WorldWideScience

Sample records for superluminally rotating distribution

  1. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  2. Superluminal censorship

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Matt; Bassett, B.A.; Liberati, S

    2000-06-01

    We argue that 'effective' superluminal travel, potentially caused by the tipping over of light cones in Einstein gravity, is always associated with violations of the null energy condition (NEC). This is most easily seen by working perturbatively around Minkowski spacetime, where we use linearized Einstein gravity to show that the NEC forces the light cones to contract (narrow). Given the NEC, the Shapiro time delay in any weak gravitational field is always a delay relative to the Minkowski background, and never an advance. Furthermore, any object travelling within the lightcones of the weak gravitational field is similarly delayed with respect to the minimum traversal time possible in the background Minkowski geometry.

  3. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  4. Nonlinearity without superluminality

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schroedinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality

  5. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  6. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  7. Coherent distributions for the rigid rotator

    Energy Technology Data Exchange (ETDEWEB)

    Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.

  8. Superluminal Emission Processes as a Key to Understanding Pulsar Radiation

    Science.gov (United States)

    Schmidt, Andrea; Ardavan, H.; Fasel, J., III; Perez, M.; Singleton, J.

    2007-12-01

    Theoretical and experimental work has established that polarization currents can be animated to travel faster than the speed of light in vacuo and that these superluminal distribution patterns emit tightly focused packets of electromagnetic radiation that differ fundamentally from the emission generated by any other known radiation source. Since 2004, a small team at Los Alamos National Laboratory has, in collaboration with UK universities, conducted analytical, computational and practical studies of radiation sources that exceed the speed of light. Numerical evaluations of the Liénard-Wiechert field generated by such sources show that superluminal emission has the following intrinsic characteristics: (i) It is sharply focused along a rigidly rotating spiral-shaped beam that embodies the cusp of the envelope of the emitted wave fronts. (ii) It consists of either one or three concurrent polarization modes that constitute contributions to the field from differing retarded times. (iii) Two of the modes are comparable in strength at both edges of the signal and dominate over the third everywhere except in the middle of the pulse. (iv) The position angles of each of its dominant modes, as well as that of the total field, swing across the beam by as much as 180 degrees and remain approximately orthogonal throughout their excursion across the beam. (v) One of the three modes is highly circularly polarized and differs in its sense of polarization from the other two. (vi) Two of the modes have a very high degree of linear polarization across the entire pulse. Given the fundamental nature of the Liénard-Wiechert field, the coincidence of these characteristics with those of the radio emission received from pulsars is striking, especially coupled with the experimentally demonstrated fact that the radiation intensity on the cusp decays as 1/R instead of 1/R^2 and is therefore intrinsically bright.

  9. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  10. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  11. Invisibility cloaking without superluminal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Perczel, Janos; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Tyc, Tomas, E-mail: jp394@st-andrews.ac.uk, E-mail: tomtyc@physics.muni.cz, E-mail: ulf@st-andrews.ac.uk [Faculty of Science, Kotlarska 2 and Faculty of Informatics, Botanicka 68a, Masaryk University, 61137 Brno (Czech Republic)

    2011-08-15

    Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needs media with superluminal propagation. Here we show by giving an example that this is no longer necessary.

  12. Superluminal velocities. Illusion or reality?

    International Nuclear Information System (INIS)

    Pereyra, P.; Simanjuntak, H.P.

    2005-10-01

    We study the time-evolution of electromagnetic wave packets through optical superlattices. We follow the time evolution (described by Maxwell equations) of Gaussian packets with centroid in different energy regions. The time spent by the wave packet inside an optical structure agrees extremely well with the superluminal experimental results and the phase time predictions. (author)

  13. Superluminality, black holes and EFT

    Energy Technology Data Exchange (ETDEWEB)

    Goon, Garrett [Department of Applied Mathematics and Theoretical Physics,Cambridge University, Cambridge, CB3 0WA (United Kingdom); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-27

    Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.

  14. Cloning and superluminal signaling£

    Indian Academy of Sciences (India)

    Cloning; cloning fidelity; superluminal signaling; state discrimination. PACS No. 03.65.Bz. 1. .... The possibility of superluminal signaling in quantum mechanics stems from the concept .... quantum mechanics and relativity [13]. .... [13] A Shimony, in Foundations of quantum mechanics in the light of new technology edited by.

  15. Rotational distributions of molecular photoions following resonant excitation

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Chan, J.C.K.; White, M.G.

    1986-01-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N + 2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N + 2 (B 2 Σ + /sub u/) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron--ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed

  16. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  17. Against dogma: On superluminal propagation in classical electromagnetism

    Science.gov (United States)

    Weatherall, James Owen

    2014-11-01

    It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.

  18. Interpreting OPERA results on superluminal neutrino

    CERN Document Server

    Giudice, Gian F; Strumia, Alessandro

    2012-01-01

    OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.

  19. Eigenmode frequency distribution of rapidly rotating neutron stars

    International Nuclear Information System (INIS)

    Boutloukos, Stratos; Nollert, Hans-Peter

    2007-01-01

    We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a code that allows the computation of modes of arbitrary order. We focus here on the overall distribution of frequencies. As expected, we find an infinite pressure mode spectrum extending to infinite frequency. In addition we obtain an infinite number of inertial mode solutions confined to a finite, well-defined frequency range which depends on the compactness and the rotation frequency of the star. For nonaxisymmetric modes we observe how this range is shifted with respect to the axisymmetric ones, moving towards negative frequencies and thus making all m>2 modes unstable. We discuss whether our results indicate that the star's spectrum must have a continuous part, as opposed to simply containing an infinite number of discrete modes

  20. Pair Production Constraints on Superluminal Neutrinos Revisited

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2012-01-01

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p 2 can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  1. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  2. On a proposal of superluminal communication

    International Nuclear Information System (INIS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2012-01-01

    Recently, various new proposals of superluminal transmission of information have been suggested in the literature. Since the proposals make systematic use of recent formal and practical improvements in quantum mechanics, the old theorems proving the impossibility of such a performance must be adapted to the new scenario. In this communication, we consider some of the most challenging proposals of this kind and we show why they cannot work. (fast track communication)

  3. k-Essence, superluminal propagation, causality and emergent geometry

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Mukhanov, Viatcheslav; Vikman, Alexander

    2008-01-01

    The k-essence theories admit in general the superluminal propagation of the perturbations on classical backgrounds. We show that in spite of the superluminal propagation the causal paradoxes do not arise in these theories and in this respect they are not less safe than General Relativity

  4. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  5. Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics

    Directory of Open Access Journals (Sweden)

    James Q. Feng

    2014-04-01

    Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.

  6. Superluminal warp drives are semiclassically unstable

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, S; Liberati, S [SISSA, via Beirut 2-4, Trieste 34151, Italy and INFN sezione di Trieste (Italy); Barcelo, C, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i, E-mail: carlos@iaa.e [Instituto de Astrofisica de AndalucIa, CSIC, Camino Bajo de Huetor 50, 18008 Granada (Spain)

    2010-04-01

    Warp drives are very interesting configurations of General Relativity: they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to build them. Even if one succeeded in providing the necessary exotic matter, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries created out of an initially flat spacetime have been analyzed in a previous work by the present authors in special locations, close to the wall of the bubble and in its center. Here, we present an exact numerical analysis of the renormalized stress-energy tensor (RSET) in the whole bubble. We find that the the RSET will exponentially grow in time close to the front wall of the superluminal bubble, after some transient terms have disappeared, hence strongly supporting our previous conclusion that the warp-drive geometries are unstable against semiclassical back-reaction. This result seems to implement the chronology protection conjecture, forbiddig the set up of a structure potentially dangerous for causality.

  7. Super-luminous Type II supernovae powered by magnetars

    Science.gov (United States)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  8. Assessment of movement distribution in the lumbar spine using the instantaneous axis of rotation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Won [Trine University, Angola (Indonesia)

    2014-12-15

    The position of the torso and the magnitude of exertion are thought to influence the distribution pattern of intervertebral movements within the lumbar spine. Abnormal intervertebral movements have been correlated with the risk of spine injuries. Since the capability to measure movement distribution within the lumbar spine noninvasively is limited, a convenient method to diagnose joint motion function was proposed. The goal of this research was to test the efficacy of the instantaneous axis of rotation for assessment of the distribution of movement within the lumbar spine. The proposed method was evaluated in the bio mechanical model. The results showed that the location of instantaneous axis of rotation lowered with increased trunk exertion force, and slightly moved higher with increased trunk angle. Recognizing that abnormal location of the instantaneous axis of rotation correlated with spinal pain, these results suggest potential the location of the instantaneous axis of rotation relates to the risk of low back pain on distributed spinal kinematics.

  9. ''Superluminal'' phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perel'man, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities and conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A m u, whereas electric and magnetic fields remain unconnected in the near zone. (The proof or its preliminary version in: M.E.Perel'man: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 696 (2003) the pulse (389 THz) on the entrance of gas cell of L = 40 cm length is J(t, x = 0; w) = J o I(t)I(w). The measured group refraction index n g = -19 and the duration of formation tau = -27 as, therefore the free path length is of order l = 40 cm and the probability of single scattering p(w) = exp(-L/l) = 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = L;wω) Jω(w){pI(L/c-(t,x=0;wI(L/c - |tau| +(1-p)I(L/c), i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined

  10. Tachyons, Lamb Shifts and Superluminal Chaos

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 ke...

  11. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    Science.gov (United States)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  12. Strength distribution of γ-transitions deexciting superdeformed rotational bands

    International Nuclear Information System (INIS)

    Lopez-Martens, A.P.; Doesing, T.; Khoo, T.L.; Korichi, A.; Hannachi, F.; Calderin, I.J.; Lauritsen, T.; Ahmad, I.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Janssens, R.V.F.; Nisius, D.; Reiter, P.; Amro, H.; Moore, E.F.

    1999-01-01

    The strength distribution of the γ rays in the decay-out from superdeformed (SD) states is investigated by applying the maximum likelihood method, with special emphasis on the influence of the lower threshold given by experimental conditions. Clear graphical solutions are found, and a careful estimation of the dispersion in the values of the number of degrees of freedom and of the average strength of the most likely χ 2 distribution is carried out. For the 194 Hg nucleus, 41 primary transitions from the decay-out of SD states are identified above 2600 keV. It is concluded that they represent the strongest 10% of the transitions selected stochastically from a Porter-Thomas distribution. This would support the scenario of a statistical decay of SD states via coupling to a compound state at normal deformation. However, the occurrence of several very strong direct one-step transitions as previously observed in 194 Hg has a very small probability of the order of 10 -4 . This may indicate special selection rules governing the decay. However, based on the absence of strong primary transitions from SD states in adjacent nuclei, the situation in 194 Hg is viewed as a very lucky incidence

  13. Considerations about the apparent 'superluminal expansions' in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.

    1984-01-01

    The orthodox models devised to explain the apparent 'superluminal expansions' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much succesful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. The ground is prepared starting from a variational principle, introducing the elements of a tachyon mechanics within special relativity, and arguing about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest 'Superluminal models' are reviewed and developed, paying particular attention to the observations which they would give rise to. Itis concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones. (Author) [pt

  14. Considerations about the apparent superluminal expansions in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G. D.; Rodono, M.

    1985-01-01

    The ortodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics, and here briefly summarized and discussed together with th experimental data, do not seem to be to much successful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual superluminal motion take place. To prepare the ground one starts from a variational principle, introduces the elements of a tachyon mechanics within special relativity, and argues about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest ''superluminal models'', paying particular attention to the observations which they would give rise to are revie wed and developed. It is concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the ortodox ones

  15. A Blind Pilot: Who is a Super-Luminal Observer?

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2008-04-01

    Full Text Available This paper discusses the nature of a hypothetical super-luminal observer who, as well as a real (sub-light speed observer, perceives the world by light waves. This consideration is due to that fact that the theory of relativity permits different frames of reference, including light-like and super-luminal reference frames. In analogy with a blind pilot on board a supersonic jet aeroplane (or missile, perceived by blind people, it is concluded that the light barrier is observed in the framework of only the light signal exchange experiment.

  16. Relativistic Mechanics in Gravitational Fields Exterior to Rotating Homogeneous Mass Distributions within Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.

  17. The link between the baryonic mass distribution and the rotation curve shape

    Science.gov (United States)

    Swaters, R. A.; Sancisi, R.; van der Hulst, J. M.; van Albada, T. S.

    2012-09-01

    The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fitted remarkably well simply by scaling up the contributions of the stellar and H I discs. This 'baryonic scaling model' can explain the full breadth of observed rotation curves with only two free parameters. For a small fraction of galaxies, in particular early-type spiral galaxies, H I scaling appears to fail in the outer parts, possibly due to observational effects or ionization of H I. The overall success of the baryonic scaling model suggests that the well-known global coupling between the baryonic mass of a galaxy and its rotation velocity (known as the baryonic Tully-Fisher relation) applies at a more local level as well, and it seems to imply a link between the baryonic mass distribution and the distribution of total mass (including dark matter).

  18. A Non-Mainstream Viewpoint on Apparent Superluminal ...

    Indian Academy of Sciences (India)

    Abstract. The group velocity of light in material around the AGN jet is acquiescently one (c as a unit), but this is only a hypothesis. Here, we re-derive apparent superluminal and Doppler formulas for the general case (it is assumed that the group velocity of light in the uniform and isotropic medium around a jet (a beaming ...

  19. Superluminal phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perelman, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities aitd conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A μ , whereas electric and magnetic fields remain unconnected in the near zone. (The proof of its preliminary version in: M.E.Perefman: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 695 (2003) the pulse (389 THz) on the entrance of gas cell of l = 40 cm length is J(t,x = O;ω) = ,J o I(t)I(ω). .The measured group refraction index ng = -19 and the duration of formation τ = -27 as, therefore the free path length is of order l= 40 cm and the probability of single scattering p(?) =exp(-L/l) 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = Lω) = JtI(τ){pI(L/c - |τ|) + (1- p)I(L/c)], i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined the conclusions

  20. Experimentally generated randomness certified by the impossibility of superluminal signals.

    Science.gov (United States)

    Bierhorst, Peter; Knill, Emanuel; Glancy, Scott; Zhang, Yanbao; Mink, Alan; Jordan, Stephen; Rommal, Andrea; Liu, Yi-Kai; Christensen, Bradley; Nam, Sae Woo; Stevens, Martin J; Shalm, Lynden K

    2018-04-01

    From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable 1-3 . For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity 1-11 . With recent technological developments, it is now possible to carry out such a loophole-free Bell test 12-14,22 . Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10 -12 . These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.

  1. Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng

    2018-06-04

    In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.

  2. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  3. Analysis of ultrasonically rotating droplet using moving particle semi-implicit and distributed point source methods

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2016-07-01

    Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.

  4. The formation of molecular hydrogen on silicate dust analogs: The rotational distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Syracuse University, Physics Department, Syracuse, NY 13244-1320, USA. (United States); Sabri, T.; Jæger, C., E-mail: lisseth.gavilan@obspm.fr [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena (Germany)

    2014-02-01

    Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H{sub 2}. The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T {sub rot} ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H{sub 2} formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

  5. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  6. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  7. Statistical separability and the impossibility of the superluminal quantum communication

    International Nuclear Information System (INIS)

    Zhang Qiren

    2004-01-01

    The authors analyse the relation and the difference between the quantum correlation of two points in space and the communication between them. The statistical separability of two points in the space is defined and proven. From this statistical separability, authors prove that the superluminal quantum communication between different points is impossible. To emphasis the compatibility between the quantum theory and the relativity, authors write the von Neumann equation of density operator evolution in the multi-time form. (author)

  8. Superluminal plasmons with resonant gain in population inverted bilayer graphene

    KAUST Repository

    Low, Tony

    2017-12-28

    AB-stacked bilayer graphene with a tunable electronic bandgap in excess of the optical phonon energy presents an interesting active medium, and we consider such theoretical possibility in this work. We argue the possibility of a highly resonant optical gain in the vicinity of the asymmetry gap. Associated with this resonant gain are strongly amplified plasmons, plasmons with negative group velocity and superluminal effects, as well as directional leaky modes.

  9. Superluminal plasmons with resonant gain in population inverted bilayer graphene

    KAUST Repository

    Low, Tony; Chen, Pai-Yen; Basov, D. N.

    2017-01-01

    AB-stacked bilayer graphene with a tunable electronic bandgap in excess of the optical phonon energy presents an interesting active medium, and we consider such theoretical possibility in this work. We argue the possibility of a highly resonant optical gain in the vicinity of the asymmetry gap. Associated with this resonant gain are strongly amplified plasmons, plasmons with negative group velocity and superluminal effects, as well as directional leaky modes.

  10. Directional Wigner-Ville distribution and its application for rotating-machinery condition monitoring

    International Nuclear Information System (INIS)

    Kim, Dong Wan; Ha, Jae HOng; Shin, Hae Gon; Lee, Yoon Hee; Kim, Young Baik

    1996-01-01

    Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time-frequency representation and its application for a machinery diagnostics and condition monitoring system. The objective of the research described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time-frequency representation, Directional Wigner-Ville Distribution, which analyses the time-frequency structure of the rotating machinery vibration

  11. Information-theoretic analysis of rotational distributions from quantal and quasiclassical computations of reactive and nonreactive scattering

    International Nuclear Information System (INIS)

    Bernstein, R.B.

    1976-01-01

    An information-theoretic approach to the analysis of rotational excitation cross sections was developed by Levine, Bernstein, Johnson, Procaccia, and coworkers and applied to state-to-state cross sections available from numerical computations of reactive and nonreactive scattering (for example, by Wyatt and Kuppermann and their coworkers and by Pack and Pattengill and others). The rotational surprisals are approximately linear in the energy transferred, thereby accounting for the so-called ''exponential gap law'' for rotational relaxation discovered experimentally by Polanyi, Woodall, and Ding. For the ''linear surprisal'' case the unique relation between the surprisal parameter theta/sub R/ and the first moment of the rotational energy distribution provides a link between the pattern of the rotational state distribution and those features of the potential surface which govern the average energy transfer

  12. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Sun, Kai; Wei, Qi-Huo

    Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with the center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arms. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical to crescent shape and the angle averaged PDFs from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. This crescent shape of 2D PDF provides a clear physical picture of the non-zero mean displacements observed in boomerangs particles.

  13. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    Science.gov (United States)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  14. Analysis of an ultrasonically rotating droplet by moving particle semi-implicit and distributed point source method in a rotational coordinate

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2017-07-01

    Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.

  15. Conditions for Lorentz-invariant superluminal information transfer without signaling

    Science.gov (United States)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2016-03-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.

  16. Conditions for Lorentz-invariant superluminal information transfer without signaling

    International Nuclear Information System (INIS)

    Grössing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2016-01-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively. (paper)

  17. The β Pictoris association low-mass members: Membership assessment, rotation period distribution, and dependence on multiplicity

    Science.gov (United States)

    Messina, S.; Lanzafame, A. C.; Malo, L.; Desidera, S.; Buccino, A.; Zhang, L.; Artemenko, S.; Millward, M.; Hambsch, F.-J.

    2017-10-01

    Context. Low-mass members of young loose stellar associations and open clusters exhibit a wide spread of rotation periods. Such a spread originates from the distributions of masses and initial rotation periods. However, multiplicity can also play a significant role. Aims: We aim to investigate the role played by physical companions in multiple systems in shortening the primordial disk lifetime, anticipating the rotation spin up with respect to single stars. Methods: We have compiled the most extensive list to date of low-mass bona fide and candidate members of the young 25-Myr β Pictoris association. We have measured from our own photometric time series or from archival time series the rotation periods of almost all members. In a few cases the rotation periods were retrieved from the literature. We used updated UVWXYZ components to assess the membership of the whole stellar sample. Thanks to the known basic properties of most members we built the rotation period distribution distinguishing between bona fide members and candidate members and according to their multiplicity status. Results: We find that single stars and components of multiple systems in wide orbits (>80 AU) have rotation periods that exhibit a well defined sequence arising from mass distribution with some level of spread likely arising from initial rotation period distribution. All components of multiple systems in close orbits (Pleiades shows that whereas the evolution of F-G stars is well reproduced by angular momentum evolution models, this is not the case for the slow K and early-M stars. Finally, we find that the amplitude of their light curves is correlated neither with rotation nor with mass. Conclusions: Once single stars and wide components of multiple systems are separated from close components of multiple systems, the rotation period distributions exhibit a well defined dependence on mass that allows us to make a meaningful comparison with similar distributions of either younger or older

  18. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR⋆

    Science.gov (United States)

    Parikka, A.; Habart, E.; Bernard-Salas, J.; Goicoechea, J. R.; Abergel, A.; Pilleri, P.; Dartois, E.; Joblin, C.; Gerin, M.; Godard, B.

    2016-01-01

    Context The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500–1000 K) in photodissociation regions with high incident FUV radiation field. The excitation may also originate in dense gas (> 105 cm−3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, a tracer of dense and warm gas, and formation pumping contributes to CH+ excitation. Aims Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar in order to establish their physical origin and main formation and excitation mechanisms. Methods We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 µm and the OH Λ-doublet at 84 µm in the Orion Bar over an area of 110″×110″ with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas (high-J CO). We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile at 1669 GHz with Herschel HIFI spectrometer observations. Results The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 µm emission coincides with a bright young object, proplyd

  19. Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR.

    Science.gov (United States)

    Parikka, A; Habart, E; Bernard-Salas, J; Goicoechea, J R; Abergel, A; Pilleri, P; Dartois, E; Joblin, C; Gerin, M; Godard, B

    2017-03-01

    The methylidyne cation (CH + ) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H 2 or hot gas (~500-1000 K) in photodissociation regions with high incident FUV radiation field. The excitation may also originate in dense gas (> 10 5 cm -3 ) followed by nonreactive collisions with H 2 , H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH + and OH correlate with the excited CO, a tracer of dense and warm gas, and formation pumping contributes to CH + excitation. Our goal is to examine the spatial distribution of the rotationally excited CH + and OH emission lines in the Orion Bar in order to establish their physical origin and main formation and excitation mechanisms. We present spatially sampled maps of the CH + J=3-2 transition at 119.8 µm and the OH Λ-doublet at 84 µm in the Orion Bar over an area of 110″×110″ with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C + , O and H 2 , and tracers of warm and dense gas (high-J CO). We assess the spatial variation of CH + J=2-1 velocity-resolved line profile at 1669 GHz with Herschel HIFI spectrometer observations. The OH and especially CH + lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH + and OH morphologies indicate that CH + formation and excitation are strongly related to the observed vibrationally excited H 2 . This, together with the observed broad CH + line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 µm emission coincides with a bright young object, proplyd 244

  20. Coulombic interactions on the deposition and rotational mobility distributions of dyes in polyelectrolyte multilayer thin films.

    Science.gov (United States)

    Li, Ye; Yip, Wai Tak

    2004-12-07

    We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.

  1. A numerical study of the segregation phenomenon of lognormal particle size distributions in the rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Zhao, Ya; Chew, Jia Wei

    2018-05-01

    Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the rotating drum operating in the rolling flow regime.

  2. Security Analysis of Measurement-Device-Independent Quantum Key Distribution in Collective-Rotation Noisy Environment

    Science.gov (United States)

    Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian

    2018-01-01

    Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.

  3. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.

    2014-09-17

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  4. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.; Ruseckas, J.; Mekys, A.; Ekers, Aigars; Bezuglov, N.; Juzeliūnas, G.

    2014-01-01

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  5. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    Science.gov (United States)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  6. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    DEFF Research Database (Denmark)

    Leloudas, Giorgos; Maund, Justyn R.; Gal-Yam, Avishay

    2017-01-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropol......We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs...... of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us...

  7. Superluminal Kinematics in the Milne Universe Causality in the Cosmic Time Order

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    The causality of superluminal signal transfer in the galaxy background is scrutinized. The cosmic time of the comoving galaxy frame determines a distinguished time order for events connected by superluminal signals. Every observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. In this way all observers arrive at identical conclusions on the causality of events connected by superluminal signals. The energy of tachyons (superluminal particles) is defined in the comoving galaxy frame analogous to the energy of subluminal particles. It is positive in the galaxy frame and bounded from below in the rest frames of geodesically moving observers, so that particle-tachyon interactions can be based on energy-momentum conservation. We study tachyons in a Robertson-Walker cosmology with linear expansion factor and open, negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving obs...

  8. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  9. Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    International Nuclear Information System (INIS)

    Chang Zhe; Li Xin; Wang Sai

    2012-01-01

    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 107 (2011) 181803] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality ( (arXiv:1110.6673 [hep-ph])). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this Letter, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.

  10. Subluminal and superluminal propagation of light in an N-type medium

    International Nuclear Information System (INIS)

    Han Dingan; Guo Hong; Bai Yanfeng; Sun Hui

    2005-01-01

    For a three-level electromagnetically induced transparency (EIT) atomic system, we show that, adding a third driving field coupled to a fourth state, the properties of the weak probe light propagation are greatly changed. Due to the increase of the driving field, when the driving and the coupling detunings are zero, the light propagation can be changed from subluminal to superluminal. Also, the analytical solution exhibiting superluminal group velocity is given at the zero probe detuning

  11. QPO detection in superluminal black hole GRS 1915+105

    Science.gov (United States)

    Bhulla, Yashpal; Jaaffrey, S. N. A.

    2018-05-01

    We report on the first superluminal Black Hole GRS 1915+105 observed by the Rossi X-ray Timing Explorer - Proportion Counter Array (RXTE/PCA). We detect the Quasi Periodic Oscillations (QPOs) in the Power Density Spectrum (PDS) of source which have luminosity very near to Eddington limit and long variability in X-ray light curve. In power density spectrum, we deal with the study of highly variability amplitude, time evolution of the characteristic timescale, Quality Factor and Full Width at Half Maximum (FWHM). We find significant QPOs in 15 different observation IDs with frequency around 67 Hz although quality factor nearly 20 but in two IDs frequency is found just double. Typical fractional rms for GRS 1915+105 is dominating the hard band increasing steeply with energy more than 13% at 20-40 keV band.

  12. Superluminal Velocities in the Synchronized Space-Time

    Directory of Open Access Journals (Sweden)

    Medvedev S. Yu.

    2014-07-01

    Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.

  13. Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution

    Science.gov (United States)

    Jeffrey H. Gove; Mark J. Ducey; William B. Leak; Lianjun Zhang

    2008-01-01

    Stand structures from a combined density manipulation and even- to uneven-aged conversion experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these stands between two probability density functions for fitting these residual structures:...

  14. Numerical research on rotating speed influence and flow state distribution of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei

    2015-01-01

    Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)

  15. Magnetization distribution of single-particle states and 2/sup +/ rotational states from muonic atoms

    CERN Document Server

    Backe, H; Engfer, R; Kankeleit, E; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Vuilleumier, J L; Walter, H K; Zehnder, A

    1973-01-01

    The lowest states in muonic atoms are rather sensitive to the spatial distribution of the nuclear magnetization density, and several results were deduced from the broadening of the muonic 2p/sub 1/2/-1s/sub 1/2/ and 3d/sub 3/2/-2p/sub 1/2/ transitions. By measuring low energetic transitions such as the 2s/sub 1/2/-2p/sub 1/2/ transition or nuclear gamma -transitions, it is possible to resolve the magnetic hyperfine splittings. The magnetic hf splitting of the 2s/sub 1/2/-2p/sub 1/2/ transition in mu /sup 115/In and of the 3/2/sup +/-1/2/sup +/ nuclear gamma -transitions in mu /sup 203/Tl at 279 keV, and in mu /sup 205/Tl at 204 keV, have been resolved. For the 2/sup +/-0/sup +/ nuclear gamma -transition in mu /sup 190,192/Os at 187 keV and 206 keV, respectively, the magnetic hf splitting of the 2/sup +/ rotational levels and the intensities of the hf components were determined from a nearly resolved doublet splitting. (7 refs).

  16. The link between the baryonic mass distribution and the rotation curve shape

    NARCIS (Netherlands)

    Swaters, R. A.; Sancisi, R.; van der Hulst, J. M.; van Albada, T. S.

    The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fitted remarkably well simply by scaling up the contributions of the stellar and H?i discs. This baryonic scaling model can explain the full breadth of observed rotation curves with

  17. Using service-time profiles for distributed planning of container barge rotations along terminals

    NARCIS (Netherlands)

    Douma, A.M.; Schuur, Peter; Schutten, Johannes M.J.

    2008-01-01

    We consider the barge rotation planning and quay scheduling problem in the Port of Rotterdam. This problem concerns the alignment of barge rotations and terminal quay schedules. We use a Multi-Agent based approach for the problem, since such a Multi-Agent based system can mirror to a large extent

  18. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    Science.gov (United States)

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  19. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    Science.gov (United States)

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  20. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    Science.gov (United States)

    Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.

    2018-03-01

    To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

  1. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    Directory of Open Access Journals (Sweden)

    D. Gürer

    2018-03-01

    Full Text Available To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa–Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ∼ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP for this block since the Late Cretaceous, showing that it experienced a ∼ 30–35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler–Tecer Fault Zone in the north and by the African–Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

  2. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  3. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    Science.gov (United States)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  4. Testing the magnetar scenario for superluminous supernovae with circular polarimetry

    Science.gov (United States)

    Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.

    2018-05-01

    Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.

  5. A cannonball model of gamma-ray bursts superluminal signatures

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rujula, Alvaro De

    2000-01-01

    Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...

  6. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Bulla, M.; Sim, S. A.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-11-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q – U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.

  7. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  8. Fast Preparation of Critical Ground States Using Superluminal Fronts

    Science.gov (United States)

    Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.

    2018-05-01

    We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.

  9. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    Science.gov (United States)

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  10. The Trails of Superluminal Jet Components in 3C 111

    Science.gov (United States)

    Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; hide

    2007-01-01

    The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.

  11. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  12. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  13. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  14. Subluminal and superluminal pulse propagation in inhomogeneous media of nonspherical particles

    International Nuclear Information System (INIS)

    Ma Yu; Gao Lei

    2006-01-01

    We study the pulse propagation through a metal/dielectric composites of nonspherical particles enclosed by two gold mirrors. To account for the shape effect, we first adopt Maxwell-Garnett type approximation to obtain the effective dielectric function of composites. Based on the group index, phase time and pulse shape calculations, we find that the particles' shape (characterized by the depolarization factor) plays an important role in determining the subluminal and superluminal pulse propagations through the system. When the inclusions' shape is not spherical, it is possible to observe significant superluminal behavior of the pulse propagation, although the volume fraction is the same. The shape-dependent critical volume fraction is predicted, above which superluminal propagation appears. Furthermore, the Hartman effect in such a system is also investigated

  15. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  16. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    NARCIS (Netherlands)

    Gürer, Derya; Van Hinsbergen, Douwe J.J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.

    2018-01-01

    To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Uluklisla and Sivas regions. We show

  17. Superluminous Devices Versus Low-Level Laser for Temporomandibular Disorders

    Directory of Open Access Journals (Sweden)

    Sveshtarov Vasil

    2018-03-01

    Full Text Available The aim of this study is to compare the pain intensity reduction between the mean radiation doses per session of gallium-aluminum-arsenide (GaAIAs laser with superluminous diodes (SLD in four of the most common pain-related chronic temporomandibular disorders (TMD - local myalgia, myofascial pain, myofascial pain with a referral, and arthralgia. This study was implemented on 124 patients with pain-related temporomandibular disorders according to the DC/TMD criteria. We applied trigger point oriented near-infrared laser (785 nm, 100 s, 8 J/cm2 and SLD cluster sessions (the cluster is composed of 49 SLDs with a combination of visible red (633 nm and infrared (880 nm diodes, 200 mW, 300 s, 8 J/cm2 for the temporomandibular joints and the affected muscles. Patients were evaluated at the start of the treatment, and after the 6th session of combined phototherapy. The pain intensity scores were measured according to the Visual Analogue Scale (VAS. Our results show that the most statistically manifested pain reduction is found for the SLD dose, р = 0,000118, followed by the overall dose (laser plus SLD; р = 0,001031, and the laser dose; р = 0,030942 (ANOVA dispersion analyses. Consequently, it can be concluded that myalgia is better treated through lower doses of red light compared to infrared laser doses because SLDs combine the prooxidative effect of photons with 633 nm wavelength, a large area of exposure, sufficient tissue penetration, and some positive warming thermal impact of the SLD clusters.

  18. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

    Science.gov (United States)

    Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping

    2018-05-01

    A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

  19. The superluminal radio source 4c 39. 25 as relativistic jet prototype. El cuasar superluminal 4C 93. 25 como prototipo de jet relativistia

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.

  20. 16 CFR 307.11 - Rotation, display, and distribution of warning statements on smokeless tobacco packages.

    Science.gov (United States)

    2010-01-01

    ... on each brand of the product and (2) be randomly distributed in all parts of the United States in... distribution means that there is nothing in the production or distribution process of a smokeless tobacco..., nothing in these regulations requires the use of more than one warning statement on the label of any brand...

  1. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    Science.gov (United States)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  2. On the Superluminal Motion of Radio-Loud AGNs Zhi-Bin Zhang1,2 ...

    Indian Academy of Sciences (India)

    xies—radiation mechanisms: non-thermal—quasars: general. 1. Introduction. Rees (1966) predicted that the transverse velocity of an object moving relativistically in some special directions may appear to exceed the speed of light. The apparent superluminal motion (SM) is essentially a geometric effect or a light travel-time.

  3. On some recent suggestions of superluminal communication through the collapse of the wave function

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1979-01-01

    With reference to some recent suggestions of superluminal communication through the collapse of the wave function, it is proved that the suggested effects are derived using contradictory assumptions. Since the proof is based only on non-relativistic arguments, it is concluded that the difficulties connected with quantum measurement theory are only of conceptual nature. (author)

  4. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    Directory of Open Access Journals (Sweden)

    Nanni Luca

    2017-11-01

    Full Text Available This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study’s results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  5. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Milisavljevic, D.; Challis, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Metzger, B. D. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Chornock, R., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States)

    2017-01-20

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.

  6. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  7. Angular distribution and rotations of frame in vector meson decays into lepton pairs

    International Nuclear Information System (INIS)

    Palestini, Sandro

    2011-01-01

    We discuss how the angular distribution of lepton pairs from decays of vector mesons depends on the choice of reference frame, and provide a geometrical description of the transformations of the coefficients of the angular distribution. Invariant expressions involving all coefficients are discussed, together with bounds and consistency relations.

  8. Thermospheric neutral temperatures derived from charge-exchange produced N{sub 2}{sup +} Meinel (1,0) rotational distributions

    Energy Technology Data Exchange (ETDEWEB)

    Mutiso, C.K.; Zettergren, M.D.; Hughes, J.M.; Sivjee, G.G. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States). Space Physics Research Lab.

    2013-06-01

    Thermalized rotational distributions of neutral and ionized N{sub 2} and O{sub 2} have long been used to determine neutral temperatures (T{sub n}) during auroral conditions. In both bright E-region (distributions of molecular emissions employed to determine T{sub n} in the E-region cannot likewise be used to obtain T{sub n} in the F-region. Nevertheless, charge-exchange reactions between high-altitude (>or similar 130 km) species provide an exception to this situation. In particular, the charge-exchange reaction O{sup +}({sup 2}D)+N{sub 2}(X) {yields}N{sub 2}{sup +} (A{sup 2}{Pi}{sub u}, {nu}' = 1) + O({sup 3}P) yields thermalized N{sub 2}{sup +} Meinel (1,0) emissions, which, albeit weak, can be used to derive neutral temperatures at altitudes of {proportional_to} 130 km and higher. In this work, we present N{sub 2}{sup +} Meinel (1,0) rotational temperatures and brightnesses obtained at Svalbard, Norway, during various auroral conditions. We calculate T{sub n} at thermospheric altitudes of 130-180 km from thermalized rotational populations of N{sub 2}{sup +} Meinel (1,0); these emissions are excited by soft electron (

  9. Asymptotic behavior of a rotational population distribution in a molecular quantum-kicked rotor with ideal quantum resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Leo, E-mail: leo-matsuoka@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Segawa, Etsuo [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan); Yuki, Kenta [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Konno, Norio [Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan); Obata, Nobuaki [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan)

    2017-06-09

    We performed a mathematical analysis of the time-dependent dynamics of a quantum-kicked rotor implemented in a diatomic molecule under the condition of ideal quantum resonance. We examined a model system featuring a diatomic molecule in a periodic train of terahertz pulses, regarding the molecule as a rigid rotor with the state-dependent transition moment and including the effect of the magnetic quantum number M. We derived the explicit expression for the asymptotic distribution of a rotational population by making the transition matrix correspondent with a sequence of ultraspherical polynomials. The mathematical results obtained were validated by numerical simulations. - Highlights: • The behavior of the molecular quantum-kicked rotor was mathematically investigated. • The matrix elements were made correspondent with the ultraspherical polynomials. • The explicit formula for asymptotic distribution was obtained. • Complete agreement with the numerical simulation was verified.

  10. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    Science.gov (United States)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  11. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  12. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    Science.gov (United States)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  13. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    Science.gov (United States)

    2017-06-01

    Nozzle Exit Plane at Various Pressure Ratios for the Quiescent Air Hydrogen Fuel Case, PRdesign = 10:1...81 Figure 55. Mach Number Distribution along the Nozzle Exit Plane at Various Pressure Ratios for the Supersonic...budget constraints, have spurred engineers to focus on improving the specific fuel consumption of these engines. One technology that promises

  14. Rotation-type input-output relationships for Wigner distribution moments in fractional Fourier transform systems

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. This general input-output relationship is then broken down into a

  15. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  16. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    2017-01-01

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  17. Mass distribution and rotational inertia of "microtype" and "freely mobile" middle ear ossicles in rodents.

    Science.gov (United States)

    Lavender, Danielle; Taraskin, Sergei N; Mason, Matthew J

    2011-12-01

    The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus; ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemilä et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space

    International Nuclear Information System (INIS)

    Leverrier, A; Karpov, E; Cerf, N J; Grangier, P

    2009-01-01

    Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use of the symmetries of the protocol. In this paper, we investigate a rotation symmetry in phase space that is particularly relevant to continuous-variable QKD, and explore the way towards a new quantum de Finetti theorem that would exploit this symmetry and provide a powerful tool to assess the security of continuous-variable protocols. As a first step, a single-party asymptotic version of this quantum de Finetti theorem in phase space is derived.

  19. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution

    Science.gov (United States)

    Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang

    2013-10-01

    We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.

  20. Study on Sumbawa gold ore liberation using rod mill: effect of rod-number and rotational speed on particle size distribution

    Science.gov (United States)

    Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.

    2018-01-01

    Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.

  1. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    International Nuclear Information System (INIS)

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  2. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neelamkavil, Raphael

    2014-07-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  3. Performance assessment of commercial relays for anti-islanding protection of rotating machine based distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Katiraei, F. [Quanta Technology, Houston, TX (United States); Abbey, C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Da Cunha, I. [LeapFrog Energy Technologies Inc., Mississauga, ON (Canada); Brisette, Y. [Hydro-Quebec, Montreal, PQ (Canada). Research Inst

    2008-07-01

    According to power industry standards, distributed generation must stop energizing the power grid upon loss of the main system. Either passive or active methods may be used to fulfill this requirement. Passive methods rely on locally measured signals to determine whether the main grid is present, while active methods inject a perturbation into the system that will manifest itself in locally measured signals if the main grid is not present. This paper compared simulation and experimental results for various commercially available relays for passive anti-islanding protection of small (below 500 kW) distributed generators using either synchronous or induction generators. A commercial multifunction relay and an application specific relay for rate-of-change-of-frequency and vector shift were modelled in simulation. Simulation results were compared with tests using a 25 kV induction generator. Results obtained for the induction machine based DG were in good agreement with trip times associated with under/overvoltage relays. The poor results with frequency based relays may be attributed to the method used for calculating frequency. Sensitivity analysis on the degree of capacitor compensation revealed a small non-detection zone, suggesting that this risk should be evaluated for induction machine based interconnections. These results showed that accurate relay modeling is challenging, particularly for frequency based techniques. Other methods for relay testing, such as hardware-in-the-loop, may be more appropriate than simulation, and are more practical in terms of cost effectiveness, than extensive field trials. 7 refs., 1 tab., 6 figs.

  4. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    Science.gov (United States)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  5. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Leloudas, Giorgos; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Maund, Justyn R. [The Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Hsiao, Eric [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Malesani, Daniele; De Ugarte Postigo, Antonio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Patat, Ferdinando [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-03-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in time with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.

  6. Distribution and determinants of QRS rotation of black and white persons in the general population.

    Science.gov (United States)

    Prineas, Ronald J; Zhang, Zhu-Ming; Stevens, Cladd E; Soliman, Elsayed Z

    The prevalence and determinants of QRS transition zones are not well established. We examined the distributions of Normal, clockwise (CW) and counterclockwise (CCW)) QRS transition zones and their relations to disease, body size and demographics in 4624 black and white men and women free of cardiovascular disease and major ECG abnormalities enrolled in the NHANES-III survey. CW transition zones were least observed (6.2%) and CCW were most prevalent (60.1%) with Normal in an intermediate position (33.7%). In multivariable logistic regression analysis, the adjusted, significant predictors for CCW compared to Normal were a greater proportion of blacks and women, fewer thin people (BMI<20, thin), a greater ratio of chest depth to chest width, and an LVMass index <80g. By contrast, CW persons were older, had larger QRS/T angles, smaller ratio of chest depth to chest width, had a greater proportion of subjects with low voltage QRS, more pulmonary disease, a greater proportion with high heart rates, shorter QRS duration and were more obese (BMI≥30). Normal rather than being the most prevalent transition zone was intermediate in frequency between the most frequently encountered CCW and the least frequently encountered transition zone CW. Differences in the predictors of CW and CCW exist. This requires further investigation to examine how far these differences explain the differences in the published prognostic differences between CW and CCW. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Study of the magnetic field distribution in high-temperature superconductors using muon-spin-rotation

    International Nuclear Information System (INIS)

    Zimmermann, P.R.

    1994-01-01

    Detailed and systematic μ + SR experiments have been performed in order to (i) investigate the temperature dependence of the magnetic penetration depth in various cuprate high-T c superconductors and (ii) study the vortex structures and dynamics in the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8 . The μ + SR method and its application to superconductivity has been discussed. The positive muon is a microscopic probe of the local magnetic field in the bulk of a sample. The μ + SR technique can therefore measure the magnetic field distribution p(B) which is determined by the flux structure in the superconductor. The second moment (ΔB 2 ) of p(B) is closely related to the magnetic penetration depth λ, a fundamental parameter of superconductivity. It has been shown that in high-quality sintered samples a good estimate of the in-plane penetration depth λ ab can be given in terms of the muon-depolarization rate σ. Since the penetration depth is related to the superconducting order parameter, the temperature dependence of the penetration depth is a potential probe of the pairing state. Systematic measurements of the temperature dependence of σ have been performed in sintered samples of high quality in various members of the Y123 family, Pb and Y doped Tl1212 family, and also in Y124 and Bi2212. It is found that the extracted temperature behaviour of λ ab -2 is characteristic of each compound. This can be interpreted as a varying coupling strength in these systems. In well oxygenated Y123, λ ab -2 (T) is well described by the two-fluid model indicating strong coupling. The rest of the cuprates investigated show a λ ab -2 (T) which points to weaker coupling, with λ ab -2 (T) of highly oxygen deficient Y123 being similar to the weak-coupling BCS prediction. In the Y123 family the decreasing coupling strength with decreasing oxygen content is related to the increasing anisotropy. Comparison with theoretical predictions of λ ab -2 (T) revealed that the observed

  8. Nascent rotational distributions of N+2(X 2Σ+/sub g/) produced by electron-impact ionization of N2 in a supersonic beam

    International Nuclear Information System (INIS)

    Nagata, T.; Nakajima, A.; Kondow, T.; Kuchitsu, K.

    1987-01-01

    Laser-induced fluorescence from nascent N + 2 (X 2 Σ + /sub g/) ions produced by electron impact on a N 2 supersonic beam was observed. An analysis of the B 2 Σ + /sub u/-X 2 Σ + /sub g/ (0,0) band shows that the rotational state distributions cannot be represented by a single Boltzmann function, higher N'' levels being overpopulated. Experimental and analytical efforts were made to minimize the influence of cascading and relaxation on the rotational distributions. The rotational energy of N + 2 (X) thus estimated increases with decreasing electron energy from 2.26 +- 0.16 meV at 300 eV to 4.24 +- 0.27 meV at 25 eV. This trend is explained qualitatively in terms of angular momentum transfer through multipole electron--molecule interactions

  9. [Correlation of fine structures of distributions of amplitudes of a photomultiplier dark current fluctuations with the Earth rotations about its axis].

    Science.gov (United States)

    Fedorov, M V; Belousov, L V; Voeĭkov, V L; Zenchenko, K I; Zenchenko, T A; Konradov, A A; Shnol', S E

    2001-01-01

    The fine structures of distributions of photomultiplier dark current fluctuations measured in two laboratories 2000 km distant from other: in the international Institute of Biophysics (Neuss, Germany) and in the Moscow State University (Moscow, Russia) were compared. It is shown that similar forms of appropriate histograms are apparently more often realized at both locations at the same local time. This confirms the previous conclusion that the fine structure of distributions correlates with rotation of the Earth about its axis.

  10. Palaeomagnetic Constrains on the Timing and the Geographical Distribution of Tectonic Rotations in the Betic Chain, Southern Spain. A Review

    Science.gov (United States)

    Osete, M. L.; Villalain, J. J.; Pavon-Carrasco, F. J.; Palencia, A.

    2009-05-01

    The Betic Cordillera is the northern branch of the Betic-Rifean orogen, the westernmost segment of the Mediterranean Alpine orogenic system. Several palaeomagnetic studies have enhanced the important role that block rotations about vertical axes have played in the tectonic evolution of the region. In this work we present a review of published palaeomagnetic data. According with the rotational deformation, the Betics are divided into the central-western area and the eastern Betics. A sequence of rotations for the two regions is also proposed. In central and western Subbetics almost constant clockwise rotations of about 60 are documented in Jurassic limestones. The existence of a pervasive remagnetization of Jurassic limestones, which was coeval with the folding of the studied units and dated as post-Palaeogene, constrains the timing of tectonic rotations in western Subbetics. New palaeomagnetic data from Neogene sedimentary sequences in central Betics indicate that palaeomagnetic clockwise rotations continued after late Miocene. A similar pattern of 40 CW rotations occurred after 20-17 Ma was obtained from the study of the Ronda-Malaga peridotites (western Internal Betics). In eastern Subbetics a more heterogeneous pattern, including very high CW rotations has been observed. But recent rotational deformation in the Internal part of eastern Betics is CCW and related to the left-lateral strike-slip fault systems. Proposed kinematics models for the Betics are discussed under the light of the present available palaeomagnetic information.

  11. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  12. Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR 5624

    Science.gov (United States)

    Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.

    2017-09-01

    Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that

  13. Causal ubiquity in quantum physics a superluminal and local-causal physical ontology

    CERN Document Server

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That

  14. Light propagation from subluminal to superluminal in a three-level Λ-type system

    International Nuclear Information System (INIS)

    Sun Hui; Guo Hong; Bai, Yanfeng; Han Dingan; Fan Shuangli; Chen Xuzong

    2005-01-01

    We show that the group velocity of a weak electromagnetic pulse can be manipulated by adjusting the relative phase of the probing and the pumping fields applied to a Λ-type three-level system, whose two lower states are coupled by an external control magnetic field. Such control field can, in principle, cause the light propagation to be changed from subluminal to superluminal by modulating the relative phase. The same effect can be obtained by varying the intensities of the pumping and the control magnetic fields, but it is different with Agarwal's [Phys. Rev. A 64 (2001) 053809]. The effect of Doppler broadening on the dispersion is also investigated

  15. Higher Dimensional Spacetimes for Visualizing and Modeling Subluminal, Luminal and Superluminal Flight

    International Nuclear Information System (INIS)

    Froning, H. David; Meholic, Gregory V.

    2010-01-01

    This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.

  16. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    Science.gov (United States)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  17. Diffraction effects in microwave propagation at the origin of superluminal behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Firenze (Italy)

    2008-10-27

    Superluminal behaviors, as evidenced by the presence of forerunners, in advanced position with respect to the main luminal peak, have been revealed in microwave propagation experiments by using a radar technique. The results are interpreted on the basis of (fast) complex waves, usually considered only in the near-field region, but still surviving beyond this limit. Consideration of further diffraction effects, as due to geometrical limitations of the experimental set-up, allows for the obtainment of a plausible description of the results.

  18. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  19. MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Lister, M. L.; Richards, J. L. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Aller, M. F.; Aller, H. D. [Department of Astronomy, University of Michigan, 817 Dennison Building, Ann Arbor, MI 48109 (United States); Homan, D. C. [Department of Physics, Denison University, Granville, OH 43023 (United States); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Kovalev, Y. Y. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Pushkarev, A. B.; Ros, E.; Savolainen, T., E-mail: mlister@purdue.edu [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2013-11-01

    We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15 GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16 yr interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ∼0.°5 to ∼2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12 yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas yr{sup –1}), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the

  20. Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Science.gov (United States)

    Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V.; Jenkins, J. S.

    2017-10-01

    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

  1. Special relativity and superluminal motions: a discussion of some recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.

  2. In search of superluminal quantum communications: recent experiments and possible improvements

    International Nuclear Information System (INIS)

    Cocciaro, B; Faetti, S; Fronzoni, L

    2013-01-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity v t > c in a preferred reference frame. For finite values of v t , Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities v t . Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities V t for any possible direction of velocity V-vector of the tachyons preferred frame.

  3. In search of superluminal quantum communications: recent experiments and possible improvements

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  4. Special relativity and superluminal motions: a discussion of some recent experiments

    International Nuclear Information System (INIS)

    Recami, E.; Fontana, F.; Garavaglia, R.

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even muonic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity

  5. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox

    International Nuclear Information System (INIS)

    Winful, Herbert G.

    2006-01-01

    The issue of tunneling time is replete with controversy and paradoxes. The controversy stems from the fact that many tunneling time definitions seem to predict superluminal tunneling velocities. One prediction, termed the Hartman effect, states that the tunneling time becomes independent of barrier length for thick enough barriers, ultimately resulting in unbounded tunneling velocities. Experiments done with 'single photons', classical light waves, and microwaves all show this apparent superluminality. The origin of these paradoxical effects has been a mystery for decades. In this article, we review the history of tunneling times starting with the early work of MacColl, Hartman, and Wigner. We discuss some of the tunneling time definitions, with particular emphasis on the phase time (also known as the group delay or Wigner time) and the dwell time. The key experiments are reviewed. We then discuss our recent work, which suggests that the group delay in tunneling is not a transit time as has been assumed for decades. It is, in reality, a lifetime and hence should not be used to assign a speed of barrier traversal. We show how this new understanding along with the concept of energy storage and release resolves all the outstanding tunneling time paradoxes

  6. On the possibility of superluminal energy propagation in a hyperbolic metamaterial of metal-dielectric layers

    Directory of Open Access Journals (Sweden)

    Pi-Gang Luan

    2018-01-01

    Full Text Available The energy propagation of electromagnetic fields in the effective medium of a one-dimensional photonic crystal consisting of dielectric and metallic layers is investigated. We show that the medium behaves like Drude and Lorentz medium, respectively, when the electric field is parallel and perpendicular to the layers. For arbitrary time-varying electromagnetic fields in this medium, the energy density formula is derived. We prove rigorously that the group velocity of any propagating mode obeying the hyperbolic dispersion must be slower than the speed of light in vacuum, taking into account the frequency dependence of the permittivity tensor. That is, it is not possible to have superluminal propagation in this dispersive hyperbolic medium consisting of real dielectric and metallic material layers. The propagation velocity of a wave packet is also studied numerically. This packet velocity is very close to the velocity of the propagating mode having the central frequency and central wave vector of the wave packet. When the frequency spread of the wave packet is not narrow enough, small discrepancy between these two velocities manifests, which is caused by the non-penetration effect of the evanescent modes. This work reveals that no superluminal phenomenon can happen in a dispersive anisotropic metamaterial medium made of real materials.

  7. On excitation and radiation of detector moving in vacuum with acceleration or moving rectilinearly with superluminal velocity in a medium

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Frolov, V.P.

    1986-01-01

    The problem of excitation of a detector moving in vacuum with constant acceleration is being discussed in recent years. It is noted in the paper that this excitation and radiation associated with it are similar to those taking place in the range of anomalous Doppler effect occurring during motion of the detector with constant superluminal velocity in medium

  8. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    International Nuclear Information System (INIS)

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-01-01

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10 6 . We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor

  9. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  10. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi; Blinnikov, Sergei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow (Russian Federation); Kozyreva, Alexandra, E-mail: alexey.tolstov@ipmu.jp [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  11. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  12. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.

    2013-01-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 10 4 km s –1 in its early spectra, and a broad light curve that peaked at M B = –18.1 mag. Models of these data indicate a large explosion kinetic energy of ∼10 52 erg and 56 Ni mass ejection of M Ni ≈ 0.3 M ☉ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities ∼> 4500 km s –1 , as well as O I and Mg I lines at noticeably smaller velocities ∼ –1 . Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span –21 ∼ B ∼< –17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  13. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    International Nuclear Information System (INIS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz; Djorgovski, S. George; Mahabal, Ashish A.; Glikman, Eilat; Koposov, Sergey

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m g < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M B = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M g < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  14. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  15. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink

    2015-10-01

    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  16. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Stroe, Rodica-Elisabeta; Sintamarean, Iulia-Maria

    2017-01-01

    A major challenge for the implementation of hydrothermal liquefaction (HTL) as a continuous process is the formulation of lignocellulosic feedstock, which is prone to phase separation into water and biomass parts when pressurized. One approach to remedy such phase separation is to reduce the dry...... from the HTL of willow and proposes short rotation coppice as an alternative biomass feedstock for biofuels production. Alkaline–thermal pretreatment, besides making high dry matter pumpable feedstock slurries, also led to an increase in the production of the bio-crude product with an oxygen content...

  17. The control of superluminal group velocity in a system equivalent to the Y-type four-level atomic system

    International Nuclear Information System (INIS)

    Li Luming; Guo Hong; Xiao Feng; Peng Xiang; Chen Xuzong

    2005-01-01

    We study a new way to control the superluminal group velocity of light pulse in hot atomic gases with the five-level atomic configuration. The model of an equivalent Y-type four-level is applied and shows that the light goes faster by using an additional incoherent pumping field. The experiment is performed and shows in good agreement with our theoretical predictions

  18. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  19. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  20. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  1. Plate rotations, fault slip rates, fault locking, and distributed deformation in northern Central America from 1999-2017 GPS observations

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Cosenza, B.; Flores, O.; Guzman-Speziale, M.; Hernandez, D.; Kostoglodov, V.; La Femina, P. C.; Lord, N. E.; Lasserre, C.; Lyon-Caen, H.; McCaffrey, R.; Molina, E.; Rodriguez, M.; Staller, A.; Rogers, R.

    2017-12-01

    We describe plate rotations, fault slip rates, and fault locking estimated from a new 100-station GPS velocity field at the western end of the Caribbean plate, where the Motagua-Polochic fault zone, Middle America trench, and Central America volcanic arc faults converge. In northern Central America, fifty-one upper-plate earthquakes caused approximately 40,000 fatalities since 1900. The proximity of main population centers to these destructive earthquakes and the resulting loss of human life provide strong motivation for studying the present-day tectonics of Central America. Plate rotations, fault slip rates, and deformation are quantified via a two-stage inversion of daily GPS position time series using TDEFNODE modeling software. In the first stage, transient deformation associated with three M>7 earthquakes in 2009 and 2012 is estimated and removed from the GPS position time series. In Stage 2, linear velocities determined from the corrected GPS time series are inverted to estimate deformation within the western Caribbean plate, slip rates along the Motagua-Polochic faults and faults in the Central America volcanic arc, and the gradient of extension in the Honduras-Guatemala wedge. Major outcomes of the second inversion include the following: (1) Confirmation that slip rates on the Motagua fault decrease from 17-18 mm/yr at its eastern end to 0-5 mm/yr at its western end, in accord with previous results. (2) A transition from moderate subduction zone locking offshore from southern Mexico and parts of southern Guatemala to weak or zero coupling offshore from El Salvador and parts of Nicaragua along the Middle America trench. (3) Evidence for significant east-west extension in southern Guatemala between the Motagua fault and volcanic arc. Our study also shows evidence for creep on the eastern Motagua fault that diminishes westward along the North America-Caribbean plate boundary.

  2. Multifrequency radio VLBI observations of the superluminal low-frequency variable quasar NRAO 140

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.

    1985-01-01

    VLBI maps of the quasar NRAO 140 at three wavelengths: 18, 6, and 2.8 cm are presented. The source consists of a jetlike structure delineated by a nearly colinear series of components which are progressively more compact toward the northwestern end of the source. The multifrequency observations make it possible to dissect accurately the spectrum of the source, which leads to an affirmation of the previously reported Compton problem and superluminal motion. The Compton problem requires relativistic motion with Doppler factor delta greater than 3.7. One of the components is separating from the core at a rate of 0.15 milliarcsec/yr, which translates to an apparent velocity between 4c and 13c, depending on the values of H(0) and q(0). The energy in relativistic electrons in one of the components far exceeds the energy in magnetic field, but the total energy requirement need not exceed approximately 10 to the 54th ergs. 27 references

  3. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    Science.gov (United States)

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  4. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Baklanov, Petr, E-mail: alexey.tolstov@ipmu.jp [Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow (Russian Federation)

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {sub ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  5. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  6. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  7. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  8. On modelling the interaction between two rotating bodies with statistically distributed features: an application to dressing of grinding wheels

    Science.gov (United States)

    Spampinato, A.; Axinte, D. A.

    2017-12-01

    The mechanisms of interaction between bodies with statistically arranged features present characteristics common to different abrasive processes, such as dressing of abrasive tools. In contrast with the current empirical approach used to estimate the results of operations based on attritive interactions, the method we present in this paper allows us to predict the output forces and the topography of a simulated grinding wheel for a set of specific operational parameters (speed ratio and radial feed-rate), providing a thorough understanding of the complex mechanisms regulating these processes. In modelling the dressing mechanisms, the abrasive characteristics of both bodies (grain size, geometry, inter-space and protrusion) are first simulated; thus, their interaction is simulated in terms of grain collisions. Exploiting a specifically designed contact/impact evaluation algorithm, the model simulates the collisional effects of the dresser abrasives on the grinding wheel topography (grain fracture/break-out). The method has been tested for the case of a diamond rotary dresser, predicting output forces within less than 10% error and obtaining experimentally validated grinding wheel topographies. The study provides a fundamental understanding of the dressing operation, enabling the improvement of its performance in an industrial scenario, while being of general interest in modelling collision-based processes involving statistically distributed elements.

  9. VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)

    Science.gov (United States)

    Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.

    2018-04-01

    We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).

  10. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  11. Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B., E-mail: YL1260@nyu.edu, E-mail: mmodjaz@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-08-10

    Super-luminous supernovae (SLSNe) are tremendously luminous explosions whose power sources and progenitors are highly debated. Broad-lined SNe Ic (SNe Ic-bl) are the only type of SNe that are connected with long-duration gamma-ray bursts (GRBs). Studying the spectral similarity and difference between the populations of hydrogen-poor SLSNe (SLSNe Ic) and of hydrogen-poor stripped-envelope core-collapse SNe, in particular SNe Ic and SNe Ic-bl, can provide crucial observations to test predictions of theories based on various power source models and progenitor models. In this paper, we collected all of the published optical spectra of 32 SLSNe Ic, 21 SNe Ic-bl, as well as 17 SNe Ic, quantified their spectral features, constructed average spectra, and compared them in a systematic way using new tools we have developed. We find that SLSNe Ic and SNe Ic-bl, including those connected with GRBs, have comparable widths for their spectral features and average absorption velocities at all phases. Thus, our findings strengthen the connection between SLSNe Ic and GRBs. In particular, SLSNe Ic have average Fe ii λ 5169 absorption velocities of −15,000 ± 2600 km s{sup −1} at 10 days after peak, which are higher than those of SNe Ic by ∼7000 km s{sup −1} on average. SLSNe Ic also have significantly broader Fe ii λ 5169 lines than SNe Ic. Moreover, we find that such high absorption and width velocities of SLSNe Ic may be hard to explain with the interaction model, and none of the 13 SLSNe Ic with measured absorption velocities spanning over 10 days has a convincing flat velocity evolution, which is inconsistent with the magnetar model in one dimension. Lastly, we compare SN 2011kl, the first SN connected with an ultra-long GRB, with the mean spectrum of SLSNe Ic and of SNe Ic-bl.

  12. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    International Nuclear Information System (INIS)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-01

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required

  13. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  14. ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Waldman, Roni; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Valenti, Stefano [Department of Physics, University of California, Davis, CA 95616 (United States); Arcavi, Iair; Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2017-01-20

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2–3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of {sup 56}Ni and {sup 56}Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  15. Superluminal paradox’ in wave packet propagation and its quantum mechanical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovski, D., E-mail: dgsokol15@gmail.com [Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Akhmatskaya, E. [Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia (Spain)

    2013-12-15

    We analyse in detail the reshaping mechanism leading to apparently ‘superluminal’ advancement of a wave packet traversing a classically forbidden region. In the coordinate representation, a barrier is shown to act as an effective beamsplitter, recombining envelopes of the freely propagating pulse with various spacial shifts. Causality ensures that none of the constituent envelopes are advanced with respect to free propagation, yet the resulting pulse is advanced due to a peculiar interference effect, similar to the one responsible for ‘anomalous’ values which occur in Aharonov’s ‘weak measurements’. In the momentum space, the effect is understood as a bandwidth phenomenon, where the incident pulse probes local, rather than global, analytical properties of the transmission amplitude T(p). The advancement is achieved when T(p) mimics locally an exponential behaviour, similar to the one occurring in Berry’s ‘superoscillations’. Seen in a broader quantum mechanical context, the ‘paradox’ is but a consequence of an attempt to obtain ‘which way?’ information without destroying the interference between the pathways of interest. This explains, to a large extent, the failure to adequately describe tunnelling in terms of a single ‘tunnelling time’. -- Highlights: •Apparent superluminality is described in the language of quantum measurements. •A barrier acts as a beamsplitter delaying copies of the initial pulse. •In the coordinate space the effect is similar to what occurs in ‘weak measurements’. •In the momentum space it relies on superoscillations in the transmission amplitude. •It is an interference effect, unlikely to be explained in simpler physical terms.

  16. Generalised Einstein mass-variation formulae: II Superluminal relative frame velocities

    Directory of Open Access Journals (Sweden)

    James M. Hill

    Full Text Available In part I of this paper we have deduced generalised Einstein mass variation formulae assuming relative frame velocities vc. We again use the notion of the residual mass m0(v which for v>c is defined by the equation m(v=m0(v[(v/c2-1]-1/2 for the actual mass m(v. The residual mass is essentially the actual mass with the Einstein factor removed, and we emphasise that we make no restrictions on m0(v. Using this formal device we deduce corresponding new mass variation formulae applicable to superluminal relative frame velocities, assuming only the extended Lorentz transformations and their consequences, and two invariants that are known to apply in special relativity. The present authors have previously speculated a dual framework such that both the rest mass m0∗ and the residual mass at infinite velocity m∞∗ (by which we mean p∞∗/c, assuming finite momentum at infinity are equally important parameters in the specification of mass as a function of its velocity, and the two arbitrary constants can be so determined. The new formulae involving two arbitrary constants may also be exploited so that the mass remains finite at the speed of light, and two distinct mass profiles are determined as functions of their velocity with the rest mass assumed to be alternatively prescribed at the origin of either frame. The two profiles so obtained (M(U,m(u and (M∗(U,m∗(u although distinct have a common ratio M(U/M∗(U=m(u/m∗(u that is a function of v>c, indicating that observable mass depends upon the frame in which the rest mass is prescribed. Keywords: Special relativity, Einstein mass variation, New formulae

  17. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  18. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  19. DES13S2cmm: the first superluminous supernova from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A.; D' Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-20

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (Type I). Using this redshift, we find M-U(peak) = -21.05(-0.09)(+0.10) for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (subsolar), low stellar-mass host galaxy (log (M/M-circle dot) = 9.3 +/- 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to 14 similarly well-observed SLSNe-I in the literature and find that it possesses one of the slowest declining tails (beyond +30 d rest-frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 mag between +25 and +30 d after peak (rest frame) depending on redshift range studied; this could be important for 'standardizing' such supernovae, as is done with the more common Type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I-the radioactive decay of Ni-56, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 d in the rest frame of the supernova.

  20. Superluminous supernovae as standardizable candles and high-redshift distance probes

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = –21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM {sub 20} decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  1. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    Science.gov (United States)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  2. Causality and superluminal behavior in classical field theories: Applications to k-essence theories and modified-Newtonian-dynamics-like theories of gravity

    International Nuclear Information System (INIS)

    Bruneton, Jean-Philippe

    2007-01-01

    Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories

  3. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  4. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  5. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    International Nuclear Information System (INIS)

    Bacha, Bakht Amin; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-01-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of −37.50 m s −1 with a negative time delay of −8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups. (paper)

  6. Low threshold optical bistability and superluminal light propagation using a dielectric slab via inter-dot tunneling

    International Nuclear Information System (INIS)

    Taherzadeh, S; Nasehi, R; Mahmoudi, Mohammad

    2015-01-01

    The optical bistability (OB) behavior of a dielectric slab doped with quantum dot (QD) molecules is investigated in the presence of the inter-dot tunneling effect. It is shown that the threshold point of OB reduces by increasing inter-dot tunneling as well as by reducing the slab thickness. It is worth noting that the threshold of OB in a slab doped with QD molecules is smaller, by at least one order of magnitude, in respect to free QD molecules. We find that the inter-dot tunneling induces a negative group delay to the reflected pulse and it propagates in the superluminal region. Such simple control can be used in all optical switching. (paper)

  7. Superluminous Transients at AGN Centers from Interaction between Black Hole Disk Winds and Broad-line Region Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J.; Tanaka, Masaomi; Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki, E-mail: takashi.moriya@nao.ac.jp [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-07-10

    We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit–cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kinetic energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1 c , where c is the speed of light, the ejecta kinetic energy is expected to be ≃10{sup 52} erg when ≃1 M {sub ⊙} is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (∼10{sup 44} erg s{sup −1}) and timescales (∼100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit–cycle oscillations, they become bright again in coming years or decades.

  8. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  9. Distribution of electron density and internal rotation in phospha-alkenes according to data from quantum-chemical calculations by the MNDO method

    International Nuclear Information System (INIS)

    Boldeskul, I.E.; Pen'kovskii, V.V.; Povolotskii, M.I.

    1988-01-01

    A quantum-chemical investigation of the characteristics of the phosphorus-carbon bond and the internal rotation around it in phospha-alkenes has been carried out in the MNDO approximation. The results of the calculation have been compared with experimental dynamic 1 H NMR data

  10. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Kudsk, Per

    2016-01-01

    Tillage methods and crop rotation are probably the two most important cropping factors affecting weed communities, particularly when herbicide use is restricted. This study examined weed dynamics following eleven years of different tillage and crop rotation treatments. The aboveground grass weed...... flora was recorded each year and the content and vertical location of individual weed seeds within the plough layer (0–20 cm) were determined after 11 years of continuous mouldboard ploughing (P), pre-sowing tine cultivation to 8–10 cm soil depth (H8-10) and direct drilling (D). The content of weed...... seeds, especially grass weeds, was determined for three distinct soil layers (0–5, 5–10 and 10–20 cm), reflecting the cultivation depths of the tillage treatments. The annual grass weeds, Apera spica-venti and Vulpia myuros, were promoted by non-inversion tillage and in the case of V. myuros also...

  11. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  12. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  13. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  14. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  15. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  16. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  17. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    International Nuclear Information System (INIS)

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  18. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  19. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  20. Ash-flow tuff distribution and fault patterns as indicators of rotation of late-tertiary regional extension, Nevada test site

    International Nuclear Information System (INIS)

    Ander, H.D.

    1983-01-01

    Isopach and structure contour maps generated for Yucca Flat as well as fault pattern analyses of the Nevada Test Site (NTS) can aid in more efficient site selection and site characterization necessary for containment. Furthermore, these geologic studies indicate that most of the alluvial deposition in Yucca Flat was controlled by north-trending faults responding to a regional extension direction oriented approximately 20 0 to 30 0 west of the N50 0 W direction observed today. The Yucca Flat basin-forming Carpetbag and Yucca fault systems seem to be deflected at their southern ends into the northeast-trending Cane Spring and Mine Mountain fault systems. Left-lateral strike-slip displacement of approx. 1.4 km found on these northeasterly faults requires that most of the displacement on the combined fault systems occurred in an extension field oriented approximately N80 0 W. Fault movement in this extensional field postdates the Ammonia Tanks tuff (approx. 11 My) and was strongly active during deposition of some 1100 meters of alluvium in Yucca Flat. Time of rotation of regional extension to the presently active N50 0 W direction is unknown; however, it occurred so recently that it has not greatly modified fault displacement patterns extant at the NTS

  1. The rotation of galaxy clusters

    International Nuclear Information System (INIS)

    Tovmassian, H.M.

    2015-01-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented

  2. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  3. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  4. Rotation influence on the plasma helical instability

    International Nuclear Information System (INIS)

    Gutkin, T.I.; Tsypin, V.S.; Boleslavskaya, G.I.

    1980-01-01

    The influence of the rotation on helical instability of a plasma with the fixed boundaries (HIFB) is investigated taking into account the compressibility. A case of infinitely long cylinder with distributed current is considered. Cases when a rotating plasma is confined by current magnetic field are analytically considered. It is shown that in the case of the fixed boundary taking into account the compressibility in the HIFB increment increases and the picture of the rotation influence on HIFB considerably changes. Besides, it is shown that in the case of high plasma pressures HIFB can stabilize as a result of the rotation

  5. Visual perception of axes of head rotation

    Science.gov (United States)

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  6. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  7. ON THE SOURCE OF FARADAY ROTATION IN THE JET OF THE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Gomez, Jose L.; Roca-Sogorb, Mar; Agudo, Ivan; Marscher, Alan P.; Jorstad, Svetlana G.

    2011-01-01

    The source of Faraday rotation in the jet of the radio galaxy 3C 120 is analyzed through Very Long Baseline Array observations carried out between 1999 and 2007 at 86, 43, 22, 15, 12, 8, 5, 2, and 1.7 GHz. Comparison of observations from 1999 to 2001 reveals uncorrelated changes in the linear polarization of the underlying jet emission and the Faraday rotation screen: while the rotation measure (RM) remains constant between approximately 2 and 5 mas from the core, the RM-corrected electric vector position angles (EVPAs) of two superluminal components are rotated by almost 90 0 when compared to other components moving through similar jet locations. On the other hand, the innermost 2 mas experiences a significant change in RM-including a sign reversal-but without variations in the RM-corrected EVPAs. Similarly, observations in 2007 reveal a double sign reversal in RM along the jet, while the RM-corrected EVPAs remain perpendicular to the jet axis. Although the observed coherent structure and gradient of the RM along the jet support the idea that the Faraday rotation is produced by a sheath of thermal electrons that surrounds the emitting jet, the uncorrelated changes in the RM and RM-corrected EVPAs indicate that the emitting jet and the source of Faraday rotation are not closely connected physically and have different configurations for the magnetic field and/or kinematical properties. Furthermore, the existence of a region of enhanced RM whose properties remain constant over three years requires a localized source of Faraday rotation, favoring a model in which a significant fraction of the RM originates in foreground clouds.

  8. DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lin; Masci, F. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Ofek, E.; Gal-Yam, A.; Vreeswijk, P. M.; Leloudas, G.; Cia, A. de; Yaron, O. [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Cao, Y.; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, P. E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rebbapragada, Umaa D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Woźniak, P. R., E-mail: lyan@ipac.caltech.edu [Space and Remote Sensing, ISR-2, MS-B244 Los Alamos National Laboratory Los Alamos, NM 87545 (United States)

    2015-12-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ∼1.3 × 10{sup 44} erg s{sup −1}, then decays slowly at 0.015 mag day{sup −1}. The measured ejecta velocity is ∼ 13,000 km s{sup −1}. The inferred explosion characteristics, such as the ejecta mass (70–220 M{sub ⊙}), and the total radiative and kinetic energy (E{sub rad} ∼ 10{sup 51} erg, E{sub kin} ∼ 2 × 10{sup 53} erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ∼4500 km s{sup −1} and a ∼300 km s{sup −1} blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ∼2 × 10{sup 41} erg s{sup −1} as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ∼4 × 10{sup 16} cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M{sub ⊙}. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M{sub ⊙} H-shell, ejected from a progenitor star with an initial mass of (95–150) M{sub ⊙} about 40 years ago. We estimate that at least ∼15% of all SLSNe-I may have late-time Balmer emission lines.

  9. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  10. Pairing effects in rotating nuclei: a semi classical approach

    International Nuclear Information System (INIS)

    Durand, M.

    1985-10-01

    The semi-classical phase-space distribution ρ(r,p) is calculated for rotating superfluid nuclei, taking into account the reaction of the pairing field to the rotational motion. Moments of inertia and current distributions calculated by means of this distribution pass continuously from a rigid to an irrotational behaviour

  11. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  12. Absolute-magnitude distributions of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  13. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, we calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. We consider polytropic indices ranging from 1 to 3 and several angular momentum distributions. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m = 2 mode for the Maclaurin spheroids (n = O) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983)

  14. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  15. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  16. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  17. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  18. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  19. Superluminal warp drive

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es

    2007-09-20

    In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form.

  20. Are superluminal connections necessary

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1977-01-01

    The following theorem is proved. If the statistical predictions of quantum theory are true in general and if the macroscopic world is not radically different from what is observed, then what happens macroscopically in one space-time region must in some cases depend on variables that are controlled by experimenters in far-away, space-like-separated regions

  1. Superluminous accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Cambridge Univ. (UK). Inst. of Astronomy; Polska Akademia Nauk, Warsaw. Centrum Astronomiczne)

    1981-07-01

    Upper limits are computed for the total luminosities and collimation of radiation from thick, radiation supported accretion discs around black holes. Numerical results are obtained for the 'extreme' discs with rsub(out) = 10/sup 3/ GMsub(BH)/c/sup 2/, the angular momentum of the black hole being Jsub(BH) = 0.998 GMsub(BH)/c. The high luminosity (L approximately 8.5 Lsub(Edd)) and substantial collimation of radiation found for these discs indicate that such discs can explain both the high luminosities of quasars and similar objects and may produce some of the observed beams and jets.

  2. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  3. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  4. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  5. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  6. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  7. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  8. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  9. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  10. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  11. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  12. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  13. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  14. On Job Rotation

    OpenAIRE

    Metin M. Cosgel; Thomas J. Miceli

    1998-01-01

    A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

  15. Rotator cuff - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

  16. Propeller rotation noise due to torque and thrust

    Science.gov (United States)

    Deming, Arthur F

    1940-01-01

    Sound pressure of the first four harmonics of rotation from a full-scale two-blade propeller were measured and are compared with values calculated from theory. The comparison is made (1) for the space distribution with constant tip speed and (2) for fixed space angles with variable tip speed. A relation for rotation noise from an element of radius developed by Gutin is given showing the effect of number of blades on the rotation noise.

  17. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.

    1984-01-01

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  18. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  19. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, the authors calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. Polytropic indices ranging from 1 to 3 and several angular momentum distributions are considered. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m - 2 mode for the Maclaurin spheroids (n = 0) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983). 16 references, 2 tables

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  2. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  3. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

  4. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  5. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  6. Controlling the quantum rotational dynamics of a driven planar rotor ...

    Indian Academy of Sciences (India)

    Archana Shukla

    †Dedicated to the memory of late Professor Charusita Chakravarty. To a large extent the ..... study the long time quantum dynamics using only the one cycle propagator. .... distributions, including the short time rotational rain- bow features and ...

  7. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  8. Vortex Noise from Rotating Cylindrical Rods

    Science.gov (United States)

    Stowell, E Z; Deming, A F

    1935-01-01

    A series of round rods of the some diameter were rotated individually about the mid-point of each rod. Vortices are shed from the rods when in motion, giving rise to the emission of sound. With the rotating system placed in the open air, the distribution of sound in space, the acoustical power output, and the spectral distribution have been studied. The frequency of emission of vortices from any point on the rod is given by the formula von Karman. From the spectrum estimates are made of the distribution of acoustical power along the rod, the amount of air concerned in sound production, the "equivalent size" of the vortices, and the acoustical energy content for each vortex.

  9. Rotating quantum states

    International Nuclear Information System (INIS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-01-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries

  10. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  11. SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Challis, P.; Cowperthwaite, P. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Jerkstrand, A.; Smartt, S. J.; Inserra, C.; Kankare, E.; Maguire, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Arcavi, I.; Hosseinzadeh, G.; Howell, D. A. [Las Cumbres Observatory Global Telescope, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chen, T.-W. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching (Germany); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. A., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); and others

    2016-09-10

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250–400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days){sup −1} to 1.7 mag (100 days){sup −1}, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large {sup 56}Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of −22 < M {sub B} < −17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7–30 M {sub ⊙} of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ 7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  12. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  13. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  14. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  15. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  16. Negative Rotation Cinch Strap.

    Science.gov (United States)

    This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation

  17. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  18. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  19. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  20. The Axial Curve Rotator.

    Science.gov (United States)

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  1. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  2. A paleomagnetic investigation of vertical-axis rotations in coastal Sonora, Mexico: Evidence for distributed transtensional deformation during the Proto-Gulf shift from a subduction-dominated to transform-dominated plate boundary in the Gulf of California

    Science.gov (United States)

    Herman, Scott William

    The history of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California is key to understanding how Baja California was captured by the Pacific plate and how strain was partitioned during the Proto-Gulf period (12.5-6 Ma). The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico, and represent the eastern rifted margin of the central Gulf of California. The ranges are composed of volcanic units and their corresponding volcaniclastic units which are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. A paleomagnetic investigation into possible vertical axis rotations in the Sierra el Aguaje has uncovered evidence of clockwise rotations between ~13º and ~105º with possible translations. These results are consistent with existing field relations, which suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range, including large domains characterized by E-W strikes b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. These rotations occurred after 12 Ma and largely prior to 9 Ma, thus falling into the Proto-Gulf period. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would be the result of strain partitioning

  3. Plasma rotation in coaxial discharges

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; Elkhalafawy, T.A.

    1985-01-01

    Plasma rotation has been observed near the breech of the coaxial electrodes, which propagates inside the coaxial gun and moreover this has been detected in the expansion chamber. Azimuthal component of plasma current has been detected. The measuring of the axial magnetic field distribution in time along the expansion chamber-axis shows a single maximum peak for all position. Azimuthal component of electric field exists along the axis of the expansion chamber and results for two angular positions (0 0 , 180 0 ) at r 2.5 cm has been presented. Thus it is obvious that the whole plasma bulk moves in a screw configuration before and after the focus position. 9 fig

  4. Rotational structures in 174Ta

    International Nuclear Information System (INIS)

    Hojman, Daniel; Kreiner, A.J.; Davidson, Miguel

    1989-01-01

    The nucleus 174 Ta has been studied for the first time through the fusion-evaporation reaction 169 Tm ( 9 Be,4n) using a 4 mg/cm 2 self-supporting Tm foil in the 40 to 65 MeV bombarding energy range (the 4n channel was found to peak at 50 MeV). The experiments comprised γ and X-ray singles in beam and activity spectra, γ-γ-t coincidences (one of the counters was Compton suppressed) and γ-ray angular distributions. The results obtained allowed the construction of a high-spin level scheme. This scheme, which resembles that of 172 Ta, comprises several rotational bands which correspond to different couplings of the valence nucleons. One of these structures, the doubly decoupled band (DDB), is particularly interesting because it is the first observed case of a DDB based on an I π =3 + state. (Author) [es

  5. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  6. The analysis on centrifugal compressor rotating stall

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan

    2003-01-01

    In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed

  7. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  8. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  9. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    International Nuclear Information System (INIS)

    Epstein, Courtney R.; Pinsonneault, Marc H.

    2014-01-01

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M ☉ . Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M ☉ stars.

  10. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  11. Spinning rate decay of levitated high-Tc superconductors in rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Terentiev, A.N.; Kutukova, E.O.; Kuznetsov, A.A. (Inst. of Chemical Physics, Academy of Sciences, Moscow (Russia)); Mozhaev, A.P. (Moscow State Univ., Dept. of Chemistry (Russia))

    1992-04-01

    The rotation damping of a levitated superconductor was examined in the static field of a ring-shaped magnet and in the rotating field of coils. It was demonstrated that the pinning force mainly contributed to magnetic friction while the influence of a viscous component was negligible. The rotating magnetic field created a torque, reducing the angular deceleration under relaxation. Dependence of the rotational field-induced torque on the field-intensity was step-like. A relationship between the step-like behavior of rotational field-induced torque and pinning center distribution is discussed. The origins of friction torque and rotational field-produced torque are discussed. (orig.).

  12. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  13. Rotatable seal assembly

    International Nuclear Information System (INIS)

    Garibaldi, J.L.; Logan, C.M.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

  14. Rotator cuff disease

    International Nuclear Information System (INIS)

    Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

    1988-01-01

    A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

  15. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

  16. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  17. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  18. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  19. The rotational spectrum of IBr

    International Nuclear Information System (INIS)

    Tiemann, E.; Moeller, T.

    1975-01-01

    The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

  20. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  1. Titrating decision processes in the mental rotation task.

    Science.gov (United States)

    Provost, Alexander; Heathcote, Andrew

    2015-10-01

    Shepard and Metzler's (1971) seminal mental-rotation task-which requires participants to decide if 1 object is a rotated version of another or its mirror image-has played a central role in the study of spatial cognition. We provide the first quantitative model of behavior in this task that is comprehensive in the sense of simultaneously providing an account of both error rates and the full distribution of response times. We used Brown and Heathcote's (2008) model of choice processing to separate out the contributions of mental rotation and decision stages. This model-based titration process was applied to data from a paradigm where converging evidence supported performance being based on rotation rather than other strategies. Stimuli were similar to Shepard and Metzler's block figures except a long major axis made rotation angle well defined for mirror stimuli, enabling comprehensive modeling of both mirror and normal responses. Results supported a mental rotation stage based on Larsen's (2014) model, where rotation takes a variable amount of time with a mean and variance that increase linearly with rotation angle. Differences in response threshold differences were largely responsible for mirror responses being slowed, and for errors increasing with rotation angle for some participants. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  3. Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Film Coolant Extraction

    Directory of Open Access Journals (Sweden)

    James A. Parsons

    2001-01-01

    Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.

  4. POSSIBLE DETECTION OF APPARENT SUPERLUMINAL INWARD MOTION IN MARKARIAN 421 AFTER THE GIANT X-RAY FLARE IN 2010 FEBRUARY

    Energy Technology Data Exchange (ETDEWEB)

    Niinuma, K. [Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8511 (Japan); Kino, M.; Oyama, T. [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Nagai, H. [ALMA-J Project, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Isobe, N. [Institute of Space and Astronautics, Japan Aerospace Exploration Agency, Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Gabanyi, K. E. [Hungarian Academy of Sciences, Research Group for Physical Geodesy and Geodynamics, FOMI Satellite Geodetic Observatory Budapest, 1592 Budapest (Hungary); Hada, K. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Koyama, S. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Asada, K. [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 10617, Taiwan (China); Fujisawa, K., E-mail: niinuma@yamaguchi-u.ac.jp [Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511 (Japan)

    2012-11-10

    We report on the very long baseline interferometry (VLBI) follow-up observations using the Japanese VLBI Network array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in 2010 mid-February. The total of five epochs of observations were performed at intervals of about 20 days between 2010 March 7 and May 31. No newborn component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at {approx}1 mas northwest from the core was able to be identified, and its proper motion can be measured as -1.66 {+-} 0.46 mas yr{sup -1}, which corresponds to an apparent velocity of -3.48 {+-} 0.97c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10-20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.

  5. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  6. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  7. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  8. Autonomous quantum rotator

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Imparato, Alberto

    2018-01-01

    to a directed rotary motion. At variance with the classical case, the thermal fluctuations in the baths give rise to a non-vanishing average torque contribution; this is a genuine quantum effect akin to the Casimir effect. In the steady state the heat current flowing between the two baths is systematically......, the rotator cannot work either as a heat pump or as a heat engine. We finally use our exact results to extend an ab initio quantum simulation algorithm to the out-of-equilibrium regime. Copyright (C) EPLA, 2018...

  9. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

    1984-01-01

    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  10. Rotational anomalies without anyons

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1985-01-01

    A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory

  11. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  12. Multiscale singular value manifold for rotating machinery fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)

    2017-01-15

    Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.

  13. Optimization of rotational radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Tulovsky, Vladimir; Ringor, Michael; Papiez, Lech

    1995-01-01

    Purpose: Rotational therapy treatment planning for rotationally symmetric geometry of tumor and healthy tissue provides an important example of testing various approaches to optimizing dose distributions for therapeutic x-ray irradiations. In this article, dose distribution optimization is formulated as a variational problem. This problem is solved analytically and numerically. Methods and Materials: The classical Lagrange method is used to derive equations and inequalities that give necessary conditions for minimizing the mean-square deviation between the ideal dose distribution and the achievable dose distribution. The solution of the resulting integral equation with Cauchy kernel is used to derive analytical formulas for the minimizing irradiation intensity function. Results: The solutions are evaluated numerically and the graphs of the minimizing intensity functions and the corresponding dose distributions are presented. Conclusions: The optimal solutions obtained using the mean-square criterion lead to significant underdosage in some areas of the tumor volume. Possible solutions to this shortcoming are investigated and medically more appropriate criteria for optimization are proposed for future investigations

  14. Spin dependence of rotational damping by the rotational plane mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, S; Bracco, A; Million, B [Milan Univ. (Italy). Ist. di Fisica; Herskind, B; Dossing, T; Rasmussen, P [Niels Bohr Inst., Copenhagen (Denmark); Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    In the study of deformed nuclei by gamma spectroscopy, the large quadrupole transition strength known from rotational bands at high excitation energy may be distributed over all final states of a given parity within an interval defined as the rotational damping width {Gamma}{sub rot} The method of rotational plane mapping extracts a value of {Gamma}{sub rot} from the width of valleys in certain planes in the grid plots of triple gamma coincidence data sets. The method was applied to a high spin triple data set on {sup 162,163}Tm taken with NORDBALL at the tandem accelerator of the Niels Bohr Institute, and formed in the reaction {sup 37}Cl + {sup 130}Te. The value {Gamma}{sub rot} = 85 keV was obtained. Generally, experimental values seem to be lower than theoretical predictions, although the only calculation made was for {sup 168}Yb. 6 refs., 3 figs.

  15. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

  16. Laboratory tests of catastrophic disruption of rotating bodies

    Science.gov (United States)

    Morris, A. J. W.; Burchell, M. J.

    2017-11-01

    The results of catastrophic disruption experiments on static and rotating targets are reported. The experiments used cement spheres of diameter 10 cm as the targets. Impacts were by mm sized stainless steel spheres at speeds of between 1 and 7.75 km s-1. Energy densities (Q) in the targets ranged from 7 to 2613 J kg-1. The experiments covered both the cratering and catastrophic disruption regimes. For static, i.e. non-rotating targets the critical energy density for disruption (Q*, the value of Q when the largest surviving target fragment has a mass equal to one half of the pre-impact target mass) was Q* = 1447 ± 90 J kg-1. For rotating targets (median rotation frequency of 3.44 Hz) we found Q* = 987 ± 349 J kg-1, a reduction of 32% in the mean value. This lower value of Q* for rotating targets was also accompanied by a larger scatter on the data, hence the greater uncertainty. We suggest that in some cases the rotating targets behaved as static targets, i.e. broke up with the same catastrophic disruption threshold, but in other cases the rotation helped the break up causing a lower catastrophic disruption threshold, hence both the lower value of Q* and the larger scatter on the data. The fragment mass distributions after impact were similar in both the static and rotating target experiments with similar slopes.

  17. [A Model for Predicting Career Satisfaction of Nurses Experiencing Rotation].

    Science.gov (United States)

    Shin, Sook; Yu, Mi

    2017-08-01

    This study aimed to present and test a structural model for describing and predicting the factors affecting subjective career satisfaction of nurses experiencing rotation and to develop human resources management strategies for promoting their career satisfaction related to rotation. In this cross-sectional study, we recruited 233 nurses by convenience sampling who had over 1 year of career experience and who had experienced rotation at least once at G university hospital. Data were collected from August to September in 2016 using self-reported questionnaires. The exogenous variables consisted of rotation perception and rotation stress. Endogenous variables consisted of career growth opportunity, work engagement, and subjective career satisfaction. A hypothetical model was tested by asymptotically distribution-free estimates, and model goodness of fit was examined using absolute fit, incremental fit measures. The final model was approved and had suitable fit. We found that subjective career satisfaction was directly affected by rotation stress (β=.20, p=.019) and work engagement (β=.58, pcareer growth opportunity and work engagement. However, there was no total effect of rotation stress on subjective career satisfaction (β=-.09, p=.270). Career growth opportunity directly and indirectly affected subjective career satisfaction (β=.29, pcareer satisfaction. The results of this study suggest that it is necessary to establish systematic and planned criteria for rotation so that nurses can grow and develop through sustained work and become satisfied with their career. © 2017 Korean Society of Nursing Science

  18. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  19. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  20. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2018-03-01

    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  1. Internal rotation of the Sun

    International Nuclear Information System (INIS)

    Duvall, T.L. Jr.; Goode, P.R.; Gouch, D.O.

    1984-01-01

    The frequency difference between prograde and retrograde sectoral solar oscillations is analysed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J 2 = (1.7 +- 0.4) x 10 -7 and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity. (author)

  2. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  3. Sporcularda rotator cuff problemleri

    OpenAIRE

    Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim

    2004-01-01

    Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...

  4. Density distortion within a rotating body

    International Nuclear Information System (INIS)

    Lanzano, P.

    1975-01-01

    This paper ascertains the distortion of the density distribution within a self-gravitating body in hydrostatic equilibrium under the influence of rotation. For this purpose, the Poisson equation has been solved by using the undistorted density profile within the Laplacian to obtain the distorted density. The Laplacian has been expressed in terms of a system of curvilinear coordinates for which the equipotential surfaces constitute a family of fundamental surfaces. In performing the requisite algebraic manipulations, the Clairaut and Radau equations developed in a previous paper (Lanzano,1974) were utilized to eliminate the derivatives of the elements pertaining to the equipotential surfaces. The density distortion has been obtained up to third-order terms in a small rotational parameter. (Auth.)

  5. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  6. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  7. Coarsening dynamics of binary liquids with active rotation.

    Science.gov (United States)

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

  8. M Dwarf Rotation from the K2 Young Clusters to the Field. I. A Mass-Rotation Correlation at 10 Myr

    Science.gov (United States)

    Somers, Garrett; Stauffer, John; Rebull, Luisa; Cody, Ann Marie; Pinsonneault, Marc

    2017-12-01

    Recent observations of the low-mass (0.1-0.6 {M}⊙ ) rotation distributions of the Pleiades and Praesepe clusters have revealed a ubiquitous correlation between mass and rotation, such that late M dwarfs rotate an order-of-magnitude faster than early M dwarfs. In this paper, we demonstrate that this mass-rotation correlation is present in the 10 Myr Upper Scorpius association, as revealed by new K2 rotation measurements. Using rotational evolution models, we show that the low-mass rotation distribution of the 125 Myr Pleiades cluster can only be produced if it hosted an equally strong mass-rotation correlation at 10 Myr. This suggests that physical processes important in the early pre-main sequence (PMS; star formation, accretion, disk-locking) are primarily responsible for the M dwarf rotation morphology, and not quirks of later angular momentum (AM) evolution. Such early mass trends must be taken into account when constructing initial conditions for future studies of stellar rotation. Finally, we show that the average M star loses ˜25%-40% of its AM between 10 and 125 Myr, a figure accurately and generically predicted by modern solar-calibrated wind models. Their success rules out a lossless PMS and validates the extrapolation of magnetic wind laws designed for solar-type stars to the low-mass regime at early times.

  9. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  10. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  11. Optical isolation by Faraday rotator

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Matsushima, Isao; Nemoto, Fusashi; Yano, Masaaki

    1984-01-01

    Three Faraday rotators designed as optical isolators in a high power glass laser system are described. The spatial fluctuation of applied magnetic field is less than 1% throughout the Faraday glass rod. The Faraday rotators transmit more than 80% of the forward-going laser light and reject more than 96% of the backward-going light. (author)

  12. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  13. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  14. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  15. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  16. Laser diagnostics of high vibrational and rotational H2-states

    International Nuclear Information System (INIS)

    Mosbach, Th.; Schulz-von der Gathen, V.; Doebele, H.F.

    2002-01-01

    We report on measurements of vibrational and rotational excited electronic-ground-state hydrogen molecules in a magnetic multipole plasma source by LIF with VUV radiation. The measurements are taken after rapid shut-off of the discharge current. Absolute level populations are obtained using Rayleigh scattering calibration with Krypton. The theoretically predicted suprathermal population of the vibrational distribution is clearly identified. We found also non-Boltzmann rotational distributions for the high vibrational states. The addition of noble gases (Argon and Xenon) to hydrogen leads to a decrease of the vibrational population. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  17. Hydrodynamics of rotating superfluids

    International Nuclear Information System (INIS)

    Chandler, E.A.

    1981-01-01

    In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane

  18. Magnetostrophic Rotating Magnetoconvection

    Science.gov (United States)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  19. Rotating quantum Gaussian packets

    International Nuclear Information System (INIS)

    Dodonov, V V

    2015-01-01

    We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)

  20. Rotator cuff pathology

    International Nuclear Information System (INIS)

    Pigeau, I.; Doursounian, L.; Maigne, J.Y.; Guinet, C.; Meary, E.; Buy, J.N.; Touzard, R.C.; Vadrot, D.; Laval-Jeantet, M.

    1989-01-01

    Fifteen volunteers and 73 patients with suspected rotator cuff lesions were examined at 0.5 T with T2 * -weighted gradient-echo (GE) MR imaging (700/33/30 degrees) (oblique coronal and sagittal 3 mm thick, surface coil). Results were compared with those of arthrography (all cases), T1-weighted GE imaging (400/20/90 degrees) (35 cases), surgery (28 cases), and T2-weighted spin-echo (SE) images (2,000/60-120) (17 cases). GE images demonstrated all tears (complete, 32, partial, 12) and was superior to arthrography in determining site and size and in displaying muscles (critical point in surgical planning). In 20 cases without tears on arthrography, GE imaging demonstrated five cases of tendinitis, five cases of bursitis, and six probable intratendinous or superficial partial tears. T2 * -weighted GE imaging was superior to T2-weighted SE and T1-weighted GE imaging, with higher fluid contrast and a low fat signal. Therefore, it might replace arthrography in the diagnosis and surgical approach to this pathology

  1. Rotating electric machine with fluid supported parts

    Science.gov (United States)

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  2. Time-Shift in the OPERA set-up: proof against superluminal neutrinos without the need of knowing the CERN-LNGS distance and Reminiscences on the origin of the Gran Sasso Lab, of the 3rd neutrino and of the "Teramo Anomaly"

    CERN Document Server

    Zichichi, Antonino

    2012-01-01

    The LVD time stability allows to establish a time-shift in the OPERA experiment, thus providing the first proof against Superluminal neutrinos, using the horizontal muons of the "Teramo Anomaly". This proof is particularly interesting since does not need the knowledge of the distance between the place where the neutrinos are produced (CERN) and the place where they are detected (LNGS). Since the Superluminal neutrinos generated in the physics community a vivid interest in good and bad behaviour in physics research, the author thought it was appropriate to recall the origin of the Gran Sasso Lab, of the 3rd neutrino, of the horizontal muons due to the "Teramo Anomaly" and of the oscillation between leptonic flavours, when the CERN-Gran Sasso neutrino beam was included in the project for the most powerful underground Laboratory in the world.

  3. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  4. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  5. [Rotator cuff tear athropathy prevalence].

    Science.gov (United States)

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  6. Experimental studies of rotating exchange flow

    Science.gov (United States)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    with only some across-channel variation. The distribution of the Froude number is found to give some evidence for hydraulic control in a manner similar to that of non-rotating flows under the influence of bottom drag. Flow for Bu1 and Bu<1.

  7. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  8. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  9. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  10. On the relativity of rotation

    International Nuclear Information System (INIS)

    Gron, O.

    2010-01-01

    The question whether rotational motion is relative according to the general theory of relativity is discussed. Einstein's ambivalence concerning this question is pointed out. In the present article I defend Einstein's way of thinking on this when he presented the theory in 1916. The significance of the phenomenon of perfect inertial dragging in connection with the relativity of rotational motion is discussed. The necessity of introducing an extended model of the Minkowski spacetime, in which a globally empty space is supplied with a cosmic mass shell with radius equal to its own Schwarzschild radius, in order to extend the principle of relativity to accelerated and rotational motion, is made clear.

  11. Distributed Parameter Modelling Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    and the development of a short-path evaporator. The oil shale processing problem illustrates the interplay amongst particle flows in rotating drums, heat and mass transfer between solid and gas phases. The industrial application considers the dynamics of an Alberta-Taciuk processor, commonly used in shale oil and oil...... the steady state, distributed behaviour of a short-path evaporator....

  12. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  13. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  14. Differential rotation in magnetic stars

    International Nuclear Information System (INIS)

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  15. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  16. Current status of rotational atherectomy.

    Science.gov (United States)

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Rotating Shadowband Spectroradiometer (RSS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kiedron, P; Schlemmer, J; Klassen, M

    2005-01-01

    The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.

  18. Faraday rotation measurements at Ootacamund

    Science.gov (United States)

    Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.

    1978-01-01

    The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.

  19. Theory of fast (nonadiabatic) nuclear rotation

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    1977-01-01

    The theory of backbending is developed taking into accout the increasing role of nonadiabatic effects, which are concerned with quantum number K violation. Above the transition point, rotation quantum number j (>=) jsub(c) (second-kind transition point), all possible values of the quantity K in the interval -J ( Jsub(c) are obtained. The radius of global nucleon mass distribution in the nucleus is defined from the analysis of the experimental moments of inertia in n-phase. It is in agreement with the radius of distribution of protons alone obtained from electron scattering on nuclei. Assuming the simplest singularity of parametric derivative of the Hamiltonian of the system the general theory of non-temperature (ground state)second-kind phase transitions is developed

  20. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  1. Rotational Seismology Workshop of February 2006

    Science.gov (United States)

    Evans, John R.; Cochard, A.; Graizer, Vladimir; Huang, Bor-Shouh; Hudnut, Kenneth W.; Hutt, Charles R.; Igel, H.; Lee, William H.K.; Liu, Chun-Chi; Majewski, Eugeniusz; Nigbor, Robert; Safak, Erdal; Savage, William U.; Schreiber, U.; Teisseyre, Roman; Trifunac, Mihailo; Wassermann, J.; Wu, Chien-Fu

    2007-01-01

    Introduction A successful workshop titled 'Measuring the Rotation Effects of Strong Ground Motion' was held simultaneously in Menlo Park and Pasadena via video conference on 16 February 2006. The purpose of the Workshop and this Report are to summarize existing data and theory and to explore future challenges for rotational seismology, including free-field strong motion, structural strong motion, and teleseismic motions. We also forged a consensus on the plan of work to be pursued by this international group in the near term. At this first workshop were 16 participants in Menlo Park, 13 in Pasadena, and a few on the telephone. It was organized by William H. K. Lee and John R. Evans and chaired by William U. Savage in Menlo Park and by Kenneth W. Hudnut in Pasadena. Its agenda is given in the Appendix. This workshop and efforts in Europe led to the creation of the International Working Group on Rotational Seismology (IWGoRS), an international volunteer group providing forums for exchange of ideas and data as well as hosting a series of Workshops and Special Sessions. IWGoRS created a Web site, backed by an FTP site, for distribution of materials related to rotational seismology. At present, the FTP site contains the 2006 Workshop agenda (also given in the Appendix below) and its PowerPoint presentations, as well as many papers (reasonable-only basis with permission of their authors), a comprehensive citations list, and related information. Eventually, the Web site will become the sole authoritative source for IWGoRS and shared information: http://www.rotational-seismology.org ftp://ehzftp.wr.usgs.gov/jrevans/IWGoRS_FTPsite/ With contributions from various authors during and after the 2006 Workshop, this Report proceeds from the theoretical bases for making rotational measurements (Graizer, Safak, Trifunac) through the available observations (Huang, Lee, Liu, Nigbor), proposed suites of measurements (Hudnut), a discussion of broadband teleseismic rotational

  2. Identification of Rotating Machines

    Directory of Open Access Journals (Sweden)

    T. Kreuzinger-Janik

    2000-01-01

    Full Text Available In this paper a method is proposed for unbalance identification ofelastic rotors. The method is essentially based on the rotordynamic theory combined with experimental modal analysis and allows to identify the unbalance distribution on the complete rotor. A rotor test rig designed for rotordynamic experiments, modal analysis and especially for the unbalance identification has been developed. It allows an arbitrary excitation with a particularly developed noncontact magnetic exciter, as well as measuring vibrations in radial direction with non-contact laser sensors and eddy currents. Special effects of rotordynamic like anisotropic journal bearings and gyroscopic forces can be simulated. Experimental and theoretical results like mode shapes and unbalance parameters for the laboratory model are presented in detail.

  3. Unbalance influence on the rotating assembly dynamics of a hydro

    Science.gov (United States)

    Jurcu, M.; Pădureanu, I.; Campian, C. V.; Haţiegan, C.

    2018-01-01

    The dynamics of the rotating parts of a hydro is characterized by the dynamic interaction between the rotor, the stator and the working fluid in order to operate the hydro. The main factors influencing the dynamics of the rotating parts of a hydro are: rotor unbalance, unbalanced magnetic pull, shaft misalignment and hydraulic flow regime. Rotor unbalanced is one of the most common factors influencing the dynamic stability of the rotating parts of a hydro. The unbalanced is determined by: uneven distribution of rotating masses, displacement of parts in the rotor during rotation, inhomogeneity of rotor component materials, expansion of the rotor due to heating, and rising speed during the transient discharge of the load. The mechanical imbalance of a rotor can lead to important forces, responsible for the vibration of the machine, which ultimately leads to a shorter operating time. Even a low unbalance can lead, in the case of high speed machines, to major unbalance forces that cause significant damage to the equipment. The unbalance forces cause additional vibrations in the bearings as well as in the foundation plate. To avoid these vibrations, it is necessary in the first stage to balance the static rotor in the construction plant and then to a dynamic rotation balancing.

  4. A new picture for the internal rotation of the sun

    International Nuclear Information System (INIS)

    Morrow, C.A.

    1988-01-01

    This thesis describes a helioseismic quest to determine the angular velocity inside the Sun as a function of depth and latitude. The author analyzes rotational frequency splittings extracted from 15 days of full-disk observations of the solar acoustic oscillations (1 = 15-99) obtained with the Fourier Tachometer (a Doppler analyzing instrument design by Tim Brown). She has compared the observed frequency splittings to those generated by several different physically-motivated models for the solar internal angular velocity. She also introduces convenient preliminary analysis techniques, which require no formal computations and which guide the choices of rotation models. He analysis suggests that the differential rotation in latitude observed at the solar surface pervades the convection zone and perhaps even deeper layers. Thus, the convection zone appears to contain little or no radial gradient of angular velocity. The analysis further indicates that the angular velocity of the outer portion of the radiative interior is constant, or nearly so, at a value that is intermediate between the relatively fast equatorial rate and the slower polar rate of the surface profile. This new picture of the Sun's internal rotation implies that a significant radial gradient exists only in a transitional layer between the convection zone and the radiative interior. This model has intriguing implications for the solar dynamo, for the current distribution and transport of angular momentum, and for the current distribution and transport of angular momentum, and for the rotational and evolutionary history of the Sun

  5. Rotations as coherent states of SU(6) quadrupole phonons in the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Paar, V [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Rio de Janeiro Univ. (Brazil). Inst. de Fisica)

    1981-06-18

    Analytic expressions for the wavefunctions of the ground-state rotational band for even and odd nuclei are derived in terms of spherical quadrupole phonons truncated at N(max) phonons. For N(max) ..-->.. infinite the Bohr-Mottelson rotational states are generated as an asymptotic gaussian distribution of quadrupole phonons.

  6. Rotation of the bulge components of barred galaxies

    International Nuclear Information System (INIS)

    Kormendy, J.

    1982-01-01

    Stellar rotation and velocity-dispersion measurements are presented for the bulge components of the SBO galaxies NGC 1023, 2859, 2950, 4340, 4371, and 7743. The kinematics of nine SB bulges with data available are compared with bulges of unbarred galaxies studied by Kormendy and Illingworth. All of the SB bulges are found to rotate at least as rapidly as oblate-spheroid dynamical models which are flattened by rotation. This result confirms the conclusion of Kormendy and Illingworth that bulges rotate very rapidly. Six SB bulges found by Kormendy and Koo to be triaxial rotate even more rapidly than the oblate models. In this respect, they resemble published n-body models of bars. That is, triaxial bulges are dynamically like bars and unlike elliptical galaxies, which are also believed to be triaxial, but which rotate slowly. Measured velocity anisotropies are found to be consistent with these conclusions. Two ordinary bulges whose rotation is well described by isotropic modes have a ratio of radial to azimuthal velocity dispersion of sigma/sub r//sigma/sub theta/ = 0.96 +- 0.03. In contrast, the triaxial bulge of NGC 3945, which rotates much faster than the isotropic models, has sigma/sub r//sigma/sub theta/ approx.1.31 +- 0.06. This is similar to the degree of anisotropy, sigma/sub r//sigma/sub theta/approx.1.21 +- 0.03, found in a recent n-body bar model by Hohl and Zang. Altogether the kinematic observations imply the triaxial bulges are more disklike than SA bulges. They appear to have been formed with more dissipation than ordinary bulges. These results are consistent with the hypothesis that part of the bulge in many SB galaxies consists of disk material (i.e., gas) which has been transported to the center by the bar. The resulting star formation may produce a very centrally concentrated light distribution which resembles a bulge but which has dislike dynamics

  7. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  8. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  9. Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric

    Science.gov (United States)

    Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.

    2018-04-01

    Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the

  10. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  11. The Third Law of Galactic Rotation

    Directory of Open Access Journals (Sweden)

    Stacy S. McGaugh

    2014-12-01

    Full Text Available I review the connection between dynamics and the baryonic mass distribution in rotationally-supported galaxies. The enclosed dynamical mass-to-light ratio increases with decreasing galaxy luminosity and surface brightness. The correlation with surface brightness appears to be the more fundamental, with the dependence on luminosity following simply from the weaker correlation between luminosity and surface brightness. In addition to this global relation, there is also a local relation between the amplitude of the mass discrepancy and the acceleration predicted by the observed distribution of baryons. I provide an empirical calibration of this mass discrepancy-acceleration relation. The data are consistent with the operation of a singe effective force law in disk galaxies, making this relation tantamount to a natural law. I further provide formulae by which the radial dark matter distribution can be estimated from surface photometry. The form of the dark matter halo depends uniquely on the distribution of baryons in each galaxy and, in general, is neither a cusp nor a core. It remains difficult to see how galaxy formation models can reproduce the observed behavior, which is uniquely predicted by MOND.

  12. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  13. An Edge Rotation and Temperature Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Feder, R.; Johnson, D.W.; Palladino, R.W.

    2003-01-01

    A new diagnostic for the National Spherical Torus Experiment (NSTX) is described whose function is to measure ion rotation and temperature at the plasma edge. The diagnostic is sensitive to C III, C IV, and He II intrinsic emission, covering a radial region of 15 cm at the extreme edge of the outboard midplane. Thirteen chords are distributed between toroidal and poloidal views, allowing the toroidal and poloidal rotation and temperature of the plasma edge to be simultaneously measured with 10 ms resolution. Combined with the local pressure gradient and the EFIT code reconstructed magnetic field profile, the edge flow gives a measure of the local radial electric field

  14. Flat rotation curves using scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Cota, Jorge L [Depto de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 D.F. (Mexico); RodrIguez-Meza, M A [Depto de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 D.F. (Mexico); Nunez, Dario [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 D.F. (Mexico)

    2007-11-15

    We computed flat rotation curves from scalar-tensor theories in their weak field limit. Our model, by construction, fits a flat rotation profile for velocities of stars. As a result, the form of the scalar field potential and DM distribution in a galaxy are determined. By taking into account the constraints for the fundamental parameters of the theory ({lambda}, {alpha}), it is possible to obtain analytical results for the density profiles. For positive and negative values of {alpha}, the DM matter profile is as cuspy as NFW's.

  15. The structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes

  16. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  17. Rotated balance in humans due to repetitive rotational movement

    Science.gov (United States)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  18. Minimum weight design of inhomogeneous rotating discs

    International Nuclear Information System (INIS)

    Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal

    2005-01-01

    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far

  19. Mach's principle and rotating universes

    International Nuclear Information System (INIS)

    King, D.H.

    1990-01-01

    It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero

  20. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  1. The effect of Demkov coupling in the rotational predissociation of 3He4He+, ch. 4

    International Nuclear Information System (INIS)

    Asselt, N.P.F.B. van; Maas, J.G.; Los, J.

    1976-01-01

    The momentum distribution of the 3 He + and the 4 He + fragments, both originating from rotational predissociation of 3 He 4 He + has been measured. There is a pronounced difference between the intensity distributions in both spectra. This difference is explained as the result of a Demkov coupling between the two lowest electronic states of the molecular ion. The rotational quantum numbers of the states involved are calculated from the spectra

  2. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    Science.gov (United States)

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  3. Transverse plane pelvic rotation increase (TPPRI following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves

    Directory of Open Access Journals (Sweden)

    Asher Marc A

    2010-08-01

    Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI

  4. Time-scales of stellar rotational variability and starspot diagnostics

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  5. Rotational order–disorder structure of fluorescent protein FP480

    International Nuclear Information System (INIS)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-01-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate

  6. Modelling of Rotational Capacity in Reinforced Linear Elements

    DEFF Research Database (Denmark)

    Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob

    2011-01-01

    on the rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear......The Capacity Design Method forms the basis of several seismic design codes. This design philosophy allows plastic deformations in order to decrease seismic demands in structures. However, these plastic deformations must be localized in certain zones where ductility requirements can be documented...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well...

  7. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  8. Faraday rotation measures in 20 AGN jets at parsec scale

    Directory of Open Access Journals (Sweden)

    Kravchenko Evgeniya V.

    2013-12-01

    Full Text Available We present multi wavelength parsec-scale Faraday rotation measure properties of twenty active galactic nuclei, observed with the Very Long Baseline Array simultaneously at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz in the full polarization mode. For the observed sources we construct Faraday rotation measure and Faraday-corrected linear polarization maps. Direction of electrical field in the optically thick core regions confirms bimodal distribution. No significant changes of a Faraday rotation measure transverse to the jet direction are found in any of the observed sources. We propose a new magnetic field spatial geometry reconstruction method based on core shift measurements. This technique is applied to the quasar 1004+141. Results indicate an existence of a large scale poloidal magnetic field in the jet of 1004+141.

  9. Rotation of White Dwarf Stars

    OpenAIRE

    Kawaler, Steven D.

    2014-01-01

    I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.

  10. Rotation in a gravitational billiard

    Science.gov (United States)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  11. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  12. A rotating arc plasma invertor

    International Nuclear Information System (INIS)

    Reusch, M.F.; Jayaram, K.

    1987-02-01

    A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances

  13. Ultrasonography of the Rotator Cuff

    International Nuclear Information System (INIS)

    Yoon, Yong Cheol

    2006-01-01

    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  14. Ultrasonography of the Rotator Cuff

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2006-09-15

    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  15. Rotations in a Vertebrate Setting

    Science.gov (United States)

    McCollum, Gin

    2003-05-01

    Rotational movements of the head are often considered to be measured in a single three dimensional coordinate system implemented by the semicircular canals of the vestibular system of the inner ear. However, the vertebrate body -- including the nervous system -- obeys rectangular symmetries alien to rotation groups. At best, nervous systems mimic the physical rotation group in a fragmented way, only partially reintegrating physical movements in whole organism responses. The vestibular canal reference frame is widely used in nervous systems, for example by eye movements. It is used to some extent even in the cerebrum, as evidenced by the remission of hemineglect -- in which half of space is ignored -- when the vestibular system is stimulated. However, reintegration of space by the organism remains incomplete. For example, compensatory eye movements (which in most cases aid visual fixation) may disagree with conscious self-motion perception. In addition, movement-induced nausea, illusions, and cue-free perceptions demonstrate symmetry breaking or incomplete spatial symmetries. As part of a long-term project to investigate rotation groups in nervous systems, we have analyzed the symmetry group of a primary vestibulo-spinal projection.

  16. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  17. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  18. Perturbative treatment of nuclear rotations

    International Nuclear Information System (INIS)

    Civitarese, O.

    1980-01-01

    In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt

  19. Meniscus Stability in Rotating Systems

    Science.gov (United States)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  20. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  1. Experimental study on flow past a rotationally oscillating cylinder

    Science.gov (United States)

    Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

    2017-08-01

    A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

  2. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  3. Wave-Driven Rotation In Centrifugal Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  4. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  5. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    Science.gov (United States)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  6. Magneto-rotational instability in differentially rotating liquid metals

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.

    2006-01-01

    We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4

  7. Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering

    1989-07-01

    We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).

  8. Numerical simulation of fluid flow in a rotational bioreactor

    Science.gov (United States)

    Ganimedov, V. L.; Papaeva, E. O.; Maslov, N. A.; Larionov, P. M.

    2017-10-01

    Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002 - 0.1 Pa).

  9. Effect of Rotational Speed on the Stability of Two Rotating Side-by-side Circular Cylinders at Low Reynolds Number

    Science.gov (United States)

    Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi

    2018-04-01

    Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.

  10. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  11. Development of coaxial rotating-plasma gun

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1985-01-01

    A rotating-plasma gun has been devised to produce plasma streams with higher rotational velocities. The working mechanism of the gun and the results of a preliminary experiment have been described. (author)

  12. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  13. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah; Ghanem, Bernard

    2017-01-01

    . This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate

  14. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  15. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  16. Rotational effects on impingement cooling

    Science.gov (United States)

    Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.

    1987-01-01

    The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.

  17. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  18. Understand rotating isothermal collapses yet

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references

  19. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  20. Muon spin rotation in superconductors

    International Nuclear Information System (INIS)

    Gladisch, M.; Orth, H.; Putlitz, G. zu; Wahl, W.; Wigand, M.; Herlach, D.; Seeger, A.; Metz, H.; Teichler, H.

    1979-01-01

    By means of the muon spin rotation technique (μ + SR), the temperature dependence of the magnetic field inside the normal-conducting domains of high-purity tantalum crystals in the intermediate state has been measured in the temperature range 2.36 K + SR. Possible applications of these findings to the study of long-range diffusion of positive muons at low temperatures are indicated. (Auth.)

  1. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  2. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  3. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  4. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  5. Optical illusions induced by rotating medium

    Science.gov (United States)

    Zang, XiaoFei; Huang, PengCheng; Zhu, YiMing

    2018-03-01

    Different from the traditional single-function electromagnetic wave rotators (rotate the electromagnetic wavefronts), we propose that rotating medium can be extended to optical illusions such as breaking the diffraction limit and overlapping illusion. Furthermore, the homogeneous but anisotropic rotating medium is simplified by homogeneous and isotropic positive-index materials according to the effective medium theory, which is helpful for future device fabrication. Finite element simulations for the two-dimensional case are performed to demonstrate these properties.

  6. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  7. Motor Processes in Children's Mental Rotation

    Science.gov (United States)

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  8. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  9. Investigation of antimagnetic rotation in 100Pd

    International Nuclear Information System (INIS)

    Zhu, S.; Garg, U.; Afanasjev, A. V.; Frauendorf, S.; Kharraja, B.; Ghugre, S. S.; Chintalapudi, S. N.; Janssens, R. V. F.; Carpenter, M. P.; Kondev, F. G.

    2001-01-01

    High spin states have been studied in the nucleus 100 Pd with the aim of investigating the novel phenomenon of ''antimagnetic rotation.'' A cascade of four ''rotational-band-like'' transitions is proposed as corresponding to antimagnetic rotation, based on the observed spectroscopic properties and a comparison with calculations in the configuration-dependent cranked Nilsson-Strutinsky formalism

  10. Flow Visualization of a Rotating Detonation Engine

    Science.gov (United States)

    2016-10-05

    SUPPLEMENTARY NOTES 14. ABSTRACT The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing...2014 – 12/4/2015 Summary: The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing detonation...structure. Studies have been conducted on rotating detonation engines ( RDE ) that obtain thrust from the continuously propagating detonation waves in the

  11. Attitudes towards rotating shift work in clinical nurses: a Q-methodology study.

    Science.gov (United States)

    Ha, Eun-Ho

    2015-09-01

    To identify clinical nurses' attitudes towards rotating shift work. Many hospitals worldwide employ rotating shift work patterns to staff their facilities. Attitudes of clinical nurses towards rotating shift work vary. To understand clinical nurses' attitudes towards rotating shift work, Q-methodology, a method for the analysis of subjective viewpoints with the strengths of both qualitative and quantitative methods, was used. Forty-six selected Q-statements from each of the 39 participants were classified into a normal distribution using an 11-point bipolar scale. The collected data were analysed using pc-QUANL program. Three discrete factors emerged as follows: factor I (rotating shift work is frustrating: objectionable perspective), factor II (rotating shift work is satisfactory: constructive perspective) and factor III (rotating shift work is problematic, but necessary: ambivalent perspective). The subjective viewpoints of the three identified factors can be applied in developing various roster designs for nurses engaging in rotating shift work. The findings provide the baseline for nurse leaders in helping nurses adjust and deal with rotating shift work. © 2015 John Wiley & Sons Ltd.

  12. Similarity flows between a rotating and a stationary disk

    International Nuclear Information System (INIS)

    Buchmann, J.H.; Qassim, R.Y.

    1981-07-01

    The radial distribution of fluid pressure on a stationary disk coaxial with a rotating disk is determined experimentally for various inter-disc spacings. The results show that similarity flows are only possible for both small and large values of this distance. In the former case, the flow faraway from the stationary disk appears to be that suggested by Batchelor, while in the latter case, the flow turns out to be in accordance with the assumption of Stewartson. (Author) [pt

  13. Numerical study of rotating interstellar clouds: equilibrium and collapse

    International Nuclear Information System (INIS)

    Norman, M.L.

    1980-06-01

    Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole

  14. Magnus effect on laminar flow around a rotating cylinder

    International Nuclear Information System (INIS)

    Amarante, J.C.A.

    1989-01-01

    The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)

  15. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  16. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    Science.gov (United States)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  17. Rarefied, rotational gas flows in spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Hausman, M.A.

    1983-01-01

    We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

  18. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  19. Collective rotation from ab initio theory

    International Nuclear Information System (INIS)

    Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.

    2015-01-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)

  20. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  1. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  2. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  3. On the stability of rotational discontinuities

    International Nuclear Information System (INIS)

    Richter, P.; Scholer, M.

    1989-01-01

    The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed

  4. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  5. Staff rotation: implications for occupational therapy.

    Science.gov (United States)

    Taylor, A; Andriuk, M L; Langlois, P; Provost, E

    1995-10-01

    Occupational therapy departments of tertiary care hospitals can provide staff with opportunities to gain diverse clinical experience if they rotate through the various services such as surgery, medicine, geriatrics, plastic surgery and orthopaedics. The system of rotation offers both advantages and disadvantages for the staff and the institution. The Royal Victoria Hospital in Montreal, a large university teaching hospital, had traditionally offered staff the opportunity to rotate. Changes in staffing and their needs however, resulted in rotation becoming an important issue within the department. This article presents the pros and the cons of rotation and non-rotation systems as identified by therapists and administrators across Canada. Staff rotation was found to have an effect on job satisfaction and a therapist's career orientation. Given these findings, administrators may want to reconsider the role of the generalist and specialist in their facilities.

  6. Nuclear shape evolution starting from superdeformed state. Role of two-body collision and rotation

    International Nuclear Information System (INIS)

    Liu, Yu-xin; Sakata, Fumihiko

    1999-01-01

    With the nuclear density distribution being simulated by the Boltzmann Uehling-Uhlenbeck equation and Vlasov equation with several rotational frequencies, the time evolution of the quadrupole moment of nucleus 86 Zr starting with superdeformed shape is studied. The contribution of two-body collisions and the effects of collective rotation to the shape evolution is investigated. The numerical results indicate that the two-body collisions play a role of damping on the evolution from a superdeformed shape to a normal deformed one in a case without rotation. In a case of rotation with lower frequency, the two-body collisions accelerate the evolution process. A new role of the collective rotation to enhance the nuclear fission is proposed. (author)

  7. Application of photostress method in stress analysis of a rotating disc

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented article demonstrates the application of PhotoStressR method in stress analysis of a rotating disc of a constant thickness, which was made of a photoelastic material PS-1A. Isoclinic fringes were observed on the rotating disc using linear polarized light at revolutions 5 000 RPM. Observations were carried out under angle parameter 0 o to 90 o with 10 o increase. A set of isostatic lines of I and II set was made from the set of obtained isoclinic lines. During gradual increase of rotations of the rotating disc up to 17 000 RPM, and with circular polarized light, we observed the distribution of colourful isochromatic fringes on the rotating disc. The field of isochromatic fringes, gained experimentally, at 15 000 RPM was compared with the field which was gained by means of a numerical analysis.

  8. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  9. Parallel computation of rotating flows

    DEFF Research Database (Denmark)

    Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær

    1999-01-01

    This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...

  10. Nondestructive testing bench without rotation

    International Nuclear Information System (INIS)

    Perdijon, J.

    1976-01-01

    On-line testing by ultrasonics in combination with eddy currents represents a large saving in time and equipment since the tube to be checked only needs to pass once quickly and without rotation. The answer to this problem is to use encircling transducers, which means that the mirror interposed to detect transverse defects must be conical while that used to detect longitudinal defects is helically shaped. A cell combining these two mirrors with an eddy current coil to test thin small-diameter tubes is described. The first trial year shows that defects are detected independently of their position, with a sensitivity at least equal to that of conventional systems [fr

  11. Rotational and translational Brownian motion

    International Nuclear Information System (INIS)

    Coffey, W.T.; Salford Univ.

    1980-01-01

    In this review it is proposed to summarise the work on the theory of the translational and rotational Brownian movement which has been carried on over roughly the past 30 years. The review is intended to take the form of a tutorial paper rather than a list of the results obtained by the various investigators over the period in question. In this vein then it seems appropriate to firstly give a brief account of those parts of the theory of probability which are relevant to the problems under discussion. (orig.)

  12. Rotating detectors and Mach's principle

    International Nuclear Information System (INIS)

    Paola, R.D.M. de; Svaiter, N.F.

    2000-08-01

    In this work we consider a quantum version of Newton s bucket experiment in a fl;at spacetime: we take an Unruh-DeWitt detector in interaction with a real massless scalar field. We calculate the detector's excitation rate when it is uniformly rotating around some fixed point and the field is prepared in the Minkowski vacuum and also when the detector is inertial and the field is in the Trocheries-Takeno vacuum state. These results are compared and the relations with Mach's principle are discussed. (author)

  13. Generalization of stochastic visuomotor rotations.

    Directory of Open Access Journals (Sweden)

    Hugo L Fernandes

    Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.

  14. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, D.; Bandyopadhyay, P.

    2005-11-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  15. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  16. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  17. Parallel computation of rotating flows

    DEFF Research Database (Denmark)

    Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær

    1999-01-01

    This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...

  18. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti; Bandyopadhyay, Pratul

    2006-01-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has a spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them allows the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states

  19. Monitoring of large rotating machines at EDF

    International Nuclear Information System (INIS)

    Chevalier, R.; Oswald, G.P.; Morel, J.

    1993-09-01

    The purpose of equipment surveillance is the prevention of major risks, the early detection of abnormal conditions and post-incident analysis to correct faults observed. At EDF, overall vibration monitoring in the control room was supplemented by a special vibration monitoring system. However, in order to satisfy more elaborate, real time detection requirements and benefit from the new possibilities offered by computer-based systems, EDF has developed the PSAD concept (Surveillance and Diagnosis-aid Station) which groups surveillance processing, organized on surveillance functions including turbogenerator and reactor coolant pump surveillance. The purpose of the present paper is to describe the turbogenerator and reactor coolant pump surveillance functions and present the first examples of reactor coolant pump behaviour feedback using a PSAD mockup (Automated Surveillance of Rotating Machines). In the first place, surveillance implies determining exactly what has to be monitored. This entails considering incidents liable to affect machine behaviour and, of course, specifying both the vibration quantities and those defining the operating condition of the machine considered which are necessary to be able to interpret the vibrations. Data processing requirements concern detection of faults and diagnosis aids. Faults detection must be automatic, but not the diagnosis function. Data can be processed to evidence one or several faults, using the most appropriate data display system. Interpretation is then entrusted to experts. To satisfy the above requirements, the PSAD system integrates two new concepts: distributed surveillance, involving depth distribution (different layers of software organized for increasingly sophisticated and gradually narrowing data processing) and space distribution (the work is performed in the most appropriate place, whether this be the plant, with automatic real time processing, or elsewhere if the complexity of the diagnosis so requires

  20. Plasma rotation in plasma centrifuge with an annular gap

    International Nuclear Information System (INIS)

    Lee, H.Y.; Hong, S.H.

    1982-01-01

    The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasma and its feasibility for isotope separation. The centriguge system under consideration consists of an annular gap between coaxial cylindrical anode and cathod in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10 4 m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges. (Author)

  1. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  2. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  3. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  4. Fragmentation of rotating protostellar clouds

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1980-01-01

    We examine, with a three-dimensional hydrodynamic computer code, the behavior of rotating, isothermal gas clouds as they collapse from Jeans unstable configurations, in order to determine whether they are susceptible to fragmentation during the initial dynamic collapse phase of their evolution. We find that a gas cloud will not fragment unless (a) it begins collapsing from a radius much smaller than the Jeans radius (i.e., the cloud initially encloses many Jeans masses) and (b) irregularities in the cloud's initial structure (specifically, density inhomogeneities) enclose more than one Jeans mass of material. Gas pressure smooths out features that are not initially Jeans unstable while rotation plays no direct role in damping inhomogeneities. Instead of fragmenting, most of our models collapse to a ring configuration (as has been observed by other investigators in two-dimensional, axisymmetric models). The rings appear to be less susceptible to gragmentation from arbitrary perturbations in their structure than has previously been indicated in other work. Because our models, which include the effects of gas pressure, do not readily fragment during a phase of dynamic collapse, we suggest that gas clouds in the galactic disk undergo fragmentation only during quasi-equilibrium phases of their evolution

  5. Mars geodesy, rotation and gravity

    International Nuclear Information System (INIS)

    Rosenblatt, Pascal; Dehant, Veronique

    2010-01-01

    This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)

  6. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  7. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  8. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  9. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  10. Rotating frames in special relativity

    International Nuclear Information System (INIS)

    Strauss, M.

    1979-01-01

    The transformation theory for rotating frames presented in a previous paper is generalized by replacing the usual condition r = R for ωR < c (invariance of radius) by r = Rg(βsub(R)) so that r is now defined for all values of R, 0 <= R <= infinity. This generalization does not affect the kinematic transformation bracetheta, T → bracethetasup(r), bracesup(r) and the result group structure required by the theoretical constraints previously established, provided the old parameter 'r' (=R) is now identified throughout with either r or R; for physical reasons it must be identified with R. The function g, which cannot be fixed by theoretical constraints, determines the degree of geometrical anisotropy in the rotating plane z = const. More specifically, since g enters the expression for the ratio C/D (circumference/diameter) its choice corresponds to the choice of a congruence definition for lengths in radial and tangential directions. While on this (purely geometrical) level g remains undetermined, it can be uniquely determined experimentally on the kinematic level, e.g. by observing in Σsup(ω) the motion of a free particle. Thus the supremacy of kinematics over geometry is explicated by a further instance. At the same time, special relativity theory (SRT) is shown to belong to the class of theories with theoretically unsolvable problems. (author)

  11. Validation of the Rotation Ratios Method

    International Nuclear Information System (INIS)

    Foss, O.A.; Klaksvik, J.; Benum, P.; Anda, S.

    2007-01-01

    Background: The rotation ratios method describes rotations between pairs of sequential pelvic radiographs. The method seems promising but has not been validated. Purpose: To validate the accuracy of the rotation ratios method. Material and Methods: Known pelvic rotations between 165 radiographs obtained from five skeletal pelvises in an experimental material were compared with the corresponding calculated rotations to describe the accuracy of the method. The results from a clinical material of 262 pelvic radiographs from 46 patients defined the ranges of rotational differences compared. Repeated analyses, both on the experimental and the clinical material, were performed using the selected reference points to describe the robustness and the repeatability of the method. Results: The reference points were easy to identify and barely influenced by pelvic rotations. The mean differences between calculated and real pelvic rotations were 0.0 deg (SD 0.6) for vertical rotations and 0.1 deg (SD 0.7) for transversal rotations in the experimental material. The intra- and interobserver repeatability of the method was good. Conclusion: The accuracy of the method was reasonably high, and the method may prove to be clinically useful

  12. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  14. Poloidal plasma rotation in the presence of RF waves in tokamaks

    International Nuclear Information System (INIS)

    Weyssow, B.; Liu, Caigen

    2001-01-01

    It is well known that one of the consequences of strong RF heating is the deformation of the equilibrium distribution function that induces a change in plasma transport and plasma rotation. The poloidal plasma rotation during RF wave heating in tokamaks is investigated using a moment approach. A set of closed, self-consistent transport and rotation equations is derived and reduced to a single equation for the poloidal particle flux. The formulas are sufficiently general to apply to heating schemes that can be represented by a quasilinear operator. (author)

  15. Visualization of the flow in a cylindrical container with a rotating disk

    Science.gov (United States)

    Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

    2017-11-01

    We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.

  16. Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer

    Science.gov (United States)

    2016-12-01

    release; distribution is unlimited. 1. Introduction This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional...ARL-TR-7894•DEC 2016 US Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier...Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier Survivability/Lethality

  17. TIME-DEPENDENT NONEXTENSIVITY ARISING FROM THE ROTATIONAL EVOLUTION OF SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J. R. P.; Nepomuceno, M. M. F.; Soares, B. B.; De Freitas, D. B., E-mail: joseronaldo@uern.br [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró-RN (Brazil)

    2013-11-01

    Nonextensive formalism is a generalization of the Boltzmann-Gibbs statistics. In this formalism, the entropic index q is a quantity characterizing the degree of nonextensivity and is interpreted as a parameter of long-memory or long-range interactions between the components of the system. Since its proposition in 1988, this formalism has been applied to investigate a wide variety of natural phenomena. In stellar astrophysics, a theoretical distribution function based on nonextensive formalism (q distributions) has been successfully applied to reproduce the distribution of stellar radial and rotational velocity data. In this paper, we investigate the time variation of the entropic index q obtained from the distribution of rotation, Vsin i, for a sample of 254 rotational data for solar-type stars from 11 open clusters aged between 35.5 Myr and 2.6 Gyr. As a result, we have found an anti-correlation between the entropic index q and the age of clusters, and that the distribution of rotation Vsin i for these stars becomes extensive for an age greater than about 170 Myr. Assuming that the parameter q is associated with long-memory effects, we suggest that the memory of the initial angular momentum of solar-type stars can be scaled by the entropic index q. We also propose a physical link between the parameter q and the magnetic braking of stellar rotation.

  18. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    International Nuclear Information System (INIS)

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-01-01

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  19. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  20. Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2013-01-01

    When delivering conventional intensity modulated radiotherapy (IMRT), discrepancies between the pre-treatment CT/MRI/PET based patient geometry and the daily patient geometry are minimized by performing couch translations and/or small rotations. However, full compensation of, in particular, rotations is usually not possible. In this paper, we introduce an online ‘virtual couch shift (VCS)’: we translate and/or rotate the pre-treatment dose distribution to compensate for the changes in patient anatomy and generate a new plan which delivers the transformed dose distribution automatically. We show for a phantom and a cervical cancer patient case that VCS accounts for both translations and large rotations equally well in terms of DVH results and 2%/2 mm γ analyses and when the various aspects of the clinical workflow can be implemented successfully, VCS can potentially outperform physical couch translations and/or rotations. This work is performed in the context of our hybrid 1.5 T MRI linear accelerator, which can provide translations and rotations but also deformations of the anatomy. The VCS is the first step toward compensating all of these anatomical changes by online re-optimization of the IMRT dose distribution. (paper)

  1. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  2. The rotation of P/Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Szegoe, K.; Kondor, A.; Merenyi, E.; Smith, B.A.; Larson, S.; Toth, I.

    1987-11-01

    The nucleus of the comet Halley rotates as a slightly asymmetric top, the orientation of the rotation axis (the orientation of the angular momentum vector) is b=54 deg +-15 deg, l=219 deg +-15 deg in the ecliptic system. In the case of the rotation of an asymmetric top the rotation axis is not fixed rigidly to the body, which means that while the nucleus rotates around the axis with a period of 2.2+-0.05 d, its long axis 'nods' periodically with a period of 7.4+-0.05 d. The amplitude of the 'nodding' is about 15 deg +-3 deg in both directions relative to a plane perpendicular to the rotation axis. (author) 21 refs.; 6 figs.; 2 tabs

  3. Contained Modes In Mirrors With Sheared Rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  4. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  5. Polygons on a rotating fluid surface.

    Science.gov (United States)

    Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

    2006-05-05

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

  6. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  7. Contained modes in mirrors with sheared rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  8. Controlling Sample Rotation in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  9. Continuously rotating cat scanning apparatus and method

    International Nuclear Information System (INIS)

    Bax, R.F.

    1980-01-01

    A tomographic scanner with a continuously rotating source of radiation is energized by converting inertial mechanical energy to electrical energy. The mechanical-to-electrical conversion apparatus is mounted with the x-ray source to be energized on a rotating flywheel. The inertial mechanical energy stored in the rotating conversion apparatus, flywheel and x-ray source is utilized for generating electrical energy used, in turn, to energize the x-ray source

  10. Duality rotations for interacting fields

    International Nuclear Information System (INIS)

    Gaillard, M.K.; Zumino, Bruno

    1981-05-01

    We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the equations of motion requires that the Lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energy momentum tensor, and also in the general construction of the Lagrangian. Finally we comment on the existence of zero mass spin one bound states in N=8 supergravity, which possesses a non-compact E 7 dual invariance

  11. Rotation of the Solar Equator

    Science.gov (United States)

    Kotov, V. A.

    2017-06-01

    Regular measurements of the general magnetic field of the Sun, performed over about half a century at the Crimean Astrophysical Observatory, the J. Wilcox Solar Observatory, and five other observatories, are considered in detail for the time 1968 - 2016. They include more than twenty-six thousand daily values of the mean line-of-sight field strength of the visible solar hemisphere. On the basis of these values, the equatorial rotation period of the Sun is found to be 26.926(9) d (synodic). It is shown that its half-value coincides within error limits with both the main period of the magnetic four-sector structure, 13.4577(25) d, and the best-commensurate period of the slow motions of the major solar system bodies, 13.479(22) d (sidereal). The probability that the two periods coincide by chance is estimated to be about 10^{-7}. The true origin of this odd resonance is unknown.

  12. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  13. SPARSE FARADAY ROTATION MEASURE SYNTHESIS

    International Nuclear Information System (INIS)

    Andrecut, M.; Stil, J. M.; Taylor, A. R.

    2012-01-01

    Faraday rotation measure synthesis is a method for analyzing multichannel polarized radio emissions, and it has emerged as an important tool in the study of Galactic and extragalactic magnetic fields. The method requires the recovery of the Faraday dispersion function from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we discuss a recovery method that assumes a sparse approximation of the Faraday dispersion function in an overcomplete dictionary of functions. We discuss the general case when both thin and thick components are included in the model, and we present the implementation of a greedy deconvolution algorithm. We illustrate the method with several numerical simulations that emphasize the effect of the covered range and sampling resolution in the Faraday depth space, and the effect of noise on the observed data.

  14. The solar house that rotates

    International Nuclear Information System (INIS)

    Miloni, R.P.

    2001-01-01

    This article describes an innovative solar building in Weiz, Austria, that uses passive solar technologies, photovoltaics and a ground-coupled heat pump to cover its minimal energy requirements. The house, which follows the sun by rotating around its central axis, is described in detail, including its climatic design and its 'plus-energy' concept. Details are also given on the materials used in the house's construction and the functioning of its thermal insulation. The various operating modes of the house from the systems point of view are described for differing seasons and climatic extremes. Marketing aspects for this standardised house, featuring personal-computer-based on-line definition of facade cladding, fittings, photovoltaic power, furnishings etc. and real-time rendering of the house are also discussed

  15. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  16. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  17. Hall effect in the presence of rotation

    Science.gov (United States)

    Zubkov, M. A.

    2018-02-01

    A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.

  18. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  19. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  20. Rotational spectroscopy with an optical centrifuge.

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  1. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  2. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  3. Injection Therapies for Rotator Cuff Disease.

    Science.gov (United States)

    Lin, Kenneth M; Wang, Dean; Dines, Joshua S

    2018-04-01

    Rotator cuff disease affects a large proportion of the overall population and encompasses a wide spectrum of pathologies, including subacromial impingement, rotator cuff tendinopathy or tear, and calcific tendinitis. Various injection therapies have been used for the treatment of rotator cuff disease, including corticosteroid, prolotherapy, platelet-rich plasma, stem cells, and ultrasound-guided barbotage for calcific tendinitis. However, the existing evidence for these therapies remains controversial or sparse. Ultimately, improved understanding of the underlying structural and compositional deficiencies of the injured rotator cuff tissue is needed to identify the biological needs that can potentially be targeted with injection therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  5. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  6. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.

    2006-01-01

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  7. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  8. Diffusing diffusivity: Rotational diffusion in two and three dimensions

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-06-01

    We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.

  9. Kinoform design with an optimal-rotation-angle method.

    Science.gov (United States)

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  10. Faraday rotation measurements in maghemite-silica aerogels

    International Nuclear Information System (INIS)

    Taboada, E.; Real, R.P. del; Gich, M.; Roig, A.; Molins, E.

    2006-01-01

    Faraday rotation measurements have been performed on γ-Fe 2 O 3 /SiO 2 nanocomposite aerogels which are light, porous and transparent magnetic materials. The materials have been prepared by sol-gel polymerization of a silicon alkoxide, impregnation of the intermediate silica gel with a ferrous salt and supercritical drying of the gels. During supercritical evacuation of the solvent, spherical nanoparticles of iron oxide, with a mean particle diameter of 8.1±2.0 nm, are formed and are found to be homogenously distributed within the silica matrix. The specific Faraday rotation of the composite was measured at 0.6 T using polarized light of 810 nm, being 29.6 deg./cm. The changes in the plane of polarization of the transmitted light and the magnetization of the material present similar magnetic field dependencies and are characteristic of a superparamagnetic system

  11. Can mergers make slowly rotating elliptical galaxies

    International Nuclear Information System (INIS)

    White, S.D.M.

    1979-01-01

    The results of numerical experiments are used to guide an analytic discussion of hyperbolic mergers among an uncorrelated galaxy population. The expected merger rate is derived as a function of progenitor mass and relative angular momentum, and is used to predict the distribution of the parameter V/sub c//sigma 0 for merger products where V/sub c/ is the maximum observed rotation velocity in a galaxy and sigma 0 is its central velocity dispersion. The median value of this parameter for mergers between comparable galaxies is estimated to be 0.65 and is higher than the observed value in any of the 14 galaxies for which data are available. It seems unlikely that most elliptical galaxies are the result of single or multiple mergers between initially unbound stellar systems; further observational and theoretical work is suggested which should lead to a conclusive test of this picture. The present arguments cannot, however, exclude formation from low angular momentum elliptical orbits

  12. Mudflow rheology in a vertically rotating flume

    Science.gov (United States)

    Holmes, Robert R.; Westphal, Jerome A.; Jobson, Harvey E.; ,

    1990-01-01

    Joint research by the U.S. Geological Survey and the University of Missouri-Rolla currently (1990) is being conducted on a 3.05 meters in diameter vertically rotating flume used to simulate mudflows under steady-state conditions. Observed mudflow simulations indicate flow patterns in the flume are similar to those occurring in natural mudflows. Variables such as mean and surface velocity, depth, and average boundary shear stress can be measured in this flume more easily than in the field or in a traditional tilting flume. Sensitive variables such as sediment concentration, grain-size distribution, and Atterberg limits also can be precisely and easily controlled. A known Newtonian fluid, SAE 30 motor oil, was tested in the flume and the computed value for viscosity was within 12.5 percent of the stated viscosity. This provided support that the data from the flume can be used to determine the rheological properties of fluids such as mud. Measurements on mud slurries indicate that flows with sediment concentrations ranging from 81 to 87 percent sediment by weight can be approximated as Bingham plastic for strain rates greater than 1 per second. In this approximation, the yield stress and Bingham viscosity were extremely sensitive to sediment concentration. Generally, the magnitude of the yield stress was large relative to the change in shear stress with increasing mudflow velocity.

  13. Rotational band structure in 132La

    International Nuclear Information System (INIS)

    Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.

    1989-01-01

    '3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es

  14. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  15. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  16. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    International Nuclear Information System (INIS)

    Farley, David R.

    2010-01-01

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N (ge) 3, with a rotational temperature between the wall and feed gas temperatures. The N = 0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  17. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation

    DEFF Research Database (Denmark)

    Weiss, Michael M; Wolbers, Thomas; Peller, Martin

    2008-01-01

    Functional neuroimaging studies have identified a set of areas in the intraparietal sulcus and dorsal precentral cortex which show a linear increase in activity with the angle of rotation across a variety of mental rotation tasks. This linear increase in activity with angular disparity suggests t...... modulated by angular disparity during the stimulus categorization task. These results suggest that at least for alphanumerical characters, areas implicated in mental rotation will only be called into action if the task requires a rotational transformation....

  18. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  19. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  20. Control of the dielectric microrods rotation in liquid by alternating current electric field

    Science.gov (United States)

    Ren, Yukun; Li, Bin; Jiang, Hongyuan

    2014-05-01

    Microfluidics is a promising system for the manipulation of micro-nano particles and fluids. In this platform, alternating current (AC) electric field is usual an effective tool for the general particles control. However, traditional work paid more attention on the regular spherical particles with no obvious distinction when rotating, resulting in imprecise rotation speed calculation. In essence, non-spherical especially biocompatible particles are not only important for biology application but also significant for obtaining accurate rotating results. Hence, in this paper, SU-8, one of the most biocompatible materials was selected as the manipulation object. AC electric field is employed to rotate SU-8 microrods, in order to obtain a controllable rotation angle for both the accurate experimental results and biosensor applications. Firstly, Clausius-Mossotti(CM) factors frequency spectra with different surface conductance and medium conductivities are presented, thereby the theoretical formula is carried out, including both the torque and rotation velocity expressions of SU-8 microrods. Moreover, simulations for the electric field distribution are developed, indicating the rotating direction. Secondly, the quadrupole electrodes are used to generate rotating electric field, and the electrorotation of SU-8 microrods in different medium is carried out, showing that the particles rotate in the opposite direction of the electric field, meanwhile, the peak frequency increases with the conductivity increases. Finally, the experimental results are discussed and compared with theoretical analysis, and the comparison result shows that they have a good agreement. This work proposes an effective and controllable method to rotate microrods, showing extend application potentials in microelectronics and biosensors.