that could be integrated in a compact, economical package.

  10. Dicty_cDB: SLD185 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD185 (Link to dictyBase) - - - Contig-U12145-1 SLD185P (Link to Original site) SLD1...85F 130 SLD185Z 475 SLD185P 605 - - Show SLD185 Library SL (Link to library) Clone ID SLD1... URL http://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLD1-D/SLD185Q.Seq.d/ Representative seq. ID SLD1...85P (Link to Original site) Representative DNA sequence >SLD185 (SLD185Q) /CSM/SL/SLD1-D/SLD1...ptkrlpsk*ksis Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value SLD185 (SLD185Q) /CSM/SL/SLD1

  11. Dicty_cDB: SLD195 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD195 (Link to dictyBase) - - - Contig-U14967-1 SLD195Z (Link... to Original site) - - SLD195Z 505 - - - - Show SLD195 Library SL (Link to library) Clone ID SLD195 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLD1-D/SLD195Q.Seq.d/ Representative seq. ID SLD19...5Z (Link to Original site) Representative DNA sequence >SLD195 (SLD195Q) /CSM/SL/SLD1-D/SLD195Q.Seq.d/ XXXXX...lignments: (bits) Value SLD195 (SLD195Q) /CSM/SL/SLD1-D/SLD195Q.Seq.d/ 1001 0.0 A

  12. The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3.

    Science.gov (United States)

    Itou, Hiroshi; Shirakihara, Yasuo; Araki, Hiroyuki

    2015-08-01

    The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomes. Yeast Sld3 and its metazoan counterpart treslin are the hub proteins mediating protein associations critical for formation of the helicase. The Sld7 protein interacts with Sld3, and the complex formed is thought to regulate the function of Sld3. Although Sld7 is a non-essential DNA replication protein that is found in only a limited range of yeasts, its depletion slowed the growth of cells and caused a delay in the S phase. Recently, the Mdm2-binding protein was found to bind to treslin in humans, and its depletion causes defects in cells similar to the depletion of Sld7 in yeast, suggesting their functional relatedness and importance during the initiation step of DNA replication. Here, the crystal structure of Sld7 in complex with Sld3 is presented. Sld7 comprises two structural domains. The N-terminal domain of Sld7 binds to Sld3, and the C-terminal domains connect two Sld7 molecules in an antiparallel manner. The quaternary structure of the Sld3-Sld7 complex shown from the crystal structures appears to be suitable to activate two helicase molecules loaded onto replication origins in a head-to-head manner.

  13. Dicty_cDB: SLD137 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD137 (Link to dictyBase) - - - Contig-U16379-1 SLD137E (Link... to Original site) - - - - - - SLD137E 288 Show SLD137 Library SL (Link to library) Clone ID SLD137 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/SL/SLD1-B/SLD137Q.Seq.d/ Representative seq. ID SLD13...7E (Link to Original site) Representative DNA sequence >SLD137 (SLD137Q) /CSM/SL/SLD1-B/SLD137Q.Seq.d/ AAAAA...ology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value SLD137 (SLD1

  14. Heavy quark physics from SLD

    Energy Technology Data Exchange (ETDEWEB)

    Messner, R. [Stanford Univ., CA (United States)

    1997-01-01

    This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

  15. Requirement of SLD5 for early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Tomomi Mohri

    Full Text Available SLD5 forms a GINS complex with PSF1, PSF2 and PSF3, which is essential for the initiation of DNA replication in lower eukaryotes. Although these components are conserved in mammals, their biological function is unclear. We show here that targeted disruption of SLD5 in mice causes a defect in cell proliferation in the inner cell mass, resulting in embryonic lethality at the peri-implantation stage, indicating that SLD5 is essential for embryogenesis. Moreover, this phenotype of SLD5 mutant mice is quite similar compared with that of PSF1 mutant mice. We have previously reported that haploinsufficiency of PSF1 resulted in failure of acute proliferation of bone marrow hematopoietic stem cells (HSCs during reconstitution of bone marrow ablated by 5-FU treatment. Since SLD5 was highly expressed in bone marrow, we investigated its involvement in bone marrow reconstitution after bone marrow ablation as observed in PSF1 heterozygous mutant mice. However, heterozygous deletion of the SLD5 gene was found not to significantly affect bone marrow reconstitution. On the other hand, abundant SLD5 expression was observed in human cancer cell lines and heterozygous deletion of the gene attenuated tumor progression in a murine model of spontaneous gastric cancer. These indicated that requirement and dependency of SLD5 for cell proliferation is different in different cell types.

  16. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Directory of Open Access Journals (Sweden)

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  17. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.

    Science.gov (United States)

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J

    2015-01-01

    Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  18. Dicty_cDB: SLD152 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD152 (Link to dictyBase) - - - - SLD152E (Link to Original site) - - - - - - SLD1...52E 506 Show SLD152 Library SL (Link to library) Clone ID SLD152 (Link to dictyBase) At...las ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLD1-C/SLD1...52Q.Seq.d/ Representative seq. ID SLD152E (Link to Original site) R...epresentative DNA sequence >SLD152 (SLD152Q) /CSM/SL/SLD1-C/SLD152Q.Seq.d/ AAAATGTCCACAAATAAAGTAAACAAAGAAAGA

  19. Dicty_cDB: SLD176 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD176 (Link to dictyBase) - - - - SLD176Z (Link to Original site) - - SLD1...76Z 554 - - - - Show SLD176 Library SL (Link to library) Clone ID SLD176 (Link to dictyBase) At...las ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/SL/SLD1-D/SLD1...76Q.Seq.d/ Representative seq. ID SLD176Z (Link to Original site) R...epresentative DNA sequence >SLD176 (SLD176Q) /CSM/SL/SLD1-D/SLD176Q.Seq.d/ XXXXXXXXXXTCCATGAGAAATGGTGCACAAAG

  20. Electronic technology and the SLD detector

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.D.; Dean, T.; Fox, M.J.; Freytag, D.; Gioumousis, A.; Haller, G.; Hoeflich, J.; Horelick, D.; Kang, H; Mazaheri, G.; Nelson, D.J.; Olsen, J.J.; Oxoby, G.; Paffrath, L.; Stiles, P.; Yim, A. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Bacchetta, N. (Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Bilei, G.M. (Istituto Nazionale di Fisica Nucleare, Perugia (Italy)); Carpinelli, M.; Cast

    1990-06-01

    The SLD detector consists of five major subsystems, each with associated front-end electronics and an integrated FASTBUS control and data acquisition system. This paper highlights the choices among electronic technologies that have been developed for the SLD detector electronics. The common control, calibration, and data acquisition architectures are described. The functions of selected SLD integrated circuits, standard cells, gate arrays, and hybrids are summarized, and the integration of these functions into the common data acquisition path is described. Particular attention is directed to four areas of electronic technology developed for the SLD detector: the preamplifier hybrid designs are compared to their performance and implementation examined; the application of full custom CMOS digital circuits in SLD is compared to gate array and EPLD (electrically programmable logic device) implementations; the fiberoptic signal transmission techniques in SLD are examined and the data rates and link topology are presented; and finally, the packaging, power consumption, and cooling requirements for system functions resident inside the detector structure are explored. The rationale for the implementation choices in the SLD electronics is presented so that others might benefit from our experience.

  1. B Decay Studies at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mark R

    1999-03-19

    We present three preliminary results from SLD on B decays: an inclusive search for the process b {r_arrow} s gluon, a measurement of the branching ratio for the process B {r_arrow} D{bar D}X, and measurements of the charged and neutral B lifetimes. All three measurements make use of the excellent vertexing efficiency and resolution of the CCD Vertex Detector and the first two make use of the excellent particle identification capability of the Cherenkov Ring Imaging Detector. The b {r_arrow} sg analysis searches for an enhancement of high momentum charged kaons produced in B decays. Within the context of a simple, Jetset-inspired model of b {r_arrow} sg, a limit of B(b {r_arrow} sg) < 7.6% is obtained. The B(B {r_arrow} D{bar D}X) analysis reconstructs two secondary vertices and uses identified charged kaons to determine which of these came from charm decays. The result of the analysis is B(B {r_arrow} D{bar D}X) = (16.2 {+-} 1.9 {+-} 4.2)%. The results of the lifetime analysis are: {tau}{sub B{sup +}} = 1.686 {+-} 0.025 {+-} 0.042 ps, {tau}{sub B{sup 0}} = 1.589 {+-} 0.026 {+-} 0.055 ps and {tau}{sub B{sup +}}/{tau}{sub B{sup 0}} = 1.061 {+-} 0.031/0.029 {+-} 0.027.

  2. Dicty_cDB: SLD809 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SL (Link to library) SLD809 (Link to dictyBase) - - - Contig-U16255-1 SLD809P (Link... to Original site) SLD809F 276 SLD809Z 277 SLD809P 553 - - Show SLD809 Library SL (Link to library) Clone ID SLD809 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U16255-1 Original site URL http://dict...pdate 1999. 2.23 Translated Amino Acid sequence TSGGTPGSCDKVNCPNGYICTIVNQLAVCVSPSSSSSSSSSTTGSHTTTGGSTTGSHTTT...TTVMLMKKILMKISMVMMNLKLMLKVISKKMISKKNMHFIKLNFFS *knnnnnlitnhyhq**hynitlitilffniqrly Frame B: TSGGTPGSCDKVNCPNGYICT

  3. Measurement of the {tau} lifetime at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Etzion, E.; Falciai, D.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; (The SLD Collabor...

    1995-11-01

    A measurement of the lifetime of the {tau} lepton has been made using a sample of 1671 {ital Z}{sup 0}{r_arrow}{tau}{sup +}{tau}{sup {minus}} decays collected by the SLD detector at the SLC. The measurement benefits from the small and stable collision region at the SLC and the precision pixel vertex detector of the SLD. Three analysis techniques have been used: decay length, impact parameter, and impact parameter difference methods. The combined result is {tau}{sub {tau}}=297{plus_minus}9 (stat){plus_minus}5(syst) fs.

  4. HIGH-STABLE ERBIUM SUPERLUMINESCENT FIBER OPTICAL SOURCES CREATION METHODS

    OpenAIRE

    A. S. Aleynik; N. E. Kikilich; V. N. Kozlov; A. A. Vlasov; NIKITENKO A.N.

    2016-01-01

    We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS) creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG) production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the mos...

  5. Dicty_cDB: SLD739 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available producing significant alignments: (bits) Value SLD739 (SLD739Q) /CSM/SL/SLD7-B/SLD739Q.Seq.d/ 82 3e-15 SLA4...q.d/ 44 7e-04 own update 2004.12.25 Homology vs DNA Score E Sequences producing significant alignments: (bits) Value...Sequences producing significant alignments: (bits) Value (Q54UJ6) RecName: Full=U

  6. Current Performance of the SLD VXD3

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Toshinori

    1999-09-14

    During 1996, the SLD collaboration completed construction and began operation of a new charge-coupled device (CCD) vertex detector (VXD3). Since then, its performance has been studied in detail and a new topological vertexing technique has been developed. In this paper, we discuss the design of VXD3, procedures for aligning it, and the tracking and vertexing improvements that have led to its world-record performance.

  7. Electroweak Measurements with Heavy Quarks at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Bellodi, Giulia

    2000-10-03

    The SLD detector collected a sample of 550K hadronic events at the Z{sup 0} peak from e{sup +}e{sup -} collisions at the SLC during the 1993 to 1998 period. Polarized electron beams, a small and stable interaction point and the excellent performance of the 3-D CCD vertex detector provide a unique environment for precision electroweak tests of the Standard Model. Improved measurements of heavy quark electroweak parameters are presented here.

  8. Predicted thermal superluminescence in low-pressure air

    CERN Document Server

    Aramyan, A R; Galechyan, G A; Mangasaryan, N R; Nersisyan, H B

    2009-01-01

    It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300-3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.

  9. Early radiological diagnostics for scapholunate dissociation (SLD); Radiologische Fruehdiagnostik der skapholunaeren Dissoziation (SLD)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.; Froehner, S.; Fodor, S.; Christopoulos, G. [Herz- und Gefaessklinik GmbH, Institut fuer Diagnostische und Interventionelle Radiologie, Bad Neustadt an der Saale (Germany); Kalb, K.H. [Herz- und Gefaessklinik GmbH, Bad Neustadt an der Saale (Germany). Klinik fuer Handchirurgie

    2006-08-15

    The partial tear of the scapholunate ligament (pre-dynamic stage of SLD) as well as the complete tear (dynamic stage) does not lead to carpal malalignment. However, if the completely ruptured ligament is accompanied by lesions of the extrinsic ligaments, both the scaphoid and the lunate are malaligned already at rest (static stage of SLD). Later, osteoarthritis will develop, beginning in the radioscaphoid compartment, progressing to the midcarpal joint, and ending in a carpal collapse (osteoarthrotic stage of SLD). Dynamic SLD is detectable only in stress views and in cinematography. The high utility of MRI for directly visualizing the injured ligament is emphasized: reparation tissue is focally enhanced at the rupture site by intravenously applied contrast agent; the individual segments of the scapholunate ligament can be visualized in direct MR arthrography, therefore allowing differentiation of partial and complete ligamentous tears. (orig.) [German] Die Teilruptur des Lig. scapholunatum (praedynamisches Stadium) und die isolierte Komplettruptur (dynamisches Stadium) fuehren zu keiner karpalen Gefuegestoerung in Ruhe. Erst wenn die Komplettruptur von Laesionen der extrinsischen Bandstabilisatoren begleitet wird, stehen das Skaphoid und Lunatum bereits in Ruhe in Fehlstellung (statisches Stadium). Spaeter kommt es zur Handgelenkarthrose, zuerst radioskaphoidal, dann mediokarpal mit Ausbildung eines karpalen Kollapses (arthrotisches Stadium). Die dynamische Instabilitaet ist nur mit Stressaufnahmen und kinematographisch nachweisbar. Die MRT vermag das rupturierte Lig. scapholunatum direkt darzustellen: Intravenoes verabreichtes Kontrastmittel reichert sich fokal am Reparationsgewebe der Rupturstelle an; mit der direkten MR-Arthrogaphie koennen die Bandsegmente besser abgegrenzt und Partial- von Komplettrupturen unterschieden werden. (orig.)

  10. Amplitude-stabilized frequency-modulated laser diode and its interferometric sensing applications.

    Science.gov (United States)

    Takahashi, Y; Yoshino, T; Ohde, N

    1997-08-20

    A direct frequency-modulated (FM) laser diode light source without light power variation is developed. The amplitude variation of the FM laser diode is compensated by means of a feedback system with use of a superluminescent diode as an external light power controller. Output power greater than 1 mW is obtained at the modulation frequency to 5 kHz with a >10 stabilization factor. By use of the amplitude-stabilized FM laser diode, we measured subfringes with high accuracy in FM continuous wave interferometry, increased the dynamic range of the displacement measurement, and improved the stabilization factor in the laser diode feedback interferometer.

  11. Measurements of Parity-Violation Parameters at SLD

    CERN Document Server

    Iwasaki, M; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, Timothy L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; Dong, D N; Doser, Michael; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernández, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M S; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G S; Lia, V; Lin, C; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Vavra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Iwasaki, Masako

    2001-01-01

    We present direct measurements of the parity-violation parameters $A_b$, $A_c$, and $A_s$ at the $Z^0$ resonance with the SLD detector. The measurements are based on approximately 530k hadronic $Z^0$ events collected in 1993-98. Obtained results are $A_b = 0.914\\pm0.024$ (SLD combined: preliminary), $A_c = 0.635\\pm0.027$ (SLD combined: preliminary), and $A_s = 0.895\\pm0.066(stat.)\\pm 0.062(sys.)$.

  12. Recent Tests of QCD at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Muller, David

    2001-11-15

    We present selected results on strong interaction physics from the SLD experiment at the SLAC Linear Collider. We report on several new studies of 3- and 4-jet hadronic Z{sup 0} decays, in which jets are identified as quark, antiquark or gluon. The gluon energy spectrum is measured over the full kinematic range, providing an improved test of QCD and limits on anomalous bbg and bbg couplings. The parity violation in Z{sup 0} {yields} b{bar b}g decays is consistent with electroweak theory plus QCD. New tests of T- and CP-conservation at the bbg vertex are performed. An improved measurement of the rate of gluon splitting into b{bar b} pairs yields g{sub b{bar b}} = 0.00244 {+-} 0.00059(stat.) {+-} 0.00034(syst.). We also present a number of new results on jet fragmentation into identified hadrons. The B hadron energy spectrum is measured over the full kinematic range using a new, inclusive technique, allowing stringent tests of predictions for its shape and a precise measurement of 0 corresponds to the quark direction provides additional new insights into fragmentation, including the first direct observation of baryon number ordering along the q{bar q} axis.

  13. Evaluation of NCAR Icing/SLD Forecasts, Tools and Techniques Used During The 1998 NASA SLD Flight Season

    Science.gov (United States)

    Bernstein, Ben C.

    2001-01-01

    Supercooled Large Droplet (SLD) icing conditions were implicated in at least one recent aircraft crash, and have been associated with other aircraft incidents. Inflight encounters with SLD can result in ice accreting on unprotected areas of the wing where it can not be removed. Because this ice can adversely affect flight characteristics of some aircraft, there has been concern about flight safety in these conditions. The FAA held a conference on in-flight icing in 1996 where the state of knowledge concerning SLD was explored. One outcome of these meetings was an identified need to acquire SLD flight research data, particularly in the Great Lakes Region. The flight research data was needed by the FAA to develop a better understanding of the meteorological characteristics associated with SLD and facilitate an assessment of existing aircraft icing certification regulations with respect to SLD. In response to this need, NASA, the Federal Aviation Administration (FAA), and the National Center for Atmospheric Research (NCAR) conducted a cooperative icing flight research program to acquire SLD flight research data. The NASA Glenn Research Center's Twin Otter icing research aircraft was flown throughout the Great Lakes region during the winters of 1996-97 and 1997-98 to acquire SLD icing and meteorological data. The NASA Twin Otter was instrumented to measure cloud microphysical properties (particle size, LWC (Liquid Water Content), temperature, etc.), capture images of wing and tail ice accretion, and then record the resultant effect on aircraft performance due to the ice accretion. A satellite telephone link enabled the researchers onboard the Twin Otter to communicate with NCAR meteorologists. who provided real-time guidance into SLD icing conditions. NCAR meteorologists also provided preflight SLD weather forecasts that were used to plan the research flights, and served as on-board researchers. This document contains an evaluation of the tools and techniques NCAR

  14. HIGH-STABLE ERBIUM SUPERLUMINESCENT FIBER OPTICAL SOURCES CREATION METHODS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-07-01

    Full Text Available We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the most important characteristics of EDSFS are central wavelength time and wide temperature range stability and optical spectrum width and shape. The spectrum shape is needed to be close to the Gaussian distribution to minimize time coherence function. The paper deals with major EDSFS instability reasons and their most effective spectral parameters stabilization and optimization methods. We consider various methods of output optical radiation spectrum correction, and problems connected with output radiation residual polarization, the EDSFS principle of operation, structure and their basic construction schemes, the overview of Erbium-doped active fibers for EDSFS creation. The conclusions on most effective output optical radiation stabilization methods are drawn.

  15. Measurements of $Z^{0}$ Electroweak Couplings at SLD

    CERN Document Server

    Abe, K; Abe, T; Adam, I; Akagi, T; Allen, N J; Ash, William W; Aston, D; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Bardon, O; Barklow, Timothy L; Bashindzhagian, G L; Bauer, J M; Bellodi, G; Ben-David, R; Benvenuti, Alberto C; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Calloway, D H; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chou, A; Church, E; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cotton, R; Cowan, R F; Coyne, D G; Crawford, G; Damerell, C J S; Danielson, M N; Daoudi, M; De Groot, N; Dell'Orso, R; Dervan, P J; De Sangro, R; Dima, M; de Oliveira, A; Dong, D N; Doser, Michael; Dubois, R; Eisenstein, B I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Gifford, J A; Gillman, T; Gladding, G E; González, S; Goodman, E R; Hart, E L; Harton, J L; Hasan, A; Hasuko, K; Hedges, S J; Hertzbach, S S; Hildreth, M D; Huber, J; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M S; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kim, Y D; King, M E; King, R; Kofler, R R; Krishna, N M; Kroeger, R S; Langston, M; Lath, A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Liu, X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McKemey, A K; Meadows, B T; Menegatti, G; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Nagamine, T; Narita, S; Nauenberg, U; Neal, H; Nussbaum, M; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Pavel, T J; Peruzzi, I; Piccolo, M; Piemontese, L; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G D; Quigley, J; Ratcliff, B N; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schindler, R H; Schumm, B A; Schwiening, J; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thom, J; Torrence, E; Toumbas, N K; Usher, T; Vannini, C; Vavra, J; Vella, E N; Venuti, J P; Verdier, R; Verdini, P G; Wagner, D L; Wagner, S R; Waite, A P; Walston, S; Wang, J; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, B; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yamartino, J M; Yang, X; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G H; Zdarko, R W; Zhou, J

    2000-01-01

    We present a summary of the results of several electroweak measurements performed by the SLD experiment at the Stanford Linear Collider (SLC). Most of these results are preliminary and are based, unless otherwise indicated, on the full 1993-8 data set of approximately 550,000 hadronic decays of Z0 bosons produced with an average electron beam polarization of 73%.

  16. A status report on the SLD data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The basic design of the SLD data acquisition system and its present status are reviewed. Aspects of the design that take particular advantage of the relatively low e/sup +/e/sup /minus// cross section and the low beam crossing rate of a linear collider are explained. 14 refs., 8 figs.

  17. Final Results on Heavy Quarks at LEP and SLD

    CERN Document Server

    Stocchi, A

    2002-01-01

    In the last decade, the LEP and SLD experiments played a central role in the study of B hadrons (hadrons containing a b quark). New B hadrons have been observed ($B^0_s$, \\Lambda_b$, $\\Xi_b$ and $B^{**}$) and their production and decay properties have been measured. In this paper we will focus on measurements of the CKM matrix elements: $|V_{cb}|$, $|V_{ub}|$, $|V_{td}|$ and $|V_{ts}|$. We will show how all these measurements, together with theoretical developments, have significantly improved our knowledge on the flavour sector of the Standard Model.

  18. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin.

    Science.gov (United States)

    Itou, Hiroshi; Muramatsu, Sachiko; Shirakihara, Yasuo; Araki, Hiroyuki

    2014-09-02

    The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomal DNA. Yeast Sld3 and its metazoan counterpart Treslin are the hub proteins mediating protein associations critical for the helicase formation. Here, we show the crystal structure of the central domain of Sld3 that is conserved in Sld3/Treslin family of proteins. The domain consists of two segments with 12 helices and is sufficient to bind to Cdc45, the essential helicase component. The structure model of the Sld3-Cdc45 complex, which is crucial for the formation of the active helicase, is proposed.

  19. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device.

    Science.gov (United States)

    Riedi, Sabine; Cappelli, Francesco; Blaser, Stéphane; Baroni, Pierre-Yves; Müller, Antoine; Faist, Jérôme

    2015-03-23

    The broadband electroluminescence of a quantum cascade device based on a multi-color active region covering the wavelengths 5.9 μm - 7.2 μm was measured. Anti-reflection coatings were applied on both cleaved facets to remove the Fabry-Pérot cavity and prevent the device from lasing. This allows the latter to be studied either as a superluminescent diode or a single-pass amplifier in order to determine its suitability as a source for low speckle imaging applications. At 243 K, the amplified spontaneous emission has a peak power of 38 μW that agrees well with a simple model of spontaneous emission intensity. The light of a similar structure could be modulated up to 1 GHz, limited by the RC constant of the device. The peak gain was measured from high-resolution luminescence spectra and determined to be 6.3 cm⁻¹, corresponding to a single-pass gain of 1.89.

  20. Experimental Results of the Superluminescent Fiber Laser Sources for Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    E. F. Pinzón-Escobar

    2012-03-01

    Full Text Available We are presenting experimental work on an erbium-doped fiber operating in the superluminescent regime. Experimental results for different pump power levels and fiber length show that the theoretical and numerical model could render useful information for predicting the total output power as a function of fiber doped length and the input pump power. These types of sources could have direct application in wavelength multiplexed arrangements of fiber sensors, fiber gyroscopes or, in general, in any sensors in which a broad wavelength and stable light source is required.

  1. A measurement of the tau Michel parameters at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, J.

    1997-05-01

    This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are {rho}{sup e} = 0.71 {+-} 0.14 {+-} 0.05, {xi}{sup e} = 1.16 {+-} 0.52 {+-} 0.06, and ({xi}{delta}){sup e} = 0.85 {+-} 0.43 {+-} 0.08 for tau decays to electrons and {rho}{sup {mu}} = 0.54 {+-} 0.28 {sup {minus}} 0.14, {eta}{sup {mu}} = {minus}0.59 {+-} 0.82 {+-} 0.45, {xi}{sup {mu}} = 0.75 {+-} 0.50 {+-} 0.14, and ({xi}{delta}){sup {mu}} = 0.82 {+-} 0.32 {+-} 0.07 for tau decays to muons. Combining all leptonic tau decays gives {rho} = 0.72 {+-} 0.09 {+-} 0.03, {xi} = 1.05 {+-} 0.35 {+-} 0.04, and {Xi}{delta} = 0.88 {+-} 0.27 {+-} 0.04. These results agree well with the current world average and the Standard Model.

  2. A measurement of the tau Michel parameters at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, James A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1997-05-01

    This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are ρe = 0.71 ± 0.14 ± 0.05, ζe = 1.16 ± 0.52 ± 0.06, and (ζδ)e = 0.85 ± 0.43 ± 0.08 for tau decays to electrons and ρμ = 0.54 ± 0.28 μ 0.14, ημ = -0.59 ± 0.82 ± 0.45, ζsup>μ = 0.75 ± 0.50 ± 0.14, and (ζδ)μ = 0.82 ± 0.32 ± 0.07 for tau decays to muons. Combining all leptonic tau decays gives ρ = 0.72 ± 0.09 ± 0.03, ζ = 1.05 ± 0.35 ± 0.04, and ζδ = 0.88 ± 0.27 ± 0.04. These results agree well with the current world average and the Standard Model.

  3. Highlights of the SLD Physics Program at the SLAC Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Willocq, Stephane

    2001-09-07

    Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e{sup +}e{sup -} collider experiments operating at the Z{sup 0} resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions.

  4. In-Fiber Magneto-Optic Devices Based on Ultrahigh Verdet Constant Organic Materials and Holey Fibers

    Science.gov (United States)

    2009-02-02

    The high sensitivity magnetic field sensor reported in this paper employs a 1310 nm superluminescent diode (SLD) source, a five-axis positioning...Nd:YAG solid state laser), 632.8 nm (He-Ne gas laser), 670 nm (solid state diode laser), 980 nm. Figure 2: Experimental setup and the polarization states...polarizing beam splitter. 1310 nm and 1550 nm (all DFB diodes ). Auto-balanced phase sensitive detection is used to reduce common mode laser noise using

  5. Deranged aortic intima-media thickness, plasma triglycerides and granulopoiesis in Sl/Sld mice

    Directory of Open Access Journals (Sweden)

    Kottarappat N. Dileepan

    2004-01-01

    Full Text Available STUDIES were carried out to evaluate the impact of a high-fat dietary regimen on aortic wall thickness, peripheral blood leukocyte profile, and plasma cholesterol and triglyceride levels in the mast cell-deficient Sl/Sld mouse. The results demonstrated that the mean aortic wall thickness of Sl/Sld mice was significantly higher than their normal littermates, and were increased in both genotypes after a 17-day high-fat regimen. In comparison with normal littermates, Sl/Sld genotypes had elevated levels of plasma triglycerides with normal levels of plasma cholesterol, and the high-fat diet markedly lowered the triglyceride levels. Total peripheral blood leukocytes, the monocyte and granulocyte counts, and hemoglobin levels were significantly lower in Sl/Sld mice, although the number of lymphocytes, eosinophils and basophils were the same in both genotypes. Interestingly, the high-fat diet regimen elevated leukocyte counts and the number of monocytes and granulocytes in Sl/Sld mice.

  6. The performance of the Barrel CRID at the SLD: Long-term operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Tohoku Univ., Sendai (Japan); Ashford, V.; Aston, D. [Stanford Univ., CA (US). Stanford Linear Accelerator Center] [and others

    1997-11-01

    The Barrel CRID detector has been operating successfully at SLD for the past 7 years. It is an important tool for SLD physics analyses. The authors report results based on long term operational experience of a number of important quantities such as the Cherenkov quality factor, N{sub o}, of the device, fluid transparency, electron lifetime, single electron detection efficiency, anode wire aging, TMAE purity, long term stability of the gas refraction index, liquid radiator transparency, Cherenkov angle resolution and the number of photoelectrons observed per ring.

  7. RTI and Other Approaches to SLD Identification under the IDEA: A Legal Update

    Science.gov (United States)

    Zirkel, Perry A.

    2017-01-01

    This article provides a concise and objective synthesis of the federal legislation, regulations, and agency policy interpretations; state laws; and case law, including hearing officer and complaint investigation decisions, concerning specific learning disability (SLD) identification since the 2006 IDEA regulations. The results reveal wide latitude…

  8. Stress Levels of Kuwaiti Mothers of Children with SLD: Does Work and Educational Status Matter?

    Science.gov (United States)

    Alazemi, Saad S.; Hadadian, Azar; Merbler, John B.; Wang, Cen

    2015-01-01

    Existing research literature indicates that parents of children with disabilities have higher stress. The purpose of this study was to examine differences in stress levels between mothers in relation to their children with specific learning disabilities (SLD). A sub sample of 91 mothers participated in the study. The outcome of the research…

  9. Internal Alignment of the SLD Vertex Detector using a Matrix Singular Value Decomposition Technique

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dong

    2002-01-03

    The tracking resolution and vertex finding capabilities of the SLD experiment depend upon a precise knowledge of the location and orientation of the 96 elements of the SLD pixel vertex detector (VXD3) in 3D space. At the heart of the deterministic procedure described here to align the 96 CCDs is the matrix inversion technique of singular value decomposition (SVD). This tool is employed to unfold the detector geometry corrections from the track hit residual data in the VXD3. The algorithm is adapted to perform an optimal {chi}{sup 2} minimization by careful treatment of the errors and correlations in the residual measurements. The general form of the problems that might be solved with this technique is discussed. The tracking resolution obtained with the aligned geometry is compared with the starting point, based on an optical survey of the CCDs, and is shown to achieve the design performance.

  10. Direct Measurement of $A_{c}$ using Inclusive Charm Tagging at the SLD Detector

    CERN Document Server

    Abe, K; Akagi, T; Akimoto, H; Allen, N J; Ash, William W; Aston, D; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Bardon, O; Barklow, Timothy L; Bashindzhagian, G L; Bauer, J M; Bellodi, G; Benvenuti, Alberto C; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Byrne, R M; Calcaterra, A; Calloway, D H; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chou, A; Church, E; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Coyne, D G; Crawford, G; Damerell, C J S; Danielson, M N; Daoudi, M; De Groot, N; Dell'Orso, R; Dervan, P J; De Sangro, R; Dima, M; Dong, D N; Doser, Michael; Dubois, R; Eisenstein, B I; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Gifford, J A; Gillman, T; Gladding, G E; González, S; Goodman, E R; Hart, E L; Harton, J L; Hasuko, K; Hedges, S J; Hertzbach, S S; Hildreth, M D; Huber, J; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M S; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kim, Y D; King, M E; King, R; Kofler, R R; Krishna, N M; Kroeger, R S; Langston, M; Lath, A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Liu, X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mahjouri, M; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McKemey, A K; Meadows, B T; Menegatti, G; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Nagamine, T; Narita, S; Nauenberg, U; Neal, H A; Nussbaum, M; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Pavel, T J; Peruzzi, I; Piccolo, M; Piemontese, L; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G D; Quigley, J; Ratcliff, B N; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schindler, R H; Schumm, B A; Schwiening, J; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thom, J; Torrence, E; Toumbas, N K; Usher, T; Vannini, C; Vavra, J; Vella, E N; Venuti, J P; Verdier, R; Verdini, P G; Wagner, D L; Wagner, S R; Waite, A P; Walston, S; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, B; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yamartino, J M; Yang, X; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G H; Zdarko, R W; Zhou, J

    1999-01-01

    We report a new measurement of A_c using data obtained by SLD in 1993-98. This measurement uses a vertex tag technique, where the selection of a c hemisphere is based on the reconstructed mass of the charm hadron decay vertex. The method uses the 3D vertexing capabilities of SLD's CCD vertex detector and the small and stable SLC beams to obtain a high c-event tagging efficiency and purity of 28% and 82%, respectively. Charged kaons identified by the CRID detector and the charge of the reconstructed vertex provide an efficient quark-antiquark tag, with the analyzing power calibrated from the data. We obtain a preliminary result of A_c = 0.603 \\pm 0.028 \\pm 0.023

  11. Direct Measurement of $A_{b}$ using Charged Kaons at the SLD Detector

    CERN Document Server

    Abe, K; Akagi, T; Akimoto, H; Allen, N J; Ash, William W; Aston, D; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Bardon, O; Barklow, Timothy L; Bashindzhagian, G L; Bauer, J M; Bellodi, G; Benvenuti, Alberto C; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Byrne, R M; Calcaterra, A; Calloway, D H; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chou, A; Church, E; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Coyne, D G; Crawford, G; Damerell, C J S; Danielson, M N; Daoudi, M; De Groot, N; Dell'Orso, R; Dervan, P J; De Sangro, R; Dima, M; Dong, D N; Doser, Michael; Dubois, R; Eisenstein, B I; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Gifford, J A; Gillman, T; Gladding, G E; González, S; Goodman, E R; Hart, E L; Harton, J L; Hasuko, K; Hedges, S J; Hertzbach, S S; Hildreth, M D; Huber, J; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M S; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kim, Y D; King, M E; King, R; Kofler, R R; Krishna, N M; Kroeger, R S; Langston, M; Lath, A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Liu, X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mahjouri, M; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McKemey, A K; Meadows, B T; Menegatti, G; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Nagamine, T; Narita, S; Nauenberg, U; Neal, H A; Nussbaum, M; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Pavel, T J; Peruzzi, I; Piccolo, M; Piemontese, L; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G D; Quigley, J; Ratcliff, B N; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schindler, R H; Schumm, B A; Schwiening, J; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thom, J; Torrence, E; Toumbas, N K; Usher, T; Vannini, C; Vavra, J; Vella, E N; Venuti, J P; Verdier, R; Verdini, P G; Wagner, D L; Wagner, S R; Waite, A P; Walston, S; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, B; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yamartino, J M; Yang, X; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G H; Zdarko, R W; Zhou, J

    1999-01-01

    We report a new measurement of A_b using data obtained by SLD in 1997-98. This measurement uses a vertex tag technique, where the selection of a b hemisphere is based on the reconstructed mass of the bottom hadron decay vertex. The method uses the 3D vertexing capabilities of SLD's CCD vertex detector and the small and stable SLC beams to obtain a high b-event tagging efficiency and purity of 78% and 97%, respectively. Charged kaons identified by the CRID detector provide an efficient quark-antiquark tag, with the analyzing power calibrated from the data. We obtain a preliminary result of A_b = 0.997

  12. Reverse estimation theory, Complementality between RLD and SLD, and monotone distances

    CERN Document Server

    Matsumoto, K

    2005-01-01

    Many problems in quantum information theory can be vied as interconversion between resources. In this talk, we apply this view point to state estimation theory, motivated by the following observations. First, a monotone metric takes value between SLD and RLD Fisher metric. This is quite analogous to the fact that entanglement measures are sandwiched by distillable entanglement and entanglement cost. Second, SLD add RLD are mutually complement via purification of density matrices, but its operational meaning was not clear. To find a link between these observations, we define reverse estimation problem, or simulation of quantum state family by probability distribution family, proving that RLD Fisher metric is a solution to local reverse estimation problem of quantum state family with 1-dim parameter. This result gives new proofs of some known facts and proves one new fact about monotone distances. We also investigate information geometry of RLD, and reverse estimation theory of a multi-dimensional parameter fam...

  13. The lead-liquid argon sampling calorimeter of the SLD detector

    Energy Technology Data Exchange (ETDEWEB)

    Axen, D.; Bougerolle, S.; Sobie, R. (Univ. British Columbia, Vancouver, BC (Canada)); Eigen, G.; De Jongh, F.; Hitlin, D.; Kelsey, M.; Klein, M.; Mincer, A.; Wisniewski, W.; Wolf, R. (California Inst. of Technology, Pasadena, CA (United States)); Arroyo, C.; Au, Y.; Baltay, C.; Bolton, T.; Bazarko, A.; Camilleri, L.; Hyatt, E.; Manly, S.; Rabinowitz, S.; Rowson, P.C.; Seligman, S.; Shaevitz, M.H.; Smith, S.; Steiner, R.V. (Columbia Univ., Nevis Lab., Irvington, NY (United States)); Abt, I.; Alzofon, D.; Arnett, D.; Barrera, F.; Bell, R.; Bes, S.C.; Bogart, J.; Breidenbach, M.; Candia, A.; Claus, R.; Cutler, H.; Davis, R.; Dubois, R.; Foss, M.; Fox, J.; Fox, M.; Gioumousis, A.; Grebenyuk, A.; Haller, G.; Hamilton, V.; Hodgson, J.; Huffer, M.; Junk, T.; Kim, P.; Labs, J.; Neal, H.; Nelson, D.; Nordby, M.; Paffrath, L.; Putallaz, G.; Rogers, H.; Russell, J.J.; Saez, P.; Seward, P.; Sherden, D.; Skarpaas, K.; Schindler, R.H.; Waite, A.P.; Watt, R. (Stanford Linear Accelerator Center, CA

    1993-05-01

    The lead-liquid argon sampling calorimeter of the SLD detector is one of the largest detectors employing cryogenic liquids now in operation. This paper details the design and performance considerations, the mechanical and cryogenic systems, the absorber design and tower segmentation, the data acquisition electronics, and the control systems of the detector. The initial operational performance of the device is discussed. Detailed resolution studies will be presented in a later paper. (orig.).

  14. Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition

    Science.gov (United States)

    2015-09-01

    Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition 5a. CONTRACT NUMBER 1120-1120-99 5b. GRANT NUMBER 5c...eye movement (NREM/REM) sleep, involves rapid state changes that are physiologically distinct in their impact on sensory perception, muscle tone... Muscle Inhibition prepared by Cameron H Good ORISE 4502 Darlington St, Aberdeen Proving Ground, Maryland Thomas Jhou and Nathan Burnham

  15. Parity Violation in Decays of Z Bosons into Heavy Quarks at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Thomas R

    2002-09-16

    This work presents measurements of the parity-violation parameters A{sub c} and A{sub b} made at the Z pole. These measurements include the data taken with the SLD detector at the SLAC Linear Collider (SLC) during the period 1996-98. Heavy flavor events are selected with high efficiency and purity by searching for displaced vertices, identified with the SLD precision CCD vertex detector. Two methods are used for quark/antiquark discrimination: the net charge of the displaced vertex, and tracks in the displaced vertex identified as kaons by the SLD Cherenkov Ring Imaging Detector (CRID). The signal purities and analyzing powers are calibrated from the data to reduce the systematic errors and avoid experimental bias. The results are A{sub c} = 0.673 {+-} 0.029 {+-} 0.023 and A{sub b} = 0.919 {+-} 0.018 {+-} 0.017, where the first error is statistical and the second systematic. Fits to the electroweak data performed by the LEP Electroweak Working Group are used to study the consistency of the Standard Model, and to constrain the mass of the Standard Model Higgs boson.

  16. STS-55 MS3 Harris holds turbine blade sample at SL-D2 Rack 8 Werkstofflabor

    Science.gov (United States)

    1993-01-01

    STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing gloves, holds turbine blade sample and examines it in front of the Spacelab Deutsche 2 (SL-D2) Rack 8 Werkstofflabor (WL) (Material Sciences Laboratory). Harris is working at the Furnace for Turbine-blade geometry specimens to process special metallic alloys and cast them in the shape of turbine blades. SL-D2 is the German-managed payload aboard Columbia, Orbiter Vehicle (OV) 102.

  17. Reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based broadband source.

    Science.gov (United States)

    Park, Paul K J; Jun, S B; Kim, Hoon; Jung, D K; Lee, W R; Chung, Y C

    2007-10-17

    We report on the reduction of polarization-induced performance degradation in WDM PON utilizing MQW-SLD-based ASE source for injection locking to FPLD. The results show that, to suppress the polarization-induced Q penalty sufficiently less than 0.5 dB, the MQW-SLD output should be depolarized within the locking range of the wavelength-locked FPLD.

  18. SLD-MOSCNT: A new MOSCNT with step-linear doping profile in the source and drain regions

    Science.gov (United States)

    Tahne, Behrooz Abdi; Naderi, Ali

    2017-01-01

    In this paper, a new structure, step-linear doping MOSCNT (SLD-MOSCNT), is proposed to improve the performance of basic MOSCNTs. The basic structure suffers from band to band tunneling (BTBT). We show that using SLD profile for source and drain regions increases the horizontal distance between valence and conduction bands at gate to source/drain junction which reduces BTBT probability. SLD performance is compared with other similar structures which have recently been proposed to reduce BTBT such as MOSCNT with lightly-doped drain and source (LDDS), and with double-light doping in source and drain regions (DLD). The obtained results using a nonequilibrium Green’s function (NEGF) method show that the SLD-MOSCNT has the lowest leakage current, power consumption and delay time, and the highest current ratio and voltage gain. The ambipolar conduction in the proposed structure is very low and can be neglected. In addition, these structures can improve short-channel effects. Also, the investigation of cutoff frequency of the different structures shows that the SLD has the highest cutoff frequency. Device performance has been investigated for gate length from 8 to 20 nm which demonstrates all discussions regarding the superiority of the proposed structure are also valid for different channel lengths. This improvement is more significant especially for channel length less than 12 nm. Therefore, the SLD can be considered as a candidate to be used in the applications with high speed and low power consumption.

  19. Lorentz angle studies for the SLD endcap Cerenkov Ring Imaging Detector

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, P.; Cavalli-Sforza, M.; Coyne, D.; Schneider, M.; Spencer, E.; Williams, D.; Ashford, V.; Bienz, T.; Bird, F.; Gaillard, M.

    1987-11-01

    The design of the endcap Cerenkov Ring Imaging Detectors for SLD requires a detailed understanding of how electrons drift in gases under the influence of crossed electric and magnetic fields. In this report, we present recent measurements of Lorentz angles and drift velocities in gases suitable for the endcap CRID photon detectors. We compare these measurements to predictions from a theoretical model; good agreement is observed. Based on our results we present a design for detectors operating in a 0.6 Tesla transverse magnetic field. 14 refs., 10 figs., 4 tabs.

  20. Measurement of the Z0 → $s\\bar{s}$ Coupling at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Staengle, Hermann

    1999-11-24

    This dissertation presents a direct measurement of the parity-violating coupling of the Z{sup 0} to strange quarks, A{sub s}, derived from e{sup +}e{sup -} collision data containing approximately 550,000 hadronic decays of polarized Z{sup 0} bosons. Data were recorded with the SLC Large Detector (SLD) at the SLAC Linear Collider (SLC) between 1993 and 1998 with an average electron beam polarization of 73% and 74% during the 1993-5 and 1996-8 run periods, respectively. Making use of several unique features of the SLC and SLD, this measurement relies on a new generation particle identification system, the Cherenkov Ring Imaging Detector, to test the Standard Model prediction of universality in the coupling of the Z{sup 0} to down-type quarks. Polarized Z{sup 0} --> s anti-s events are tagged by the presence in each event hemisphere of a high-momentum K {+-}, K{sub s}{sup 0} or Lambda{sup 0}/ anti-Lambda{sup 0} identified using particle identification and/or a mass tag. The background from heavy flavor events is suppressed with the CCD-based vertex detector. The event thrust axis is signed with the strangeness of the tagged particle to point in the direction of the initial s quark. The coupling A{sub s} is derived from a maximum likelihood fit to the polar angle distributions of the tagged s quark measured with left- and right-handed electron beams. To reduce the model dependence of the measurement, the background from u anti-u and d anti-d events as well as the analyzing power of the method for s anti-s events are constrained from the data. We obtain A{sub s} = 0.86 {+-} 0.08(stat.) {+-} 0.05(syst.). The result is consistent with both the Standard Model prediction and previous bottom quark coupling mA{sub b}, measurements performed by SLD and LEP, and therefore supports the predicted universality of the Z{sup 0} to down-type quark couplings.

  1. The left-right forward-backward asymmetry for B quarks at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.C.

    1994-05-01

    The left-right asymmetry for b quarks, A{sub b}, is precisely predicted by the Weinberg-Salam-Glashow model of particle interactions, now the standard model for high-energy particle physics. As a test of this model, A{sub b} is directly measured at the SLC Large Detector (SLD) by taking advantage of the unique polarized electron beam at the Stanford Linear Collider (SLC) and measuring the left-right forward-backward asymmetry of b quarks. To measure the asymmetry, b quarks are identified using muons of high total and transverse momenta. The result for the 1993 data sample of 37,843 hadronic Z`s is A{sub b} = 0.91 {+-} 0.19 {+-} 0.06, where the first error is statistical and the second systematic. This result is in agreement with the standard model prediction of A{sub b} = 0.935.

  2. Strangeonium spectroscopy at 11 GeV/c and Cherenkov Ring Imaging at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, T.L.

    1990-07-01

    This thesis is divided into two sections, which describe portions of the data acquisition system and online software for the Cherenkov Ring Imaging Detector (CRID) for the SLD, and analyses of several low cross section strangeonium channels in data from the LASS spectrometer. The CRID section includes a description of the data acquisition system, determination of the preamplifier gain, and development of an online pulse finding algorithm based on deconvolution. Deconvolution uses knowledge of the preamplifier impulse response to aid in pulse finding. The algorithm is fast and shows good single pulse resolution and excellent double pulse resolution in preliminary tests. The strangeonium analyses are based on data from a 4.1 event/nanobarn exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c, and include studies of {Lambda}{eta}{pi}{sup {plus}}{pi}{sup {minus}}, {Lambda}{Kappa}*{Kappa}*, and {Lambda}{phi}{phi}.

  3. The left-right forward-backward asymmetry for B quarks at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David C. [Stanford Univ., CA (United States)

    1994-05-01

    The left-right asymmetry for b quarks, A{sub b}, is precisely predicted by the Weinberg-Salam-Glashow model of particle interactions, now the standard model for high-energy particle physics. As a test of this model, Ab is directly measured at the SLC Large Detector (SLD) by taking advantage of the unique polarized electron beam at the Stanford Linear Collider (SLC) and measuring the left-right forward-backward asymmetry of b quarks. To measure the asymmetry, b quarks are identified using muons of high total and transverse momenta. The result for the 1993 data sample of 37,843 hadronic Z`s is Ab = 0.91 ± 0.19 ± 0.06, where the first error is statistical and the second systematic. This result is in agreement with the standard model prediction of Ab = 0.935.

  4. Combined SLD Measurement of $A_{b}$ at the $Z^{0}$ Resonance using Various Techniques

    CERN Document Server

    Abe, K; Akagi, T; Akimoto, H; Allen, N J; Ash, William W; Aston, D; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Bardon, O; Barklow, Timothy L; Bashindzhagian, G L; Bauer, J M; Bellodi, G; Benvenuti, Alberto C; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Byrne, R M; Calcaterra, A; Calloway, D H; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chou, A; Church, E; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Coyne, D G; Crawford, G; Damerell, C J S; Danielson, M N; Daoudi, M; De Groot, N; Dell'Orso, R; Dervan, P J; De Sangro, R; Dima, M; Dong, D N; Doser, Michael; Dubois, R; Eisenstein, B I; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Flood, K; Frey, R; Gifford, J A; Gillman, T; Gladding, G E; González, S; Goodman, E R; Hart, E L; Harton, J L; Hasuko, K; Hedges, S J; Hertzbach, S S; Hildreth, M D; Huber, J; Huffer, M E; Hughes, E W; Huynh, X; Hwang, H; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M S; Kamyshkov, Yu A; Kang, H J; Karliner, I; Kawahara, H; Kim, Y D; King, M E; King, R; Kofler, R R; Krishna, N M; Kroeger, R S; Langston, M; Lath, A; Leith, D W G S; Lia, V; Lin, C; Liu, M X; Liu, X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mahjouri, M; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McKemey, A K; Meadows, B T; Menegatti, G; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Nagamine, T; Narita, S; Nauenberg, U; Neal, H A; Nussbaum, M; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Pavel, T J; Peruzzi, I; Piccolo, M; Piemontese, L; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G D; Quigley, J; Ratcliff, B N; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schindler, R H; Schumm, B A; Schwiening, J; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Thom, J; Torrence, E; Toumbas, N K; Usher, T; Vannini, C; Vavra, J; Vella, E N; Venuti, J P; Verdier, R; Verdini, P G; Wagner, D L; Wagner, S R; Waite, A P; Walston, S; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, B; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Word, G B; Wright, T R; Wyss, J; Yamamoto, R K; Yamartino, J M; Yang, X; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G H; Zdarko, R W; Zhou, J

    1999-01-01

    We present a new preliminary combination of measurements of the parity-violation parameter Ab made by the SLD collaboration using various experimental techniques. The techniques differ in detail, but in general a sample of bb events is selected or enhanced by using the topologically reconstructed mass of the separated vertices formed by decaying B hadrons. The direction of the b(bbar) quark is signed by one of four final state tags: jet charge, vertex charge, leptons, or identified K+- from the b vertex. We account for statistical and systematic correlations between the four analyses to arrive at our combined result: Ab=0.905 +/- 0.017 {stat} +/- 0.020 (syst).

  5. Measurements of $Z^{0}$ to Heavy-quark couplings at SLD

    CERN Document Server

    Iwasaki, M

    1999-01-01

    We present measurements of $Z^0$ to heavy-quark coupling electroweak parameters, $R_b$, $R_c$, and parity-violation parameter $A_c$, from SLD. The measurements are based on approximately 550k hadronic $Z^0$ events collected in 1993-98. Obtained preliminary results of $R_b$ and $R_c$ measurements are $R_b = 0.2159 \\pm 0.0014 \\pm 0.0014$ and $R_c = 0.1685 \\pm 0.0047 \\pm 0.0043$. In the $A_c$ measurement, we use four methods to determine the initial-quark charge: combined Kaon charge and Vertex charge, lepton, exclusively reconstructed D*, D-mesons, and a new method using inclusive soft-pion from D*. The preliminary results of these four methods were combined to give $A_c = 0.634 \\pm 0.027$.

  6. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  7. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  8. Header For Laser Diode

    Science.gov (United States)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  9. Investigation of Electrical and Optical Properties of Bulk III-V Ternary Semiconductors

    Science.gov (United States)

    2009-03-01

    attained. [7] Many devices, such as optical amplifiers, superluminescent diodes , optoelectronic integrated circuits, IR diodes and detectors, field...desired for tunable lasers, semiconductor optical amplifiers, and superluminescent diodes which require very flat and wide gain spectrums. [8] In

  10. Lighting with laser diodes

    Science.gov (United States)

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2013-08-01

    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

  11. Laser Diode Ignition (LDI)

    Science.gov (United States)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  12. GA-DoSLD: Genetic Algorithm Based Denial-of-Sleep Attack Detection in WSN

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Gunasekaran

    2017-01-01

    Full Text Available Denial-of-sleep (DoSL attack is a special category of denial-of-service attack that prevents the battery powered sensor nodes from going into the sleep mode, thus affecting the network performance. The existing schemes used for the DoSL attack detection do not provide an optimal energy conservation and key pairing operation. Hence, in this paper, an efficient Genetic Algorithm (GA based denial-of-sleep attack detection (GA-DoSLD algorithm is suggested for analyzing the misbehaviors of the nodes. The suggested algorithm implements a Modified-RSA (MRSA algorithm in the base station (BS for generating and distributing the key pair among the sensor nodes. Before sending/receiving the packets, the sensor nodes determine the optimal route using Ad Hoc On-Demand Distance Vector Routing (AODV protocol and then ensure the trustworthiness of the relay node using the fitness calculation. The crossover and mutation operations detect and analyze the methods that the attackers use for implementing the attack. On determining an attacker node, the BS broadcasts the blocked information to all the other sensor nodes in the network. Simulation results prove that the suggested algorithm is optimal compared to the existing algorithms such as X-MAC, ZKP, and TE2P schemes.

  13. A Measurement of the Parity Violating Parameter Ab with a Muon Tag at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Bellodi, Giulia

    2001-02-12

    We present a direct measurement of the parity violation parameter A{sub b}, derived from the left-right forward-backward asymmetry of b quarks tagged via muons from semileptonic decays. The value of A{sub b} is extracted using a maximum likelihood fit to the differential cross section for fermion production. The novelty of this measurement consists in the use of topological vertexing information alongside the more traditional decay kinematics to discriminate among the different sources of tagged leptons. The small and stable SLC beam spot and the CCD based vertex detector are used to reconstruct secondary decay vertices and to provide precise kinematic information and a highly efficient and pure B mass tag. A multivariate approach has been used, with a total of 4 tagging variables, whose correlation with each other has been taken into account. The final result has been cross-checked both with a classical cut-and-count method and combining all the information into a neural net. Based on the full SLD dataset of 550K Z{sup 0} events with highly polarized electron beams, this measurement represents an improvement of a factor of 2 with respect to the previously published result (1993-1995 only and with no vertexing information). The statistical sensitivity achieved is around 4% for A{sub b}, making this a world-class single measurement. An estimate of A{sub c} has been simultaneously derived from a common fit, with a precision of about 10%.

  14. Search for B0(S) Anti-B0(S) Oscillations at SLD

    CERN Document Server

    Moore, T

    2003-01-01

    We present preliminary results on the time dependence of B sub s sup 0 - (bar B) sub s sup 0 and B sub d sup 0 - (bar B) sub d sup 0 mixing using a sample of 400,000 hadronic Z sup 0 decays collected by the SLD experiment at the SLC. The analyses take advantage of the excellent decay length resolution of the CCD vertex detector. The B or (bar B) production flavor is determined by exploiting the large forward-backward asymmetry of polarized Z sup 0 -> b(bar b) decays. This flavor tag is enhanced by incorporating additional information from the hemisphere opposite that of the reconstructed B decay. The B sub d sup 0 - (bar B) sub d sup 0 mixing analysis uses the charge of high momentum kaons to identify the B or (bar B) decay flavor. The result is DELTA m sub d = 0.503 +- 0.028(stat) +- 0.020(syst) ps sup - sup 1. The results of three separate B sub s sup 0 - (bar B) sub s sup 0 mixing analyses are presented. These analyses determine the B decay flavor using the lepton charge in B semileptonic decays, the charg...

  15. Terahertz Diode Development

    Science.gov (United States)

    2009-03-23

    Gunn Diode , Negative Differential Resistance, Ballistic Transport, GaN, THz, Co-planar Resonator 16. SECURITY CLASSIFICATION OF: REPORT U b...Report DATES COVERED (From - Jo) 1 January 2004- 31 December 2008 4. TITLE AND SUBTITLE Terahertz Diode Development 5a. CONTRACT NUMBER N00014...current-voltage oscillations at the terminals of the diode at a frequency which is, to first order, determined by the average transit time of the EAL

  16. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  17. Measurement of the polarized forward-backward asymmetry of B quarks using momentum-weighted track charge at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Junk, Thomas Robert [Stanford Univ., CA (United States)

    1995-11-01

    This thesis presents a direct measurement of the parity-violating parameter Ab by analyzing the polarized forward-backward asymmetry of b quarks in e+e- → Z0 → b$\\bar{b}$. Data were taken at the Stanford Linear Accelerator Center (SLAC), with the Stanford Large Detector (SLD), which records the products of e+e- interactions at a center of mass energy √s = 91.2 GeV/c2 at the SLAC Linear Collider (SLC). The SLC/SLD experimental apparatus provides a unique and ideal environment for measuring electroweak asymmetries. Heavy flavor decays of the Z0 were identified inclusively by taking advantage of the long lifetime of B hadrons, the small, stable SLC beam spot, and SLD`s precise tracking detectors. Two analysis techniques for measuring Ab are presented: a binned fit to the left-right forward-backwards asymmetry of tagged events signed with momentum-weighted track charge, and a self-calibrating maximum-likelihood technique using momentum-weighted charge from the two hemispheres in each tagged event. From our 1994-1995 sample of 3.6 pb-1, having a luminosity-weighted average e- polarization of 77.3%, and our 1993 sample of 1.8 pb-1, having a luminosity-weighted polarization of 63.1%, we obtain Ab = 0.848 ± 0.046(stat.) ± 0.050(syst.).

  18. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  19. Chemically Modulated Graphene Diodes

    OpenAIRE

    Kim, Hye-young; Lee, Kangho; McEvoy, Niall; Yim, Chanyoung; Duesberg, Georg S.

    2013-01-01

    PUBLISHED We report the manufacture of novel graphene diode sensors (GDS), which are composed of monolayer graphene on silicon substrates, allowing exposure to liquids and gases. Parameter changes in the diode can be correlated with charge transfer from various adsorbates. The GDS allows for investigation and tuning of extrinsic doping of graphene with great reliability. The demonstrated recovery and long-term stability qualifies the GDS as a new platform for gas, environmental, and biocom...

  20. Measurement of the B{sup +} and B{sup 0} Lifetimes using Topological Vertexing at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Kenneth

    1999-07-27

    The lifetimes of B{sup +} and B{sup 0} mesons have been measured using the entire sample of 550,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1998. In this paper, we describe the inclusive analysis of the 350,000 hadronic Z{sup 0} decays collected in 1997-98 with the upgraded SLD vertex detector. In this data period, a high statistics sample of 30903 (20731) charged (neutral) vertices with good charge purity is obtained. The charge purity is enhanced by using the vertex mass, the SLC electron beam polarization (73% for 1997-8) and an opposite hemisphere jet charge technique. Combining the results of this data sample with the results from the earlier data yield the following preliminary values: {tau}{sub B{sup +}} = 1.623 {+-} 0.020(stat) {+-} 0.034(syst) ps, {tau}{sub B{sup +}} = 1.565 {+-} 0.021(stat) {+-} 0.043(syst) ps, {tau}{sub B{sup +}} = {tau}{sub B{sup 0}} = 1.037 {+-} {sub 0.024}{sup 0.025}(stat) {+-} 0.024(syst).

  1. Measurement of the B{sup +} and B{sup 0} lifetimes using topological vertexing at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Baird, K.

    1999-12-17

    The lifetimes of B{sup +} and B{sup 0} mesons have been measured using the entire sample of 550,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1998. In this paper, the authors describe the inclusive analysis of the 350,000 hadronic Z{sup 0} decays collected in 1997-98 with the upgraded SLD vertex detector. In this data period, a high statistics sample of 30903 (20731) charged (neutral) vertices with good charge purity is obtained. The charge purity is enhanced by using the vertex mass, the SLC electron beam polarization (73% for 1997-8) and an opposite hemisphere jet charge technique. Combining the results of this data sample with the results from the earlier data yield the following preliminary values: {tau}{sub B{sup +}} = 1.623 {+-} 0.020(stat){+-} 0.034(syst)ps, {tau}{sub B{sup 0}} = 1.565{+-}0.021(stat){+-}0.043(syst)ps, {tau}{sub B{sup +}}/{tau}{sub B{sup 0}} = 1.037{+-}0.0250/0.024(stat){+-}0.024(syst).

  2. Light-emitting Diodes

    Science.gov (United States)

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  3. High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications

    Science.gov (United States)

    Dvinelis, Edgaras; TrinkÅ«nas, Augustinas; Greibus, Mindaugas; Kaušylas, Mindaugas; Žukauskas, Tomas; Å imonytÄ--, Ieva; Songaila, RamÅ«nas; Vizbaras, Augustinas; Vizbaras, Kristijonas

    2015-01-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, and defense applications. Gas sensing in this spectral region is attractive due to the presence of numerous absorption lines for such gases as methane, ethane, ozone, carbon dioxide, carbon monoxide, etc. Sensing of the mentioned gas species is of particular importance for applications such as atmospheric LIDAR, petrochemical industry, greenhouse gas monitoring, etc. Defense applications benefit from the presence of covert atmospheric transmission window in the 2.1-2.3 micron band which is more eye-safe and offers less Rayleigh scattering than the conventional atmospheric windows in the near-infrared. Major requirement to enable these application is the availability of high-performance, continuous-wave laser sources in this window. Type-I GaSb-based laser diodes are ideal candidates for these applications as they offer direct emission possibility, high-gain and continuous wave operation. Moreover, due to the nature of type-I transition, these devices have a characteristic low operation voltage, which results in very low input powers and high wall-plug efficiency. In this work, we present recent results of 2 μm - 3.0 μm wavelength room-temperature CW light sources based on type-I GaSb developed at Brolis Semiconductors. We discuss performance of defense oriented high-power multimode laser diodes with superluminescent gain chips will be presented.

  4. Directed and diode percolation

    Science.gov (United States)

    Redner, S.

    1982-03-01

    We study the novel percolation phenomena that occur in random-lattice networks consisting of resistor-like and diode-like bonds. Resistor bonds connect or "transmit information" in either direction along their length, while diodes connect in one direction only. We first treat the special case of directed bond percolation, in which the diodes are aligned along a preferred axis. Mean-field theory shows that clusters become extremely anisotropic near the percolation transition and that their shapes are characterized by two correlation lengths, one parallel and one transverse to the preferred axis. These lengths diverge with exponents ν∥=1 and ν⊥=12, respectively, from which we can show that the upper critical dimension for this system must be five. We also treat a more general random network on the square lattice containing resistors and diodes of arbitrary orientation. Duality arguments are applied to obtain exact results for the location of phase transitions in this system. We then use a position-space renormalization-group approach to map out the phase diagram and calculate critical exponents. This system has an isotropic percolating phase, and phases which percolate in only one direction. Novel types of transitions occur between these phases, in which the diode orientation plays a fundamental role. These percolating phases meet with the nonpercolating phase along a line of multicritical points, where concentration and orientational fluctuations are simultaneously critical.

  5. Polarization insensitive and low-loss coupling mode-size converter from super luminescent diode to silica-based planar lightwave circuit

    Science.gov (United States)

    She, Xuan; Li, Bei; Chen, Kan; Li, Ke; Shu, Xiaowu; Liu, Cheng

    2017-02-01

    We present a design of a laterally tapered optical waveguide mode-size converter from super luminescent diode (SLD) to silica-based planar lightwave circuit (PLC). The mode-size converter is based on silica-based PLC. By using three dimensional semi-vectorial beam propagation methods, laterally tapered waveguides with different boundaries are simulated and compared with each other, where the factors of polarization-dependent loss and coupling loss are mainly focused on. The results show that the most influential factor for polarization-dependent loss is the ratio of the divergence angle of SLD in the horizontal direction and the vertical direction. The refractive index difference Δ between core layer and cladding layer, core width of endface and taper length influence coupling loss mostly, while the effect of all side boundaries is within 0.05 dB. We also investigate the SLD misalignment tolerance and wavelength bandwidth's impact on coupling loss. Furthermore, we examine the performance of the mode-size converter based on a particular SLD which has a divergence angle of 30°×45°. By optimizing the parameters of the tapered waveguide, the coupling efficiency is increased to 62.4% and the polarization-dependent loss is reduced to 0.035 dB. Meanwhile, it eΔnables us to reduce the coupling loss variation to 0.05dB with core width of endface fabrication tolerance of ±0.5 μm and taper length tolerance of ±0.5 mm. The proposed mode-size converter has been demonstrated to be well performed, implying its application in the optical transceiver module using SLD as light source and hybrid integration of III-V semiconductor waveguiding devices and PLCs.

  6. Direct Measurements of A_b and A_c using Vertex/Kaon Charge Tags at SLD

    CERN Document Server

    Abe, K; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; Dong, D N; Doser, Michael; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernández, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G S; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G C; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Vavra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2004-01-01

    Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A_c and A_b in the Z boson - c quark and Z boson - b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A_c = 0.673 +/- 0.029 (stat.) +/- 0.023 (syst.) and A_b = 0.919 +/- 0.018 (stat.) +/- 0.017 (syst.).

  7. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  8. Silicon Carbide Schottky Barrier Diode

    Science.gov (United States)

    Zhao, Jian H.; Sheng, Kuang; Lebron-Velilla, Ramon C.

    2004-01-01

    This chapter reviews the status of SiC Schottky barrier diode development. The fundamental of Schottky barrier diodes is first provided, followed by the review of high-voltage SiC Schottky barrier diodes, junction-barrier Schottky diodes, and merged-pin-Schottky diodes. The development history is reviewed ad the key performance parameters are discussed. Applications of SiC SBDs in power electronic circuits as well as other areas such as gas sensors, microwave and UV detections are also presented, followed by discussion of remaining challenges.

  9. 10-Gb/s direct modulation of polymer-based tunable external cavity lasers.

    Science.gov (United States)

    Choi, Byung-Seok; Oh, Su Hwan; Kim, Ki Soo; Yoon, Ki-Hong; Kim, Hyun Soo; Park, Mi-Ran; Jeong, Jong Sool; Kwon, O-Kyun; Seo, Jun-Kyu; Lee, Hak-Kyu; Chung, Yun C

    2012-08-27

    We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively. We directly modulate this laser at 10 Gb/s and transmit the modulated signal over 20 km of standard single-mode fiber. The power penalty is measured to be <2.8 dB at the bit-error rate (BER) of 10(-10).

  10. 200 GHz-spacing 8-channel multi-wavelength lasers for WDM-PON optical line terminal sources.

    Science.gov (United States)

    Oh, Su Hwan; Shin, Jang-Uk; Kim, Ki Soo; Lee, Dong-Hoon; Park, Sang-Ho; Sung, Hee-Kyung; Baek, Yong-Soon; Oh, Kwang-Ryong

    2009-05-25

    We have fabricated modules of 8-channel multi-wavelength lasers (MWLs) with a wavelength separation of 200 GHz for the wavelength division multiplexed-passive optical network (WDM-PON) optical line terminal sources. The variation in the output power is minimized by inserting silicone between the superluminescent diode (SLD) and the silica waveguide. The wavelength shift of each channel is less than 0.21 nm from the ITU grid and can be controlled in the range of 0.36 nm without any reductions of the output power by a tuning heater. MWLs operated successfully in the direct modulation for 1.25 Gbit/s transmissions over 20 km.

  11. Bimodal-sized quantum dots for broad spectral bandwidth emitter.

    Science.gov (United States)

    Zhou, Yinli; Zhang, Jian; Ning, Yongqiang; Zeng, Yugang; Zhang, Jianwei; Zhang, Xing; Qin, Li; Wang, Lijun

    2015-12-14

    In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

  12. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, M. A.

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  13. Time Dependent $B^{0}_{s} - \\overline{^B{0}_{s}}$ Mixing Using Inclusive and Semileptonic B Decays at SLD

    CERN Document Server

    Abe, K; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, Timothy L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; Dong, D N; Doser, Michael; Dubois, R; Erofeeva, I; Eschenburg, V; Fahey, S; Falciai, D; Fernández, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M S; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G S; Lia, V; Lin, C; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Vavra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2000-01-01

    We set a preliminary 95% C.L. exclusion on the oscillation frequency of B0s - B0s-bar mixing using a sample of 400,000 hadronic Z0 decays collected by the SLD experiment at the SLC between 1996 and 1998. The analyses determine the b-hadron flavor at production by exploiting the large forward-backward asymmetry of polarized Z0 -> b b-bar decays as well as information from the hemisphere opposite that of the reconstructed B decay. In one analysis, B decay vertices are reconstructed inclusively with a topological technique and separation between B0s and B0s-bar decays exploits the B0s -> Ds- cascade charge structure. In the other analysis, semileptonic decays are selected and the B decay point is reconstructed by intersecting a lepton track with the trajectory of a topologically reconstructed D meson. The two analyses are combined with a third analysis described elsewhere to exclude the following values of the B0s - B0s-bar mixing oscillation frequency: Delta m_s < 7.6 ps-1 and 11.8 < Delta m_s < 14.8 p...

  14. Hyperchaos via X-Diode

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, A.; Cenys, A.

    1998-01-01

    A Chaos diode (X-diode) with a hysteric current-voltage characteristic has been used to generate hyperchaotic oscillations characterized with multiple positive Lyapunov exponents. The hyperchaotic oscillators comprise a X-diode in parallel with an M'th order LC loop (M.GE.4). Numerical simulations...... and hardware experiments have beeen performed. An appropriate mathematical model is provided and is used to calculate the Lyapunov exponents. Synchronization properties have been investigated....

  15. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  16. Diode laser applications in urology

    Science.gov (United States)

    Sam, Richard C.; Esch, Victor C.

    1995-05-01

    Diode lasers are air-cooled, efficient, compact devices which have the potential of very low cost when produced in quantity. The characteristics of diode lasers are discussed. Their applications in interstitial thermal treatment of the prostate, and laser ablation of prostate tissues, will be presented.

  17. Gallium phosphide high temperature diodes

    Science.gov (United States)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  18. SLD Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    This Design Report describes the plans for the construction of the second detector for the SLAC Linear Collider to study e/sup +/e/sup -/ collisions at energies of up to 100 GeV in the center-of-mass. Particle tracking and momentum measurement are provided by a vertex detector, a high-precision central drift chamber, and pairs of endcap drift chambers, all in a 1 Tesla magnetic field produced by a superconducting solenoid. Particle identification is provided by CRIDs (Cerenkov Ring Imaging Detectors). Calorimetry is done in two parts; a liquid argon calorimeter (LAC) with uranium and iron radiators is located inside the coil, and the laminated iron of the flux return is instrumented with limited-streamer-mode tubes to complete the hadron calorimetry. The streamer tubes of this warm-iron calorimeter, called the WIC, are instrumented with strip readout to provide muon tracking in addition to calorimetry. The same technology is used on the end structures of the detector and the central region, thus providing uniform response in both regions.

  19. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  20. Diode-pumped dye laser

    Science.gov (United States)

    Burdukova, O. A.; Gorbunkov, M. V.; Petukhov, V. A.; Semenov, M. A.

    2016-10-01

    This letter reports diode pumping for dye lasers. We offer a pulsed dye laser with an astigmatism-compensated three-mirror cavity and side pumping by blue laser diodes with 200 ns pulse duration. Eight dyes were tested. Four dyes provided a slope efficiency of more than 10% and the highest slope efficiency (18%) was obtained for laser dye Coumarin 540A in benzyl alcohol.

  1. Light Emitting Diodes (LEDs)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  2. Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2

    Directory of Open Access Journals (Sweden)

    Karl-Uwe Reusswig

    2016-10-01

    Full Text Available Temporal separation of DNA replication initiation into licensing and firing phases ensures the precise duplication of the genome during each cell cycle. Cyclin-dependent kinase (CDK is known to generate this separation by activating firing factors and at the same time inhibiting licensing factors but may not be sufficient to ensure robust separation at transitions between both phases. Here, we show that a temporal gap separates the inactivation of firing factors from the re-activation of licensing factors during mitosis in budding yeast. We find that gap size critically depends on phosphorylation-dependent degradation of the firing factor Sld2 mediated by CDK, DDK, Mck1, and Cdc5 kinases and the ubiquitin-ligases Dma1/2. Stable mutants of Sld2 minimize the gap and cause increased genome instability in an origin-dependent manner when combined with deregulation of other replication regulators or checkpoint mechanisms. Robust separation of licensing and firing phases therefore appears indispensable to safeguard genome stability.

  3. Inactivation of mycobacterium smegmatis following exposure to 405-nanometer light from a supraluminous diode array.

    Science.gov (United States)

    Guffey, J Stephen; Payne, William; James, Leslie

    2013-05-01

    To determine the potential for blue light (405 nm) to produce a bactericidal effect on Mycobacterium smegmatis. Additionally, the study sought to evaluate a series of doses in terms of their respective bactericidal capabilities. The effect of blue light on Staphylococcus aureus has been studied and it was found that a bactericidal outcome can be obtained with low doses of blue light. M. smegmatis was tested because of the recent appearance of the Mycobacterium family of organisms as a public health threat among persons receiving tattoos. The organism was treated in vitro with 405 nm light emitted from a supraluminous diode (SLD) array. Doses of 60 Jcm-2, 90 Jcm-2, 120 Jcm-2, 150 Jcm-2, 180 Jcm-2, 215 Jcm-2, and 250 Jcm-2 were used. Colony counts were performed and compared to untreated controls using Student t tests and one-way ANOVA with Tukey post hoc analysis. The results revealed statistically significant bactericidal effects of the blue light on M. smegmatis (F6, 28 = 50.518, P = 0.000). The treatment reduced the number of bacterial colonies at all doses, but 60 Jcm-2 did not produce a statistically significant kill rate. All other doses produced a significant kill rate with 120 Jcm-2, 150 Jcm-2, and 215 Jcm-2, demonstrating the most effective kill rates of 98.3%, 96.7%, and 100%, respectively. Appropriate doses of 405 nm light from an SLD array can kill M. smegmatis in vitro. A dose of at least 100 Jcm-2 dose is needed for the most effective inactivation of the organism. The dose response for this organism to blue light is not linear. Some degree of effectiveness is lost at 180 Jcm-2 and 250 Jcm-2. .

  4. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  5. Few-photon optical diode

    CERN Document Server

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficiently than the opposite.

  6. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  7. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  8. Scaling of nano-Schottky-diodes

    NARCIS (Netherlands)

    Smit, G.D.J.; Rogge, S.; Klapwijk, T.M.

    2002-01-01

    A generally applicable model is presented to describe the potential barrier shape in ultrasmall Schottky diodes. It is shown that for diodes smaller than a characteristic length lc (associated with the semiconductor doping level) the conventional description no longer holds. For such small diodes th

  9. Thermal-Diode Sandwich Panel

    Science.gov (United States)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  10. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.;

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  11. A measurement of R{sub b} = {Gamma}(Z{sup 0} {yields} b{bar b})/{Gamma}(Z{sup 0} {yields} hadrons) at SLD

    Energy Technology Data Exchange (ETDEWEB)

    SLD Collaboration

    1993-09-01

    A measurement of the ratio R{sub b} = {Gamma}(Z{sup 0} {yields} b{bar b})/{Gamma}(Z{sup 0} {yields} hadrons) is reported. This measurement is made using the CCD-based vertex detector of the SLD detector at the SLAC Linear Collider. Efficient tagging of b{bar b} events is performed with an impact parameter technique that takes advantage of the small and stable interaction point of the SLC and all charged tracks in Z{sup 0} decays. In a sample of 27K Z{sup 0} events, a value R{sub b}=0.235{plus_minus}0.006{plus_minus}0.018 is obtained.

  12. ORGANIC LIGHT EMITTING DIODE (OLED

    Directory of Open Access Journals (Sweden)

    Aririguzo Marvis Ijeaku

    2015-09-01

    Full Text Available An Organic Light Emitting Diode (OLED is a device composed of an organic layer that emits lights in response to an electrical current. Organic light emitting diodes have advanced tremendously over the past decades. The different manufacturing processes of the OLED itself to several advantages over flat panel displays made with LCD technology which includes its light weight and flexible plastic substrates, wider viewing angles, improved brightness, better power efficiency and quicker response time. However, its drawbacks include shorter life span, poor color balance, poor outdoor performance, susceptibility to water damage etc.The application of OLEDs in electronics is on the increase on daily basics from cameras to cell phones to OLED televisions, etc. Although OLEDs provides prospects for thinner, smarter, lighter and ultraflexible electronics displays, however, due to high cost of manufacturing, it is not yet widely used.

  13. Quantum Noise in Laser Diodes

    Science.gov (United States)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  14. Megahertz organic/polymer diodes

    Science.gov (United States)

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  15. Characterisation of Silicon Pad Diodes

    CERN Document Server

    Hodson, Thomas Connor

    2017-01-01

    Silicon pad sensors are used in high luminosity particle detectors because of their excellent timing resolution, radiation tolerance and possible high granularity. The effect of different design decisions on detector performance can be investigated nondestructively through electronic characterisation of the sensor diodes. Methods for making accurate measurements of leakage current and cell capacitance are described using both a standard approach with tungsten needles and an automated approach with a custom multiplexer and probing setup.

  16. High power coherent polarization locked laser diode.

    Science.gov (United States)

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  17. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  18. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  19. Physics and Applications of Laser Diode Chaos

    CERN Document Server

    Sciamanna, Marc

    2015-01-01

    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

  20. Effects of radiation on laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  1. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  2. Destructive Single-Event Effects in Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  3. Materials for diode pumped solid state lasers

    Science.gov (United States)

    Chase, L. L.; Davis, L. E.; Krupke, W. F.; Payne, S. A.

    1991-07-01

    The advantages of semiconductor diode lasers and laser arrays as pump sources for solid state lasers are reviewed. The properties that are desirable in solid state laser media for various diode pumping applications are discussed, and the characteristics of several promising media are summarized.

  4. Temperature dependence of commercially available diode detectors.

    Science.gov (United States)

    Saini, Amarjit S; Zhu, Timothy C

    2002-04-01

    Temperature dependence of commercially available n- and p-type diodes were studied experimentally under both high instantaneous dose rate (pulsed) and low dose rate (continuous) radiation. The sensitivity versus temperature was measured at SSD = 80 or 100 cm, 10 x 10 cm2, and 5 cm depth in a 30 x 30 x 30 cm3 water phantom between 10 degrees C and 35 degrees C. The response was linear for all the diode detectors. The temperature coefficient (or sensitivity variation with temperature, svwt) was dose rate independent for preirradiated diodes. They were (0.30 +/- 0.01)%/degrees C, (0.36 +/- 0.03)%/degrees C, and (0.29 +/- 0.08)%/degrees C for QED p-type, EDP p-type, and Isorad n-type diodes, respectively. The temperature coefficient for unirradiated n-type diodes was different under low dose rate [(0.16 to 0.45)%/degrees C, continuous, cobalt] and high instantaneous dose rate [(0.07 +/- 0.02)%/degrees C, pulsed radiation]. Moreover, the temperature coefficient varies among individual diodes. Similarly, the temperature coefficient for a special unirradiated QED p-type diode was different under low dose rate (0.34%/degrees C, cobalt) and high instantaneous dose rate [(0.26 +/- 0.01)%/degrees C, pulsed radiation]. Sufficient preirradiation can eliminate dose rate dependence of the temperature coefficient. On the contrary, preirradiation cannot eliminate dose rate dependence of the diode sensitivity itself.

  5. Electromagnetic wave analogue of electronic diode

    CERN Document Server

    Shadrivov, Ilya V; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinary strong nonlinear wave propagation effect in the same way as electronic diode function is provided by a nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differing by a factor of 65.

  6. Laser diode package with enhanced cooling

    Science.gov (United States)

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Hermetic diode laser transmitter module

    Science.gov (United States)

    Ollila, Jyrki; Kautio, Kari; Vahakangas, Jouko; Hannula, Tapio; Kopola, Harri K.; Oikarinen, Jorma; Sivonen, Matti

    1999-04-01

    In very demanding optoelectronic sensor applications it is necessary to encapsulate semiconductor components hermetically in metal housings to ensure reliable operation of the sensor. In this paper we report on the development work to package a laser diode transmitter module for a time- off-light distance sensor application. The module consists of a lens, laser diode, electronic circuit and optomechanics. Specifications include high acceleration, -40....+75 degree(s)C temperature range, very low gas leakage and mass-production capability. We have applied solder glasses for sealing optical lenses and electrical leads hermetically into a metal case. The lens-metal case sealing has been made by using a special soldering glass preform preserving the optical quality of the lens. The metal housings are finally sealed in an inert atmosphere by welding. The assembly concept to retain excellent optical power and tight optical axis alignment specifications is described. The reliability of the laser modules manufactured has been extensively tested using different aging and environmental test procedures. Sealed packages achieve MIL- 883 standard requirements for gas leakage.

  8. Cern DD4424 ROM Diode Matrix

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  9. A Diode Matrix model M792

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  10. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  11. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    Science.gov (United States)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  12. Full-quantum light diode

    CERN Document Server

    Ghobadi, Roohollah

    2015-01-01

    Unidirectional light transport in one-dimensional nanomaterials at the quantum level is a crucial goal to achieve for upcoming computational devices. We here employ a full-quantum mechanical approach based on master equation to describe unidirectional light transport through a pair of two-level systems coupled to a one-dimensional waveguide. By comparing with published semi-classical results, we find that the nonlinearity of the system is reduced, thereby reducing also the unidirectional light transport efficiency. Albeit not fully efficient, we find that the considered quantum system can work as a light diode with an efficiency of approximately 60%. Our results may be used in quantum computation with classical and quantized light.

  13. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  14. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  15. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  16. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography

    Science.gov (United States)

    Shin, Sunghwan; Sharma, Utkarsh; Tu, Haohua; Jung, Woonggyu; Boppart, Stephen A.

    2011-01-01

    Relative intensity noise (RIN) is one of the most significant factors limiting the sensitivity of an optical coherence tomography (OCT) system. The existing and prevalent theory being used for estimating RIN for various light sources in OCT is questionable, and cannot be applied uniformly for different types of sources. The origin of noise in various sources differs significantly, owing to the different physical nature of photon generation. In this study, we characterize and compare RIN of several OCT light sources including superluminescent diodes (SLDs), an erbium-doped fiber amplifier, multiplexed SLDs, and a continuous-wave laser. We also report a method for reduction of RIN by amplifying the SLD light output by using a gain-saturated semiconductor optical amplifier. PMID:22090794

  17. The use of thin diamond films in fiber-optic low-coherence interferometers

    Science.gov (United States)

    Milewska, D.; Karpienko, K.

    2016-01-01

    In this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron- doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements were performed using two superluminescent diodes (SLD) with wavelengths of 1300 mm and 1550 mm. The optimal conditions for each layers were examined: the required wavelength of the light source and the length of Fabry-Perot interferometer cavity. Metrological parameters of Fabry-Perot interferometer with different mirrors were compared. The presented thin diamond films may be an interesting alternative to the commonly used reflective surfaces.

  18. InAs/GaAs quantum-dot light emitters monolithically grown on Si substrate

    Science.gov (United States)

    Liao, M.; Chen, S.; Tang, M.; Wu, J.; Jiang, Q.; Seeds, A.; Liu, H.

    2016-03-01

    We report on high quality GaAs-on-Si layers with low threading dislocations obtained by a combination of nucleation layer and dislocation filter layers using the molecular beam epitaxy (MBE) growth method. As a result, we achieved a Si-based electrically pumped 1.3 μm InAs/GaAs quantum dot (QD) laser that lases up to 111°C with a lasing threshold of 200 A/cm2, and a single facet output power exceeding 100 mW at room temperature. In addition to Si-based lasers, we also demonstrated the first Si-based InAs/GaAs QD superluminescent light-emitting diode (SLD), from which a close-to-Gaussian emission with a full width at half maximum (FWHM) of ~114 nm centered at ~1258 nm and maximum output power of 2.6 mW has been achieved.

  19. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    Science.gov (United States)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  20. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  1. Advanced laser diodes for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

    2000-01-01

    The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

  2. I-V characteristics of foilless diodes

    Institute of Scientific and Technical Information of China (English)

    Liu Guo-Zhi; Huang Wen-Hua; Yang Zhan-Feng

    2005-01-01

    Some physical characteristics of foilless diodes are obtained and analysed by numerical simulations. Relations between diode current andconfiguration parameters, i.e. diode voltage and external magnetic field, are investigated.Employing these relations and assuming that the external magnetic field is strong enough, the diode current can be approximately written as Ib=(7.5/x)(x+(0.81-x)/(1+0.7Ld2/δr))(γ0 2/3-1)3/2, in which Ld is the Anode-Cathode(AK) gap, Rc the outer radius of cathode, and Rp the radius of drifting tube; x=ln(Rp/Rc), δr=Rp- Rc. This expression is comparatively accurate for different configuration parameters and voltages; results obtained from this expression are consistent with that of numerical simulations within an error of 10%.

  3. Near infrared polymer light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; YANG Jian; HOU Qiong; MO Yueqi; PENG Junbiao; CAO Yong

    2005-01-01

    High efficiency of near infrared polymer light-emitting diodes with bilayer structure was obtained. The diode structure is ITO/PEDOT/L1/L2/Ba/Al, where L1 is phenyl-substituted poly [p-phenylphenylene vinylene] derivative (P-PPV), L2 is 9,9-dioctylfluorene (DOF) and 4,7- bis(3-hexylthiophen)-2-yl-2,1,3-naphthothiadiazole (HDNT) copolymer (PFHDNT10). The electroluminescence (EL) spectrum of diodes from PFHDNT10 is at 750 nm located in the range of near infrared. The maximum external quantum efficiency is up to 2.1% at the current density of 35 mA/cm2. The improvement of the diode's performances was considered to be the irradiative excitons confined in the interface between L1 and L2 layers.

  4. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  5. Phase Noise Reduction of Laser Diode

    Science.gov (United States)

    Zhang, T. C.; Poizat, J.-Ph.; Grelu, P.; Roch, J.-F.; Grangier, P.; Marin, F.; Bramati, A.; Jost, V.; Levenson, M. D.; Giacobino, E.

    1996-01-01

    Phase noise of single mode laser diodes, either free-running or using line narrowing technique at room temperature, namely injection-locking, has been investigated. It is shown that free-running diodes exhibit very large excess phase noise, typically more than 80 dB above shot-noise at 10 MHz, which can be significantly reduced by the above-mentioned technique.

  6. Interferometry and Holography With Diode Laser Light

    CERN Document Server

    Lunazzi, Jose Joaquin

    2016-01-01

    We made an interferometric Michelson type setup and a simple holographic setup to demonstrate the feasibility of interferometric and holographic techniques by means of a diode laser. The laser was made by using a common diode available as a penlight element (less than R$ 15,00 value) and a simple stabilized 110 VCA- 3 VCC power supply. Interference fringes and holograms of small objects where obtained very similar to those of a helium-neon laser based setup.

  7. Multiple and broad frequency response Gunn diodes

    Science.gov (United States)

    Pilgrim, N. J.; Macpherson, R. F.; Khalid, A.; Dunn, G. M.; Cumming, D. R. S.

    2009-10-01

    Gunn diodes, operating in transit time mode, are usually thought of as incapable of generating power at multiple frequencies or over a broad frequency range. In this paper, we report experimental results showing that these diodes can generate power at several frequencies and, using Monte Carlo simulations of both planar and vertical devices, we offer an explanation of how this unusual behaviour may come into being and suggest possible applications for this novel device.

  8. SiC Schottky diode electrothermal macromodel

    OpenAIRE

    Masana Nadal, Francisco

    2010-01-01

    This paper presents a SiC Schottky diode model including static, dynamic and thermal features implemented as separate parameterized blocks constructed from SPICE Analog Behavioral Modeling (ABM) controlled sources. The parameters for each block are easy to extract, even from readily available diode data sheet information. The model complexity is low thus allowing reasonably long simulation times to cope with the rather slow self heating process and yet accurate enough for practical purposes.

  9. Bypass diode for a solar cell

    Science.gov (United States)

    Rim, Seung Bum; Kim, Taeseok; Smith, David D.; Cousins, Peter J.

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  10. Varactor diodes for millimeter and submillimeter wavelengths

    Science.gov (United States)

    Rizzi, Brian J.; Hesler, Jeffrey L.; Dossal, Hasan; Crowe, Thomas W.

    1992-01-01

    Whisker-contacted GaAs Schottky barrier varactor diodes are the most common high-frequency multiplier element in use today. They are inherently simple devices that have very high frequency response and have been used to supply local oscillator power for Schottky heterodyne receivers to frequencies approaching 700 GHz. This paper discusses the development of improved varactor diode technology for space based applications at millimeter and submillimeter wavelengths.

  11. Strange meson spectroscopy in K{omega} and K{phi} at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e{sup +}e{sup {minus}} collisions at {radical}s = m{sub Z{sup 0}}. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, {pi}/K/p separation will be achieved up to {approximately}30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a {approximately}1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in <1000 electrons noise for an average photoelectron signal with 2 {times} 10{sup 5} gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K{sup {minus}}p {yields} K{sup {minus}}{omega}p and K{sup {minus}}p {yields} {bar K}{sup 0}{phi}n are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c. The data sample of K{sup {minus}}{omega}p final state contains {approximately}10{sup 5} events. From the partial wave analysis, resonance structures of J{sup P} = 2{sup {minus}}, 3{sup {minus}} and 2{sup +} amplitudes are observed in the K{omega} system. The analysis of 2{sup {minus}} amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c{sup 2}. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of {bar K}{sup 0}{phi} system favors J{sup P} = 1{sup {minus}} and 2{sup +} states in the 1.9--2.0 GeV/c{sup 2} region.

  12. Mutual phase locking of a coupled laser diode-Gunn diode pair

    OpenAIRE

    Izadpanah, S.H; Rav-Noy, Z.; Mukai, S.; Margalit, S.; Yariv, Amnon

    1984-01-01

    Mutual phase locking has been achieved through series connection of a semiconductor laser and a Gunn diode oscillator. Experimental results obtained demonstrate a mutual interaction between the two oscillators which results in a short term Gunn diode oscillator stability and improved spectral purity of its output. We also observe a narrowing of laser pulses and an improvement in regularity.

  13. Performance of the cold powered diodes and diode leads in the main magnets of the LHC

    CERN Document Server

    Willering, G P; Bajko, M; Bednarek, M; Bottura, L; Charifoulline, Z; Dahlerup-Petersen, K; Dib, G; D'Angelo, G; Gharib, A; Grand-Clement, L; Izquierdo Bermudez, S; Prin, H; Roger, V; Rowan, S; Savary, F; Tock, J-Ph; Verweij, A

    2015-01-01

    During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the co...

  14. Tunable diode laser control by a stepping Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, A.; Nicolas, C.; Henry, L.; Mantz, A.W.

    1987-01-01

    A tunable diode laser beam is sent through a Michelson interferometer and is locked to a fringe of the diode laser interferometer pattern by controlling the diode laser polarization current. The path difference change of the Michelson interferometer is controlled step by step by a stabilized He--Ne red laser. When the interferometer path differences increases or decreases, the polarization current of the diode is forced to change in order to preserve the interference order of the diode beam. At every step the diode frequency is accurately fixed and its phase noise significantly reduced.

  15. SiC-based Schottky diode gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, G.W.; Neudeck, P.G.; Chen, L.Y. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Knight, D. [Cortez/NASA Lewis Research Center, Cleveland, OH (United States); Liu, C.C.; Wu, Q.H. [Electronics Design Center, Case Western Reserve Univ., Cleveland, OH (United States)

    1998-08-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor array for versatile high temperature gas sensing applications. (orig.) 6 refs.

  16. SiC-Based Schottky Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  17. Diode-pumped laser altimeter

    Science.gov (United States)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  18. Destructive Single-Event Failures in Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  19. DC characteristics of the SiC Schottky diodes

    National Research Council Canada - National Science Library

    W Janke; A Hapka; M Oleksy

    2011-01-01

      DC characteristics of the SiC Schottky diodes The isothermal and non-isothermal characteristics of silicon carbide Schottky diodes in the wide range of currents and ambient temperatures are investigated in this paper...

  20. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  1. Logarithmic current electrometer using light emitting diodes

    Science.gov (United States)

    Acharya, Y. B.; Aggarwal, A. K.

    1996-02-01

    The limit of low current measurement using logarithmic current to voltage converter is improved by 6 - 7 orders of magnitude with the use of diodes of large band gap as compared with silicon diodes. Low cost commercially available light emitting diodes (LEDs) have been used for this purpose. A theoretical study and experimental measurement of device constant and reverse saturation currents of the whole class of commercially available LEDs has been carried out. A circuit has been developed which makes use of a new technique for temperature compensation and its performance is compared with the technique in common use. The performance of the amplifier is found to be stable in the temperature range 5 - 600957-0233/7/2/005/img5 for both polarity of signals from 0957-0233/7/2/005/img6 to 0957-0233/7/2/005/img7 A.

  2. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  3. Drivers for High Power Laser Diodes

    Institute of Scientific and Technical Information of China (English)

    Yankov P; Todorov D; Saramov E

    2006-01-01

    During the last year the high power laser diodes jumped over the 1 kW level of CW power for a stack,and the commercial 1 cm bars reached 100 W output optical power at the standard wavelengths around 800 nm and 980 nm. The prices are reaching the industry acceptable levels. All Nd:YAG and fiber industrial lasers manufacturers have developed kW prototypes. Those achievements have set new requirements for the power supplies manufactuers-high and stable output current, and possibilities for fast control of the driving current, keeping safe the expensive laser diode. The fast switching frequencies also allow long range free space communications and optical range finding. The high frequencies allow the design of a 3D laser radar with high resolution and other military applications. The prospects for direct laser diode micro machining are also attractive.

  4. Deterministic polarization chaos from a laser diode

    CERN Document Server

    Virte, Martin; Thienpont, Hugo; Sciamanna, Marc

    2014-01-01

    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.

  5. Optical communications. V - Light emitting diodes /LED/

    Science.gov (United States)

    Best, S. W.

    1980-10-01

    The process of assembling diode chips is discussed, along with their application in optical communications. Metal plating is performed with an evaporation technique using primarily AuGe on the back side and Al or AuZn on the front side. The assembling of LED-chips with metal casings is illustrated. The chip is mounted on a flat bottom plate and electrical contact is established by means of an alloying or adhesion procedure. A glass fiber can be attached to the diode and then fitted with a casing, or the diode can be assembled with a metal cap and a lense, or with an open cap that is sealed with a clear synthetic resin plastic. The typical emission spectra of an LED and a semiconductor laser are compared. Limitations in the operation of an LED in a photoconductor are examined, taking into account spectral line width and radiated power criteria.

  6. Diode laser and endoscopic laser surgery.

    Science.gov (United States)

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  7. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin;

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  8. Semiconductor diode characterization for total skin electron irradiation.

    Science.gov (United States)

    Madrid González, O A; Rivera Montalvo, T

    2014-01-01

    In this paper, a semiconductor diode characterization was performed. The diode characterization was completed using an electron beam with 4 MeV of energy. The semiconductor diode calibration used irradiation with an electron beam in an ion chamber. "In vivo" dosimetry was also conducted. The dosimetry results revealed that the semiconductor diode was a good candidate for use in the total skin electron therapy (TSET) treatment control.

  9. First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique

    Science.gov (United States)

    Majid, Mohammed A.; Al-Jabr, Ahmad A.; Elafandy, Rami T.; Oubei, Hassan M.; Alias, Mohd S.; Alnahhas, Bayan A.; Anjum, Dalaver H.; Ng, Tien Khee; Shehata, Mohamed; Ooi, Boon S.

    2016-03-01

    In this paper, a novel strain-induced quantum well intermixing (QWI) technique is employed on InGaP/InAlGaP material system to promote interdiffusion via application of a thick-dielectric encapsulant layer, in conjunction with cycle annealing at elevated temperature. Broad area devices fabricated from this novel cost-effective QWI technique lased at room-temperature at a wavelength as short as 608nm with a total output power of ~46mW. This is the shortest- wavelength electrically pumped visible semiconductor laser, and the first report of lasing action yet reported from post- growth interdiffused process. Furthermore, we also demonstrate the first yellow superluminescent diode (SLD) at a wavelength of 583nm with a total two-facet output power of ~4.5mW - the highest optical power ever reported at this wavelength in this material system. The demonstration of the yellow SLD without complicated multiquantum barriers to suppress the carrier overflow will have a great impact in realizing the yellow laser diode.

  10. First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique

    KAUST Repository

    Majid, Mohammed A.

    2016-03-07

    In this paper, a novel strain-induced quantum well intermixing (QWI) technique is employed on InGaP/InAlGaP material system to promote interdiffusion via application of a thick-dielectric encapsulant layer, in conjunction with cycle annealing at elevated temperature. Broad area devices fabricated from this novel cost-effective QWI technique lased at room-temperature at a wavelength as short as 608nm with a total output power of ~46mW. This is the shortest- wavelength electrically pumped visible semiconductor laser, and the first report of lasing action yet reported from post- growth interdiffused process. Furthermore, we also demonstrate the first yellow superluminescent diode (SLD) at a wavelength of 583nm with a total two-facet output power of ~4.5mW - the highest optical power ever reported at this wavelength in this material system. The demonstration of the yellow SLD without complicated multiquantum barriers to suppress the carrier overflow will have a great impact in realizing the yellow laser diode. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  12. Investigation of radial temperature gradients in diode pumped alkali lasers using tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Fox, Charles D.; Perram, Glen P.

    2012-03-01

    Heat loads in Diode Pumped Alkali Lasers (DPAL) have been investigated using a diode laser to probe the radial dependence of the absorbance. A TiS pump laser heats the medium in a T=50-100°C cesium heat pipe with 5 Torr nitrogen used for quenching. A tunable diode laser probes the spectral absorbance of the cesium cell. Local alkali concentration, temperature, and saturation broadening modify Voigt lineshapes in the wing of the hyperfine split lines. The temperature within the pumped volume exceeds the wall temperature by almost 200 C.

  13. Diode lasers and photonic integrated circuits

    CERN Document Server

    Coldren, Larry A; Mashanovitch, Milan L

    2011-01-01

    Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book wil

  14. Phase-change radiative thermal diode

    CERN Document Server

    Ben-Abdallah, Philippe

    2013-01-01

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of futur contactless thermal circuits or in the conception of radiative coatings for thermal management.

  15. Planar jumping-drop thermal diodes

    Science.gov (United States)

    Boreyko, Jonathan B.; Zhao, Yuejun; Chen, Chuan-Hua

    2011-12-01

    Phase-change thermal diodes rectify heat transport much more effectively than solid-state ones, but are limited by either the gravitational orientation or one-dimensional configuration. Here, we report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of over 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface.

  16. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  17. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  18. Thermal diode made by nematic liquid crystal

    Science.gov (United States)

    Melo, Djair; Fernandes, Ivna; Moraes, Fernando; Fumeron, Sébastien; Pereira, Erms

    2016-09-01

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.

  19. Laser diode initiated detonators for space applications

    Science.gov (United States)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  20. External cavity diode laser around 657 nm

    Institute of Scientific and Technical Information of China (English)

    Desheng Lǖ (吕德胜); Kaikai Huang (黄凯凯); Fengzhi Wang (王凤芝); DonghaiYang (杨东海)

    2003-01-01

    Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the LittmanMetcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.

  1. Linear variable voltage diode capacitor and adaptive matching networks

    NARCIS (Netherlands)

    Larson, L.E.; De Vreede, L.C.N.

    2006-01-01

    An integrated variable voltage diode capacitor topology applied to a circuit providing a variable voltage load for controlling variable capacitance. The topology includes a first pair of anti-series varactor diodes, wherein the diode power-law exponent n for the first pair of anti-series varactor di

  2. Linear variable voltage diode capacitor and adaptive matching networks

    NARCIS (Netherlands)

    Larson, L.E.; De Vreede, L.C.N.

    2006-01-01

    An integrated variable voltage diode capacitor topology applied to a circuit providing a variable voltage load for controlling variable capacitance. The topology includes a first pair of anti-series varactor diodes, wherein the diode power-law exponent n for the first pair of anti-series varactor

  3. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    Science.gov (United States)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  4. Final report for EDI energy conservation with diode light; Slutrapport for EDI energibesparelser med diodelys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The aim of this project has been to develop technological knowledge and a competence platform for utilization of new light emitting diode technology for general lighting purposes. Furthermore the project has aimed at developing a 3 W light diode bulb to replace 15-20 W filament bulbs and halogen spotlights, and thereby demonstrating a large energy conservation potential in the use of LED technology for lighting purposes. (BA)

  5. Electronically controlled heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John

    2009-05-01

    We report on a novel electronically controlled active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink receives diode waste heat at high flux and transfers it at reduced flux to environment, coolant fluid, heat pipe, or structure. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the diode light wavelength. When pumping solid-state or alkaline vapor lasers, diode wavelength can be precisely temperature-tuned to the gain medium absorption features. This paper presents the heat sink physics, engineering design, and performance modeling.

  6. Coherent polarization locking of a diode emitter array.

    Science.gov (United States)

    Ng, S P; Phua, P B

    2009-07-01

    We present our work on the coherent combining of an array of diode emitters in a conventional diode bar configuration using the coherent polarization locking technique. An external laser cavity is designed so that the diode emissions from four diode emitters are spatially overlapped and passively phase locked via a series of birefringent walk-off crystals and a polarizing beam splitter. This concept was experimentally demonstrated up to 1030 mW of coherently combined power and was shown to increase the laser brightness of the diode bar by approximately 50 times.

  7. Study on the Beam Quality of Uncoupled Laser Diode Arrays

    Institute of Scientific and Technical Information of China (English)

    GAO Chunqing; WEI Guanghui

    2001-01-01

    The beam quality of uncoupled laser diode array is studied theoretically and experimentally. By calculating the second order moments of the beam emitted from the laser diode array, the dependence of the M2-factor of the laser diode array on the M2-factor of the single emitter, the ratio of the emitting region to the non-emitting space, and the number of emitters, has been deduced. From the measurement of the beam propagation the M2-factor of a laser diode bar is experimentally determined. The measured M2-factor of the laser diode bar agrees with the theoretical prediction.

  8. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    Due to their unique characteristics, diode lasers are increasingly attractive for numerous applications. For example, in the biomedical field the provided output power, spatial quality, and wavelength coverage of diode lasers has enabled their applications in, e.g., dermatology, diffuse spectrosc......Due to their unique characteristics, diode lasers are increasingly attractive for numerous applications. For example, in the biomedical field the provided output power, spatial quality, and wavelength coverage of diode lasers has enabled their applications in, e.g., dermatology, diffuse......, the obtained results clearly strengthen the application potential of diode lasers, including the biomedical field....

  9. 2-D Design of Schottky Diodes

    Science.gov (United States)

    2000-09-29

    Schottky diode with- Lb, rse = 2.5 ,im as can be observed in figure 3. 25 ........... ...... ..... Series roi~ttarce for *ý,,,,-io irm. Ii bsai.10in 0...epitaxial layer Wp ( rse < 𔃽 -4), which is typical 4D0 ............. . . for submillimeter varactors. Of course, the influence of the .............. ~ L

  10. Tunnel Diode Discriminator with Fixed Dead Time

    DEFF Research Database (Denmark)

    Diamond, J. M.

    1965-01-01

    A solid state discriminator for the range 0.4 to 10 V is described. Tunnel diodes are used for the discriminator element and in a special fixed dead time circuit. An analysis of temperature stability is presented. The regulated power supplies are described, including a special negative resistance...

  11. Light-Emitting Diodes: Learning New Physics

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  12. Light-Emitting Diodes: Solving Complex Problems

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  13. Light-Emitting Diodes: A Hidden Treasure

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  14. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  15. Light-Emitting Diodes: A Hidden Treasure

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  16. Phosphorescent Nanocluster Light-Emitting Diodes.

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion.

  17. Monolithic resonant optical reflector laser diodes

    Science.gov (United States)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  18. Diode pumped Nd:YAG laser development

    Science.gov (United States)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  19. A CW Gunn Diode Switching Element.

    Science.gov (United States)

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  20. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  1. Determining Extinction Ratio Of A Laser Diode

    Science.gov (United States)

    Unger, Glenn L.

    1992-01-01

    Improved technique to determine extinction ratio of pulsed laser diode based partly on definition of extinction ratio applicable to nonideal laser pulses. Heretofore, determinations involved assumption of ideal laser pulses, and neglected optical power from background light. Because power fluctuates during real pulse, more realistic to define extinction ratio in terms of energy obtained.

  2. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.;

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  3. Light-Emitting Diodes: Learning New Physics

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  4. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 2...

  5. 100 years of the physics of diodes

    Science.gov (United States)

    Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.

    2017-03-01

    The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.

  6. Qualification and Selection of Flight Diode Lasers for Space Applications

    Science.gov (United States)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode

  7. Photovoltaic-module bypass-diode encapsulation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-20

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  8. Application of spherical micro diodes for brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Broisman, Andrey, E-mail: andreybr@ariel.ac.i [Medical Physics, Ariel University Center, Ariel 40700 (Israel); Shani, Gad [Biomedical Engineering, Ben Gurion University, P.O. Box 653, Beer Sheva 84105 (Israel)

    2011-03-15

    The research presented in this paper demonstrates the feasibility and the advantages of using spherical micro diodes for radiation dosimetry. The spherical symmetry of the diode response is demonstrated, compared to that of planar diodes. The application of the spherical diode described here is for radiotherapy dosimetry, particularly brachytherapy. Measurements were done in PMMA phantoms. The advantage of the spherical diode is that it can be used for radiation measurement in a 4{pi} geometry, it was demonstrated by measurements in both axial and azimuthal planes. The diodes were found to respond equally to radiation coming from all directions, directly from the source or due to scattered radiation within the medium. In the present work 1.8 mm diameter silicone diodes were used. The small size of these spherical diodes provides local dose measurement and can be used for in situ dosimetry while treatment takes place. Treatment planning correction can be made accordingly. Commercially available seeds of the isotopes I{sup 125} and Pd{sup 103} were used as radiation sources. The spherical diodes response was compared with that of planar diodes XRB generally used for UV and X-ray dosimetry, and with TLD measurements. We have also compared the measured results with Monte Carlo simulation, applying the MCNP code and with calculations shown in the TG-43 report.

  9. Combustion control using an IR diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Niska, J.; Rensgard, A.; Malmberg, D. [MEFOS, Lulea (Sweden)

    2003-07-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a recent development in process instrumentation. This paper describes the testing of a commercial TDLAS instrument for continuous oxygen analysis of the furnace combustion gases in an industrial reheating furnace and in a pilot furnace at MEFOS. A time-averaged oxygen concentration signal with a TDC2000 furnace controller at MEFOS was used to prove automatic control of the air-to-fuel ratio. The local measurements of the oxygen concentration using a zirconia probe in both furnaces compared well with the oxygen concentrations measured by the TDLAS instrument. The advantage of the diode laser is its high reliability for average gas concentration measurements in the path of the beam, when compared to point gas analysis with conventional zirconia instrumentation. Improved process control is derived from reliable gas analysis, which translates into energy savings, reduced emissions and improved productivity for steel reheating furnaces. 7 refs., 8 figs.

  10. Diode-pumped optical parametric oscillator.

    Science.gov (United States)

    Geiger, A R; Hemmati, H; Farr, W H; Prasad, N S

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO(3) nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd(3+) ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal Q switching the 1084-nm radiation pumps the LiNbO(3) host crystal that is angle cut at 46.5 degrees and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be approximately 1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength.

  11. Diode-quad bridge circuit means

    Science.gov (United States)

    Harrison, D. R.; Dimeff, J. (Inventor)

    1975-01-01

    A transducer and frequency discriminator circuit is described including a four-terminal circulating diode bridge, a first pair of capacitors connected in series across two terminals of the bridge, and a second pair of capacitors, or other impedance elements, connected in series across the other two terminals of the bridge. A source of balanced alternating electrical energy for energizing the circuit is coupled between the commonly connected plates of the first pair of capacitors and the commonly connected plates of the second pair of capacitors. Due to the operation of the diode bridge, the sum of the resultant charges developed on the first pair of capacitors is proportional to the relationship between the respective capacitors of the second pair, and consequently, an output voltage taken across the first pair of capacitors will be proportional to that relationship.

  12. Schottky diodes from 2D germanane

    Science.gov (United States)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  13. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  14. Reconfigurable nonreciprocity with nonlinear Fano diode

    OpenAIRE

    Xu, Yi; Miroshnichenko, Andrey E.

    2013-01-01

    We propose a dynamically tunable nonreciprocal response for wave propagations by employing nonlinear Fano resonances. We demonstrate that transmission contrast of waves propagation in opposite directions can be controlled by excitation signal. In particular, the unidirectional transmission can be flipped at different times of a pulse, resembling a diode operation with {\\em dynamical reconfigurable nonreciprocity}. The key mechanism is the interaction between the linear and nonlinear Fano reso...

  15. Safety of light emitting diodes in toys.

    Science.gov (United States)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-03-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  16. An All-Silicon Passive Optical Diode

    OpenAIRE

    Fan, Li; Wang, Jian; Varghese, Leo T.; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; Qi, Minghao

    2012-01-01

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input pow...

  17. Stability theory of Knudsen plasma diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Ender, A. Ya. [Ioffe Institute, Russian Academy of Sciences (Russian Federation)

    2015-11-15

    A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.

  18. An All-Silicon Passive Optical Diode

    OpenAIRE

    Fan, Li; Wang,Jian; Varghese, Leo T.; Shen,Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; Qi, Minghao

    2012-01-01

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input pow...

  19. Diode Laser Sensor for Scramjet Inlet

    Science.gov (United States)

    2010-05-11

    Conference’. 1.2 O’Byrne, S., Huynh, L., Wittig, S. M. and Smith, N. S. A. (2009), Non- intrusive water vapour absorp- tion measurements in a simulated...O’Byrne, L. Huynh, S. M. Wittig and N. S. A. Smith, “Non- intrusive Water Vapour Absorp- tion Measurements in a Simulated Helicopter Exhaust”, Proceedings...rather than at a surface. The measurement techniques used at these hypersonic flow conditions should also be non- intrusive . Tuneable diode laser

  20. Rugged, Tunable Extended-Cavity Diode Laser

    Science.gov (United States)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  1. Diode having trenches in a semiconductor region

    Science.gov (United States)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  2. Integrated software package for laser diodes characterization

    Science.gov (United States)

    Sporea, Dan G.; Sporea, Radu A.

    2003-10-01

    The characteristics of laser diodes (wavelength of the emitted radiation, output optical power, embedded photodiode photocurrent, threshold current, serial resistance, external quantum efficiency) are strongly influenced by their driving circumstances (forward current, case temperature). In order to handle such a complex investigation in an efficient and objective manner, the operation of several instruments (a laser diode driver, a temperature controller, a wavelength meter, a power meter, and a laser beam analyzer) is synchronously controlled by a PC, through serial and GPIB communication. For each equipment, instruments drivers were designed using the industry standards graphical programming environment - LabVIEW from National Instruments. All the developed virtual instruments operate under the supervision of a managing virtual instrument, which sets the driving parameters for each unit under test. The manager virtual instrument scans as appropriate the driving current and case temperature values for the selected laser diode. The software enables data saving in Excel compatible files. In this way, sets of curves can be produced according to the testing cycle needs.

  3. New laser materials for laser diode pumping

    Science.gov (United States)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  4. HETEROJUNCTION DIODES OF POROUS SILICON WITH SOLUBLE POLYANILINE

    Institute of Scientific and Technical Information of China (English)

    Jun-hua Fan; Mei-xiang Wan; Dao-ben Zhu

    1999-01-01

    Two kinds of heterojunction diodes of porous silicon (PS) with soluble polyaniline (PANI) were fabricated. One is a heterojunction diode of PS with water-soluble copolymer of polyaniline(PAOABSA),Al/PS-PAOABSA/Au cell as rectifying diode. Another is a heterojunction diode of PS with soluble polyaniline doped with DBSA, Al/PS-PANI (DBSA)/Au cell as light emitting diode (LED). The rectifying characteristics of the rectifying diodes were measured as a function of the degree of sulfonation and thickness of the copolymers, as well as oxidation of PS. The rectifying ratio of the heterojunction can reach 5.0×104 at ±3 V bias. For the LED, the photoluminescence (PL) and electroluminescence (EL) spectra were measured and discussed.

  5. Plasma opening switch studies of an applied Bz ion diode

    Science.gov (United States)

    Struckman, C. K.; Kusse, B. R.; Meyerhofer, D. D.; Rondeau, G.

    1989-05-01

    The light ion accelerator (1.5 MV, 4 ohms) at Cornell University is being used to study the characteristics of an applied Bz, or 'barrel', diode. The results of a series of experiments utilizing a plasma opening switch are reported. With a magnetically insulated ion diode load, the peak diode voltage increase from 1.5 to 1.8 MV and the ion power increased from 50 to 80 GW when a plasma opening switch was used.

  6. Underwater Chaotic Lidar using Blue Laser Diodes

    Science.gov (United States)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  7. Plasma-filled diode based on the coaxial gun.

    Science.gov (United States)

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  8. Laboratory diode laser spectroscopy in molecular planetary astronomy

    Science.gov (United States)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopy of planetary atmospheres is performed at high spectral resolution comparable to that in the laboratory. This requires that laboratory spectroscopy use the highest resolution and the most accurate techniques. Tunable diode laser spectroscopy can supply many of the spectroscopic parameters needed by astronomers. In particular, line positions, line strengths, and collisional line widths are measured with diode lasers, and these are often among the best values available. Diode laser spectra are complimentary to lower resolution, broader-coverage Fourier transform spectra. Certain procedures must be adopted, however, when using diode lasers, for determining their output characteristics and for calibrating each spectrum against quality references.

  9. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.;

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...... is extracted in a high-quality beam and 80 percent of the output power is extracted through the fiber. The power transmitted through tile fiber scales linearly with the power of the laser diode. which means that a laser diode emitting 1.7 W multi-mode radiation would provide 1 W of optical power through a 50...

  10. Plasma-filled diode based on the coaxial gun

    Energy Technology Data Exchange (ETDEWEB)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N. [Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055 Tomsk (Russian Federation)

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  11. Plasma-filled diode based on the coaxial gun

    Science.gov (United States)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  12. High stable power control of a laser diode

    Institute of Scientific and Technical Information of China (English)

    YANG Jiu-ru; LI Cheng; YE Hong-an; L(U) Guo-hui; JIA Shi-lou

    2006-01-01

    In this paper,the low and the high frequency noises of a laser diode have been analyzed. Based on the analysis a novel scheme that adapts analog and digital hybrid techniques is proposed to stabilize the output power of a laser diode. With the hybrid controller,the low and the high frequency noises of a laser diode are conspicuously reduced.By accurate calculation,the short-term stability of the output power of laser diode reaches ±0.55‰, and the long-term stability is ±0.7‰.

  13. Comparison of Diode and Argon Laser Lesions in Rabbit Retina

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Xiaoxin Li; Bin Li; Jiping Da

    2004-01-01

    Purpose: To compare the histological alteration of retina with various spot intensities between diode and argon lasers in order to instruct the clinical use of 810 nm diode laser.Methods: Transpupillary retinal photocoagulations were performed on 42 eyes of 27pigmented rabbits. Histopathologic alteration of lesions in different intensities and different time intervals after irradiation produced by diode and argon laser was observed and compared using light microscopy. Areas of various lesions measured by image analysis system (CMIAS) were compared quantitatively.Results: Histopathologically, two-week-old grade 2 lesions produced by diode laser induced the disappearance of outer nuclear cells. More than a half of all showed reduction in number of outer nuclear layer cells in argon. Fibroblasts appeared in the diode grade 3lesions 5 days after irradiation. CMIAS data showed that all the areas of diode lesions immediately after photocoagulation were to be larger than those of argon laser lesions in the same spot intensity (P < 0.05). However, twenty-four hours after photocoagulation, the area of the diode lesions increased less than that of the argon laser lesions (8%vs.23%).Conclusion: The acute histological effect caused by 810 nm diode laser and argon green laser is similar,while the expansion of lesion area 24 hours after photocoagulation was less with the diode laser compared to the argon. This may be the first report in the literature regarding quantitative analysis of the delayed reaction of argon green lasers.

  14. Planar GaAs diodes for THz frequency mixing applications

    Science.gov (United States)

    Bishop, William L.; Crowe, Thomas W.; Mattauch, Robert J.; Dossal, Hasan

    1992-01-01

    Schottky barrier diodes for terahertz applications are typically fabricated as a micron to sub-micron circular anode metallization on GaAs which is contacted with a sharp wire (whisker). This structure has the benefits of the simplicity of the fabrication of the diode chip, the minimal shunt capacitance of the whisker contact and the ability of the whisker wire to couple energy to the diode. However, whisker-contacted diodes are costly to assembly and difficult to qualify for space applications. Also, complex receiver systems which require many diodes are difficult to assemble. The objective of this paper is to discuss the advantages of planar Schottky diodes for high frequency receiver applications and to summarize the problems of advancing the planar technology to the terahertz frequency range. Section 2 will discuss the structure, fabrication and performance of state-of-the-art planar Schottky diodes. In Section 3 the problems of designing and fabricating planar diodes for terahertz frequency operation are discussed along with a number of viable solutions. Section 4 summarizes the need for further research and cooperation between diode designers and RF engineers.

  15. Position and mode dependent coupling of terahertz quantum cascade laser fields to an integrated diode

    Science.gov (United States)

    Dyer, Gregory C.; Nordquist, Christopher D.; Cich, Michael J.; Ribaudo, Troy; Grine, Albert D.; Fuller, Charles T.; Reno, John L.; Wanke, Michael C.

    2013-10-01

    A Schottky diode integrated into a terahertz quantum cascade laser waveguide couples directly to the internal laser fields. In a multimode laser, the diode response is correlated with both the instantaneous power and the coupling strength to the diode of each lasing mode. Measurements of the rectified response of diodes integrated in two quantum cascade laser cavities at different locations indicate that the relative diode position strongly influences the laser-diode coupling.

  16. Position and mode dependent coupling of terahertz quantum cascade laser fields to an integrated diode

    CERN Document Server

    Dyer, Gregory C; Cich, Michael J; Ribaudo, Troy; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C

    2016-01-01

    A Schottky diode integrated into a terahertz quantum cascade laser waveguide couples directly to the internal laser fields. In a multimode laser, the diode response is correlated with both the instantaneous power and the coupling strength to the diode of each lasing mode. Measurements of the rectified response of diodes integrated in two quantum cascade laser cavities at different locations indicate that the relative diode position strongly influences the laser-diode coupling.

  17. Control of GaAs Microwave Schottky Diode Electrical Characteristics by Contact Geometry: The Gap Diode.

    Science.gov (United States)

    1982-05-01

    versus incident RF power of a Gap diode (V- bO ) .. . . . Ii i.... .. l -- _ _ __ll .. . I -82- c"-)) IZDn UU Figure 36. Single-ended mixer conversion...267 (1970). (12] C.J. Madams , D.V. Morgan, J.M. Howes, "Outmigratlon of Gallium from Au-GaAs Interfaces", Electronic Letters, Vol. 11(24), 574 (1975

  18. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: 05m19220@nr.titech.ac.jp; Akiyama, Tsuyoshi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Azuma, Yoshifumi; Tsuji-Iio, Shunji; Tsutsui, Hiroaki; Shimada, Ryuichi [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-10-15

    We proposed and tested a new configuration of a magneto-optic polarimeter with a pair of photoelastic modulators (PEMs). In the new configuration, the number of optical components including PEMs can be much smaller than that in a conventional one with PEMs. This paper describes the results of performance test and comparisons to the conventional configuration. The dependences on the light source (a He-Ne laser, 632.8 nm and a superluminescent diode, SLD, 822 nm) are also discussed. The polarization angle can be measured and angle resolution comparable to those in the conventional one was obtained. Angle resolution of 0.002 deg. and 0.07 deg. with a response time of 10 ms was achieved at an incident polarization angle of about 0 deg. and 21 deg., respectively. The resolution of 0.07 deg. corresponds to 7 G when a 40-mm-long ZnSe sensing rod is used. Linearity of the measured angle against the real one degraded, especially with He-Ne laser, increasing the numbers of the mirrors for beam transmission. On the other hand, the resolution is insensitive to the number of mirrors. Good long-time stability was confirmed with the SLD but a little deterioration was found with the He-Ne laser in the two configurations.

  19. Swept-source digital holography to reconstruct tomographic images.

    Science.gov (United States)

    Sheoran, Gyanendra; Dubey, Satish; Anand, Arun; Mehta, Dalip Singh; Shakher, Chandra

    2009-06-15

    We present what we believe to be a new method of swept-source digital holography using a superluminescent diode (SLD) as a broadband light source and an acousto-optic tunable filter (AOTF) as a frequency tunable device. The swept source consists of an SLD as a broadband source in conjunction with the AOTF as the frequency tuning device in the wavelength range of 800-870 nm. Since the AOTF is an electronically controlled device, frequency tuning can be achieved without mechanical movement . The angular spectrum approach to the scalar diffraction theory is used to reconstruct the images for each wavelength. Applications of a broadband source ensure an increased axial resolution of reconstructed images. The proposed swept-source system provides a sufficiently broad range of tunability and can increase the axial range and the resolution of reconstructed tomographic images using digital holography. The system was tested using a semireflecting glass substrate; a character "B" is written on it with black ink. Experimental results are presented.

  20. Performance analysis of optical coherence tomography in the context of a thickness estimation task

    Science.gov (United States)

    Huang, Jinxin; Yao, Jianing; Cirucci, Nick; Ivanov, Trevor; Rolland, Jannick P.

    2015-12-01

    Thickness estimation is a common task in optical coherence tomography (OCT). This study discusses and quantifies the intensity noise of three commonly used broadband sources, such as a supercontinuum source, a superluminescent diode (SLD), and a swept source. The performance of the three optical sources was evaluated for a thickness estimation task using both the fast Fourier transform (FFT) and maximum-likelihood (ML) estimators. We find that the source intensity noise has less impact on a thickness estimation task compared to the width of the axial point-spread function (PSF) and the trigger jittering noise of a swept source. Findings further show that the FFT estimator yields biased estimates, which can be as large as 10% of the thickness under test in the worst case. The ML estimator is by construction asymptotically unbiased and displays a 10× improvement in precision for both the supercontinuum and SLD sources. The ML estimator also shows the ability to estimate thickness that is at least 10× thinner compared to the FFT estimator. Finally, findings show that a supercontinuum source combined with the ML estimator enables unbiased nanometer-class thickness estimation with nanometer-scale precision.

  1. Method for partially coating laser diode facets

    Science.gov (United States)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  2. Atomically thin quantum light-emitting diodes

    Science.gov (United States)

    Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji; Taniguchi, Takashi; Ferrari, Andrea C.; Atatüre, Mete

    2016-09-01

    Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

  3. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  4. Neutron Detection Using Gadolinium-Based Diodes

    Science.gov (United States)

    2011-03-01

    U Uranium UNL The University of Nebraska, Lincoln XRD X-Ray Diffraction 1 NEUTRON DETECTION USING GADOLINIUM-BASED DIODES I...detector volume of approximately 3.46x10-6 cm3. 6 4 2 0 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Applied BiasV De ple tio nW idt hm  Si SiC 22...Layer deposition on the SiC substrate was confirmed by x-ray diffraction ( XRD ), however, no ellipsometry or other characterization measurements were

  5. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    CRYSTAL ._____ ____ &m? * Deuterated • Potassium Dihydrogen . Phosphate - ’ KD PO (KD*P) ~ .~ ,_ .i-; Deuterated Ceslum 43ssI6 1 .. r., Dihydrogen ...as a buffer layer to absorb the thermal strain differential between the diode and a copper heatsink has also been suggested in the past and a recent...Potassium Titanium d33829-3 0.16 *; . ~ Penta- Phosphate - ’(20 na) ;A.: KTiOPOi (KTP) - Barium Sodium d33 8 43 .0j 4 eNilhatsh RA.NaNhO

  6. Composite resonator vertical cavity laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  7. Multifractal properties of resistor diode percolation.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2002-03-01

    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the nonpercolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents [psi(l)]. We calculate the family [psi(l)] to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.

  8. In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording

    Science.gov (United States)

    Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.

    2008-01-01

    Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365

  9. In vitro and in vivo noise analysis for optical neural recording.

    Science.gov (United States)

    Foust, Amanda J; Schei, Jennifer L; Rojas, Manuel J; Rector, David M

    2008-01-01

    Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low-noise light-emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources can help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and a rat cortex, then compared the root mean square (RMS) noise and signal-to-noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD), and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED's, suggesting that speckle noise contributed to the LD's higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in vivo chronic neural recording applications.

  10. Diode-Assisted Buck-Boost Voltage-Source Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus;

    2009-01-01

    This paper proposes a number of diode-assisted buck-boost voltage-source inverters with a unique X-shaped diode-capacitor network inserted between the inverter circuitry and dc source for producing a voltage gain that is comparatively higher than those of other buck-boost conversion techniques...

  11. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  12. IMPATT diodes. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    Government sponsored research reports are cited covering the design, characterization, and applications of IMPATT diodes. Topics include reliability, power handling, properties, noise, fabrication, and radiation effects. The use of silicon and gallium arsenide IMPATT diodes for microwave generation and amplification is included. This updated bibliography contains 182 abstracts, 14 of which are new entries to the previous edition.

  13. Organic reprogrammable circuits based on electrochemically formed diodes.

    Science.gov (United States)

    Liu, Jiang; Engquist, Isak; Berggren, Magnus

    2014-08-13

    We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction allows for in situ reprogramming of the polarity of the organic p-n junction, thus enabling us to reconfigure diode circuits. By combining diodes of specific polarities dedicated circuits have been created, such as various logic gates, a voltage limiter and an AC/DC converter. Reversing the EC reaction allows in situ reprogramming of the p-n junction polarity, thus enabling reconfiguration of diode circuits, for example, from an AND gate to an OR gate. The reprogrammable circuits are based on p-n diodes defined from only two layers, the electrodes and then the active semiconductor:electrolyte composite material. Such simple device structures are promising for large-area and fully printed reconfigurable circuits manufactured using common printing tools. The structure of the reported p-n diodes mimics the architecture of and is based on identical materials used to construct light-emitting electrochemical cells (LEC). Our findings thus provide a robust signal routing technology that is easily integrated with traditional LECs.

  14. Solar spectrum rectification using nano-antennas and tunneling diodes

    Science.gov (United States)

    Dagenais, Mario; Choi, Kwangsik; Yesilkoy, Filiz; Chryssis, Athanasios N.; Peckerar, Martin C.

    2010-02-01

    Our goal is to develop a rectifying antenna (rectenna) applicable to solar spectrum energy harvesting. In particular, we aim to demonstrate viable techniques for converting portion of the solar spectrum not efficiently converted to electric power by current photovoltaic approaches. Novel design guidelines are suggested for rectifying antenna coupled tunneling diodes. We propose a new geometric field enhancement scheme in antenna coupled tunneling diodes that uses surface plasmon resonances. For this purpose, we have successfully implemented a planar tunneling diode with polysilion/SiO2/polysilcon structure. An antenna coupled asymmetric tunneling diode is developed with a pointed triangle electrode for geometric field enhancement. The geometrically asymmetric tunneling diode shows a unique asymmetric tunneling current versus voltage characteristic. Through comparison with crossover tunneling diodes, we verified that the current asymmetry is not from the work function difference between the two electrodes. Results of RF rectification tests using the asymmetric diode demonstrate that our approach is practical for energy harvesting application. Furthermore, we describe how surface plasmons can enhance the electric field across the tunnel junction, lowering the effective "turn-on" voltage of the diode, further improving rectification efficiency.

  15. Spectral control of diode lasers using external waveguide circuits

    NARCIS (Netherlands)

    Oldenbeuving, Ruud

    2013-01-01

    We investigated spectral control of diode lasers using external waveguide circuits. The purpose of this work is to investigate such external control for providing a new class of diode lasers with technologically interesting properties, such as a narrow spectral bandwidth and spectrally tunable

  16. Diode pumped solid-state laser oscillators for spectroscopic applications

    Science.gov (United States)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  17. Spectral control of diode lasers using external waveguide circuits

    NARCIS (Netherlands)

    Oldenbeuving, R.M.

    2013-01-01

    We investigated spectral control of diode lasers using external waveguide circuits. The purpose of this work is to investigate such external control for providing a new class of diode lasers with technologically interesting properties, such as a narrow spectral bandwidth and spectrally tunable outpu

  18. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, van Maurice; Lebouille, Tom; Visser, Guido; Vliet, van Frank E.

    2009-01-01

    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are c

  19. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, M. van; Lebouille, T.T.N.; Visser, G.C.; Vliet, F.E. van

    2009-01-01

    In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are Silicon, Gallium Arsenide and Gallium Nitride. The diodes in the diverse semiconductor technologies themselves are close in p

  20. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    Science.gov (United States)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  1. Digital control of diode laser for atmospheric spectroscopy

    Science.gov (United States)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  2. Stacked, Filtered Multi-Channel X-Ray Diode Array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence P. [National Security Technologies, LLC; Dutra, Eric C. [National Security Technologies, LLC; Raphaelian, Mark; Compton, Steven [Lawrence Livermore National Laboratory; Jacoby, Barry [Lawrence Livermore National Laboratory

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  3. Fiber Optic Coupling of CW Linear Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; XIAO Jianwei; MA Xiaoyu; WANG Zhongming; FANG Gaozhan

    2002-01-01

    Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 μm diameter.The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 μm aperture spaced on 500 μm centers.The coupling system contains packaged laser diode bar,fast axis collimator,slow axis collimation array,beam transformation system and focusing system.The high brightness,high power density and single fiber output of a laser diode bar is achieved.The coupling efficiency is 65% and the power density is up to 1.03×104 W/cm2.

  4. Diode and Final Focus Simulations for DARHT

    Science.gov (United States)

    Hughes, Thomas P.; Welch, Dale R.; Carlson, Randolph L.

    1997-05-01

    We have used the numerical simulation codes uc(ivory,) uc(iprop) and uc(pbguns) to simulate beam dynamics in the diode and final focus of the 4 kA, 20 MV DARHT linear accelerator. A low emittance 4 MV, 4 kA source for a 4-pulse injector was designed using uc(ivory) and uc(pbguns.) Due to the long pulse length (four 70 ns pulses over 1 μsec), we have kept the field stress to stacks. The normalized edge emittance produced by the diode optics is only ≈ 130 mm-mrad. In the final-focus region, we have used uc(iprop) to model the effect of ion emission from the target. The intense electric field of the beam at the 1 mm diameter focal spot produces substantial ion velocities, and, if the space-charge-limited current density can be supplied, significant focal spot degradation may occur due to ion space-charge. Calculations for the ITS test stand, which has a larger focal spot, show that the effect should be observable for H^+ and C^+ ion species. The effect may be lessened if there is insufficient ion density on the target to supply the space-charge-limited current density, or if the ion charge-to-mass ratio is sufficiently large.

  5. Sensitivity of resonant tunneling diode photodetectors

    Science.gov (United States)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Kamp, Martin; Höfling, Sven; Worschech, Lukas

    2016-09-01

    We have studied the sensitivity of AlGaAs/GaAs double barrier resonant tunneling diode photodetectors with an integrated GaInNAs absorption layer for light sensing at the telecommunication wavelength of λ = 1.3 μm for illumination powers from pico- to microwatts. The sensitivity decreases nonlinearly with power. An illumination power increase of seven orders of magnitude leads to a reduction of the photocurrent sensitivity from S I = 5.82 × 103 A W-1 to 3.2 A W-1. We attribute the nonlinear sensitivity-power dependence to an altered local electrostatic potential due to hole-accumulation that on the one hand tunes the tunneling current, but on the other hand affects the lifetime of photogenerated holes. In particular, the lifetime decreases exponentially with increasing hole population. The lifetime reduction results from an enhanced electrical field, a rise of the quasi-Fermi level, and an increased energy splitting within the triangular potential well. The non-constant sensitivity is a direct result of the non-constant lifetime. Based on these findings, we provide an expression that allows us to calculate the sensitivity as a function of illumination power and bias voltage, show a way to model the time-resolved photocurrent, and determine the critical power up to which the resonant tunneling diode photodetector sensitivity can be assumed constant.

  6. Charge Transport in Resonant Tunneling Double - Diodes

    Science.gov (United States)

    Diff, Karim

    With the advent of semiconductor devices with typical lengths of the order of a few nanometers and response times of a few picoseconds, the conventional methods used in device modeling have reached their limits of validity. Modern devices based on heterostructures fabricated by Molecular Beam Epitaxy (MBE) require more fundamental approaches based entirely on quantum mechanics. These generally necessitate numerical solutions and are computationally intensive. This dissertation focuses on Resonant Tunneling Double-Barrier (RTDB) diodes as the prototype of "quantum devices". A one-electron model and the effective mass approximation are used. By solving numerically the time-dependent Schrodinger equation for Gaussian wavepackets, the various time characteristics of resonant tunneling are probed. These characteristics are usually overlooked in other treatments based on the time-independent Schrodinger equation. The transit time, the build-up time and the exponential decay time are studied. The difference between these various time scales and their relative importance are discussed. A new method that takes into account the finite extent of the electron wavefunction, is proposed to compute the I-V characteristics of such devices. Results indicate a possible explanation for the discrepancy observed between experimental results and previous analyses. The effect of high frequency fields on resonant tunneling is also studied, and a method to determine the intrinsic cut-off frequency is suggested. The role of the effective mass in the determination of the characteristics of RTDB diodes is emphasized throughout this work.

  7. A new diode laser acupuncture therapy apparatus

    Science.gov (United States)

    Li, Chengwei; Huang, Zhen; Li, Dongyu; Zhang, Xiaoyuan

    2006-06-01

    Since the first laser-needles acupuncture apparatus was introduced in therapy, this kind of apparatus has been well used in laser biomedicine as its non-invasive, pain- free, non-bacterium, and safetool. The laser acupuncture apparatus in this paper is based on single-chip microcomputer and associated by semiconductor laser technology. The function like traditional moxibustion including reinforcing and reducing is implemented by applying chaos method to control the duty cycle of moxibustion signal, and the traditional lifting and thrusting of acupuncture is implemented by changing power output of the diode laser. The radiator element of diode laser is made and the drive circuit is designed. And chaos mathematic model is used to produce deterministic class stochastic signal to avoid the body adaptability. This function covers the shortages of continuous irradiation or that of simple disciplinary stimulate signal, which is controlled by some simple electronic circuit and become easily adjusted by human body. The realization of reinforcing and reducing of moxibustion is technological innovation in traditional acupuncture coming true in engineering.

  8. "Diode Pumped Solid State Lasers At 2 And 3 µm"

    Science.gov (United States)

    Esterowitz, Leon

    1988-06-01

    The most attractive alternative to flashlamp pumping of solid state lasers is the diode laser. In the past two decades numerous laboratory devices have been assembled which incorporated single diode lasers, small laser diode arrays or LED's for pumping of Nd:YAG, Nd:glass and a host of other Nd lasers. The low power output, low packaging density, and extremely high cost of diode lasers prevented any serious applications for laser pumping in the past. The reason for the continued interest in this area stems from the potential dramatic increase in system efficiency and component lifetime, and reduction of thermal load of the solid-state laser material. The latter not only will reduce thereto-optic effects and therefore lead to better beam quality but also will enable an increase in pulse repetition frequency. The attractive operating parameters combined with low voltage operation and the compactness of an all solid-state laser system have a potential high payoff. The high pumping efficiency compared to flashlamps stems from the good spectral match between the laser diode emission and the rare earth activator absorption bands. A significant advantage of laser diode pumping compared to arc lamps is system lifetime and reliability. Laser diode arrays have exhibited lifetimes on the order of 10,000 hours in cw operation and 109 shots in the pulsed mode. Flashlamp life is on the order of 107 shots, and about 200 hours for cw operation. In addition, the high pump flux combined with a substantial UV content in lamp pumped systems causes material degradation in the pump cavity and in the coolant. Such problems are virtually eliminated with laser diode pump sources. The absence of high voltage pulses, high temperatures and UV radiation encountered with arc lamps leads to much more benign operating features for solid state laser systems employing laser diode pumps. Laser diode technology dates back to 1962 when laser action in GaAs diodes was first demonstrated. However, it

  9. A practical guide to handling laser diode beams

    CERN Document Server

    Sun, Haiyin

    2015-01-01

    This book offers the reader a practical guide to the control and characterization of laser diode beams.  Laser diodes are the most widely used lasers, accounting for 50% of the global laser market.  Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens.  The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams.  The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth meas...

  10. Respiratory complications after diode-laser-assisted tonsillotomy.

    Science.gov (United States)

    Fischer, Miloš; Horn, Iris-Susanne; Quante, Mirja; Merkenschlager, Andreas; Schnoor, Jörg; Kaisers, Udo X; Dietz, Andreas; Kluba, Karsten

    2014-08-01

    Children with certain risk factors, such as comorbidities or severe obstructive sleep apnea syndrome (OSAS) are known to require extended postoperative monitoring after adenotonsillectomy. However, there are no recommendations available for diode-laser-assisted tonsillotomy. A retrospective chart review of 96 children who underwent diode-laser-assisted tonsillotomy (07/2011-06/2013) was performed. Data for general and sleep apnea history, power of the applied diode-laser (λ = 940 nm), anesthesia parameters, the presence of postoperative respiratory complications and postoperative healing were evaluated. After initially uncomplicated diode-laser-assisted tonsillotomy, an adjustment of post-anesthesia care was necessary in 16 of 96 patients due to respiratory failure. Respiratory complications were more frequent in younger children (3.1 vs. 4.0 years, p = 0.049, 95 % CI -1.7952 to -0.0048) and in children who suffered from nocturnal apneas (OR = 5.00, p diode-laser power higher than 13 W could be identified as a risk factor for the occurrence of a postoperative oropharyngeal edema (OR = 3.45, p diode-laser-assisted tonsillotomy. We recommend a reduced diode-laser power (<13 W) to reduce oropharyngeal edema.

  11. Additional electric field in real trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  12. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications.

  13. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  14. Current transport mechanisms in mercury cadmium telluride diode

    Science.gov (United States)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  15. Role of electron blocking layer in III-nitride laser diodes and light-emitting diodes

    Science.gov (United States)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Chen, Mei-Ling

    2010-02-01

    A high energy bandgap electron blocking layer (EBL) just behind the active region is conventionally used in the nitride-based laser diodes (LDs) and light-emitting diodes (LEDs) to improve the confinement capability of electrons within the quantum wells. Nevertheless, the EBL may also act as a potential barrier for the holes and cause non-uniform distribution of holes among quantum wells. A most recent study by Han et al. (Appl. Phys. Lett. 94, 231123, 2009) reported that, because of the blocking effect for holes, the InGaN LED device without an EBL has slighter efficiency droop and higher light output at high level of current injection when compared with the LED device with an EBL. This result seems to contradict with the original intention of using the EBL. Furthermore, findings from our previous studies (IEEE J. Lightwave Technol. 26, 329, 2008; J. Appl. Phys. 103, 103115, 2008; Appl. Phys. Lett. 91, 201118, 2007) indicated that the utilization of EBL is essential for the InGaN laser diodes. Thus, in this work, the optical properties of the InGaN LDs and LEDs are explored numerically with the LASTIP simulation program and APSYS simulation program, respectively. The analyses focus particularly on the light output power, energy band diagrams, recombination rates, distribution of electrons and holes in the active region, and electron overflow. This study will then conclude with a discussion of the effect of EBL on the optical properties of the InGaN LDs and LEDs.

  16. A transient model of a cesium-barium diode

    Energy Technology Data Exchange (ETDEWEB)

    Luke, J.R.; El-Genk, M.S.

    1995-01-01

    In this work a transient model of a Cs-Ba diode is developed, and a series of experiments is performed using a diode equipped with Langmuir probes. The Langmuir probe data show that the electron energy distribution is non-Maxwellian at low discharge currents, indicating the presence of an electron beam from the emitter. Experimental results also showed that the plasma properties are non-homogeneous across the 1 mm diode gap; the electron temperature and plasma potential were higher near the emitter and the plasma density was higher near the collector. Experimental evidence is presented to show that the discharge contracts to a filament below the maximum thermal emission current.

  17. Forward gated-diode method for parameter extraction of MOSFETs*

    Institute of Scientific and Technical Information of China (English)

    Zhang Chenfei; Ma Chenyue; Guo Xinjie; Zhang Xiufang; He Jin; Wang Guozeng; Yang Zhang; Liu Zhiwei

    2011-01-01

    The forward gated-diode method is used to extract the dielectric oxide thickness and body doping concentration of MOSFETs, especially when both of the variables are unknown previously. First, the dielectric oxide thickness and the body doping concentration as a function of forward gated-diode peak recombination-generation (R-G) current are derived from the device physics. Then the peak R-G current characteristics of the MOSFETs with different dielectric oxide thicknesses and body doping concentrations are simulated with ISE-Dessis for parameter extraction. The results from the simulation data demonstrate excellent agreement with those extracted from the forward gated-diode method.

  18. Bipolar Host Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Yook, Kyoung Soo; Lee, Jun Yeob

    2016-02-01

    It is important to balance holes and electrons in the emitting layer of organic light-emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light-emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light-emitting diodes.

  19. Diode-pumped Alexandrite ring laser for lidar applications

    Science.gov (United States)

    Munk, A.; Jungbluth, B.; Strotkamp, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J.

    2016-03-01

    We present design and performance data of a diode-pumped Q-switched Alexandrite ring laser in the millijoule regime, which is longitudinally pumped by laser diode bar modules in the red spectral range. As a first step, a linear resonator was designed and characterized in qcw operation as well as in Q-switched operation. Based on these investigations, two separate linear cavities were set up, each with one Alexandrite crystal longitudinally pumped by one diode module. The two cavities are fused together and form a ring cavity which yields up to 6 mJ pulse burst energy in the qcw regime at 770 nm.

  20. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  1. Physical based Schottky barrier diode modeling for THz applications

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Michaelsen, Rasmus Schandorph;

    2013-01-01

    In this work, a physical Schottky barrier diode model is presented. The model is based on physical parameters such as anode area, Ohmic contact area, doping profile from epitaxial (EPI) and substrate (SUB) layers, layer thicknesses, barrier height, specific contact resistance, and device...... temperature. The effects of barrier height lowering, nonlinear resistance from the EPI layer, and hot electron noise are all included for accurate characterization of the Schottky diode. To verify the diode model, measured I-V and C-V characteristics are compared with the simulation results. Due to the lack...

  2. Diode laser sensor for process control and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Zaatar, Y.; Bechara, J.; Khoury, A.; Zaouk, D. [Lebanese Univ., Physics Dept., Fanar (Lebanon); Charles, J.-P. [Metz Univ., L.I.C.M., Metz, 57 (France)

    2000-04-01

    Absorption spectroscopy with tunable diode lasers (TDLAS) in the infrared region is a well-known technique for the chemical analysis of gas mixtures. The laser provides a high selectivity, which is important in industrial environments such as in-line stack monitoring, where complex gas mixtures are present. A wavelength tunable diode laser in the near infrared region has been utilised as a light source in absorption measurements of air pollution resulting from energy usage for industry. The emission frequency can be varied over a relatively wide spectral range by changing the current and temperature of the diode. (Author)

  3. Frequency Comb Assisted Broadband Precision Spectroscopy with Cascaded Diode Lasers

    CERN Document Server

    Liu, Junqiu; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Frequency comb assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this letter we present a novel method using cascaded frequency agile diode lasers, which allows extending the measurement bandwidth to 37.4 THz (1355 to 1630 nm) at MHz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy and in particular it enables to characterize the dispersion of integrated microresonators up to the fourth order.

  4. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming

    2006-01-01

    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  5. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  6. Active coherent beam combining of diode lasers.

    Science.gov (United States)

    Redmond, Shawn M; Creedon, Kevin J; Kansky, Jan E; Augst, Steven J; Missaggia, Leo J; Connors, Michael K; Huang, Robin K; Chann, Bien; Fan, Tso Yee; Turner, George W; Sanchez-Rubio, Antonio

    2011-03-15

    We have demonstrated active coherent beam combination (CBC) of up to 218 semiconductor amplifiers with 38.5 W cw output using up to eleven one-dimensional 21-element individually addressable diode amplifier arrays operating at 960 nm. The amplifier array elements are slab-coupled-optical-waveguide semiconductor amplifiers (SCOWAs) set up in a master-oscillator-power-amplifier configuration. Diffractive optical elements divide the master-oscillator beam to seed multiple arrays of SCOWAs. A SCOWA was phase actuated by adjusting the drive current to each element and controlled using a stochastic-parallel-gradient-descent (SPGD) algorithm for the active CBC. The SPGD is a hill-climbing algorithm that maximizes on-axis intensity in the far field, providing phase locking without needing a reference beam.

  7. Destructive Single-Event Failures in Diodes

    Science.gov (United States)

    Casey, Megan C.; Gigliuto, Robert A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Kim, Hak; Chen, Dakai; Phan, Anthony M.; LaBel, Kenneth A.

    2013-01-01

    In this summary, we have shown that diodes are susceptible to destructive single-event effects, and that these failures occur along the guard ring. By determining the last passing voltages, a safe operating area can be derived. By derating off of those values, rather than by the rated voltage, like what is currently done with power MOSFETs, we can work to ensure the safety of future missions. However, there are still open questions about these failures. Are they limited to a single manufacturer, a small number, or all of them? Is there a threshold rated voltage that must be exceeded to see these failures? With future work, we hope to answer these questions. In the full paper, laser results will also be presented to verify that failures only occur along the guard ring.

  8. Coupled Resonator Vertical Cavity Laser Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Chow, W.W.; Fischer, A.J.; Allerman, A.A.; Hou, H.Q.; Geib, K.M.

    1999-07-22

    For many applications, the device performance of edge emitting semiconductor lasers can be significantly improved through the use of multiple section devices. For example, cleaved coupled cavity (C3) lasers have been shown to provide single mode operation, wavelength tuning, high speed switching, as well as the generation of short pulses via mode-locking and Q-switching [1]. Using composite resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the coupling between the monolithic cavities, incorporate passive or active resonators which are spectrally degenerate or detuned, and to fabricate these devices in 2-dimensional arrays. Composite resonator vertical cavity lasers (CRVCL) have been examined using optical pumping and electrical injection [2-5]. We report on CRVCL diodes and show that efficient modulation of the laser emission can be achieved by either forward or reverse biasing the passive cavity within a CRVCL.

  9. Contact Whiskers for Millimeter Wave Diodes

    Science.gov (United States)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  10. Light-emitting diodes for analytical chemistry.

    Science.gov (United States)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  11. Model for topological phononics and phonon diode

    Science.gov (United States)

    Liu, Yizhou; Xu, Yong; Zhang, Shou-Cheng; Duan, Wenhui

    2017-08-01

    The quantum anomalous Hall effect, an exotic topological state first theoretically predicted by Haldane and recently experimentally observed, has attracted enormous interest for low-power-consumption electronics. In this work, we derived a Schrödinger-like equation of phonons, where topology-related quantities, time-reversal symmetry, and its breaking can be naturally introduced similar to the process for electrons. Furthermore, we proposed a phononic analog of the Haldane model, which makes the novel quantum (anomalous) Hall-like phonon states characterized by one-way gapless edge modes immune to scattering. The topologically nontrivial phonon states are useful not only for conducting phonons without dissipation but also for designing highly efficient phononic devices, like an ideal phonon diode, which could find important applications in future phononics.

  12. Enhanced performance thermal diode via thermal boundary resistance at nanoscale

    Science.gov (United States)

    Tovar-Padilla, M.; Licea-Jimenez, L.; Pérez-Garcia, S. A.; Alvarez-Quintana, J.

    2015-08-01

    Hypothetically, a thermal rectifier is a device which leads a greater heat flux in one direction than another one, similarly as the electrical diode works for the electrical flux. Here, a drastic increment in the rectification factor has been obtained in nanoscale layered thermal diodes due to the effect of thermal boundary resistance present on an asymmetrical stack of nanofilms. Measurements show a thermal rectification factor as large as 3.3 under a temperature bias well below 1 K, which is the biggest thermal rectification factor reported at room temperature compared to previously reported thermal diodes so far. According to the direction of the applied heat flux, the observed impact of the thermal boundary resistance on the device is manifested through the presence of an asymmetric temperature rise along the heat transfer axis. Such effect provides an alternative route for the development of high performance thermal diodes.

  13. Response time of light emitting diode-logarithmic electrometer

    Science.gov (United States)

    Acharya, Y. B.; Vyavahare, P. D.

    1998-02-01

    In a logarithmic electrometer which uses a transistor as a nonlinear element, a capacitance is generally connected across the feedback element of the operational amplifier. This stabilizes the loop but degrades the response at low current levels. However the stability problem is not so serious when a junction diode is used. In the present work an attempt was made to study the response time of a logarithmic electrometer which uses a light emitting diode (LED) as a nonlinear element and without external capacitance. The calculated values of rise time are based on an equivalent circuit with a depletion layer capacitance and voltage dependent conductance. These values are found to be in reasonable agreement with the experimentally measured values. This study will be useful in the estimation of dynamical errors in logarithmic electrometers using junction diode/LED, LED photometers and will be helpful in the techniques for improvements of the response time of logarithmic electrometers using a junction diode, particularly at low currents.

  14. Organic light-emitting diodes: High-throughput virtual screening

    Science.gov (United States)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  15. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  16. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...... diodes (LEDs). Blue emitting 445-460 nm LED chips with conversion in phosphorescent materials have undergone tremendous development in the last decade with ultra high efficiencies. However, the technology suffers from a decrease in efficiency at high input current densities, known as the “efficiency...... and non-radiative recombination could be the origins. Recently, Auger recombination was proposed as the dominant mechanism for efficiency droop. In the talk we discuss the mechanisms of the efficiency droop in LEDs and we show how this problem can be eliminated in laser diodes. With the introduction...

  17. Differential Diode Laser Sensor for High-Purity Oxygen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact portable sensor for determining the purity of oxygen concentrations near 100 percent is proposed based on differential absorption of two beams from a diode...

  18. Active Stabilization of a Diode Laser Injection Lock

    CERN Document Server

    Saxberg, Brendan; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  19. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  20. Active stabilization of a diode laser injection lock

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  1. The Adjunctive Soft-Tissue Diode Laser in Orthodontics.

    Science.gov (United States)

    Borzabadi-Farahani, Ali

    2017-04-01

    Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.

  2. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  3. Femtosecond soliton diode on heterojunction Bragg-grating structure

    CERN Document Server

    Deng, Zhigui; Li, Hongji; Fu, Shenhe; Liu, Yikun; Xiang, Ying; Li, Yongyao

    2016-01-01

    We numerically propose a scheme for realizing an all-optical femtosecond soliton diode based on a tailored heterojunction Bragg grating, which is designed by two spatially asymmetric chirped cholesteric liquid crystals. Our simulations demonstrate that with the consideration of optical nonlinearity, not only the femtosecond diode effect with nonreciprocal transmission ratio up to 120 can be achieved, but also the optical pulse evolving into soliton which maintains its shape during propagation through the sample is observed. Further, the influence of pulse width and the carrier wavelength to the femtosecond diode effect is also discussed in detail. Our demonstrations might suggest a new direction for experimentally realizing the femtosecond soliton diode based on the cholesteric liquid crystals.

  4. An all MMIC Replacement for Gunn Diode Oscillators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to replace the Gunn Diode Oscillators (GDOs) in NASA?s millimeter- and submillimeter-wave sensing instruments. Our new solution will rely on modern and...

  5. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes

    CERN Document Server

    Zhang, Teng

    2015-01-01

    The realization of phononic computing is held hostage by the lack of high performance thermal devices. Here we show through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (< 20 oC) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, we show that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25 - much larger than other thermal diodes (< 8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized t...

  6. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  7. Motion of current filaments in avalanching PIN diodes

    Science.gov (United States)

    Xingrong, Ren; Changchun, Chai; Zhenyang, Ma; Yintang, Yang; Liping, Qiao; Chunlei, Shi; Lihua, Ren

    2013-04-01

    The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.

  8. Theoretical studies on ionospheric irregularities and ion diode performance

    Science.gov (United States)

    Sudan, R. N.

    1993-08-01

    Work accomplished is divided into three parts: ionospheric physics; ion diodes, magnetic insulation, and plasma opening switches; and subgrid modeling in numerical computations and other research. Abstracts of published and conference papers are presented.

  9. Qualification of diode foil materials for excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.G.; Shurter, R.P.; Rose, E.A.

    1989-01-01

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor. 6 refs., 6 figs., 1 tab.

  10. Qualification of diode foil materials for excimer lasers

    Science.gov (United States)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  11. Active graphene-silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  12. Unmanned Aerial Vehicle Diode Laser Sensor for Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, lightweight, and low power diode laser sensor will be developed for atmospheric methane detection on small unmanned aerial vehicles (UAVs). The physical...

  13. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    Science.gov (United States)

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  14. Stacked, filtered multi-channel X-ray diode array

    Science.gov (United States)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  15. Organic light emitting diode with surface modification layer

    Energy Technology Data Exchange (ETDEWEB)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  16. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  17. Active graphene–silicon hybrid diode for terahertz waves

    OpenAIRE

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The di...

  18. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  19. Stacked, filtered multi-channel X-ray diode array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Dutra, Eric [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Raphaelian, Mark [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Compton, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jacoby, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  20. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  1. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  2. Avalanche robustness of SiC Schottky diode

    OpenAIRE

    Dchar, Ilyas; Buttay, Cyril; Morel, Hervé

    2016-01-01

    International audience; Reliability is one of the key issues for the application of Silicon carbide (SiC) diode in high power conversion systems. For instance, in high voltage direct current (HVDC) converters, the devices can be submitted to high voltage transients which yield to avalanche. This paper presents the experimental evaluation of SiC diodes submitted to avalanche, and shows that the energy dissipation in the device can increase quickly and will not be uniformly distributed across t...

  3. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin;

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  4. Design and Fabrication of Planar GaAs Gunn Diodes

    Science.gov (United States)

    Kim, Mi-Ra; Lee, Seong-Dae; Chae, Yeon-Sik; Rhee, Jin-Koo

    We studied planar graded-gap injector GaAs Gunn diodes designed for operation at 94GHz. Two types of planar Gunn diodes were designed and fabricated. In the first diode, a cathode was situated inside a circular anode with a diameter of 190μm. The distance between the anode and cathode varied from 60μm to 68μm depending on the cathode size. Also, we designed a structure with a constant distance between the anode and cathode of 10μm. In the second diode, the anode was situated inside the cathode for the flip-chip mounting on the oscillator circuits. The fabrication of the Gunn diode was based on ohmic contact metallization, mesa etching, and air-bridge and overlay metallization. DC measurements were carried out, and the nature of the negative differential resistance, the operating voltage, and the peak current in the graded-gap injector GaAs Gunn diodes are discussed for different device structures. It is shown that the structure with the shorter distance between the cathode and anode has a higher peak current, higher breakdown voltage, and lower threshold voltage than those of the structure with the larger distance between the cathode and anode.

  5. Coherent and noncoherent low-power diodes in clinical practice

    Science.gov (United States)

    Antipa, Ciprian; Pascu, Mihail-Lucian; Stanciulescu, Viorica; Vlaiculescu, Mihaela; Ionescu, Elena; Bordea, Daniel

    1997-05-01

    Clinical efficacy of the low power laser (LPL) in medical treatments is still not well established. In a double blind, placebo controlled study, we tried to find out first which type of LPL is more efficient, and second if coherence is an important character for clinical efficacy. We treated 1228 patients having different rheumatic diseases, with low power diode, used as follows: A group: IR coherent diode, continuous emission, 3 mW power; B group: IR coherent diode, pulsed emission, output power about 3 mW; C group: IR noncoherent diode continuous emission 9 mW power; D group: both IR diode lasers (continuous or pulsed) and HeNe laser, continuous emission, 2 mW power; E group: placebo laser as control group. The energy dose used for every group was the same, as well as the clinical protocols. The positive results were: 66.16% for A group; 64.06% for B group; 48.87% for C group; 76.66% for D group, and 39.07% for E group. Finally, we showed that LPL is really efficient in the treatment of some rheumatic diseases, especially when red and IR diode laser were used in combination. The type of emission (continuous or pulsed) is not important, but coherence is obviously necessary for clinical efficacy.

  6. Transition metal dichalcogenide heterojunction PN diode toward ultimate photovoltaic benefits

    Science.gov (United States)

    Ahn, Jongtae; Jeon, Pyo Jin; Raza, Syed Raza Ali; Pezeshki, Atiye; Min, Sung-Wook; Hwang, Do Kyung; Im, Seongil

    2016-12-01

    Recently, two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors as van der Waals (vdW) materials have attracted much attention from researchers. Among many 2D TMDC materials, a few layer-thin molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) have been most intensively studied respectively as 2D n- and p-type semiconductors. Here, we have fabricated vertical vdW heterojunction n-MoS2/p-WSe2 diode with a few tens nm-thick layers by using vertically-sandwiched ohmic terminals, so that no quasi neutral region may exist between two terminals. As a result, we obtained high photo responsivity at zero volt without any electric power, and it appears comparable to those of commercially-optimized Si PN diode. Photo-voltage output of 0.3 V was easily obtained from our vdW PN diode as open circuit voltage, and can be doubled up to 0.6 V by using two PN diodes. These beneficial photovoltaic results from vdW PN diode were directly applied to PV switching dynamics and transistor photo gating, for the first time. We regard that our vdW n-MoS2/p-WSe2 heterojunction diode could maximize its photovoltaic energy benefits with optimized TMDC thicknesses.

  7. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    Science.gov (United States)

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser.

  8. Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    2012-09-01

    House Appropriations hearing on May 20th, 2010 where Robert Gates, then U.S. Secretary of Defense, said the following in answer to a question from Rep...Henry, B. P. Wert, T. Gilpin , and J. R. Drummond. “Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde”. Journal...spectroscopy (TDLAS) at 1.37 µm”. Applied Physics B: Lasers and Optics, 92(3):393–401, 2008. 43. Kormann, Robert , Horst Fischer, and Frank G. Wienhold

  9. Design of drive circuit of laser diode

    Science.gov (United States)

    Ran, Yingying; Huang, Xuegong; Xu, Xiaobin

    2016-10-01

    Aiming at the difficult problem of high precision frequency stabilization of semiconductor laser diode, the laser frequency control is realized through the design of the semiconductor drive system. Above all, the relationship between the emission frequency and the temperature of LD is derived theoretically. Then the temperature corresponding to the stable frequency is obtained. According to the desired temperature stability of LD, temperature control system is designed, which is composed of a temperature setting circuit, temperature gathering circuit, the temperature display circuit, analog PID control circuit and a semiconductor refrigerator control circuit module. By sampling technology, voltage of platinum resistance is acquired, and the converted temperature is display on liquid crystal display. PID analog control circuit controls speed stability and precision of temperature control. The constant current source circuit is designed to provide the reference voltage by a voltage stabilizing chip, which is buffered by an operational amplifier. It is connected with the MOSFET to drive the semiconductor laser to provide stable current for the semiconductor laser. PCB circuit board was finished and the experimental was justified. The experimental results show that: the design of the temperature control system could achieve the goal of temperature monitoring. Meanwhile, temperature can be stabilized at 40°C +/- 0.1°C. The output voltage of the constant current source is 2 V. The current is 35 mA.

  10. MMIC Replacement for Gunn Diode Oscillators

    Science.gov (United States)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  11. Diode laser absorption spectroscopy of lithium isotopes

    Science.gov (United States)

    Olivares, Ignacio E.; González, Iván A.

    2016-10-01

    We study Doppler-limited laser intensity absorption, in a thermal lithium vapor containing 7Li and 6Li atoms in a 9 to 1 ratio, using a narrow-linewidth single-longitudinal-mode tunable external cavity diode laser at the wavelength of 670.8 nm. The lithium vapor was embedded in helium or argon buffer gas. The spectral lineshapes were rigorously predicted for D_1 and D_2 for the lithium 6 and 7 isotope lines using reduced optical Bloch equations, specifically derived, from a density matrix analysis. Here, a detailed comparison is provided of the predicted lineshapes with the measured 7Li-D_2, 7Li-D_1, 6Li-D_2 and 6Li-D_1 lines, in the case of high vapor density and with intensity above the saturation intensity. To our knowledge, this is the first time that such detailed comparison is reported in the open literature. The calculations were also extended to saturated absorption spectra and compared to measured Doppler-free 7Li-D_2 and 6Li-D_2 hyperfine lines.

  12. Applications of microlens-conditioned laser diode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L. [and others

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  13. Ablation of dentin by irradiation of violet diode laser

    Science.gov (United States)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  14. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  15. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  16. In vivo dosimetry with silicon diodes in total body irradiation

    Science.gov (United States)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  17. Diode laser power module for beamed power transmission

    Science.gov (United States)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  18. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  19. Optical and electrical investigations into cathode ignition and diode closure

    Energy Technology Data Exchange (ETDEWEB)

    Coogan, J.J.; Rose, E.A.; Shurter, R.P.

    1991-01-01

    The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes. 13 refs., 11 figs.

  20. Optical and electrical investigations into cathode ignition and diode closure

    Science.gov (United States)

    Coogan, J. J.; Rose, E. A.; Shurter, R. P.

    The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes.

  1. Method and system for homogenizing diode laser pump arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  2. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y3Al5O12:Ce(3+) (YAG:Ce) or Lu3Al5O12:Ce(3+)/CaAlSiN3:Eu(2+) (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  3. Electrical breakdown of amorphous hydrogenated silicon rich silicon nitride thin film diodes

    NARCIS (Netherlands)

    Bijlsma, S.J.; Bijlsma, Sipke J.; van Kranenburg, H.; Nieuwesteeg, K.J.B.M.; Pitt, Michael G.; Verweij, Jan F.; Verweij, J.F.

    1996-01-01

    Electrical breakdown, both intrinsic and extrinsic, of thin film diodes used as switches in active matrix addressed liquid crystal displays has been studied using electrical measurements, thermal measurements, thermal 3D simulations, electrical simulations and post breakdown observations. The diodes

  4. Fazostabilny RF attenuator on the р—і—n diods

    Directory of Open Access Journals (Sweden)

    A. S. Makarenko

    1987-12-01

    Full Text Available Considered agreed attenuator р—і—n diods low uneven phase response when you change the insertion loss is achieved by separate compensation of reactive elements diodes. Calculated characteristics.

  5. Plasma-filled applied B ion diode experiments using a plasma opening switch

    Science.gov (United States)

    Renk, T. J.

    1994-12-01

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 Ohm, 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  6. Practical applications of the diode in dental practice

    Science.gov (United States)

    Moldoveanu, Lucia E.; Odor, Alin A.

    2016-03-01

    Introduction: The use of lasers has become a practice in modern periodontology and it is a fact that the use of diodes in the dental office can bring a real benefit in periodontal surgery. Material and method: These case reports describe few of various soft tissue procedures that were performed with diode laser 940 nm (Epic 10, Biolase Inc., USA). Discussions: There are a few immediate benefits of the intervention: the "periodontal bandage" belongs to the patient, the procedure is painless, performed under a superficial anesthesia and the psychological impact on the patient, as well as the acceptance, are superior to conventional methods of dentistry. Conclusions: Diode lasers at the level of periodontium have become a significant part of the dentistry, reducing the patient's stress and giving satisfaction to practitioners as well.

  7. Experimental study of the diode pumped alkali laser (DPAL)

    Science.gov (United States)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2014-02-01

    A small-scale cesium diode-pumped alkali laser (DPAL) apparatus has been developed for fundamental researches. A commercial laser diode with volume Bragg grating outcoupler is used to pump the gain cell longitudinally. Both windows of the gain cell are set at Brewster's angle for minimum loss and maximum durability. Output coupling coefficient is continuously variable from 13% to 85% by the slanted quartz plate outcoupler inserted in the optical resonator. Small signal gain is measured with a laser diode probe at various gain cell temperatures. A 6.5 W continuouswave output with 56% optical-to-optical conversion efficiency (based on the absorbed power) has been achieved. A numerical simulation code is developed and its calculation results are in good agreement with the experiments.

  8. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  9. Space-charge limiting current in spherical cathode diodes

    Institute of Scientific and Technical Information of China (English)

    刘国治; 邵浩

    2003-01-01

    The results of the investigation on the space-charge limiting current for a spherical-cathode diode in the nonrelativistic situation are presented in this paper. The results show that the current enhancement factor equals the square of E-field enhancement factor on the cathode surface. The generated space-charge limiting current is deduced.In the case of a pin-shaped-cathode diode, the space-charge limiting current is also obtained, indicating that the current is independent of the geometric parameters of the diode. Analyses of the shielding effects and the conditions for generation of the uniform space-charge limiting beam show that, for pin-arrayed cathodes, the distance between pins should be in the range from 1.2D to 1.5D, where D is the distance between the two electrodes.

  10. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    Science.gov (United States)

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  11. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    Directory of Open Access Journals (Sweden)

    Rajiv K. Pandey

    2013-12-01

    Full Text Available We report formation of polycarbazole (PCz–graphene nanocomposite over indium tin oxide (ITO coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

  12. 1-D array of perforated diode neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Walter J. [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States)], E-mail: wjm4444@ksu.edu; Bellinger, Steven L.; Unruh, Troy C.; Henderson, Chris M.; Ugorowski, Phil; Morris-Lee, Bryce [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States); Taylor, Russell D. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, Douglas S. [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States)], E-mail: mcgregor@ksu.edu

    2009-06-01

    Performance of a 4 cm long 64-pixel perforated diode neutron detector array is compared with an identical array of thin-film coated diodes. The perforated neutron detector design has been adapted to a 1-D pixel array capable of 120 {mu}m spatial resolution and counting efficiency greater than 12%. Deep vertical trenches filled with {sup 6}LiF provide outstanding improvement in efficiency over thin-film coated diode designs limited to only 4.5%. This work marks the final step towards the construction of a much larger array consisting of 1024 pixels spanning 10 cm. The larger detector array will be constructed with a sub-array of 64-pixel sensors, and will be used for small-angle neutron scattering experiments at the Spallation Neutron Source of Oak Ridge National Laboratory.

  13. A Direct Diode Laser System Using a Planar Lightwave Circuit

    Science.gov (United States)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  14. Dose rate and SDD dependence of commercially available diode detectors.

    Science.gov (United States)

    Saini, Amarjit S; Zhu, Timothy C

    2004-04-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10 x 10 cm2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38,900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39,060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38,900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38,990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21,870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21,870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17,870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21,870 cGy/s) for the p-type preirradiated Scanditronix EDP20(3G), and 0.998 (1490 cGy/s)-1.015 (38,880 cGy/s) for Scanditronix EDP10(3G) diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  15. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    Science.gov (United States)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  16. Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers

    Science.gov (United States)

    2011-09-01

    1.55-µm diode laser at 1014 Hz/s using a phase-locked loop and a fiber -optic Michelson interferometer (9). The chirp has now been extended to 5×1015...diode lasers. By incorporating a fiber interferometer , the technique has been extended to chirp a (single) laser diode at 1015 Hz/s in an extremely...Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers by Jeffrey O. White, George Rakuljic, and Carl E

  17. Hyper NRD guide oscillator with Gunn diodes mounted in the dielectric strip

    OpenAIRE

    Sanagi, Minoru; Nogi, Shigeji

    2000-01-01

    Hyper NRD guide oscillators mounted with a single and multiple Gunn diodes have been investigated. The operating mode of the hyper NRD guide can be lower order by optimizing the structure of the guide. The Gunn diodes were arranged in the dielectric strip of the guide. In experiments at X-band, the oscillation frequencies could be varied by a movable shorting plane for the single diode case and an almost perfect power combining was obtained for the double diode case

  18. Examinations of Selected Thermal Properties of Packages of SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    Bisewski Damian

    2016-09-01

    Full Text Available This paper describes the study of thermal properties of packages of silicon carbide Schottky diodes. In the paper the packaging process of Schottky diodes, the measuring method of thermal parameters, as well as the results of measurements are presented. The measured waveforms of transient thermal impedance of the examined diodes are compared with the waveforms of this parameter measured for commercially available Schottky diodes.

  19. Planar Schottky barrier mixer diodes for space applications at submillimeter wavelengths

    Science.gov (United States)

    Bishop, W. L.; Crowe, T. W.; Mattauch, R. J.; Ostdiek, P. H.

    1991-01-01

    Available planar diodes for space-based applications at submillimeter wavelengths have not achieved either the required low junction capacitance or the low series resistance-junction capacitance product. Here, the development of a novel planar diode structure that overcomes both of these difficulties is outlined. The characteristics of these Schottky barrier mixer diodes are presented and electron micrographs are shown. The diode structure will allow planar technology to be extended throughout the submillimeter wavelength range.

  20. Experimental evidence of energetic neutrals production in an ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Pushkarev, A.I., E-mail: aipush@mail.ru; Isakova, Y.I.; Khaylov, I.P.

    2015-01-15

    The paper presents several experimental proofs of the formation of energetic charge-exchange neutrals in a self-magnetically insulated ion diode with a graphite cathode. The energetic neutrals are thought to be produced as a result of charge exchange process between accelerated ions and stationary neutral molecules. The experiments have been carried out using both a diode with externally applied magnetic insulation (single-pulse mode: 100 ns, 250–300 kV) and a diode with self-magnetic insulation (double-pulse mode: 300–500 ns, 100–150 kV (negative pulse); 120 ns, 250–300 kV (positive pulse)). The motivation for looking at the neutral component of the ion beam came when we compared two independent methods to measure the energy density of the beam. A quantitative comparison of infrared measurements with signals from Faraday cups and diode voltage was made to assess the presence of neutral atoms in the ion beam. As another proof of charge-exchange effects in ion diode we present the results of statistical analysis of diode performance. It was found that the shot-to shot variation of the energy density in a set of 50–100 shots does not exceed 11%, whilst the same variation for ion current density was 20–30%; suggesting the presence of neutrals in the beam. Moreover, the pressure in the zone of ion beam energy dissipation exceeds the results stated in cited references. The difference between our experimental data and results stated by other authors we attribute to the presence of a low-energy charge-exchange neutral component in the ion beam.

  1. Management of gingival hyperpigmentation by semiconductor diode laser.

    Science.gov (United States)

    Gupta, Geeti

    2011-09-01

    Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile). Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO(2) laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  2. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    Science.gov (United States)

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  3. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time...

  4. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  5. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  6. Daily check of the electron beams with a diode system

    Energy Technology Data Exchange (ETDEWEB)

    Pilette, P. [Hospital Civil de Charleroi (Belgium). Centre for Radiotherapy

    1995-12-01

    A fast systems to check all the accelerator beams on a daily basis has been developed. A cheap home-made detector, based on non-medical diodes (type 1N5408), has been used since July 1992 to verify all the electron beams every day. The relative energy and Top-cGy correspondence is verified with one single irradiation of less than 1 minute by 6 diodes fixed in a polystyrene phantom. The principle of construction, software implementation and results are presented.

  7. Gummy Smile Correction with Diode Laser: Two Case Reports

    Science.gov (United States)

    Narayanan, Mahesh; Laju, S; Erali, Susil M; Erali, Sunil M; Fathima, Al Zainab; Gopinath, P V

    2015-01-01

    Beautification of smiles is becoming an everyday requirement in dental practice. Apart from teeth, gingiva also plays an important role in smile esthetics. Excessive visualization of gingiva is a common complaint among patients seeking esthetic treatment. A wide variety of procedures are available for correction of excessive gum display based on the cause of the condition. Soft tissue diode laser contouring of gingiva is a common procedure that can be undertaken in a routine dental setting with excellent patient satisfaction and minimal post-operative sequale. Two cases of esthetic crown lengthening with diode laser 810 nm are presented here. PMID:26668491

  8. Three-phase bridge rectifiers with freewheeling diodes

    CERN Document Server

    Hausler, M

    1973-01-01

    Freewheeling diodes are used in controlled rectifiers working in one quadrant only in order to reduce the reactive power and the d.c.- voltage ripple. In addition the freewheeling diodes allow a higher d.c.-current at low d.c.-voltages. The mean value of the freewheeling current depends on the d.c.-current, the load, and the stray-reactance of the rectifier transformer. This paper describes how the freewheeling current can be determined with these parameters. Results for some typical cases are shown in diagrams. (2 refs).

  9. Performance characteristics and optimal analysis of a nonlinear diode refrigerator

    Institute of Scientific and Technical Information of China (English)

    Wang Xiu-Mei; He Ji-Zhou; Liang Hong-Ni

    2011-01-01

    This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.

  10. Combless broadband terahertz generation with conventional laser diodes.

    Science.gov (United States)

    Molter, D; Wagner, A; Weber, S; Jonuscheit, J; Beigang, R

    2011-03-14

    We present a novel technique to generate a continuous, combless broadband Terahertz spectrum with conventional low-cost laser diodes. A standard time-domain spectroscopy system using photoconductive antennas is pumped by the output of two tunable diode lasers. Using fine tuning for one laser and fine and coarse tuning for the second laser, difference frequency generation results in a continuous broadband THz spectrum. Fast coarse-tuning is achieved by a simple spatial light modulator introduced in an external cavity. The results are compared to multi-mode operation for THz generation.

  11. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode

    OpenAIRE

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-01-01

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increa...

  12. Degradation of light emitting diodes: a proposed methodology*

    Institute of Scientific and Technical Information of China (English)

    Sau Koh; Willem Van Driel; G.Q.Zhang

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters.

  13. Radiation hardness of n-GaN schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A. A., E-mail: shura.lebe@mail.ioffe.ru; Belov, S. V.; Mynbaeva, M. G.; Strel’chuk, A. M.; Bogdanova, E. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Makarov, Yu. N. [Nitride Crystals Group (Russian Federation); Usikov, A. S. [Nitride Crystals Inc. (United States); Kurin, S. Yu.; Barash, I. S.; Roenkov, A. D. [Nitride Crystals Group (Russian Federation); Kozlovski, V. V. [St. Petersburg State Polytechnic University (Russian Federation)

    2015-10-15

    Schottky-barrier diodes with a diameter of ∼10 µm are fabricated on n-GaN epitaxial films grown by hydride vapor-phase epitaxy (HVPE) on sapphire substrates. The changes in the parameters of the diodes under irradiation with 15 MeV protons are studied. The carrier removal rate was found to be 130–145 cm{sup –1}. The linear nature of the dependence N = f(D) (N is the carrier concentration, and D, the irradiation dose) shows that compensation of the material is associated with transitions of electrons from shallow donors to deep acceptor levels which are related to primary radiation defects.

  14. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten;

    1990-01-01

    Numerical simulation is applied to study the highly nonlinear-dynamic phenomena that can arise in Gunn diodes by interaction between the internally generated domain mode and an external microwave signal. By adjusting the time of domain formation and the speed of propagation, the internal...... oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...

  15. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  16. Electrical and optical study of semiconductor laser diodes and materials

    Science.gov (United States)

    Albin, Sacharia

    1987-01-01

    The characterization of a 2-D diode laser array from McDonald Douglas has been completed. The array consisted of 8 linear arrays of approximately 11 mm x 0.18 mm. Each array has between 7 and 8 diodes per mm. The threshold current is approximately 15 amps. The power output vs drive current (above threshold) of the array was measured. A peak power of 50 W was obtained at a drive current of 26 amps. Its far field pattern has a double lobe.

  17. System and method for high power diode based additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  18. Theory of piezo-phototronics for light-emitting diodes.

    Science.gov (United States)

    Zhang, Yan; Wang, Zhong Lin

    2012-09-04

    Devices fabricated by using the inner-crystal piezopotential as a "gate" voltage to tune/control the carrier generation, transport, and recombination processes at the vicinity of a p-n junction are named piezo-phototronics. Here, the theory of the photon emission and carrier transport behavior in piezo-phototronic devices is investigated as a p-n junction light-emitting diode. Numerical calculations are given for predicting the photon emission and current-voltage characteristics of a general piezo-phototronic light-emitting diode.

  19. Strain tunable light emitting diodes with germanium P-I-N heterojunctions

    Science.gov (United States)

    Lagally, Max G; Sanchez Perez, Jose Roberto

    2016-10-18

    Tunable p-i-n diodes comprising Ge heterojunction structures are provided. Also provided are methods for making and using the tunable p-i-n diodes. Tunability is provided by adjusting the tensile strain in the p-i-n heterojunction structure, which enables the diodes to emit radiation over a range of wavelengths.

  20. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Science.gov (United States)

    2012-04-09

    ... Parts 429 and 430 RIN 1904-AC67 Energy Conservation Program: Test Procedures for Light-Emitting Diode... light-emitting diode (LED) lamps to support implementation of labeling provisions by the Federal Trade... procedures. This rulemaking establishes test procedures that manufacturers of light-emitting diode (LED...

  1. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  2. Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment

    Science.gov (United States)

    Ocaya, R. O.; Dejene, F. B.

    2007-01-01

    This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…

  3. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  4. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.;

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  5. Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver

    CERN Document Server

    Dyer, Gregory C; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C

    2016-01-01

    We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.

  6. Characteristics of a GaN-based Gunn diode for THz signal generation

    Science.gov (United States)

    Parida, R. K.; Agrawala, N. C.; Dash, G. N.; Panda, A. K.

    2012-08-01

    A generalized large-signal computer simulation program for a Gunn oscillator has been developed. The properties of a Gunn diode oscillator based on the widely explored GaN, are investigated using the developed program. The results show some interesting properties in GaN Gunn diodes which are not seen in GaAs and InP diodes. An output power of 1400 kW/cm2 is achieved from the GaN Gunn diode, as compared to 4.9 kW/cm2 from a GaAs diode.

  7. Characteristics of a GaN-based Gunn diode for THz signal generation

    Institute of Scientific and Technical Information of China (English)

    R K Parida; N C Agrawala; G N Dash; A K Panda

    2012-01-01

    A generalized large-signal computer simulation program for a Gunn oscillator has been developed.The properties of a Gunn diode oscillator based on the widely explored GaN,are investigated using the developed program.The results show some interesting properties in GaN Gunn diodes which are not seen in GaAs and lnP diodes.An output power of 1400 kW/cm2 is achieved from the GaN Gunn diode,as compared to 4.9 kW/cm2 from a GaAs diode.

  8. The influence of edge effects on the determination of the doping profile of silicon pad diodes

    Science.gov (United States)

    Fretwurst, E.; Garutti, E.; Hufschmidt, M.; Klanner, R.; Kopsalis, I.; Schwandt, J.

    2017-09-01

    Edge effects for square p+ n pad diodes with guard rings, fabricated on high-ohmic silicon, are investigated. Using capacitance-voltage measurements of two pad diodes with different areas, the planar and the edge contributions to the diode capacitance are determined separately. It is found that the edge contributions are significant and that they strongly influence the determination of the doping concentration using capacitance-voltage measurements. After edge correction, the bulk doping of the pad diodes is found to be uniform within ± 1.5 %, which agrees with expectations. The edge-correction method is verified using TCAD simulations of two circular pad diodes with different radii.

  9. Analysis of diodes used as precision power detectors above the square law region

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1990-01-01

    The deviation from square law found in diode power detectors at moderate power levels has been modeled for a general system consisting of a number of diode detectors connected to a common arbitrary linear passive network, containing an approximately sinusoidal source. This situation covers the case...... of the six-port. The diodes are isolated from each other at DC. No assumption has been made about diode impedances, so that the diodes are interacting with the network as well as with each other at the fundamental frequency and at the harmonics. By applying the model the deviation can be eliminated...

  10. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution deposit

  11. Role of diode lasers in oro-facial pain management.

    Science.gov (United States)

    Javed, F; Kellesarian, S V; Romanos, G E

    2017-01-01

    With the increasing use of low level laser therapy (LLLT) in clinical dentistry, the aim of the present study was to assess the effectiveness of diode lasers in the management of orofacial pain. Indexed databases were searched without language and time restrictions up to and including July 2016 using different combinations of the following key words: oral, low level laser therapy, dental, pain, diode lasers, discomfort and analgesia. From the literature reviewed it is evident that LLLT is effective compared to traditional procedures in the management of oro-facial pain associated to soft tissue and hard tissue conditions such as premalignant lesions, gingival conditions and dental extractions. However, it remains to be determined which particular wavelength will produce the more favorable and predictable outcome in terms of pain reduction. It is highly recommended that further randomized control trials with well-defined control groups should be performed to determine the precise wavelengths of the diode lasers for the management of oro-facial pain. Within the limits of the present review, it is concluded that diode lasers therapy is more effective in the management of oro-facial pain compared to traditional procedures.

  12. Device Physics of White Polymer Light-Emitting Diodes

    NARCIS (Netherlands)

    Nicolai, Herman T.; Hof, Andre; Blom, Paul W. M.

    2012-01-01

    The charge transport and recombination in white-emitting polymer light- emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single-carrier devices the effect of the gre

  13. Dichroic mirror for diode pumped YAG:Nd-laser

    DEFF Research Database (Denmark)

    Dinca, Andreea; Skettrup, Torben; Lupei, V.

    1996-01-01

    The paper describes the design and realization of a dichroic mirror for a diode pumped YAG:Nd laser. The mirror is deposed on an optical glass substrate and works in optical contact with the laser crystal. The design was performed by admittance matching of the basic stack with the adjacent media...

  14. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  15. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes.

    Science.gov (United States)

    Zhang, Teng; Luo, Tengfei

    2015-09-01

    The realization of phononic computing is held hostage by the lack of high-performance thermal devices. Here, it is shown through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase-dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (rectification factors of the polymer nanofiber diodes range from 12 to 25-much larger than those of other thermal diodes (<8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized to tune the phase transition temperature of the crystalline portion, enabling thermal diodes capable of operating at different temperatures. This work will be instrumental to the design of high performance, inexpensive, and easily processible thermal devices, based on which thermal circuits can be built to ultimately enable phononic computing.

  16. Silicon light-emitting diode antifuse: properties and devices

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.

    2006-01-01

    This paper reviews our research on the silicon light-emitting diode antifuse, a tiny source featuring a full white-light spectrum. Optical and electrical properties of the device are discussed together with the modelling of the spectral emission, explaining the emitting mechanism of the device. An e

  17. Atom probe tomography of a commercial light emitting diode

    Science.gov (United States)

    Larson, D. J.; Prosa, T. J.; Olson, D.; Lefebvre, W.; Lawrence, D.; Clifton, P. H.; Kelly, T. F.

    2013-11-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device.

  18. Tunneling spectroscopy of a p-i-n diode interface

    Energy Technology Data Exchange (ETDEWEB)

    Loth, Sebastian; Wenderoth, Martin; Teichmann, Karen; Homoth, Jan; Loeser, Karolin; Ulbrich, Rainer G. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Malzer, Stefan; Doehler, Gottfried H. [Universitaet Erlangen-Nuernberg (Germany). Max-Planck-Research Group, Institute of Optics, Information, and Photonics

    2008-07-01

    The performance of modern semiconductor devices is largely influenced by the spatial distribution of dopants in the device's active region on the nanoscale. Since the late 80's Scanning Tunneling Microscopy (STM) was employed to study the local properties of p-n interfaces. Most studies were carried out on p-n superlattices allowing the investigation of intrinsic features accessible without applied bias across the diode. Here, a single GaAs p-i-n diode heterostructure is investigated with cross-sectional STM (X-STM) in a three-terminal configuration. External source and drain contacts control the electric field across the junction. Then, the diode's active region is mapped with atomic resolution. Local I(V)-spectroscopy (STS) directly resolves the band edge alignment from p to n for different diode bias conditions. The effect of the external electric field on the spatial and spectral images of individual dopant atoms in the active layer is discussed.

  19. Modelling and Simulation of the Diode Split Transformer

    DEFF Research Database (Denmark)

    Østergaard, Leo

    a significant influence on the picture quality. The most critical component is undoubtedly the diode split transformer (DST). Therefore, if developing a simulation model of the DST is possible, a significant step has been taken in the attempt to model the entire horizontal deflection circuit and to obtain...

  20. Local mechanical stress relaxation of Gunn diodes irradiated by protons

    Science.gov (United States)

    Gradoboev, A. V.; Tesleva, E. P.

    2017-05-01

    The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40-60) MeV with an absorbed dose of (1-6)·102 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production.