WorldWideScience

Sample records for superluminal pulse propagation

  1. Negative and Superluminal Group Velocity Propagation with Narrow Pulse in a Coaxial Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    OU Xiao-Juan; ZHOU Wei; LI Lin; TENG Li-Hu; FENG Bao-Ying; ZHENG Sheng-Feng; WANG Feng-Wei

    2007-01-01

    We investigate the propagation of electric signal along a spatially periodic impedance mismatched transmission line group. Anomalous dispersion is caused by the periodically mismatched impedance structure and a forbidden band appears near 8 MHz in transmission. The group velocity of the amplitude-modulated signal is augmented up to infinity, even -3.89c (c the speed of light in vacuum) in the forbidden region with the amplitude of the modulated signal increasing. When the carrier sinusoid signal is modulated in amplitude by the modulating sinusoid signal, of which the peak is superimposed with a narrow pulse at fivefold frequency, the superluminal group velocity also occurs. The experiment failed to show whether the propagation velocity of narrow pulse exceeds c or not.

  2. Is OPERA Neutrino Superluminal Propagation similar to Gain-Assisted Superluminal Light Propagation

    CERN Document Server

    Pankovic, Vladan

    2011-01-01

    In this work we consider a possible conceptual similarity between recent, amazing OPERA experiment of the superluminal propagation of neutrino and experiment of the gain-assisted superluminal light propagation realized about ten years ago. Last experiment refers on the propagation of the light, precisely laser pulse through a medium, precisely caesium atomic gas, with characteristic anomalous dispersion and corresponding negative group-velocity index that implies superluminal propagation of the light through this medium. Nevertheless all this, at it has been pointed out by authors, "is not at odds with causality or special relativity", since it simply represents "a direct consequence of the classical interference between ... different frequency components". We observe that OPERA experiment is in many aspects conceptually very similar to the gain-assisted superluminal light propagation, including superposition of the neutrinos component and superluminality magnitudes. For this reason we suppose that OPERA expe...

  3. Gain-assisted superluminal microwave pulse propagation via four-wave mixing in superconducting phase quantum circuits

    CERN Document Server

    Sabegh, Z Amini; Maleki, M A; Mahmoudi, M

    2015-01-01

    We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.

  4. Invisibility cloaking without superluminal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Perczel, Janos; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Tyc, Tomas, E-mail: jp394@st-andrews.ac.uk, E-mail: tomtyc@physics.muni.cz, E-mail: ulf@st-andrews.ac.uk [Faculty of Science, Kotlarska 2 and Faculty of Informatics, Botanicka 68a, Masaryk University, 61137 Brno (Czech Republic)

    2011-08-15

    Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needs media with superluminal propagation. Here we show by giving an example that this is no longer necessary.

  5. Superluminal propagation: Light cone and Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mugnai, D. [' Nello Carrara' Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)]. E-mail: d.mugnai@ifac.cnr.it

    2007-05-14

    Superluminal behavior has been extensively studied in recent years, especially with regard to the topic of superluminality in the propagation of a signal. Particular interest has been devoted to Bessel-X waves propagation, since some experimental results showed that these waves have both phase and group velocities greater that light velocity c. However, because of the lack of an exact definition of signal velocity, no definite answer about the signal propagation (or velocity of information) has been found. The present Letter is a short note that deals in a general way with this vexed question. By analyzing the field of existence of the Bessel X-pulse in pseudo-Euclidean spacetime, it is possible to give a general description of the propagation, and to overcome the specific question related to a definition of signal velocity.

  6. Has superluminal light propagation been observed?

    OpenAIRE

    Zhang, Yuan-Zhong

    2000-01-01

    It says in the report$^1$ by Wang et al. that a negative group velocity $u=-c/310$ is obtained and that a pulse advancement shift 62-ns is measured. The authors claim that the negative group velocity is associated with superluminal light propagation and that the pulse advancement is not at odds with causality or special relativity. However, it is shown here that their conclusions above are not true. Furthermore, I give some suggestion concerning a re-definition of group-velocity and a new exp...

  7. Neutrino oscillations and superluminal propagation

    CERN Document Server

    Magueijo, Joao

    2011-01-01

    We digress on the implications of recent claims of superluminal neutrino propagation. No matter how we turn it around such behaviour is very odd and sits uncomfortably even within "far-fetched" theories. In the context of non-linear realizations of the Lorentz group (where superluminal misbehaviour is run of the mill) one has to accept rather contrived constructions to predict superluminal properties for the neutrino. The simplest explanation is to require that at least one of the mass states be tachyonic. We show that due to neutrino mixing, the flavor energy does not suffer from the usual runaway pathologies of tachyons. For non-tachyonic mass states the theories become more speculative. A neutrino specific dispersion relation is exhibited, rendering the amplitude of the effect reasonable for a standard Planck energy. This uses the fact that the beam energy is close to the geometrical average of the neutrino and Planck mass; or, seen in another way, the beam energy is unexceptional but its gamma factor is v...

  8. Superluminal light propagation via quantum interference in decay channels

    OpenAIRE

    Arun, R.

    2016-01-01

    We examine the propagation of a weak probe light through a coherently driven $Y$-type system. Under the condition that the excited atomic levels decay via same vacuum modes, the effects of quantum interference in decay channels are considered. It is found that the interference in decay channels results in a lossless anomalous dispersion between two gain peaks. We demonstrate that the probe pulse propagation can in principle be switched from subluminal to superluminal due to the decay-induced ...

  9. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.

    Science.gov (United States)

    Jiang, Qichang; Zhang, Yan; Wang, Dan; Ahrens, Sven; Zhang, Junxiang; Zhu, Shiyao

    2016-10-17

    We report the experimental manipulation of the group velocities of reflected and transmitted light pulses in a degenerate two-level atomic system driven by a standing wave, which is created by two counter-propagating light beams of equal frequencies but variable amplitudes. It is shown that the light pulse is reflected with superluminal group velocity while the transmitted pulse propagates from subluminal to superluminal velocities via changing the power of the backward coupling field. We find that the simultaneous superluminal light reflection and transmission can be reached when the power of the backward field becomes closer or equal to the forward power, in this case the periodical absorption modulation for photonic structure is established in atoms. The theoretical discussion shows that the anomalous dispersion associated with a resonant absorption dip within the gain peak due to four-wave mixing leads to the superluminal reflection, while the varying dispersion from normal to anomalous at transparency, transparency within absorption, and electromagnetically induced absorption windows leads to the subluminal to superluminal transmission.

  10. Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system

    Science.gov (United States)

    Hamide Kazemi, S.; Ghanbari, S.; Mahmoudi, M.

    2016-01-01

    The propagation of a probe laser field in a cavity optomechanical system with a Bose-Einstein condensate is studied. The transmission properties of the system are investigated and it is shown that the group velocity of the probe pulse field can be controlled by Rabi frequency of the pump laser field. The effect of the decay rate of the cavity photons on the group velocity is studied and it is demonstrated that for small values of the decay rates, the light propagation switches from subluminal to superluminal just by changing the Rabi frequency of the pump field. Then, the gain-assisted superluminal light propagation due to the cross-Kerr nonlinearity is established in cavity optomechanical system with a Bose-Einstein condensate. Such behavior can not appear in the pump-probe two-level atomic systems in the normal phase. We also find that the amplification is achieved without inversion in the population of the quantum energy levels.

  11. Unified interpretation of superluminal behaviors in wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Viliani, G. [Dipartimento di Fisica, Universita di Trento, 38050 Povo, Trento (Italy); Ranfagni, C. [Facolta di Scienze Matematiche Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Firenze (Italy); Mignani, R. [Dipartimento di Fisica ' Edoardo Amaldi' , Universita degli Studi di Roma ' Roma Tre' , Via della Vasca Navale 84, 00146 Roma (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy)

    2007-10-29

    By using two approaches, we demonstrate that superluminal behaviors in wave propagation can be attributed to mechanisms acting in the near-field limit. One approach is based on complex waves, while the other relies on a path-integral treatment of stochastic motion. The results of the two approaches are comparable, and suitable for interpreting the data obtained in microwave experiments; these experiments, over a wide range of distances, show a time advance which, in any case, is limited to nanoseconds.

  12. Stimulated generation of superluminal light pulses via four-wave mixing.

    Science.gov (United States)

    Glasser, Ryan T; Vogl, Ulrich; Lett, Paul D

    2012-04-27

    We report on the four-wave mixing of superluminal pulses, in which both the injected and generated pulses involved in the process propagate with negative group velocities. Generated pulses with negative group velocities of up to v(g)=-1/880c are demonstrated, corresponding to the generated pulse's peak exiting the 1.7 cm long medium ≈50 ns earlier than if it had propagated at the speed of light in vacuum, c. We also show that in some cases the seeded pulse may propagate with a group velocity larger than c, and that the generated conjugate pulse peak may exit the medium even earlier than the amplified seed pulse peak. We can control the group velocities of the two pulses by changing the seed detuning and the input seed power.

  13. SGC Switching Between Subluminal to Superluminal Propagation in V-Type Atom

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; GUO Hong; BAI Yan-Feng; SUN Hui; ZENG Ya-Guang

    2006-01-01

    For a V-type three-level atomic system with two closely spaced upper levels, we investigate the light pulse propagation properties with only one laser field. Due to spontaneously generated coherence, the group velocity of the light pulse can be changed from subluminal to superluminal. The effects of the field intensity and the two-upper level splitting on the group velocity are also shown. At last, an analytical expression for the group velocity is given in the case of a weak field.

  14. Bessel-X waves: superluminal propagation and the Minkowski space-time

    OpenAIRE

    Mugnai, D.

    2006-01-01

    Superluminal behavior has been extensively studied in recent years, especially with regard to the topic of superluminality in the propagation of a signal. Particular interest has been devoted to Bessel-X waves propagation, since some experimental results showed that these waves have both phase and group velocities greater that light velocity c. However, because of the lack of an exact definition of signal velocity, no definite answer about the signal propagation (or velocity of information) h...

  15. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  16. Comment on: Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system

    Science.gov (United States)

    Macke, Bruno; Ségard, Bernard

    2016-09-01

    In a recent theoretical article [S.H. Kazemi, S. Ghanbari, M. Mahmoudi, Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.

  17. Comment on "Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system"

    CERN Document Server

    Macke, Bruno

    2016-01-01

    In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.

  18. Maximal refraction and superluminal propagation in a gaseous nanolayer

    CERN Document Server

    Keaveney, J; Sargsyan, A; Sarkisyan, D; Adams, C S

    2012-01-01

    We present an experimental measurement of the refractive index of high density Rb vapor in a gaseous atomic nanolayer. We use heterodyne interferometry to measure the relative phase shift between two copropagating laser beams as a function of the laser detuning and infer a peak index n = 1.26 \\pm 0.02, close to the theoretical maximum of 1.31. The large index has a concomitant large index gradient creating a region with steep anomalous dispersion where a sub-nanosecond optical pulse is advanced by >100 ps over a propagation distance of 390 nm, corresponding to a group index of -1x10^5, the largest negative group index measured to date.

  19. Sub- and super-luminal light propagation using a Rydberg state

    CERN Document Server

    Bharti, Vineet

    2016-01-01

    We present a theoretical study to investigate sub- and super-luminal light propagation in a rubidium atomic system consisting of a Rydberg state by using density matrix formalism. The analysis is performed in a 4-level vee+ladder system interacting with a weak probe, and strong control and switching fields. The dispersion and absorption profiles are shown for stationary atoms as well as for moving atoms by carrying out Doppler averaging at room temperature. We also present the group index variation with control Rabi frequency and observe that a transparent medium can be switched from sub- to super-luminal propagation in the presence of switching field. Finally, the transient response of the medium is discussed, which shows that the considered 4-level scheme has potential applications in absorptive optical switching.

  20. Superluminal propagation and broadband omnidirectional antireflection in optical reflectionless potentials

    CERN Document Server

    Thekkekara, L V; Kasture, Sachin; Mulay, Gajendra; Gupta, S Dutta

    2013-01-01

    Reflectionless potentials (RPs) represent a class of potentials that offer total transmission in the context of one dimensional scattering. Optical realization of RPs in stratified medium can exhibit broadband omnidirectional antireflection property. In addition to the antireflection property, RPs are also expected to demonstrate negative delay. We designed refractive index profiles conforming to RPs and realize them in stratified media consisting of Al2O3 and TiO2 heterolayers. In these structures we observed < 1% reflection over the broad wavelength range of 350 nm to 2500 nm for angles of incidence 0 - 50 degrees. The observed reflection and transmission response of RPs are polarization independent. A negative delay of about 31 fsec with discernible pulse narrowing was observed in passage through two RPs. These RPs can be interesting for optical instrumentation as broadband, omni-directional antireflection coatings as well as in pulse control and transmission applications like delay lines.

  1. Superluminal Propagation in Er3+-doped Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    ZHUO Zhong-chang; SU Xue-mei; YU Yong-sen; ZHENG Wei; ZHANG Yu-shu

    2005-01-01

    The method to pump the FBG written into an Er3+-doped optical fiber is proposed to increase the group velocity of a probing pulse based on the facts that pump-induced process changes the refractive index and dispersion associated with the 4I15/2 -4I13/2 transition in Er3+-doped optical fiber. The system equations are derived. The effects of pump power and doping concentration on the group velocity are discussed.

  2. Diffraction effects in microwave propagation at the origin of superluminal behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Firenze (Italy)

    2008-10-27

    Superluminal behaviors, as evidenced by the presence of forerunners, in advanced position with respect to the main luminal peak, have been revealed in microwave propagation experiments by using a radar technique. The results are interpreted on the basis of (fast) complex waves, usually considered only in the near-field region, but still surviving beyond this limit. Consideration of further diffraction effects, as due to geometrical limitations of the experimental set-up, allows for the obtainment of a plausible description of the results.

  3. Superluminal Propagation Caused by Radiative Corrections in a Uniform Electromagnetic Field

    CERN Document Server

    Shiba, Noburo

    2012-01-01

    We consider the effect of radiative corrections on the maximum velocity of propagation of neutral scalar fields in a uniform electromagnetic field. The propagator of neutral scalar fields interacting with charged fields depends on the electromagnetic field through charged particle loops. The kinetic terms of the scalar fields are corrected and the maximum velocity of the scalar particle becomes greater or less than unity. We show that the maximum velocity becomes greater than unity in a simple example, a neutral scalar field coupled with two charged Dirac fields by Yukawa interaction. The maximum velocity depends on the frame of reference and causality is not violated. We discuss the possibility of this superluminal propagation in the Standard Model.

  4. Hole-burning in an Autler-Townes doublet and in superluminal (subluminal) Electromagnetically induced transparency of a light pulse via a joint nonlinear coherent Kerr effect and Doppler broadening

    CERN Document Server

    Bacha, Bakhtt A; Ahmad, Iftikhar

    2013-01-01

    We investigate the behavior of light pulse propagation in a 4-level double Lambda atomic system under condition of electromagnetically induced transparency. The Fano type interference effect and spectral hole burning appears in the the dynamics of the absorption-dispersion spectra caused by the joint nonlinear coherence Kerr effect and Doppler broadening. The coherent Kerr effect exhibits an enhancement (reduction) in superluminal (subluminal) in negative (in positive) group index while the Doppler broadening generates multiple hole burning in the Autler-Townes like spectra of this system. The hole burning in addition with coherent Kerr effect on the spectral profile influences the dynamics of subluminal and superluminal of the probe pulse through the medium. The characteristics of superluminality and subluminality modified by considering cold-Kerr-free medium and hot-Kerr-dependent mediums. The light pulse delays and advances in different regions of dispersion medium with the Doppler broadening and coherent ...

  5. `Superluminal' Photon Propagation in QED in Curved Spacetime is Dispersive and Causal

    CERN Document Server

    Hollowood, Timothy J

    2010-01-01

    It is now well-known that vacuum polarisation in QED can lead to superluminal low-frequency phase velocities for photons propagating in curved spacetimes. In a series of papers, we have shown that this quantum phenomenon is dispersive and have calculated the full frequency dependence of the refractive index, explaining in detail how causality is preserved and various familiar results from quantum field theory such as the Kramers-Kronig dispersion relation and the optical theorem are realised in curved spacetime. These results have been criticised in a recent paper by Akhoury and Dolgov arXiv:1003.6110 [hep-th], who assert that photon propagation is neither dispersive nor necessarily causal. In this note, we point out a series of errors in their work which have led to this false conclusion.

  6. Visualization of superluminal pulses inside a white light cavity using plane wave spatio temporal transfer functions.

    Science.gov (United States)

    Yum, H N; Jang, Y J; Liu, X; Shahriar, M S

    2012-08-13

    In a white light cavity (WLC), the group velocity is superluminal over a finite bandwidth. For a WLC-based data buffering system we recently proposed, it is important to visualize the behavior of pulses inside such a cavity. The conventional plane wave transfer functions, valid only over space that is translationally invariant, cannot be used for the space inside WLC or any cavity, which is translationally variant. Here, we develop the plane wave spatio temporal transfer function (PWSTTF) method to solve this problem, and produce visual representations of a Gaussian input pulse incident on a WLC, for all times and positions.

  7. Propagation of Superluminous L-O Mode Waves During Geomagnetic Activities

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang; CHEN Lunjin; ZHENG Huinan; ZHOU Qinghua; WANG Shui

    2008-01-01

    The effect of the azimuthal angle ψ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a three-dimensional (3D) ray-tracing method is investigated.This work is primarily an extension of our previous two-dimensional study in which the wave azimuthal angle was not considered.We present numerical simulations for this mode which is generated in the source cavity along a 70° night geomagnetic field line at the specific altitude of 1.5RE (where RE is the Earth's radius).It is found that,as in the two-dimensional case,the trajectory of L-O mode starting in the source meridian plane (or the wave azimuthal angle ψ=180°) can reach the lowest latitude;whereas it basically stays at relatively higher latitudes starting off the source meridian plane (or ψ≠180°).The results reveal that under appropriate conditions,the superluminous L-O mode waves may exist in the radiation belts of the Earth,but this remains to be supplemented by observational data.

  8. Superluminal pulse reflection from a weakly absorbing dielectric slab

    CERN Document Server

    Wang, L G; Wang, Li-Gang; Zhu, Shi-Yao

    2006-01-01

    Group delay for a reflected light pulse from a weakly absorbing dielectric slab is theoretically investigated, and large negative group delay is found for weak absorption near a resonance of the slab ($Re(kd)=m\\pi$). The group delays for both the reflected and transmitted pulses will be saturated with the increase of the absorption.

  9. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals

    Science.gov (United States)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Sun, Zhenchao; Mao, Yaya; Liu, Lanlan; Li, Qiang

    2015-10-01

    Based on the general mechanism of the coherent population oscillations (CPO) in the Semiconductor optical amplifiers (SOA) and Erbium doped fiber amplifiers (EDFA), the group time delay of rectangle signal propagating in the active media is deduced. Compared with the sinusoidal signal, the time delay difference between the fundamental harmonics (FHFD: fundamental harmonic fractional delay) is first investigated in detail for the rectangle signal which is more popularly used in the digital signal systems. The plenty of simulations based on the propagation equations and some experiments for the sinusoidal and rectangle signals are used to analyze the differences and evaluate the slow and superluminal light effects. Furthermore, the time delay/advance always takes place accompanying with the signal distortion, which is evaluated by the total harmonic distortion (THD). The distortion caused by the SOA is smaller than that by the EDFA. A factor Q which is defined to evaluate the trade-off between the FHFD and the THD, shows that higher input power or higher optical gain is better for optical signal processing and optical telecommunications, and the SOA is more suitable for the higher modulation frequency (>10 GHz).

  10. Wave equations for pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  11. Wave equations for pulse propagation

    Science.gov (United States)

    Shore, B. W.

    1987-06-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  12. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  13. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  14. Control of superluminal transit through a heterogeneous medium

    CERN Document Server

    Kulkarni, M; Rao, V S C Manga; Gupta, S Dutta

    2004-01-01

    We consider pulse propagation through a two component composite medium (metal inclusions in a dielectric host) with or without cavity mirrors. We show that a very thin slab of such a medium, under conditions of localized plasmon resonance, can lead to significant superluminality with detectable levels of transmitted pulse. A cavity containing the heterogeneous medium is shown to lead to subluminal-to-superluminal transmission depending on the volume fraction of the metal inclusions. The predictions of phase time calculations are verified by explicit calculations of the transmitted pulse shapes. We also demonstrate the independence of the phase time on system width and the volume fraction under specific conditions.

  15. ANALYSE OF PULSE WAVE PROPAGATION IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    PAN Yi-shan; JIA Xiao-bo; CUI Chang-kui; XIAO Xiao-chun

    2006-01-01

    Based upon the blood vessel of being regarded as the elasticity tube, and that the tissue restricts the blood vessel wall, the rule of pulse wave propagation in blood vessel was studied. The viscosity of blood, the elastic modulus of blood vessel, the radius of tube that influenced the pulse wave propagation were analyzed. Comparing the result that considered the viscosity of blood with another result that did not consider the viscosity of blood, we finally discover that the viscosity of blood that influences the pulse wave propagation can not be neglected; and with the accretion of the elastic modulus the speed of propagation augments and the press value of blood stream heightens; when diameter of blood vessel reduces, the press of blood stream also heightens and the speed of pulse wave also augments. These results will contribute to making use of the information of pulse wave to analyse and auxiliarily diagnose some causes of human disease.

  16. Slow light pulse propagation in dispersive media

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    -difference-time-domain Maxwell-Bloch simulations and compared to analytic results. For long pulses the group index (transmission) for the combined system is significantly enhanced (reduced) relative to slow light based on purely material or waveguide dispersion. Shorter pulses are strongly distorted and depending on parameters......We present a theoretical and numerical analysis of pulse propagation in a semiconductor photonic crystal waveguide with embedded quantum dots in a regime where the pulse is subjected to both waveguide and material dispersion. The group index and the transmission are investigated by finite...... broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...

  17. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  18. Subluminal and Superluminal Phenomena in a Four-Level Atom

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; ZENG Ya-Guang; CAO Hui

    2008-01-01

    In a four-level atomic system,we investigate the light pulse propagation properties interacting with only one laser field.It is shown that in the steady state,the group velocity of the light pulse can be changed from subluminal to superluminal by varying the field detuning.Meanwhile,the effects of the field intensity on the group velocity are also shown.At last,with special parameters,the analytical solution for the group index is also obtained.

  19. Transport coefficient and heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroki; Itoh, Sanae-I.; Kubota, Tetsuyuki; Toda, Shinichiro [Kyushu Univ., Fukuoka (Japan); Hanada, Kazuaki [Tokyo Univ. (Japan)

    1995-04-01

    The problem of deducing {Chi}{sub e} from heat pulse propagation measurements is addressed. It is indicated that diffusive models can not explain the experimental observations on WT-3 tokamak. The equation taking account of the convective term gives a good fit to experimental results. It may indicate that for the sawtooth free plasma, there exists a convection of heat pulse. 9 refs., 4 figs., 1 tab.

  20. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    Science.gov (United States)

    Papadopoulos, K.; Zigler, A.

    2006-01-01

    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth Δf/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the

  1. Nonlinear and Dispersive Optical Pulse Propagation

    Science.gov (United States)

    Dijaili, Sol Peter

    In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.

  2. Optical pulse propagation with minimal approximations

    Science.gov (United States)

    Kinsler, Paul

    2010-01-01

    Propagation equations for optical pulses are needed to assist in describing applications in ever more extreme situations—including those in metamaterials with linear and nonlinear magnetic responses. Here I show how to derive a single first-order propagation equation using a minimum of approximations and a straightforward “factorization” mathematical scheme. The approach generates exact coupled bidirectional equations, after which it is clear that the description can be reduced to a single unidirectional first-order wave equation by means of a simple “slow evolution” approximation, where the optical pulse changes little over the distance of one wavelength. It also allows a direct term-to-term comparison of an exact bidirectional theory with the approximate unidirectional theory.

  3. Pulse propagation through a dispersive intracavity medium

    CERN Document Server

    Yum, Honam; Shahriar, Selim

    2010-01-01

    In this paper, we study theoretically the behavior of a pulse as it propagates through an intracavity fast-light medium. The method of using a transfer function to determine a pulse after it passes through a cavity is well known. However, this approach cannot be used to determine the behavior of the pulse inside the cavity. To circumvent this constraint, we use an approach that starts by finding a self-consistent solution for a monochromatic field of infinite spatial and temporal extents, and determine its amplitudes before, inside, and after the cavity. We then construct a Gaussian input pulse by adding a set of these waves, properly phased and weighted, to represent a moving pulse before the cavity. Adding these waves at various time intervals then yields the complete spatial profile everywhere, including before, inside and after the cavity. We first confirm the prediction of this model by analyzing the behavior of a pulse passing through an empty cavity, and comparing the prediction of the output with the ...

  4. Modeling of ultrafast laser pulse propagation

    Science.gov (United States)

    Kolesik, Miroslav; Brown, Jeffrey; Bahl, Anand

    2016-05-01

    Computer simulations of ultrafast optical pulses face multiple challenges. This requires one to construct a propagation model to reduce the Maxwell system so that it can be efficiently simulated at the temporal and spatial scales relevant to experiments. The second problem concerns the light-matter interactions, demanding novel approaches for gaseous and condensed media alike. As the nonlinear optics pushes into new regimes, the need to honor the first principles is ever greater, and requires striking a balance between computational complexity and physical fidelity of the model. With the emphasis on the dynamics in intense optical pulses, this paper discusses some recent developments and promising directions in the field of ultrashort pulse modeling.

  5. Pulse propagation in the tapered wiggler

    Science.gov (United States)

    Al-Abawi, H.; McIver, J. K.; Moore, G. T.; Scully, M. O.

    Theory and preliminary numerical calculations are presented for coherent optical and electron pulse propagation in a free-electron laser with a tapered wiggler. Since only trapped electrons contribute significantly to the laser radiation, it is possible to define generalized 'slow' space-time coordinates in terms of which the electron pulse envelope may be considered constant. The theory is outlined first for the helical wiggler and then is developed for an arbitrary quasiperiodic wiggler, using a more rigorous 'multiple-scaling' approach. In the latter case a modified definition of the electron phase angle is required, and optical harmonic generation is predicted. The numerical calculations show that substantial energy extraction is achievable, but that the optical pulse rapidly breaks up into a series of spikes in the time domain. Surprisingly, the optical spectrum remains quite smooth in appearance.

  6. Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier

    Indian Academy of Sciences (India)

    K Hussain; S K Varshney; P K Datta

    2010-11-01

    High bit-rate (>10 Gb/s) signals are composed of very short pulses and propagation of such pulses through a semiconductor optical amplifier (SOA) requires consideration of intraband phenomena. Due to the intraband effects, the propagating pulse sees a fast recovering nonlinear gain which introduces less distortion in the pulse shape and spectrum of the output pulse but introduces a positive chirping at the trailing edge of the pulse.

  7. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  8. Propagation of a Rectangular Pulse in an Anomalous Dispersive Medium

    Institute of Scientific and Technical Information of China (English)

    HUANG Chao-Guang; ZHANG Yuan-Zhong

    2002-01-01

    The pulse with a rectangular envelop propagating through the caesium vapour with two gain lines used inthe Wang, Kuzmich, and Dogariu [Nature (London) 406 (2000) 277] experiment is studied. It is shown that there existsan obvious distortion for the pulse.

  9. Superluminality in the Bi- and Multi Galileon

    CERN Document Server

    de Fromont, Paul; Heisenberg, Lavinia; Matas, Andrew

    2013-01-01

    We re-explore the Bi- and Multi-Galileon models with trivial asymptotic conditions at infinity and show that propagation of superluminal fluctuations is a common and unavoidable feature of these theories, unlike previously claimed in the literature. We show that all Multi-Galileon theories containing a Cubic Galileon term exhibit superluminalities at large distances from a point source, and that even if the Cubic Galileon is not present one can always find sensible matter distributions in which there are superluminal modes at large distances. In the Bi-Galileon case we explicitly show that there are always superluminal modes around a point source even if the Cubic Galileon is not present. Finally, we briefly comment on the possibility of avoiding superluminalities by modifying the asymptotic conditions at infinity.

  10. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  11. Spatial and temporal pulse propagation for dispersive paraxial optical systems.

    Science.gov (United States)

    Marcus, G

    2016-04-04

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec.261148-1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. In addition, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporally is presented.

  12. Propagation of ultrashort pulsed beams in dispersive media

    Institute of Scientific and Technical Information of China (English)

    刘志军; 吕百达

    2003-01-01

    Starting from the Rayleigh diffraction integral, the propagation equation of ultrashort pulsed beams in dispersive media is derived without making the paraxial approximation and slowly varying envelope approximation (SVEA). The spatiotemporal properties of ultrashort pulsed beams in dispersive media, such as spectrum redshifting, narrowing and pulse distortion are illustrated with pulsed Gaussian beams. It is stressed that the "antibeam" behaviour of ultrashort pulsed beams can be avoided, if a suitable truncation function is chosen.

  13. Field Theory for Coherent Optical Pulse Propagation

    CERN Document Server

    Park, Q H

    1997-01-01

    We introduce a new notion of "matrix potential" to nonlinear optical systems. In terms of a matrix potential $g$, we present a gauge field theoretic formulation of the Maxwell-Bloch equation that provides a semiclassical description of the propagation of optical pulses through resonant multi-level media. We show that the Bloch part of the equation can solved identically through $g$ and the remaining Maxwell equation becomes a second order differential equation with reduced set of variables due to the gauge invariance of the system. Our formulation clarifies the (nonabelian) symmetry structure of the Maxwell-Bloch equations for various multi-level media in association with symmetric spaces $G/H$. In particular, we associate nondegenerate two-level system for self-induced transparency with $G/H=SU(2)/U(1)$ and three-level $\\L $- or V-systems with $G/H = SU(3)/U(2)$. We give a detailed analysis for the two-level case in the matrix potential formalism, and address various new properties of the system including so...

  14. Superluminality and UV Completion

    CERN Document Server

    Shore, G M

    2007-01-01

    The idea that the existence of a consistent UV completion satisfying the fundamental axioms of local quantum field theory or string theory may impose positivity constraints on the couplings of the leading irrelevant operators in a low-energy effective field theory is critically discussed. Violation of these constraints implies superluminal propagation, in the sense that the low-frequency limit of the phase velocity $v_{\\rm ph}(0)$ exceeds $c$. It is explained why causality is related not to $v_{\\rm ph}(0)$ but to the high-frequency limit $v_{\\rm ph}(\\infty)$ and how these are related by the Kramers-Kronig dispersion relation, depending on the sign of the imaginary part of the refractive index $\\Ima n(\\w)$ which is normally assumed positive. Superluminal propagation and its relation to UV completion is investigated in detail in three theories: QED in a background electromagnetic field, where the full dispersion relation for $n(\\w)$ is evaluated numerically for the first time and the role of the null energy con...

  15. Towards a thermodynamic theory of nerve pulse propagation.

    Science.gov (United States)

    Andersen, Søren S L; Jackson, Andrew D; Heimburg, Thomas

    2009-06-01

    Nerve membranes consist of an approximately equal mixture of lipids and proteins. The propagation of nerve pulses is usually described with the ionic hypothesis, also known as the Hodgkin-Huxley model. This model assumes that proteins alone enable nerves to conduct signals due to the ability of various ion channel proteins to transport selectively sodium and potassium ions. While the ionic hypothesis describes electrical aspects of the action potential, it does not provide a theoretical framework for understanding other experimentally observed phenomena associated with nerve pulse propagation. This fact has led to a revised view of the action potential based on the laws of thermodynamics and the assumption that membrane lipids play a fundamental role in the propagation of nerve pulses. In general terms, we describe how pulses propagating in nerve membranes resemble propagating sound waves. We explain how the language of thermodynamics enables us to account for a number of phenomena not addressed by the ionic hypothesis. These include a thermodynamic explanation of the effect of anesthetics, the induction of action potentials by local nerve cooling, the physical expansion of nerves during pulse propagation, reversible heat production and the absence of net heat release during the action potential. We describe how these measurable features of a propagating nerve pulse, as well as the observed voltage change that accompanies an action potential, represent different aspects of a single phenomenon that can be predicted and explained by thermodynamics. We suggest that the proteins and lipids of the nerve membrane naturally constitute a single ensemble with thermodynamic properties appropriate for the description of a broad range of phenomena associated with a propagating nerve pulse.

  16. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  17. Probing Superluminal Neutrinos Via Refraction

    OpenAIRE

    Stebbins, Albert

    2011-01-01

    One phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by OPERA and MINOS, is that neutrinos travel faster inside of matter than in vacuum. If so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. Such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. For NuMI this could...

  18. Temporal broadening of pulsed waves propagating through turbulent media

    Institute of Scientific and Technical Information of China (English)

    XU; Zhengwen(许正文); WU; Jian(吴健); HUO; Wenping(霍文平); WU; Zhensen(吴振森)

    2003-01-01

    Pulse signals, propagating through a turbulent medium such as the ionosphere, can be distorted by dispersion and scattering from both the background medium and irregularities embedded in. Thus, the mean square pulse width is changed, and temporal broadening is introduced. We carry out a study on the temporal broadening with theoretical analyses and numerical simulations by using an analytical solution of two-frequency mutual coherence function obtained recently by iteration. As a case of study, pulse broadening is investigated in detail in trans-ionospheric propagation. Results show that most contributions are mainly from the dispersion of the background ionosphere and scattering effects of electron density irregularities in most cases.

  19. Symmetry, causal structure and superluminality in Finsler spacetime

    CERN Document Server

    Chang, Zhe; Wang, Sai

    2012-01-01

    The superluminal behaviors of neutrinos were reported by the OPERA collaboration recently. It was also noticed by Cohen and Glashow that, in standard quantum field theory, the superluminal neutrinos would lose their energy via the Cherenkov-like process rapidly. Finslerian special relativity may provide a framework to cooperate with the OPERA neutrino superluminality without Cherenkov-like process. We present clearly the symmetry, causal structure and superluminality in Finsler spacetime. The principle of relativity and the causal law are preserved. The energy and momentum are well defined and conserved in Finslerian special relativity. The Cherenkov-like process is proved to be forbidden kinematically and the superluminal neutrinos would not lose energy in their distant propagations from CERN to the Gran Sasso Laboratory. The energy dependence of neutrino superluminality is studied based on the reported data of the OPERA collaboration as well as other groups.

  20. Nonlinear pulse propagation: a time-transformation approach.

    Science.gov (United States)

    Xiao, Yuzhe; Agrawal, Govind P; Maywar, Drew N

    2012-04-01

    We present a time-transformation approach for studying the propagation of optical pulses inside a nonlinear medium. Unlike the conventional way of solving for the slowly varying amplitude of an optical pulse, our new approach maps directly the input electric field to the output one, without making the slowly varying envelope approximation. Conceptually, the time-transformation approach shows that the effect of propagation through a nonlinear medium is to change the relative spacing and duration of various temporal slices of the pulse. These temporal changes manifest as self-phase modulation in the spectral domain and self-steepening in the temporal domain. Our approach agrees with the generalized nonlinear Schrödinger equation for 100 fs pulses and the finite-difference time-domain solution of Maxwell's equations for two-cycle pulses, while producing results 20 and 50 times faster, respectively.

  1. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... results show a large reduction in group velocity but this was achieved at the cost of a small bandwidth (e.g. 37 Hz in the case of Bigelow et al.1) of the probe signal. In this paper, we report measurements of slowing down and speeding up of the propagation of 150 fs pulses, having a very large bandwidth....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  2. Hamiltonian structure of propagation equations for ultrashort optical pulses

    Science.gov (United States)

    Amiranashvili, Sh.; Demircan, A.

    2010-07-01

    A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.

  3. Superluminal light propagation in a bi-chromatically Raman-driven and Doppler-broadened N-type 4-level atomic system

    CERN Document Server

    Bacha, Bakht Amin; Ahmad, Iftikhar

    2013-01-01

    We investigate the behavior of fast light pulse propagation in an N-type Doppler-broadened 4-level atomic system using double Raman gain processes. This system displays novel and interesting results of two controllable pairs of the double gain lines profile with a control field. The detailed physics of the processes are explored having multiple controllable anomalous regions in the medium. In this set up, the system exhibits significant enhancement in the probing Gaussian pulse through the medium as compared with Ref. [L. J. Wang, A. Kuzmich, and A. Dogariu, Nature \\textbf{406}, 227(2000)]. The advance time of the retrieved Gaussian pulse is always greater than the advance time studied in the above said experiment. We analyzed that the pulse propagating through the medium with larger negative group index, $7.32\\times10^8$, leaves the medium almost undistorted and sooner by time $76.12 \\ ms$ than the pulse which leaves the medium of Wang \\emph{et al.}. The Gaussian pulse always remains almost undistorted at ou...

  4. Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations.

    Science.gov (United States)

    Andreasen, J; Kolesik, M

    2012-09-01

    Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse propagation equations to structures characterized by strong refractive index differences and material interfaces. We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method with single-frequency beam-propagation techniques.

  5. Ultrashort Optical Pulse Propagation in terms of Analytic Signal

    Directory of Open Access Journals (Sweden)

    Sh. Amiranashvili

    2011-01-01

    Full Text Available We demonstrate that ultrashort optical pulses propagating in a nonlinear dispersive medium are naturally described through incorporation of analytic signal for the electric field. To this end a second-order nonlinear wave equation is first simplified using a unidirectional approximation. Then the analytic signal is introduced, and all nonresonant nonlinear terms are eliminated. The derived propagation equation accounts for arbitrary dispersion, resonant four-wave mixing processes, weak absorption, and arbitrary pulse duration. The model applies to the complex electric field and is independent of the slowly varying envelope approximation. Still the derived propagation equation posses universal structure of the generalized nonlinear Schrödinger equation (NSE. In particular, it can be solved numerically with only small changes of the standard split-step solver or more complicated spectral algorithms for NSE. We present exemplary numerical solutions describing supercontinuum generation with an ultrashort optical pulse.

  6. Generalized Short Pulse Equation for Propagation of Few-Cycle Pulses in Metamaterials

    CERN Document Server

    Pietrzyk, Monika E

    2016-01-01

    We show that propagation of ultrashort (few-cycle) pulses in nonlinear Drude metamaterials with both electric and magnetic Kerr nonlinearities is described by coupled generalized Short Pulse Equations. The resulting system of equations generalizes to the case of metamaterials both the Short Pulse Equation and its vector generalizations which describe the few-cycle pulses in dielectric optical fibers beyond the slowly varying envelope approximation leading to the nonlinear Schroedinger equation.

  7. Short-Pulsed Wavepacket Propagation in Ray-Chaotic Enclosures

    CERN Document Server

    Castaldi, Giuseppe; Pinto, Innocenzo M

    2011-01-01

    Wave propagation in ray-chaotic scenarios, characterized by exponential sensitivity to ray-launching conditions, is a topic of significant interest, with deep phenomenological implications and important applications, ranging from optical components and devices to time-reversal focusing/sensing schemes. Against a background of available results that are largely focused on the time-harmonic regime, we deal here with short-pulsed wavepacket propagation in a ray-chaotic enclosure. For this regime, we propose a rigorous analytical framework based on a short-pulsed random-plane-wave statistical representation, and check its predictions against the results from finite-difference-time-domain numerical simulations.

  8. Analysis on anomalous conductivity and heat pulse propagation in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroki; Itoh, Sanae [Kyushu Univ., Fukuoka (Japan)

    1995-04-01

    Heat pulse propagation is analyzed for different models of electron heat conduction coefficient {chi}{sub e}. Cases in which initial temperature perturbation is induced by (1) electron cyclotron heating (ECH) or (2) sawtooth are studied. Five models are adopted which have various dependences on temperature or temperature gradient. A model in which {chi}{sub e} has a temperature-gradient dependence explains the discrepancy that the values derived from heat pulse propagation deviate from those obtained from the stationary power balance in experiments. In this case the deviation is found to have appreciable radial dependence. (author).

  9. Atmospheric propagation of two CO2 laser pulses

    Science.gov (United States)

    Autric, M.; Caressa, J.-P.; Dufresne, D.; Bournot, Ph.

    1984-01-01

    At the intensity and fluence levels reached in an experimental investigation of high-energy laser beam propagation, air breakdown occurs through the interaction of the intense radiation with aerosol particles naturally suspended in the path of the beam. The air plasma created is found to expand rapidly and have a detrimental effect on energy propagation. It is determined that the energy transmitted through the breakdown plasma as a function of the incident average energy density is less than 15 percent for fluences greater than 300 J/sq cm, and that incident energy transmission may be increased through the generation of a precursor pulse as a function of double pulse separation times ranging from a few microsec to 0.1 sec. Maximum effects have been obtained at pulse separation intervals of 100-200 microsec, and these are ascribed to the vaporization of aerosol particles by the first pulse.

  10. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  11. High-Precision Spectroscopy with Counter-Propagating Femtosecond Pulses

    CERN Document Server

    Barmes, Itan; Eikema, Kjeld S E

    2013-01-01

    An experimental realization of high-precision direct frequency comb spectroscopy using counter-propagating femtosecond pulses on two-photon atomic transitions is presented. Doppler broadened background signal, hampering precision spectroscopy with ultrashort pulses, is effectively eliminated with a simple pulse shaping method. As a result, all four 5S-7S two-photon transitions in a rubidium vapor are determined with both statistical and systematic uncertainties below 10$^{-11}$, which is an order of magnitude better than previous experiments on these transitions.

  12. Complex sine-Gordon Equation in Coherent Optical Pulse Propagation

    CERN Document Server

    Park, Q H

    1999-01-01

    It is shown that the McCall-Hahn theory of self-induced transparency in coherent optical pulse propagation can be identified with the complex sine-Gordon theory in the sharp line limit. We reformulate the theory in terms of the deformed gauged Wess-Zumino-Witten sigma model and address various new aspects of self-induced transparency.

  13. Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers

    Science.gov (United States)

    Leiva, Ariel; Olivares, Ricardo

    2008-04-01

    The propagation of Gaussian optical pulses through optical PM-HiBi (Polarization Maintaining Highly Birefringent) fibers is analyzed and simulated. Based upon a model of propagation as described by Marcuse, et al., [1] and Sunnerud, et al., [2], and the use of PMD (Polarization Mode Dispersion) compensators and emulators used by Kogelnik, et al. [2], [3] and Lima, et al. [4], we construct a simple model that allows graphical representation of the distortion experienced by optical pulses when propagating in a PM-HiBi fiber for different initial polarizations. The results of our analysis have the benefit of being identical to the more elaborate models of [1], [2], while also providing the additional advantage of simple graphical representation.

  14. Filament propagation length of femtosecond pulses with different transverse modes

    CERN Document Server

    Kaya, N; Kaya, G; Strohaber, J; Kolomenskii, A A; Schuessler, H A

    2014-01-01

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Gaussian, Laguerre-Gaussian, and Bessel-Gaussian incident beams. These different transverse modes for incident laser pulses were created from an initial Gaussian beam by using a computer generated hologram technique. We found that the length of the filament induced by the Bessel-Gaussian incident beam was longer than that for the other transverse modes under the conditions of the same peak intensity, pulse duration, and the size of the central part of the beam. To better understand the Bessel-Gaussian beam propagation, we performed a more detailed study of the filament length as a function of the number of radial modal lobes. The length increased with the number of lobes, implying that the radial modal lobes serve as an energy reservoir for the filament formed by the central intensity peak.

  15. Heat pulse propagation in chaotic 3-dimensional magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2014-01-01

    Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum...

  16. Propagation of pulse fluctuations in single-mode fibers.

    Science.gov (United States)

    Marcuse, D

    1980-06-01

    An earlier paper [Applied Optics 19, 1653 (1980)] dealt with the ensemble averages of pulses propagating in single-mode fibers. In this paper we discuss pulse fluctuations. The light pulses are generated by modulation of the power of a continuously operating light source consisting of N discrete sinusoidal frequencies randomly phased relative to each other. The fixed amplitudes of the sinusoidal frequency components of the source are adjusted to fit into a Gaussian envelope, and the modulating pulse has a Gaussian distribution in time. This mathematical model approximates a laser light source operating in several free-running longitudinal modes. We find that the fluctuations of the modulated light pulses can die out if the pulses travel a long distance in a dispersive fiber, provided the spacings between the sinusoidal frequency components of the light source are larger than the spectral width of the modulating signal. If the source frequency components are spaced more closely than the spectral width of the modulating pulse, fluctuations persist indefinitely independent of fiber length. However, in a practical system, whose input pulse is only about half as short as the output pulse, fluctuations are practically unaffected by transmission through a fiber.

  17. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  18. Matched Pulse Propagation in a Three-Level System

    CERN Document Server

    Park, Q H

    1997-01-01

    The Bãcklund transformation for the three-level Maxwell-Bloch equation is presented in the matrix potential formalism. By applying the Bãcklund transformation to a constant electric field background, we obtain a general solution for matched pulses (a pair of solitary waves) which can emit or absorb a light velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution describes a steady state pulse without emission or absorption, and becomes the matched pulse solution recently obtained by Hioe and Grobe. A nonlinear superposition rule is derived from the solitons as well as nonabelian breathers. Various new features of these solutions are addressed. In particular, we analyze in detail the scattering of "invertons", a specific pair of different wavelength solitons one of which moving with the velocity of light. Unlike the usual case of soliton scattering, the broader inverton changes its sign through the scattering. Surprisingly, the light velocity inverton re...

  19. Mapping surface plasmon polariton propagation via counter-propagating light pulses

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Jauernik, Stephan

    2012-01-01

    In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...

  20. Superluminality in the Bi- and Multi-Galileon

    Science.gov (United States)

    de Fromont, Paul; de Rham, Claudia; Heisenberg, Lavinia; Matas, Andrew

    2013-07-01

    We re-explore the Bi- and Multi-Galileon models with trivial asymptotic conditions at infinity and show that propagation of superluminal fluctuations is a common and unavoidable feature of these theories, unlike previously claimed in the literature. We show that all Multi-Galileon theories containing a Cubic Galileon term exhibit superluminalities at large distances from a point source, and that even if the Cubic Galileon is not present one can always find sensible matter distributions in which there are superluminal modes at large distances. In the Bi-Galileon case we explicitly show that there are always superluminal modes around a point source even if the Cubic Galileon is not present. Finally, we briefly comment on the possibility of avoiding superluminalities by modifying the asymptotic conditions at infinity.

  1. Relativistic solitons and superluminal signals

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it

    2005-02-01

    Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.

  2. Emission of correlated photon pairs from superluminal perturbations in dispersive media

    CERN Document Server

    Piazza, Francesco Dalla; Cacciatori, Sergio Luigi; Faccio, Daniel

    2012-01-01

    We develop a perturbative theory that describes a superluminal refractive perturbation propagating in a dispersive medium and the subsequent excitation of the quantum vacuum zero-point fluctuations. We find a process similar to the anomalous Doppler effect: photons are emitted in correlated pairs and mainly within a Cerenkov-like cone, one on the forward and the other in backward directions. The number of photon pairs emitted from the perturbation increases strongly with the degree of superluminality and under realizable experimental conditions, it can reach up to ~0.01 photons per pulse. Moreover, it is in principle possible to engineer the host medium so as to modify the effective group refractive index. In the presence of "fast light" media, e.g. a with group index smaller than unity, a further ~10x enhancement may be achieved and the photon emission spectrum is characterized by two sharp peaks that, in future experiments would clearly identify the correlated emission of photon pairs.

  3. Nonlinear pulse propagation in birefringent fiber Bragg gratings.

    Science.gov (United States)

    Pereira, S; Sipe, J

    1998-11-23

    We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.

  4. Effective field theory for coherent optical pulse propagation

    CERN Document Server

    Park, Q H; Park, Q Han

    1996-01-01

    Hidden nonabelian symmetries in nonlinear interactions of radiation with matter are clarified. In terms of a nonabelian potential variable, we construct an effective field theory of self-induced transparency, a phenomenon of lossless coherent pulse propagation, in association with Hermitian symmetric spaces G/H. Various new properties of self-induced transparency, e.g. soliton numbers, effective potential energy, gauge symmetry and discrete symmetries, modified pulse area, conserved U(1)-charge etc. are addressed and elaborated in the nondegenerate two-level case where G/H = SU(2)/U(1). Using the U(1)-charge conservation, a new type of analysis on pulse stability is given which agrees with earlier numerical results.

  5. 光纤中基于布里渊激光振荡的超光速传输首次在实验上实现%Superluminal Propagation in Optical Fibers Based on Brillouin Lasing Oscillation First Demonstrated

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    上海交通大学物理系詹黎教授(图1)以及其博士研究生张亮(图2)首次在实验上实现了光纤中基于布里渊激光振荡的低损耗长距离超光速传输,其研究成果以"Superluminal propagation at negative groupvelocity in optical fibers based on Brillouin lasing oscillation"为标题发表在物理领域国际顶级期刊物理评论快报( Physical Review Letters)(Phys.Rev.Lett.,Vol.107,093903,2011).

  6. Spectrum analysis of rectangular pulse in the atmospheric turbulence propagation

    Science.gov (United States)

    Liu, Yi; Ni, Xiaolong; Jiang, Huilin; Wang, Junran; Liu, Zhi

    2016-11-01

    Atmospheric turbulence has a great influence on the performance of the atmospheric laser communication system reducing the signal to noise ratio (SNR) and increasing the bit error rate (BER). However, there is rarely study on the effect of atmospheric turbulence on the power spectrum of the rectangular pulse. In this paper, a spectral analyzing method is used to analyze the influence of atmospheric turbulence on the signal. An experiment of laser beam propagation characteristic is carried out on a 6km horizontal atmospheric link, the wavelength is 808 nm. The signal is 100MHz rectangular pulse. The waveform of the rectangular pulse is collected by the oscilloscope, and the power spectral density of the signal is calculated and analyzed by the method of periodogram. Experimental results show that the response and noise characteristics of the laser and photoelectric detector have a great influence on the signal power spectrum distribution which can increase the noise component in the 10^6 Hz frequency range. After the atmospheric turbulence propagation, the signal power decreases in the whole frequency range. However, as the existence of atmospheric turbulence, the signal power increases in the atmospheric turbulence characteristic frequency (tens to hundreds of Hz). The noise power increases in the high frequency range (10^7 10^8 Hz).

  7. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... measurements as function of injected bias current. Good agreement is found with simple models of the real and imaginary parts of the active material's susceptibility. 1 M.S. Bigelow, N.N. Lepeshkin, and R. Boyd, Phys. Rev. Lett. 90, 113903-1—4 (2003) 2 P.-C. Ku et al., Opt. Lett. 19, 2291—2293 (2004) 3 C...

  8. The Time-Frequency Characteristics of Pulse Propagation Through Plasma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, propagated δ pulses through different distance of Plasma are calculated, and their time-frequency characteristics are studied using CWD (Choi-William distrilution). It is found that several horizontal spectra appear at early arrival time like discrete spectruml at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency, the property of a signal is helpful for obtaining the plasma parameters.

  9. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    and can operate with a potentially low noise figure with respect to erbium-doped fiber amplifiers and Raman amplifiers, when working in phase-sensitive configurations. A characterization of the signal distortion mechanisms introduced by FOPAs is relevant for investigating the applicability of FOPAs......Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...

  10. Pulse propagation near zero group-velocity dispersion in a femtosecond dye laser.

    Science.gov (United States)

    Salin, F; Grangier, P; Georges, P; Brun, A

    1990-12-01

    The propagation of femtosecond pulses in a colliding-pulse mode-locked dye laser near zero group-velocity dispersion is studied. The pulse spectrum is shown to exhibit a double-peak structure. This structure and its dependence on the intracavity dispersion can be explained by nonlinear pulse propagation near zero dispersion. A value for the third-order dispersion of the laser cavity is deduced and is found to be predominant for pulses shorter than 50 fsec.

  11. Propagation of ultrastrong femtosecond laser pulses in PLASMON-X

    CERN Document Server

    Jovanovic, Dusan; Tanjia, Fatema; De Nicola, Sergio

    2011-01-01

    The derivation is presented of the nonlinear equations that describe the propagation of ultrashort laser pulses in a plasma, in the Plasmon-X device. It is shown that the Plasmon-X scheme used for the electron acceleration uses a sufficiently broad beam ($L_\\bot\\sim 130\\,\\,\\mu{\\rm m}$) that justifies the use of the standard stationary 1-D approximation in the electron hydrodynamic equations, since the pulse width is sufficiently bigger than the pulse length ($\\sim 7.5\\,\\,\\mu{\\rm m}$). Furthermore, with the laser power of $W\\leq 250$ TW and the $130\\,\\,\\mu{\\rm m}$ spot size, the dimensionless laser vector potential is sufficiently small $|A_{\\bot_0}|^2/{2} = ({W}/{c^2\\epsilon_0})({\\lambda^2}/{8 \\pi^2 c})({4}/{\\pi L_\\bot^2})({e}/{m_0 c})^2 \\sim 0.26$, the nonlinearity is sufficiently weak to allow the power expansion in the nonlinear Poissons's equation. Such approximation yields a nonlinear Schr\\" odinger equation with a reactive nonlocal nonlinear term. The nonlocality contains a cosine function under the int...

  12. Nonlinearity without Superluminality

    CERN Document Server

    Kent, A

    2002-01-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signalling. As Gisin and Polchinski first pointed out, this is not true for general nonlinear modifications of the Schroedinger equation. Excluding superluminal signalling has thus been taken to rule out most nonlinear versions of quantum theory. The no superluminal signalling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by non-relativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which di...

  13. Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response

    Indian Academy of Sciences (India)

    Vimlesh Mishra; Ajit Kumar

    2010-09-01

    The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.

  14. Propagation of Few-Cycle Pulse Laser in Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2001-01-01

    By comparing the numerical solutions of Maxwell-Bloch equations beyond and within the slowly-varying envelope approximation and the rotating-wave approximation for the propagation of a few-cycle pulse laser in a resonant two-level atom medium, we found that both the Rabi flopping and the refractive index, and subsequently the carrier and the propagation velocity of the few-cycle pulse, are closely connected with the time-derivative behaviour of the electric field. This is because the Rabi flopping is such that the soliton pulse splits during propagation and that a shorter pulse propagates faster than a broader one.

  15. Seismic pulse propagation with constant Q and stable probability distributions

    Directory of Open Access Journals (Sweden)

    M. Tomirotti

    1997-06-01

    Full Text Available The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with an index of stability determined by the order of the fractional time derivative in the evolution equation.

  16. Seismic pulse propagation with constant Q and stable probability distributions

    CERN Document Server

    Mainardi, Francesco

    2010-01-01

    The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with index of stability determined by the order of the fractional time derivative in the evolution equation.

  17. Superluminal solutions to the Klein-Gordon equation and a causality problem

    CERN Document Server

    Borghardt, A A; Karpenko, D Y

    2003-01-01

    We present a new axially symmetric monochromatic free-space solution to the Klein-Gordon equation propagating with a superluminal group velocity and show that it gives rise to an imaginary part of the causal propagator outside the light cone. We address the question about causality of the spacelike paths and argue that the signal with a well-defined wavefront formed by the superluminal modes would propagate in vacuum with the light speed.

  18. Superluminal radiation by uniformly moving charges

    Science.gov (United States)

    Tomaschitz, Roman

    2003-03-01

    The emission of superluminal quanta (tachyons) by freely propagating particles is scrutinized. Estimates are derived for spontaneous superluminal radiation from electrons moving close to the speed of the Galaxy in the microwave background. This is the threshold velocity for tachyon radiation to occur, a lower bound. Quantitative estimates are also given for the opposite limit, tachyon radiation emitted by ultra-relativistic electrons in linear colliders and supernova shock waves. The superluminal energy flux is studied and the spectral energy density of the radiation is derived, classically as well as in second quantization. There is a transversal bosonic and a longitudinal fermionic component of the radiation. We calculate the power radiated, its angular dependence, the mean energy of the radiated quanta, absorption and emission rates, as well as tachyonic number counts. We explain how the symmetry of the Einstein /A-coefficients connects to time-symmetric wave propagation and to the Wheeler-Feynman absorber theory. A relation between the tachyon mass and the velocity of the Local Group of galaxies is suggested.

  19. On Superluminal Particles and the Extended Relativity Theories

    Science.gov (United States)

    Castro, Carlos

    2012-09-01

    Superluminal particles are studied within the framework of the Extended Relativity theory in Clifford spaces ( C-spaces). In the simplest scenario, it is found that it is the contribution of the Clifford scalar component π of the poly-vector-valued momentum which is responsible for the superluminal behavior in ordinary spacetime due to the fact that the effective mass {M} = sqrt{ M2 - π2 } is imaginary (tachyonic). However, from the point of view of C-space, there is no superluminal (tachyonic) behavior because the true physical mass still obeys M 2>0. Therefore, there are no violations of the Clifford-extended Lorentz invariance and the extended Relativity principle in C-spaces. It is also explained why the charged muons (leptons) are subluminal while its chargeless neutrinos may admit superluminal propagation. A Born's Reciprocal Relativity theory in Phase Spaces leads to modified dispersion relations involving both coordinates and momenta, and whose truncations furnish Lorentz-violating dispersion relations which appear in Finsler Geometry, rainbow-metrics models and Double (deformed) Special Relativity. These models also admit superluminal particles. A numerical analysis based on the recent OPERA experimental findings on alleged superluminal muon neutrinos is made. For the average muon neutrino energy of 17 GeV, we find a value for the magnitude |{M } | = 119.7 MeV that, coincidentally, is close to the mass of the muon m μ =105.7 MeV.

  20. Influence of Initial Chirp on Propagation of Super-Gaussian Pulse inside Fiber

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the condition of combined effects of group-velocity dispersion and self-phase modulation, the step Fourier method is used to simulate the propagation of initial chirped super-Gaussian pulses inside fiber. The initial chirp influences the shapes of super-Gaussian pulses in propagation process, and positive and negative chirps have different effects. For the existing of initial chirp, the splits of pulses and the spreading speed move ahead and increase. When the amplitude of super-Gaussian pulses increases by 1.4 times, in the range of |C|<1.5, pulses can keep good shapes along their propagation distance. Even if |C| increases to 3.5, their shapes are also good. Most energy of pulse is still at the middle parts. These results show that, for the initial chirped super-Gaussian pulses, the influence of initial chirp will be decreased by increasing the intensity of pulses. This will be of benefit to optical communication.

  1. Self-similar propagation and amplification of parabolic pulses in optical fibers.

    Science.gov (United States)

    Fermann, M E; Kruglov, V I; Thomsen, B C; Dudley, J M; Harvey, J D

    2000-06-26

    Ultrashort pulse propagation in high gain optical fiber amplifiers with normal dispersion is studied by self-similarity analysis of the nonlinear Schrödinger equation with gain. An exact asymptotic solution is found, corresponding to a linearly chirped parabolic pulse which propagates self-similarly subject to simple scaling rules. The solution has been confirmed by numerical simulations and experiments studying propagation in a Yb-doped fiber amplifier. Additional experiments show that the pulses remain parabolic after propagation through standard single mode fiber with normal dispersion.

  2. SPECTRUM OF A FEW-CYCLE LASER PULSE PROPAGATING IN A TWO-LEVEL ATOM MEDIUM

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2001-01-01

    The spectrum evolution of a few-cycle optical pulse in a resonant two-level atom medium is studied theoretically by using the full Maxwell-Bloch equations. On the propagating pulse, significantly much faster oscillation components separated with the main pulse appear due to strong self-phase modulation and pulse reshaping. In this case, ideal selfinduced transparency cannot occur for a 2r pulse. The spectrum of the 4r pulse shows an evident oscillatory feature because of the continuum interference of the separate pulses. For larger pulse areas, continuum generation from near ultraviolet to infrared occurs.

  3. Effect of the ratio of transition dipole moments on few-cycle pulse propagation

    Institute of Scientific and Technical Information of China (English)

    Xia Tan; Yanling Yang; Dianmin Tong; Xijun Fan

    2008-01-01

    Propagation of a few-cycle laser pulses in a dense V-type three-level atomic medium is investigated based on full-wave Maxwell-Bloch equations by taking the near dipole-dipole (NDD) interaction into account. We find that the ratio, γ, of the transition dipole moments has strong influence on the time evolution and split of the pulse: when γ≤ 1, the NDD interaction delays propagation and split of the pulse, and this phenomenon is more obvious when the value of γ is smaller; when γ = 2, the NDD interaction accelerates propagation and split of the pulse.

  4. Self-similar Shape Mode of Optical Pulse Propagation in Medium with non-stationary Absorption

    Science.gov (United States)

    Trofimov, Vycheslav A.; Lysak, Tatyana M.; Fedotov, Mihail V.; Prokopenko, Alexander S.

    2015-03-01

    We discuss laser pulse propagation with the self-similar shape in a medium with instantaneous nonlinear absorption. We consider two cases of the laser pulse propagation. First one corresponds to problem of laser-induced plasma generation in silica under action of TW laser pulse. The second one corresponds to femtosecond laser pulse propagation in medium with nanoparticles of noble metals. In both cases the mode of the self-similar shape of pulse is of interest. We discuss also a physical mechanism of non-linear acceleration or slowing-down for laser pulse propagation in a medium with nanoparticles. The last phenomena are important, in particular, for a problem of data processing of all optical method. We used analytical approach for considered problem as well as computer simulation.

  5. Moment method, Higher order dispersion map and other effects in optical pulse propagation

    OpenAIRE

    Mondal, Basanti; Chowdhury, A. Roy.

    2005-01-01

    Analytical and numerical procedures are applied to show that both third and second order dispersion maps can be explicitly constructed and their mutual effects on the optical pulse propagation are analysed. In these connection it is also shown how the other important features such as amplification, intra-channel Raman Scattering(IRS), fibre loss, centre frequency of the pulse spectrum effect the propagation of pulse. Due to the presence of IRS, moment method is adopted which is easily reduced...

  6. Spatial and Temporal Evolution of Ultra-Wide-Band Optical Pulses in Propagation

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Zhou; WANG Li; YANG Guo-Zhen

    2000-01-01

    The propagation of ultrashort coherent electromagnetic pulses with broad spectral bandwidth in free space is studied by using scalar diffraction theory. It is confirmed and experimentally demonstrated that the diffraction not only affects the spatial structure but also changes the temporal waveform of an ultra-wide-band pulse during propagation. The terahertz pulse travelling as basic mode of Gaussian beam is discussed in detail

  7. Non-local model analysis of heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  8. Cosmology with Superluminous Supernovae

    CERN Document Server

    Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon

    2015-01-01

    We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...

  9. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.

    2000-01-01

    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  10. Diverging light pulses in vacuum: Lorentz-invariant mass and mean propagation speed

    Science.gov (United States)

    Fedorov, M. V.; Vintskevich, S. V.

    2017-03-01

    We show that the concept of the Lorentz-invariant mass of groups of particles can be applied to light pulses consisting of very large but finite numbers of noncollinear photons. Explicit expressions are found for the invariant mass of this manifold of photons for the case of diverging Gaussian light pulses propagating in vacuum. As the found invariant mass is finite, the light pulses propagate in vacuum with a speed somewhat smaller than the light speed. A small difference between the light speed and the beam-propagation velocity is found to be directly related to the invariant mass of a pulse. Focusing and/or defocusing light pulses is shown to strengthen the effect in which the pulse slows down while the pulse invariant mass increases. A scheme for measuring these quantities experimentally is proposed and discussed.

  11. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.

    2014-09-17

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  12. Nonlinear Characteristics of an Intense Laser Pulse Propagating in Partially Stripped Plasmas

    Institute of Scientific and Technical Information of China (English)

    HU Qiang-Lin; LIU Shi-Bing; CHEN Tao; JIANG Yi-Jian

    2005-01-01

    The nonlinear optic characteristics of an intense laser pulse propagating in partially stripped plasmas are investigated analytically. The phase and group velocity of the laser pulse propagation as well as the three general expressions governing the nonlinear optic behavior, based on the photon number conservation, are obtained by considering the partially stripped plasma as a nonlinear optic medium. The numerical result shows that the presence of the bound electrons in partially stripped plasma can significantly change the propagating property of the intense laser pulse.

  13. Ultrasonic Pulse Propagation in Constant-Group-Velocity Media.

    Science.gov (United States)

    1982-06-01

    Results are presented of calculations made of distortion experienced by ultrasonic pulses in transmission through dispersive constant-group-velocity media, and the effects that it may have on velocity measurements. Three types of pulses were considered; a pulsed sine wave of constant amplitude, a pulsed sine wave with amplitude varying as sine-squared, and a rectangular pulse. It is shown that the individual waves in the pulsed sine waves move with the phase velocity of a continuous wave, and the envelope moves with the group velocity

  14. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    Institute of Scientific and Technical Information of China (English)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrodinger equation.The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth.For a given input pulse,by choosing a small initial gain coefficient and gain variation rate,the whole gain for the pulse amplification limited by the gain bandwidth may be higher,which is helpful for the enhancement of the output linearly chirped pulse energy.Compared to the decreasing gain distributed fiber amplifier,the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy.

  15. Superluminal Black Holes

    CERN Document Server

    Dolgov, D S

    1993-01-01

    The new solution of the Einstein equations in empty space is presented. The solution is constructed using Schwarzschild solution but essentially differs from it. The basic properties of the solution are: the existence of a horizon which is a hyperboloid of one sheet moving along its axis with superluminal velocity, right signature of the metric outside the horizon and Minkovsky-flatness of it at infinity outside the horizon. There is also a discussion in the last chapter, including comparing with recent astronomical observations.

  16. A numerical solution algorithm and its application to studies of pulsed light fields propagation

    Science.gov (United States)

    Banakh, V. A.; Gerasimova, L. O.; Smalikho, I. N.; Falits, A. V.

    2016-08-01

    A new method for studies of pulsed laser beams propagation in a turbulent atmosphere was proposed. The algorithm of numerical simulation is based on the solution of wave parabolic equation for complex spectral amplitude of wave field using method of splitting into physical factors. Examples of the use of the algorithm in the case the propagation pulsed Laguerre-Gaussian beams of femtosecond duration in the turbulence atmosphere has been shown.

  17. Self-organization of high intensity laser pulses propagating in gases

    Energy Technology Data Exchange (ETDEWEB)

    Koga, James [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    In recent years the development of high intensity short pulse lasers has opened up wide fields of science which had previously been difficult to study. Recent experiments of short pulse lasers propagating in air have shown that these laser pulses can propagate over very long distances (up to 12 km) with little or no distortion of the pulse. Here we present a model of this propagation using a modified version of the self-organized criticality model developed for sandpiles by Bak, Tang, and Weisenfeld. The additions to the sandpile model include the formation of plasma which acts as a threshold diffusion term and self-focusing by the nonlinear index of refraction which acts as a continuous inverse diffusion. Results of this simple model indicate that a strongly self-focusing laser pulse shows self-organized critical behavior. (author)

  18. Propagation of λ3 Laser Pulses in Underdense Plasma

    Science.gov (United States)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fujii, Takashi

    2008-06-01

    We study the interaction of λ3 laser pulses with underdense plasma by means of real geometry particle-in-cell simulation. Underdense plasma irradiated by even low energy λ3 laser pulses can be an efficient source of multi-MeV electrons, ˜50 nC/J. The electron acceleration driven by low energy λ3 and λ2 laser pulses is monitored by means of fully relativistic 3D particle-in- cell simulation. Strong transverse wave-breaking in the vicinity of the laser focus is found to give rise to an immense electron charge injected to the acceleration phase of laser wake field. While the acceleration by λ2 pulses runs in usual way, strong blowout regime is found for λ3 pulses. Details of laser pulse self-guiding are discussed.

  19. Field test and theoretical analysis of electromagnetic pulse propagation velocity on crossbonded cable systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...

  20. Propagation of Complex Laser Pulses in Optically Dense Media

    Science.gov (United States)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  1. Effects of initial frequency chirp on the linear propagation characteristics of the exponential optical pulse

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong-Jun; Liu Shan-Liang

    2006-01-01

    In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2< 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C < 0.5, go through an initial decreasing stage near ζ = 1, then increase with the increase of propagation distance and linear chirp C for C ≥ 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.

  2. Coupled Optical Solitons for Pulse Propagation in Multi-Level Media

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-Xiang; Jacob Szeftel

    2006-01-01

    @@ We investigate the shape-preserving propagation of N optical pulses in an (N + 1)-level medium. We solve Maxwell-Schrodinger equations exactly and provide several types of explicit coupled soliton solutions, which are temporally amplitude- and group-velocity-matched multi-mode slow-optical pulses of the system.

  3. Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape

    CERN Document Server

    Novitsky, Denis

    2013-01-01

    We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA) and slowly-varying-envelope approximations. The method of solution is based on the Maxwell--Bloch equations represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a single period of field oscillations) on the two-level medium was analyzed. It is shown that for such short pulses, the clear breakdown of the area theorem occurs for the pulses of large enough area. Moreover, deviations from the area theorem appear to be strongly dependent on the pulse shape that cannot be observed for longer few-cycle pulses.

  4. Propagation of time-truncated Airy-type pulses in media with quadratic and cubic dispersion

    CERN Document Server

    Hernández, José Angel Borda; Shaarawi, Amr; Besieris, Ioannis M

    2015-01-01

    In this paper, we describe analytically the propagation of Airy-type pulses truncated by a finite-time aperture when second and third order dispersion effects are considered. The mathematical method presented here, based on the superposition of exponentially truncated Airy pulses, is very effective, allowing us to avoid the use of time-consuming numerical simulations. We analyze the behavior of the time truncated Ideal-Airy pulse and also the interesting case of a time truncated Airy pulse with a "defect" in its initial profile, which reveals the self-healing property of this kind of pulse solution.

  5. Phase Dependence of Few-Cycle Pulsed Laser Propagation in a Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2002-01-01

    The phase-dependent feature of few-cycle pulsed laser propagation in a resonant two-level atom medium is demonstrated by solving the full Maxwell-Bloch equations. Even in the perturbative region, the propagating carrier field and the corresponding spectra of the few-cycle pulsed laser are sensitive to the initial phase due to self-phase modulation. For the larger pulse area, the fact that the carrier-wave reshaping comes from the carrier wave Rabi flopping is also responsible for this sensitivity, and the phase-dependent feature is more evident.

  6. Theoretical study of solitonlike propagation of picosecond light pulses interacting with Wannier excitons

    Science.gov (United States)

    Talanina, I.; Burak, D.; Binder, R.; Giessen, H.; Peyghambarian, N.

    1998-07-01

    An analytical and numerical study of light pulse propagation in semiconductors, with pulses spectrally centered at the lowest exciton resonance, is presented. It is shown that, in the limit of negligible phase-space blocking effects, the equation for the excitonic polarization is equivalent to a modified version of the nonlinear Schrödinger equation, for which soliton solutions have been derived by Mihalache et al. [D. Mihalache et al., Phys. Rev. A 47, 3190 (1993)]. The numerical study demonstrates the solitonlike propagation of experimentally relevant input pulses in CdSe crystal and assesses the influence of phase-space blocking effects and dephasing processes.

  7. Control of ultrafast pulse propagation in semiconductor components

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hansen, Per Lunnemann; Mørk, Jesper

    2009-01-01

    Time shifting of optical pulses with duration in the range from 100 fs to a few ps represents one extreme of slow light, where THz bandwidth for the slow down or speed up is necessary. The physics of the time shifting of such very short pulses involves the gain saturation of the optical medium...... and is different from the slow-light mechanisms responsible for time shifting of pulses of narrower bandwidth. Experimental and theoretical results with semiconductor components are presented, emphasizing the physics as well as the limitations imposed by the dynamical processes....

  8. Measurement and modeling of dispersive pulse propagation in draw wire waveguides

    Science.gov (United States)

    Madaras, Eric I.; Kohl, Thomas W.; Rogers, Wayne P.

    1995-01-01

    An analytical model of dispersive pulse propagation in semi-infinite cylinders due to transient axially symmetric end conditions has been experimentally investigated. Specifically, the dispersive propagation of the first axially symmetric longitudinal mode in thin wire waveguides, which have ends in butt contact with longitudinal piezoelectric ultrasonic transducers, is examined. The method allows for prediction of a propagated waveform given a measured source waveform, together with the material properties of the cylinder. Alternatively, the source waveform can be extracted from measurement of the propagated waveform. The material properties required for implementation of the pulse propagation model are determined using guided wave phase velocity measurements. Hard tempered aluminum 1100 and 304 stainless steel wires, with 127, 305, and 406 micron diam., were examined. In general, the drawn wires were found to behave as transversely isotropic media.

  9. Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media

    Science.gov (United States)

    Marskar, Robert; Ã-sterberg, Ulf L.

    2015-08-01

    We theoretically analyze linear and nonlinear coherent propagation of linearly polarized, plane-wave, resonant single-cycle terahertz pulses through spatially extended rigid-rotor molecular media. Our model incorporates mixed state medium preparation, nonperturbative nonlinearities, saturation, coherence, memory effects, and propagation, but ignores the effects of damping. Explicit solutions are reported in the linear propagation regime. These solutions are the multilevel superposition of linear, single-cycle 0 π pulses, and appear as temporal beats in the time domain. For media initially in thermal equilibrium, the pulse and molecular beats are dispersive and broaden temporally with increased propagation distance. In the simplified limit of equal rotational line strength (an idealized situation), the emitted impulses are exact temporal copies of the input pulse. An efficient, scalable computational method for solving the reduced multilevel Maxwell-Bloch equations for molecular media is reported. This method is based on a standard differential method for the propagation equation together with an operator splitting method for the Bloch equations. It invokes neither the slowly varying envelope (SVEA) or rotating wave approximations (RWA), and incorporates a large number of possible energy eigenstates (we solve for 7744 levels). Case studies of nonlinear single-cycle pulse propagation are then provided by means of computer solutions. In the nonlinear regime, we observe strong molecular orientations and suppression of the pulse and orientational revivals predicted by linear theory. For sufficiently strong pulses, coherent bleaching effects lead to increased transmission of the driving pulse, which also bears signs of self-modulation and carrier-shock formation.

  10. Superluminal Neutrinos and Monopoles

    CERN Document Server

    Wang, Peng; Yang, Haitang

    2011-01-01

    In this letter, we show that superluminal neutrinos announced by OPERA could be explained by the existence of a monopole, which is left behind after the spontaneous symmetry braking (SSB) phase transition of some scalar fields in the universe. We assume the 't Hooft-Polyakov monopole couples to the neutrinos but not photon fields. The monopole causes effective metric to the neutrinos, different from the Minkovski one. We find that the monopoles have influences on neutrinos only within the range about $10^3$ cm. Neutrinos always arrive earlier than photons by the same amount of time, once there exists a monopole on or close to their trajectories. This result reconciles the contradiction between OPERA and supernova neutrinos.

  11. Cosmology with superluminous supernovae

    Science.gov (United States)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  12. Resonant propagation of femtosecond laser pulse in DBASVP molecule:one-dimensional asymmetric organic molecule

    Institute of Scientific and Technical Information of China (English)

    Zhao Ke; Liu Ji-Cai; Wang Chuan-Kui; Luo Yi

    2005-01-01

    We have investigated the resonant propagation of femtosecond laser pulse in 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine medium with permanent dipole moments. The electronic structures and parameters for the compound have been calculated by using density functional theory. In the optical regime, there is one charge-transfer state, and the molecule can thus be simplified as a two-level system. Both the one- and two-photon transitions occur between the ground and charge-transfer states. The numerical results show that the permanent dipole moments have an obvious effect on the propagation of the ultrashort pulse laser. The ideal self-induced transparency disappears for 2π pulse, and second harmonic spectral components occur significantly due to the two-photon absorption process. For the 6π pulse, continuum frequency generation is produced and a shorter duration pulse in time domain with 465 as is obtained.

  13. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2016-09-01

    In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene-in comparison with other graphene-like structures-is the presence of a significant spin-orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin-orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  14. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  15. Simulation of picosecond pulse propagation in fibre-based radiation shaping units

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Laptev, A. V.; Petrov, V. A.; Pestryakov, E. V.

    2016-09-01

    We have performed a numerical simulation of picosecond pulse propagation in a combined stretcher consisting of a segment of a telecommunication fibre and diffraction holographic gratings. The process of supercontinuum generation in a nonlinear photoniccrystal fibre pumped by picosecond pulses is simulated by solving numerically the generalised nonlinear Schrödinger equation; spectral and temporal pulse parameters are determined. Experimental data are in good agreement with simulation results. The obtained results are used to design a high-power femtosecond laser system with a pulse repetition rate of 1 kHz.

  16. Propagation of an ultrashort electromagnetic pulse in solid-state plasma

    CERN Document Server

    Astapenko, V A

    2013-01-01

    The change of the shape of an ultrashort electromagnetic pulse in its propagation in solid-state plasma was calculated in the linear approximation. A case of solid-state silver plasma and of a "Mexican hat" wavelet pulse was considered. The dielectric permittivity of the medium was calculated in the Drude model. Strong dispersion spreading of a pulse at distances of the order of several microns was shown, and the comparison of evolution of the pulse shape for different center frequencies was carried out.

  17. On the Temperature Behavior of Pulse Propagation and Relaxation in Worms, Nerves and Gels.

    Directory of Open Access Journals (Sweden)

    Christian Fillafer

    Full Text Available The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C. However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels or their temperature-dependent behaviour. By following Einstein's approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS. Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.

  18. Latest Progress on Propagation Characteristics of Superluminous Waves and their Gyroresonance with Energetic Particles%超光速电磁波的传播特性及与高能粒子相互作用研究的新进展

    Institute of Scientific and Technical Information of China (English)

    肖伏良; 何兆国; 陈良旭; 贺艺华; 杨昶

    2011-01-01

    超光速(相速度大于光速)电磁波是广泛存在于空间等离子中的高频电磁波,总结了超光速电磁波的产生机制-回旋微波激射不稳定性,介绍了超光速波在地球磁层中的传播特性,分析了其从高纬极光源区传播到低纬区域的基本原因:磁暴时由于等离子层硕压缩,超光速波传播时不会遇上反射,从而能向下传播.重点介绍了超光速波产生的地球辐射带区域高能电子的随机加速与投掷角扩散过程.发现超光速波能量扩散过程一般大于投掷角扩散过程,在合适的条件下超光速波对高投掷角的高能电子主要起随机加速作用,而对低投掷角的高能电子主要起投掷角扩散作用.这些最新进展有助于进一步了解超光速电磁波的激发与传播特性,以及地球辐射带高能电子的动力学行为.%Superluminous (the phase speed higher than the speed of light) electromagnetic waves are widely present in the space plasma with high frequencies. Here, we briefly introduce their generation mechanism-Cyclotron Maser Instability ( CMI). We present discussion on the propagating characteristics of superluminous waves in the Earth's magnetosphere. During high geomagnetic activity, since the plasmapause position moves inward closer to the Earth, the superluminous waves can propagate from their source cavity downward and even through the equatorial plane due to no reflection. We focus on pitch angle scattering and stochastic acceleration of energetic electrons induced by superluminous waves in the radiation belts. Current works show that energy diffusion resulting from such waves is generally higher than pitch angle scattering. Under appropriate conditions, superluminous waves may contribute to both the stochastic acceleration of electrons with larger pitch angle and the loss process of electrons with smaller pitch angles. These recent progresses provide further understanding of the instability and propagation of

  19. Time-resolved pulse propagation in a strongly scattering material

    NARCIS (Netherlands)

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The d

  20. The propagation of blast pulses through dampened granular media

    Science.gov (United States)

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham

    2017-01-01

    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  1. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Alexander V., E-mail: alex_zhukov@sutd.edu.sg [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Bouffanais, Roland [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Konobeeva, Natalia N. [Volgograd State University, 400062 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation); Volgograd State University, 400062 Volgograd (Russian Federation)

    2016-09-07

    Highlights: • Established dynamics of ultra-short pulses in germanene. • Studied balance between dispersive and nonlinear effects in germanene. • Spin–orbit interaction effect onto pulse propagation. - Abstract: In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene—in comparison with other graphene-like structures—is the presence of a significant spin–orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin–orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  2. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2016-01-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across m...

  3. Evidence for the propagation of 2D pressure pulses in lipid monolayers near the phase transition

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    The existence and propagation of acoustic pressure pulses on lipid monolayers at the air/water-interfaces are directly observed by simple mechanical detection. The pulses are excited by small amounts of solvents added to the monolayer from the air phase. Employing a deliberate control of the lipid interface compressibility k, we can show that the pulses propagate at velocities, which are precisely reflecting the nonlinear behavior of the interface. This is manifested by a pronounced minimum of the sound velocity in the monolayer phase transition regime, while ranging up to 1.5 m/s at high lateral pressures. Motivated by the ubiquitous presence of lipid interfaces in biology, we propose the demonstrated sound propagation as an efficient and fast way of communication and protein modulation along nerves, between cells and biological units being controlled by the physical state of the interfaces.

  4. (3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Fu Xi-Quan; Wen Shuang-Chun; Su Wen-Hua; Fan Dian-Yuan

    2006-01-01

    In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (RHM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schr(o)dinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.

  5. Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses

    Science.gov (United States)

    Kinsler, Paul

    2010-02-01

    I derive unidirectional wave equations for fields propagating in materials with both electric and magnetic dispersion and nonlinearity. The derivation imposes no conditions on the pulse profile except that the material modulates the propagation slowly, that is, that loss, dispersion, and nonlinearity have only a small effect over the scale of a wavelength. It also allows a direct term-to-term comparison of the exact bidirectional theory with its approximate unidirectional counterpart.

  6. Importance of a finite speed of heat propagation in metals irradiated by femtosecond laser pulses

    Science.gov (United States)

    Klossika, J. J.; Gratzke, U.; Vicanek, M.; Simon, G.

    1996-10-01

    We study theoretically the propagation of heat in a metal, due to irradiation with an ultrashort laser pulse. The target is treated in an extended two-fluid model for electrons and phonons, which accounts for a finite speed of heat propagation in the electron gas. As a result, the absorbed laser energy is more localized in the electronic system yielding an enhanced peak electron temperature.

  7. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  8. Wave Propagation In Plates Studied By Pulsed Hologram Interferometry

    Science.gov (United States)

    Wahlin, Anders; Fallstrom, Karl-Evert; Gustavsson, H.; Molin, Nils-Erik

    1989-07-01

    Isotropic and non-isotropic plates are impacted by a ballistic pendulum. The bending waves that are generated are studied with holographic interferometry using a double pulsed ruby laser as light source. The pulse shape changes with time because of the dispersivity of the waves. Initially the fringe pattern in the isotropic case is cylindrically symmetric and determined from an initial value problem. Later, when the waves have reached the plate rim, in-and outgoing waves gradually develop fringe patterns which in the end will be a combination of eigenmodes of the plate. A solution to the corresponding Kirchhoff plate equation is presented, which in the special case when the impact is modelled as a Dirac-pulse in space and time, is shown to depend only of the distance to the impact point divided by the square root of the time after impact and a parameter containing plate parameters. From the slope of the central deflection material parameters can be determined. Another solution, assuming a finite inpact time, is shown to agree better with experiments. Results from investigations of non-isotropic materials are also presented.

  9. Second-order statistics of Gaussian Schell-model pulsed beams propagating through atmospheric turbulence.

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Lou, Yan; Tong, Shoufeng

    2011-08-01

    Novel analytical expressions for the cross-spectral density function of a Gaussian Schell-model pulsed (GSMP) beam propagating through atmospheric turbulence are derived. Based on the cross-spectral density function, the average spectral density and the spectral degree of coherence of a GSMP beam in atmospheric turbulence are in turn examined. The dependence of the spectral degree of coherence on the turbulence strength measured by the atmospheric spatial coherence length is calculated numerically and analyzed in depth. The results obtained are useful for applications involving spatially and spectrally partially coherent pulsed beams propagating through atmospheric turbulence.

  10. Parallel simulation for the ultra-short laser pulses' propagation in air

    CERN Document Server

    Ma, Cunliang

    2015-01-01

    A parallel 2D+1 split-step Fourier method with Crank-Nicholson scheme running on multi-core shared memory architectures is developed to study the propagation of ultra-short high-intensity laser pulses in air. The parallel method achieves a near linear speed-up with results for the efficiency of more than 95% on a 24-core machine. This method is of great potential application in studying the long-distance propagation of the ultra-short high intensity laser pulses.

  11. Propagation of femtosecond pulses in a hollow-core revolver fibre

    Science.gov (United States)

    Yatsenko, Yu P.; Krylov, A. A.; Pryamikov, A. D.; Kosolapov, A. F.; Kolyadin, A. N.; Gladyshev, A. V.; Bufetov, I. A.

    2016-07-01

    We have studied for the first time the propagation of femtosecond pulses through an optical fibre with an air-filled hollow core and a cladding in the form of one ring of noncontacting cylindrical capillaries for high-power radiation transmission in the 1.55-μm telecom range. Numerical analysis results demonstrate that the parameters of the fibre enable radiation transmission in the form of megawatt-power Raman solitons through up to a 25-m length of the fibre and tuning of the emission wavelength over 130 nm. We have experimentally demonstrated femtosecond pulse transmission through fibres up to 5 m in length in the linear propagation regime, without distortions of the pulse spectrum, with a dispersion-induced temporal pulse broadening within 20%.

  12. Self-similar propagation of Hermite-Gauss water-wave pulses.

    Science.gov (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank.

  13. Imbalance of group velocities for amplitude and phase pulses propagating in a resonant atomic medium

    Science.gov (United States)

    Basalaev, M. Yu.; Taichenachev, A. V.; Yudin, V. I.

    2016-11-01

    The dynamics of light pulses with amplitude and phase modulations is investigated for a medium of resonant two-level atoms. It is shown that the pulse-like variations of the phase can be also described in terms of group velocity. It is found that in the nonlinear regime of atom-field interaction, the group velocities of amplitude and phase pulses can have a large imbalance. Namely, amplitude pulses travel at a velocity less than c , whereas the group velocity of phase pulses is greater than the velocity of light in free space or it is even negative. The predicted imbalance of the group velocities can be important in the case of chirped pulses propagating in a resonant medium.

  14. Continuous reversal of Hanle resonances of counter-propagating pulse and continuous-wave field

    CERN Document Server

    Dimitrijević, Jelena; Jelenković, Branislav M

    2013-01-01

    In this work we study propagation dynamics of the two counter-propagating lasers, the continuous-wave (CW) laser and the pulse of another laser, when both lasers are tuned to the $F_{g}=2 \\rightarrow F_{e}=1$ transition in $^{87}$Rb, and therefore can develop Hanle electromagnetically induced transparency (EIT) in Rb vapor. We calculate transmission of both lasers as a function of applied magnetic field, and investigate how the propagation of the pulse affects the transmission of the CW laser. And vice versa, we have found conditions when the Gaussian pulse can either pass unchanged, or be significantly absorbed in the vacuum Rb cell. This configuration is therefore suitable for the convenient control of the pulse propagation and the system is of interest for optically switching of the laser pulses. In terms of the corresponding shapes of the coherent Hanle resonances, this is equivalent to turning the coherent resonance from Hanle EIT into electromagnetically induced absorption (EIA) peak. There is the range...

  15. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    Science.gov (United States)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  16. Seeded QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo; Silva, Luís O

    2015-01-01

    The growth rates of seeded QED cascades in counter propagating lasers are calculated with 2D/3D QED-PIC simulations. The dependence of the growth rate on laser polarisation and intensity are compared with analytical models that support simulations results. The models provide an insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. The results suggest that relativistic pair plasmas and efficient conversion from laser photons to gamma rays can be created with the typical intensities planned to operate on future ultra-intense laser facilities such as ELI or VULCAN.

  17. Ultrashort Intense Pulse Propagator Applications: Light Strings, Higher Harmonic Generation and Extreme NLO

    Science.gov (United States)

    2010-07-30

    A. Lotti, M. Kolesik, J. V. Moloney, “Analogue gravity and ultrashort laser pulse filamentation”, Europhysics Letters 89, 34004 (2010) Jinjie Liu...followed the same scenario, or if the propagation distance matters. Such was the motivation of our work published recently in Physical Review Letters ...filaments in a high-power pulse determined by the linear “preparation” of the beam? In our previous work published in Physical Review Letters , we

  18. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...

  19. Soliton pulse propagation in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    CERN Document Server

    Mann, Nishan

    2016-01-01

    We introduce a new coupled mode theory to model nonlinear Schr\\"{o}dinger equations for contra-propagating Bloch modes that include disorder-induced multiple scattering effects on nonlinear soliton propagation in photonic crystal waveguides. We also derive sub unit-cell coupling coefficients and use these to introduce a generalized length scale associated with each coupling effect. In particular, we define a multiple-scattering length scale that quantifies the spatial extent of a disorder-induced cavity mode. Our numerical simulations of nonlinear pulse propagation are in excellent qualitative agreement with recent experiments and provide insight into how disorder inhibits soliton propagation and other nonlinear propagation effects in photonic crystal waveguides.

  20. Role of Pulse Pressure and Geometry of Primary Entry Tear in Acute Type B Dissection Propagation.

    Science.gov (United States)

    Peelukhana, Srikara V; Wang, Yanmin; Berwick, Zachary; Kratzberg, Jarin; Krieger, Joshua; Roeder, Blayne; Cloughs, Rachel E; Hsiao, Albert; Chambers, Sean; Kassab, Ghassan S

    2016-08-10

    The hemodynamic and geometric factors leading to propagation of acute Type B dissections are poorly understood. The objective is to elucidate whether geometric and hemodynamic parameters increase the predilection for aortic dissection propagation. A pulse duplicator set-up was used on porcine aorta with a single entry tear. Mean pressures of 100 and 180 mmHg were used, with pulse pressures ranging from 40 to 200 mmHg. The propagation for varying geometric conditions (%circumference of the entry tear: 15-65%, axial length: 0.5-3.2 cm) were tested for two flap thicknesses (1/3rd and 2/3rd of the thickness of vessel wall, respectively). To assess the effect of pulse and mean pressure on flap dynamics, the %true lumen (TL) cross-sectional area of the entry tear were compared. The % circumference for propagation of thin flap (47 ± 1%) was not significantly different (p = 0.14) from thick flap (44 ± 2%). On the contrary, the axial length of propagation for thin flap (2.57 ± 0.15 cm) was significantly different (p propagation was calculated as 75 ± 9 J/m(2) and was fairly uniform across different specimens. Pulse pressure had a significant effect on the flap movement in contrast to mean pressure. Hence, mitigation of pulse pressure and restriction of flap movement may be beneficial in patients with type B acute dissections.

  1. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B. S., E-mail: bs-phy@yahoo.com; Jain, Archana [Government College Kota, Kota 324001 (India); Jaiman, N. K. [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India); Gupta, D. N. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jang, D. G.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kulagin, V. V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2014-02-15

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃10{sup 19} W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  2. Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    CERN Document Server

    Chang, Zhe; Wang, Sai; 10.1016/j.physletb.2012.03.002

    2012-01-01

    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. {\\bf 107}, 181803 (2011)] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality (arXiv:1110.6673[hep-ph]). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this paper, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.

  3. Challenges Confronting Superluminal Neutrino Models

    Science.gov (United States)

    Evslin, Jarah

    2012-12-01

    This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.

  4. Challenges Confronting Superluminal Neutrino Models

    CERN Document Server

    Evslin, Jarah

    2011-01-01

    This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.

  5. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-03-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.

  6. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    CERN Document Server

    Pathak, Naveen; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, R

    2015-01-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) in underdense plasmas is demonstrated to be unstable, via 3D particle-in-cell simulation and disregarding the Kerr non-linearity. Strong pulse filamentation occurs for RPP in transversely uniform plasma with an increment, $\\Gamma$, close to the well-known one depending on acceleration, $\\alpha$, and modulated density gradient length, $L$, as $\\Gamma \\approx (\\alpha/L)^{1/2}$. In deep plasma channels the instability vanishes. Electron self-injection and acceleration by the resulting laser pulse wake is explored.

  7. Negative Group Velocity Pulse Propagation Through a Left-Handed Transmission Line

    CERN Document Server

    Jiang, Rong; Miao, Jing-Yuan; Liu, Xin-Meng

    2015-01-01

    In this paper, the microwave pulse propagation transferred through a left-handed transmission line using Complementary Omega-Like Structures (COLS) loaded was studied. There was a stop band in transmission from 5.6GHz to 6.1GHz, and the anomalous dispersion was causes in this band. Negative group velocity corresponds to the case in which the peak of the pulse exited before the peak of the incident pulse had entered the sample. The negative group velocity reached (-0.27c~-1.85c).

  8. Laser absorption via QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  9. Onset of ice VII phase during ps laser pulse propagation through liquid water

    Science.gov (United States)

    Kumar, V. Rakesh; Kiran, P. Prem

    2017-01-01

    Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.

  10. Dissipation of Alfven wave pulses propagating along dipole magnetic tubes with reflections at the ionosphere

    NARCIS (Netherlands)

    Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS

    2006-01-01

    A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the

  11. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....

  12. Coherent propagation of a short polarised radiation pulse in a one-dimensional resonance Bragg grating

    NARCIS (Netherlands)

    Maimistov, A. I.; Polikarpov, V. V.

    2006-01-01

    The propagation of an optical ultrashort pulse in a resonance Bragg grating is considered taking into account the polarisation of electromagnetic radiation. It is assumed that the grating is formed by thin films containing two-level atoms with the triply degenerate upper energy level. The system of

  13. Gravitational properties of light - The emission of counter-propagating laser pulses from an atom

    CERN Document Server

    Rätzel, Dennis; Menzel, Ralf

    2016-01-01

    The gravitational field of two counter-propagating laser pulses and their emitter is derived in the framework of Linearized Gravity. The corresponding curvature and the effect on massive and massless test particles is discussed. A comparison is made with the metric corresponding to a spherically symmetric massive object that isotropically emits radiation - the Vaidya metric.

  14. Superluminal travel requires negative energies

    OpenAIRE

    Olum, Ken D.

    1998-01-01

    I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neig...

  15. Composite NDE using full-field pulse-echo ultrasonic propagation imaging system

    Science.gov (United States)

    Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon

    2016-04-01

    In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is presented. The coincided laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. The system nondestructively inspected targets with two-axis translation stages. Various structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are an aluminum honeycomb sandwich, ailerons and carbon fiber reinforced plastic (CFRP) honeycomb sandwich structures including various defects.

  16. Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.

    Science.gov (United States)

    Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A

    2010-11-26

    The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.

  17. Propagation of pulsed surface spin-wave signals at millikelvin temperatures

    Science.gov (United States)

    van Loo, Arjan; Morris, Richard; Karenowska, Alexy

    Propagating microwave-frequency magnons in magnetic films attract increasing attention on account of their potential interface with superconducting quantum circuit and qubit systems. Their rich dynamics and slow speeds make magnons an interesting addition to the circuit quantum electrodynamics toolbox and, at the same time, superconducting circuit technology promises to be a powerful tool in the investigation of their quantum properties. We have studied the propagation of pulsed surface spin-wave signals over millimeter distances in yttrium iron garnet waveguides at ~ 10 mK . Input microwave pulses and pulse trains with various envelope shapes were applied to an inductive input antenna, and the resulting magnons were detected by an output antenna of identical design. The shape of the output signal was observed to depend on the frequency content (carrier and pulse shape) of the input pulse. By performing measurements at varying frequencies and magnetic fields we have been able to map out the dispersion relation for surface magnon modes. These experiments were undertaken as a first step towards coupling propagating magnons in thin films to other quantum systems with microwave-frequency transition energies, and superconducting qubits in particular. The authors acknowledge support from the EPSRC (EP/K032690/1).

  18. A note on superluminal neutrinos

    Science.gov (United States)

    Cutolo, A.

    2012-05-01

    Although characterized by a possible experimental error, the first results of the Opera experiment at CERN have opened up a hot discussion on the possibility of superluminal neutrinos already observed in some space events. In particular, Cohen and Glashow (CG) have considered it simply an error justifying their position on the basis of the bremsstrahlung of electron-positron pairs. In this paper, we would like to discuss this position also in view of the recent derivation of the superluminal limit as a consequence of the classical causality principle. Even if the final answer is related only to the review of all the experimental results, we believe that neutral particles (neutrinos, photons, etc.) might exhibit superluminal behavior also in view of the fact that the analysis performed by Cohen and Glashow does not contain any absolute limit, like that present in the case of the Cherenkov effect in vacuum, which is absolutely impossible, as its violation would require an infinite energy amount. CG conclusions are not in contrast with superluminal neutrinos, which, in turn, are fully compatible with the theoretical analysis reported as well.

  19. Popper's Experiment and Superluminal Communication

    CERN Document Server

    Gerjuoy, E; Gerjuoy, Edward; Sessler, Andrew M.

    2005-01-01

    We comment on Tabesh Qureshi, "Understanding Popper's Experiment," AJP 73, 541 (June 2005), in particular on the implications of its section IV. We show, in the situation envisaged by Popper, that analysis solely with conventional non-relativistic quantum mechanics suffices to exclude the possibility of superluminal communication.

  20. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    Science.gov (United States)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  1. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.

    2016-09-01

    Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.

  2. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    Science.gov (United States)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  3. Study of transient wave propagation in plates using double pulse TV holography

    OpenAIRE

    Lopes, H.; Guedes, R. M.; M. A. P. Vaz; Rodrigues, J.D.

    2004-01-01

    This work presents a numerical and experimental study of the transient response of an isotropic plate. A low mass impact is used to generate the bending wave propagation. Displacements due to the bending wave propagation were assessed using an out-of-plane double pulse TV holography set-up. A PZT transducer is used to record the impact force and its temporal evolution. A novel experimental technique is presented for determination of the stress field in the plate using the out-of-plane ...

  4. Propagation of Ultra-fast Femtosecond Pulses in Silicon-on-insulator Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    WU Jian-wei; LUO Feng-guang; Cristiano de Mello Gallep

    2007-01-01

    A complete theoretical modeling, avoiding any priori-assumption, is deduced and demonstrated for ultra-fast femtosecond optical pulses in silicon-on-insulator optical waveguides which includes the group velocity dispersion, third-order dispersion, self-phase and cross-phase modulations, self-steepening and shock formation, Raman depletion, propagation loss, two-photon absorption, free-carrier absorption, and free-carrier dispersion. Finally, the temporal and spectral characteristics of 100 fs optical pulses at 1.55 μm are numerically observed in 5-mm-long waveguides while considering different initial chirps and incident peak intensity levels.

  5. Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2006-01-01

    After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.

  6. A modified split—step fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    RaoMin; SunXiao-Han; ZhangMing-De

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schroedinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and demonstrate that our approach is much faster with no loss of pre-chirped RZ(CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD values and the extinct ratio has a great impact on the transmission performance.

  7. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    Science.gov (United States)

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  8. An Approximate Numerical Technique for Characterizing Optical Pulse Propagation in Inhomogeneous Biological Tissue

    Directory of Open Access Journals (Sweden)

    Chintha C. Handapangoda

    2008-01-01

    Full Text Available An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

  9. Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers

    Directory of Open Access Journals (Sweden)

    José Azaña

    2005-06-01

    Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.

  10. Maxwell-Bloch Equations Modeling of Ultrashort Optical Pulse Propagation in Semiconductor Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind, P.

    1997-01-01

    An algorithm has been developed that solves the semiconductor Maxwell-Bloch equations, without making the standard slowly-varying envelope (SVEA) and rotating-wave (RWA) approximations. It is applied to study the propagation of ultrashort pulses in semiconductor materials. The results include many-body effects due to the Coulomb interaction among the charge carriers as well as the nonlinear effects resulting from spectral hole-burning.

  11. Observation of image pair creation and annihilation from superluminal scattering sources

    CERN Document Server

    Clerici, Matteo; Warburton, Ryan E; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2015-01-01

    The invariance of the speed of light implies a series of consequences related to our perception of simultaneity and of time itself. Whilst these consequences are experimentally well studied for subluminal speeds, the kinematics of superluminal motion lack direct evidence. Using high temporal resolution imaging techniques, we demonstrate that if a source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backwards. If the source changes its speed, crossing the interface between sub- and super-luminal propagation, we observe image pair annihilation and creation. These results show that it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone.

  12. Influence of biologic factor on the velocity of propagation of pulse waves in vessels of living organisms

    Science.gov (United States)

    Sumets, Pavel

    2012-11-01

    In this work there has been examined a mathematical model illustrating propagation of a pulse wave, with biological activity of a blood vessel's walls taken into consideration. The influence of the biological factor was allowed for in the equations connecting stresses and deformations of the vessel's walls among themselves. There has been deduced a formula defining the pulse wave propagation velocity in an orthotropic resilient blood-filled vessel, influenced by the biological factor. The obtained results allow us to make a conclusion that stimulation of muscle fibers of the vessel's wall brings on an increase in the pulse wave propagation velocity.

  13. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shadwick, Bradley A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Kalmykov, S. Y. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  14. Laboratory model of the cardiovascular system for experimental demonstration of pulse wave propagation

    Science.gov (United States)

    Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan

    2017-03-01

    The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.

  15. Practitioner's guide to laser pulse propagation models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Couairon, A. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Brambilla, E.; Corti, T. [Department of Physics and Mathematics, University of Insubria, via Vallegio 11, 22100 Como (Italy); Majus, D. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Bldg. 3, 10222 Vilnius (Lithuania); Ramirez-Congora, O. de [Departamento de Ciencias Naturales y Matematicas, Pontificia Universidad Javeriana-Cali, Avenida Canas Gordas no 118-250 Cali (Colombia); Kolesik, M. [College of Optical Sciences, Tucson 85721 AZ (United States); Department of Physics, Constantine the Philosopher Uninversity, Nitra (Slovakia)

    2011-11-15

    The purpose of this article is to provide practical introduction into numerical modeling of ultrashort optical pulses in extreme nonlinear regimes. The theoretic background section covers derivation of modern pulse propagation models starting from Maxwell's equations, and includes both envelope-based models and carrier-resolving propagation equations. We then continue with a detailed description of implementation in software of Nonlinear Envelope Equations as an example of a mixed approach which combines finite-difference and spectral techniques. Fully spectral numerical solution methods for the Unidirectional Pulse Propagation Equation are discussed next. The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses. Finally, we include several worked-out simulation examples. These are mini-projects designed to highlight numerical and modeling issues, and to teach numerical-experiment practices. They are also meant to illustrate, first and foremost for a non-specialist, how tools discussed in this guide can be applied in practical numerical modeling. (authors)

  16. 2, Pulse-mode expansions and refractive indices in plane-wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.

    1987-06-20

    This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.

  17. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  18. Propagation of slip pulse along frictionless contact interface with local separation between two piezoelectric solids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Stroh formalism of piezoelectric materials, Fourier analysis and singular integral equation technique were used to investigate the existence of a pu lse at the frictionless interface in presence of local separation between two contact piezoelectric solids.The two solids were combined together by uniaxial tractions and laid in the electric field.The problem was cast into a set of Cauchy singular integral equations, from which the closed-form solutions were derived.The numerical discussion on the existence of such a slip pulse was presented.The results show that such a slip pulse, which has square root singularities at both ends of the local separation zone, can propagate in most material combinations.And the existence of such a slip pulse will not be affected by the applied mechanical and electric fields in some special material combinations.

  19. Simultaneously Propagating Voltage and Pressure Pulses in Lipid Monolayers of pork brain and synthetic lipids

    CERN Document Server

    Griesbauer, J; Wixforth, A; Schneider, M F

    2012-01-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions, individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, whose controllable thermodynamic state enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing timeresolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0,1 to 3mV...

  20. Electron Acceleration and the Propagation of Ultrashort High-Intensity Laser Pulses in Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofang; Krishnan, Mohan; Saleh, Ned; Wang, Haiwen; Umstadter, Donald

    2000-06-05

    Reported are interactions of high-intensity laser pulses ({lambda}=810 nm and I{<=}3x10{sup 18} W /cm{sup 2} ) with plasmas in a new parameter regime, in which the pulse duration ({tau}=29 fs ) corresponds to 0.6-2.6 plasma periods. Relativistic filamentation is observed to cause laser-beam breakup and scattering of the beam out of the vacuum propagation angle. A beam of megaelectronvolt electrons with divergence angle as small as 1 degree sign is generated in the forward direction, which is correlated to the growth of the relativistic filamentation. Raman scattering, however, is found to be much less than previous long-pulse results. (c) 2000 The American Physical Society.

  1. Temporal Skewness of Electromagnetic Pulsed Waves Propagating Through Random Media with Embedded Irregularity Slab

    Institute of Scientific and Technical Information of China (English)

    许正文; 吴健; 霍文平; 吴振森

    2003-01-01

    Electromagnetic pulsed waves can be distorted in the propagation through random media, and their energy dis tributions change along the leading and trailing edge of the waveform, which can be presented by the temporal skewness. The skewness presents asymmetry and is treated by the third-order temporal moment, in which an analytic solution for the two-frequency mutual coherence function is obtained recently. Then, transionospheric pulses are discussed in details. Both theoretical analysis and numerical computation indicate that the contri butions from scattering and dispersion of irregularities dominate over those of background, so the latter can be neglected in most cases. Also, the temporal skewness of a transionospheric pulse is negative and energy is shifted to the leading edge.

  2. A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    饶敏; 孙小菡; 张明德

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schrǒdinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and démonstrate that our approach is much faster with no loss of accuracy. We discuss the pulse distortion and system Q-factor of non-return-to-zero (NRZ), return-to-zero (RZ) and pre-chirped RZ (CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD wlues and the extinct ratio has a great impact on the transmission performance.

  3. Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients.

    Science.gov (United States)

    Wang, Luyun; Li, Lu; Li, Zhonghao; Zhou, Guosheng; Mihalache, Dumitru

    2005-09-01

    The generalized nonlinear Schrödinger model with distributed dispersion, nonlinearity, and gain or loss is considered and the explicit, analytical solutions describing the dynamics of bright solitons on a continuous-wave background are obtained in quadratures. Then, the generation, compression, and propagation of pulse trains are discussed in detail. The numerical results show that solitons can be compressed by choosing the appropriate control fiber system, and pulse trains generated by modulation instability can propagate undistorsted along fibers with distributed parameters by controlling appropriately the energy of each pulse in the pulse train.

  4. All-optical DAC using counter-propagating optical and electrical pulses in a Mach-Zehnder modulator.

    Science.gov (United States)

    Lowery, Arthur James

    2014-10-20

    A novel method of converting binary-level electrical pulses into multi-level optical pulses using only a conventional traveling-wave optical modulator is presented. The method provides low inter-pulse interference due to the counter-propagating pulses, low amplitude noise, and a timing jitter determined chiefly by the quality of the optical pulse source. The method only requires one electrical drive per modulator and provides low-jitter variable-amplitude optical pulses that are suitable for shaping into a wide variety of modulation formats using a programmable optical filter.

  5. Observation of propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture.

    Science.gov (United States)

    Yamagiwa, Masatomo; Komatsu, Aya; Awatsuji, Yasuhiro; Kubota, Toshihiro

    2005-05-02

    We observed a propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture. To observe the light pulse train propagating in air, light-in-flight holography is applied. The integrated array illuminator is an optical device for generating an ultrashort light pulse train from a single ultrashort pulse. The experimentally obtained pulse width and pulse interval were 130 fs and 19.7 ps, respectively. A back-propagating femtosecond light pulse train, which is the -2 order diffracted light pulse from the array illuminator and which is difficult to observe using conventional methods, was observed.

  6. Method for Estimating Harmonic Frequency Dependence of Diffusion Coefficient and Convective Velocity in Heat Pulse Propagation Experiment

    Science.gov (United States)

    Kobayashi, Tatsuya; Itoh, Kimitaka; Ida, Katsumi; Inagaki, Sigeru; Itoh, Sanae-I.

    2017-07-01

    In this paper we propose a new set of formulae for estimating the harmonic frequency dependence of the diffusion coefficient and the convective velocity in the heat pulse propagation experiment in order to investigate the transport hysteresis. The assumptions that are used to derive the formulae can result in dummy frequency dependences of the transport coefficients. It is shown that these dummy frequency dependences of the transport coefficients can be distinguished from the true frequency dependence due to the transport hysteresis by using a bidirectional heat pulse propagation manner, in which both the outward propagating heat pulse and the inward propagating heat pulse are analyzed. The validity of the new formulae are examined in a simple numerical calculation.

  7. The Shape of Superluminous Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  8. Propagation of bright femtosecond pulses in a nonlinear optical fibre with the third-and fourth-order dispersions

    Institute of Scientific and Technical Information of China (English)

    Ao Sheng-Mei; Yan Jia-Ren; Yu Hui-You

    2007-01-01

    We solve the generalized nonlinear Schrodinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.

  9. Is ‘Superluminal’Light Propagation Possible in Dispersive Media?

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; WU Ling-An; SHIH Yan-Hua

    2004-01-01

    @@ In a dispersive medium, different monochromatic modes of light have different phase velocities. Under special circumstances, a superposition of these modes results in an interesting effect wherein the group velocity (the velocity at which the peak of the wavepacket propagates) could be greater than c or even negative although the phase velocities of the modes are all less than c. Can this superluminal group velocity be used for information velocity of its component modes. Thus the maximum speed for information transfer, which involves the sending of a finite pulse, cannot be greater than the maximum phase velocity in the medium.

  10. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  11. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Science.gov (United States)

    Joulaei, A.; Moody, J.; Berti, N.; Kasparian, J.; Mirzanejhad, S.; Muggli, P.

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  12. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  13. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation); Ustinov, N. V., E-mail: n-ustinov@mail.ru [Moscow State University of Railways, Kaliningrad Branch (Russian Federation)

    2017-02-15

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  14. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  15. The excitation of a two-level atom by a propagating light pulse

    CERN Document Server

    Wang, Yimin; Scarani, Valerio

    2010-01-01

    State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized \\textit{propagating} pulse in free space and study the probability $P_e(t)$ of finding the atom in the excited state at any time $t$. This probability is expected to depend on (i) the quantum state of the pulse field and (ii) the overlap between the pulse and the dipole pattern of the atomic spontaneous emission. In the full three-dimensional vector model for the field, we show that the second effect is captured by a single parameter $\\Lambda\\in[0,8\\pi/3]$, obtained by weighing the numerical aperture with the dipole pattern. Then $P_e(t)$ can be obtained by solving time-dependent Heisenberg-Langevin equations. We provide detailed solutions for both single-photon states and coherent states and for various shapes of the pulse.

  16. First-principles simulation for strong and ultra-short laser pulse propagation in dielectrics

    Science.gov (United States)

    Yabana, K.

    2016-05-01

    We develop a computational approach for interaction between strong laser pulse and dielectrics based on time-dependent density functional theory (TDDFT). In this approach, a key ingredient is a solver to simulate electron dynamics in a unit cell of solids under a time-varying electric field that is a time-dependent extension of the static band calculation. This calculation can be regarded as a constitutive relation, providing macroscopic electric current for a given electric field applied to the medium. Combining the solver with Maxwell equations for electromagnetic fields of the laser pulse, we describe propagation of laser pulses in dielectrics without any empirical parameters. An important output from the coupled Maxwell+TDDFT simulation is the energy transfer from the laser pulse to electrons in the medium. We have found an abrupt increase of the energy transfer at certain laser intensity close to damage threshold. We also estimate damage threshold by comparing the transferred energy with melting and cohesive energies. It shows reasonable agreement with measurements.

  17. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  18. Propagation of two short laser pulse trains in a $\\Lambda$-type three-level medium under conditions of electromagnetically induced transparency

    CERN Document Server

    Buica, Gabriela

    2014-01-01

    We investigate the dynamics of a pair of short laser pulse trains propagating in a medium consisting of three-level $\\Lambda$-type atoms by numerically solving the Maxwell-Schr\\"odinger equations for atoms and fields. By performing propagation calculations with different parameters, under conditions of electromagnetically induced transparency, we compare the propagation dynamics by a single pair of probe and coupling laser pulses and by probe and coupling laser pulse trains. We discuss the influence of the coupling pulse area, number of pulses, and detunings on the probe laser propagation and realization of electromagnetically induced transparency conditions, as well on the formation of a dark state.

  19. Simulation of A Substorm Dispersionless Injection Using Dynamic Pulse Fields With Varying Propagating Speeds

    Science.gov (United States)

    Sarris, T.; Li, X.

    Energetic electron and ion injections are a common characteristic of substorms and are often observed near or inside geosynchronous orbit. Depending on the local time of measurement these injections can appear to be dispersionless. We performed a sim- ulation of an electron dispersionless injection by considering the interaction of an Earthward propagating electromagnetic pulse with the preexisting electron popula- tion. Such simulations have been performed previously [Li et al., 1993, 1998] and the dispersionless nature of injections measured at geostationary orbit has been repro- duced. These simulations assumed a constant propagation speed for the field configu- ration that produced the dispersionless injections. In our simulation we vary the pulse speed with the radial distance from the Earth to match the surprisingly low propa- gation velocities that have been measured inside geostationary orbit. We show that a deccelerating electromagnetic field configuration is able to produce dispersionless in- jections inside of geostationary orbit. We have reproduced a particular event (February 12, 1991) as seen by two spacecraft (CRRES and LANL 1990-095) when they were around local midnight and at different radial distances. We explain the energization of electrons during this interaction by means of betatron acceleration and we show that under our model electrons are transported inside geosynchronous orbit from more than a few RE tailward.

  20. Extended Lorentz code of a superluminal particle

    CERN Document Server

    Ter-Kazarian, G

    2012-01-01

    While the OPERA experimental scrutiny is ongoing in the community, in the present article we construct a toy model of {\\it extended Lorentz code} (ELC) of the uniform motion, which will be a well established consistent and unique theoretical framework to explain the apparent violations of the standard Lorentz code (SLC), the possible manifestations of which arise in a similar way in all particle sectors. We argue that in the ELC-framework the propagation of the superluminal particle, which implies the modified dispersion relation, could be consistent with causality. Furthermore, in this framework, we give a justification of forbiddance of Vavilov-Cherenkov (VC)-radiation/or analog processes in vacuum. To be consistent with the SN1987A and OPERA data, we identify the neutrinos from SN1987A and the light as so-called {\\it 1-th type} particles carrying the {\\it individual Lorentz motion code} with the velocity of light $c_{1}\\equiv c$ in vacuum as maximum attainable velocity for all the 1-th type particles. Ther...

  1. A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column.

    Science.gov (United States)

    Cirovic, Srdjan

    2009-02-01

    The dynamics of the movement of the cerebrospinal fluid (CSF) may play an important role in the genesis of pathological neurological conditions such as syringomyelia, which is characterized by the presence of a cyst (syrinx) in the spinal cord. In order to provide sound theoretical grounds for the hypotheses that attribute the formation and growth of the syrinx to impediments to the normal movement of the CSF, it is necessary to understand various modes through which CSF pulse in the spinal column propagates. Analytical models of small-amplitude wave propagation in fluid-filled coaxial tubes, where the outer tube represents dura, the inner tube represents the spinal cord, and the fluid is the CSF, have been used to that end. However, so far, the tendency was to model one of the two tubes as rigid and to neglect the effect of finite thickness of the tube walls. The aim of this study is to extend the analysis in order to address these two potentially important issues. To that end, classical linear small-amplitude analysis of wave propagation was applied to a system consisting of coaxial tubes of finite thickness filled with inviscid incompressible fluid. General solutions to the governing equations for the case of harmonic waves in the long wave limit were replaced with the boundary conditions to yield the characteristic (dispersion) equation for the system. The four roots of the characteristic equation correspond to four modes of wave propagation, of which the first three are associated with significant motion of the CSF. For the normal range of parameters the speeds of the four modes are c(1)=13 ms, c(2)=14.7 ms, c(3)=30.3 ms, and c(4)=124.5 ms, which are well within the range of values previously reported in experimental and theoretical studies. The modes with the highest and the lowest speeds of propagation can be attributed to the dura and the spinal cord, respectively, whereas the remaining two modes involve some degree of coupling between the two. When the

  2. ULTRASOUND PULSE-ECHO IMAGING USING THE SPLIT-STEP FOURIER PROPAGATOR

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Ultrasonic reflection imaging has the potential to produce higher image resolution than transmission tomography, but imaging resolution and quality still need to be further improved for early cancer detection and diagnosis. We present an ultrasound reflection image reconstruction method using the split-step Fourier propagator. It is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wavenumber domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wavenumber domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the breast. We use synthetic ultrasound pulse-echo data recorded around a ring for heterogeneous, computer-generated numerical breast phantoms to study the imaging capability of the method. The phantoms are derived from an experimental breast phantom and a sound-speed tomography image of an in-vivo ultrasound breast data collected usi ng a ring array. The heterogeneous sound-speed models used for pulse-echo imaging are obtained using a computationally efficient, first-arrival-time (time-of-flight) transmission tomography method. Our studies demonstrate that reflection image reconstruction using the split-step Fourier propagator with heterogeneous sound-speed models significantly improves image quality and resolution. We also numerically verify the spatial sampling criterion of wavefields for a ring transducer array.

  3. Dynamic rupture simulation with an experimentally-determined friction law leads to slip-pulse propagation

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2013-12-01

    We simulate the dynamic rupture along a vertical, strike-slip fault in an elastic half-space. The fault has frictional properties that were determined in high-velocity, rotary shear apparatus Sierra-White granite. The experimental fault was abruptly loaded by a massive flywheel, which is assumed to simulate the loading of a fault patch during an earthquake, and termed Earthquake-Like-Slip Event (ELSE) (Chang et al., 2012). The experiments revealed systematic alteration between slip-weakening and slip-strengthening (Fig. 1A), and were considered as proxies of fault-patch behavior during earthquakes of M = 4-8. We used the friction-distance relations of these experiments to form an empirical slip-dependent friction model, ELSE-model (Fig. 1B). For the dynamic rupture simulation, we used the program of Ampuero (2002) (2D spectral boundary integral elements) designed for anti-plane (mode III) shear fracturing. To compare with published works, the calculations used a crust with mechanical properties and stress state of Version 3 benchmark of SCEC (Harris et al., 2004). The calculations with a fault of ELSE-model friction revealed: (1) Rupture propagation in a slip-pulse style with slip cessation behind the pulse; (2) Systematic decrease of slip distance away from the nucleation zone; and (3) Spontaneous arrest of the dynamic rupture without a barrier. These features suggest a rupture of a self-healing slip-pulse mode (Fig. 1C), in contrast to rupturing of a fault with linear slip-weakening friction (Fig. 1B) (Rojas et al., 2008) in crack-like mode and no spontaneous arrest. We deduce that the slip-pulse in our simulation results from the fast recovery of shear strength as observed in ELSE experiments, and argue that incorporating this experimentally-based friction model to rupture modeling produces realistic propagation style of earthquake rupture. Figure 1 Fault patch behavior during an earthquake. (A) Experimental evolution of frictional stress, slip velocity, and

  4. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    Science.gov (United States)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  5. Wave Scattering by Superluminal Spacetime Slab

    CERN Document Server

    Deck-Léger, Zoé-Lise

    2016-01-01

    Spacetime media offers new opportunities for wave manipulation. Here we study superluminal slabs, and show that the amplitudes of the reflected waves are controlled by the velocity of the medium. In addition, the backward wave continuously scans from the specular to the collinear angle. A diagrammatic method is provided for insight into the deflection angles. A fundamental symmetry between sub- and superluminal scattering is derived from this diagrammatic description.

  6. Observation of image pair creation and annihilation from superluminal scattering sources.

    Science.gov (United States)

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.

  7. Analysis of internal crack propagation in silicon due to permeable pulse laser irradiation: study on processing mechanism of stealth dicing

    Science.gov (United States)

    Ohmura, Etsuji; Kawahito, Yuta; Fukumitsu, Kenshi; Okuma, Junji; Morita, Hideki

    2011-02-01

    Stealth dicing (SD) is an innovative dicing method developed by Hamamatsu Photonics K.K. In the SD method, a permeable nanosecond laser is focused inside a silicon wafer and scanned horizontally. A thermal shock wave propagates every pulse toward the side to which the laser is irradiated, then a high dislocation density layer is formed inside the wafer after the thermal shock wave propagation. In our previous study, it was concluded that an internal crack whose initiation is a dislocation is propagated when the thermal shock wave by the next pulse overlaps with this layer partially. In the experimental result, the trace that a crack is progressed gradually step by step was observed. In this study, the possibility of internal crack propagation by laser pulses was investigated. A two-dimensional thermal stress analysis based on the linear fracture mechanics was conducted using the stress distribution obtained by the axisymmetric thermal stress analysis. As a result, the validity of the hypothesis based on a heat transfer analysis result previously presented was supported. Also it was concluded that the internal crack is propagated by at least two pulses.

  8. Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model

    Science.gov (United States)

    Maĭmistov, A. I.

    2003-02-01

    We discuss propagation of an ultimately short (single-cycle) pulse of an electromagnetic field in a medium whose dispersion and nonlinear properties can be described by the cubic-quintic Duffing model, i.e., by an oscillator with third-and fifth-order anharmonicity. A system of equations governing the evolution of a unidirectional electromagnetic wave is analyzed without using the approximation of slowly varying envelopes. Three types of solutions of this system describing stationary propagation of a pulse in such a medium are found. When the signs of the anharmonicity constants are different, then the amplitude of a steady-state pulse is limited, but its energy may grow on account of an increase in its duration. The characteristics of such a pulse, referred to as an electromagnetic domain, are discussed.

  9. Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B., E-mail: bastian.aurand@fysik.lth.se [Department of Physics, Lund University, 22100 Lund (Sweden); Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Kuschel, S.; Jäckel, O.; Rödel, C. [Helmholtz Institute Jena, 07743 Jena (Germany); Zhao, H.Y. [Institute of Modern Physics, 73000 Lanzhou (China); Herzer, S. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Paz, A.E.; Bierbach, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Elkin, B. [Fraunhofer Institut für Grenzflächen-und Bioverfahrenstechnik, 70569 Stuttgart (Germany); Karmakar, A. [Leibniz-Supercomputing Center, 85748 Garching (Germany); Gibbon, P. [ExtreMe Matter Institut, 64291 Darmstadt (Germany); Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Kaluza, M.C. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Kuehl, T. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Universität Mainz, 55099 Mainz (Germany)

    2014-03-11

    Within the last decade, laser-ion acceleration has become a field of broad interest. The possibility to generate short proton- or heavy ion bunches with an energy of a few tens of MeV by table-top laser systems could open new opportunities for medical or technical applications. Nevertheless, today's laser-acceleration schemes lead mainly to a temperature-like energy distribution of the accelerated ions, a big disadvantage compared to mono-energetic beams from conventional accelerators. Recent results [1] of laser-ion acceleration using radiation-pressure appear promising to overcome this drawback. In this paper, we demonstrate the influence of a second counter-propagating laser pulse interacting with a nm-thick target, creating a well defined pre-plasma.

  10. Rigorous analysis of the propagation of sinusoidal pulses in bacteriorhodopsin films.

    Science.gov (United States)

    Acebal, Pablo; Blaya, Salvador; Carretero, Luis; Madrigal, R F; Fimia, A

    2012-11-05

    The propagation of sinusoidal pulses in bacteriorhodopsin films has been theoretically analyzed using a complete study of the photoinduced processes that take into account all the physical parameters, the coupling of rate equations with the energy transfer equation and the temperature change during the experiment. The theoretical approach was compared to experimental data and a good concordance was observed. This theoretical treatment, can be widely applied, i.e when arbitrary pump and/or signal is used or in the case of the pump and signal beams have different wavelengths. Due to we have performed a rigorous analysis, from this treatment the corresponding two level approximation has also been analyzed for these systems.

  11. Effect of pulse propagation on the two-dimensional photon echo spectrum of multilevel systems

    Science.gov (United States)

    Keusters, Dorine; Warren, Warren S.

    2003-08-01

    The effect of pulse propagation on the two-dimensional photon echo (2DPE) spectrum of multilevel systems is investigated using a perturbative method. At high optical densities (OD) peak profiles are broadened asymmetrically, in most cases more strongly along the ω2 direction than along the ω1 direction. The amount of broadening is determined both by the OD and by the dynamics of the system. In addition, especially if the different transitions in the system are of unequal strength, the relative intensity of the peaks changes with OD. But even if the transition strengths are the same, the behavior of the cross peaks is different from the diagonal peaks. Since peak shape and relative intensity are important parameters in the interpretation of 2DPE spectra, such OD effects should be taken into account.

  12. Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances

    Science.gov (United States)

    Hu, Yuze; Nie, Jinsong; Sun, Ke; Wang, Lei

    2017-01-01

    The spatial and temporal features of femtosecond laser filamentation, which are induced by a laser with power several times higher than the critical power, influenced by strong air turbulence at various propagation distances have been studied numerically. First, a strong turbulence occurring right before focal lens induces a few counter-balanced energy spikes which prevent the filament generation. Second, with the turbulence right before the filamentation, side filaments formed in the periphery towards the outside area leads the filament to be slightly short. Third, with the turbulence right after the lens, numerous energy spikes of the wave profile arise, but they will merge into one filament gradually, leading to a delayed filamentation onset and a shorter filamentation length. The deformation of temporal pulse shape become more sensitive and the supercontinuum (SC) can be weakened more significantly when strong turbulence takes place in air more previously.

  13. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principal validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.

  14. Optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate

    Institute of Scientific and Technical Information of China (English)

    Duan Zuo-Liang; Chen Jian-Ping; Li Ru-Xin; Lin Li-Huang; Xu Zhi-Zhan

    2004-01-01

    We report the experiments on the optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate and with several hundreds micro-joule-energy. A 10m-long filament and its breakup and merging at the nonlinear focal region produced by modulational instability of femtosecond laser pulses in air are observed. A simple model based on the nonlinear Schrodinger equation coupled with multiphoton ionization law is presented to explain the several experimental results.

  15. Propagation of terawatt-femtosecond laser pulses and its application to the triggering and guiding of high-voltage discharges

    OpenAIRE

    Ackermann, Roland

    2006-01-01

    When an ultrashort-terawatt laser pulse is propagating through the atmosphere, long filaments may develop. Their light is confined in an area of about 100 µm over distances up to several hundred meters, and an air plasma is generated along the beam path. Moreover, filamentation leads to a significant broadening of the initial pulse spectrum. These properties open the perspective to improve classical LIDAR techniques as well as to laser lightning control.In the laboratory, we have shown that t...

  16. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide.

    Science.gov (United States)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-18

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  17. Analysis of polarized pulse propagation through one-dimensional scattering medium

    Science.gov (United States)

    Zhang, Yong; Yao, Feng-Ju; Xie, Ming; Yi, Hong-Liang

    2017-08-01

    This paper analyzes the polarized light propagation in a one-dimensional scattering medium with the upper surface subjected to an oblique incident short-pulsed laser beam using the natural element method (NEM). The NEM discretization scheme for the transient vector radiative transfer equation (TVRTE) is presented in detail. The accuracy of the natural element method for transient vector radiative transfer in the scattering medium is assessed. Numerical results show that the NEM is accurate, and effective in solving transient polarized radiative problems. We examine a square short-pulsed laser transport firstly in the atmosphere with Mie scattering and then within aerosol scattering medium. We then investigate the transient polarized radiative transfer problem in the atmosphere-ocean system. The time-resolved signals and the polarization state of the Stokes vector are presented and analyzed. It is found that the scattering types of the medium make greatly influence on the transient transportation of the polarized light. Critically, the polarization states of the backward and forward scattered photons show significantly different time varying trends. For the two-layer system with dissimilar refractive index distributions, due to the total-reflection effect, the existence of a Fresnel interface significantly changes the polarization state of the light, and discontinuous distribution features are observed on the interface.

  18. Fast Back Propagation Learning Using Optimization of Learning Rate for Pulsed Neural Networks

    Science.gov (United States)

    Yamamoto, Kenji; Koakutsu, Seiichi; Okamoto, Takashi; Hirata, Hironori

    Neural Networks (NN) are widely applied to information processing because of its nonlinear processing capability. Digital hardware implementation of NN seems to be effective in construction of NN systems in which real-time operation and much further wide applications are possible. However, the digital hardware implementation of analogue NN is very difficult because we have to fulfill the restrictions about circuit resource, such as circuit scale, arrangement, and wiring. A technique that uses pulsed neuron model instead of analogue neuron model as a method of solving this problem has been proposed, and its effectiveness has been confirmed. To construct Pulsed Neural Networks (PNN), Back Propagation (BP) learning has been proposed. However, BP learning takes much time to construct PNN compared with the learning of analogue NN. Therefore some method to speed up BP learning of PNN is necessary. In this paper, we propose a fast BP learning using optimization of learning rate for PNN. In the proposed method, the learning rate is optimized so as to speed up the learning at every learning epoch. To evaluate the proposed method, we apply it to some pattern recognition problems, such as XOR, 3-bits parity, and digit recognition. Results of computational experiments indicate the validity of the proposed method.

  19. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light.

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-28

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs(2) and 5000 fs(2) are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances.This article is part of the themed issue 'New horizons for nanophotonics'. © 2017 The Author(s).

  20. Effect of Lorentz local field correction on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (PNA)molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Yong; Miao Quan; Wang Chuan-Kui

    2011-01-01

    This paper investigates the effect of Lorentz local field correction(LFC)on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation.The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium.In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.

  1. Pulse generation and propagation in dispersion-managed ultralong erbium-doped fiber lasers mode-locked by carbon nanotubes.

    Science.gov (United States)

    Rosa, H G; Thoroh de Souza, E A

    2012-12-15

    We present a study of pulse generation and propagation in erbium-doped fiber lasers with cavity length varying from 8 m to 3.5 km. We demonstrate that soliton effect determines the pulse stabilization in ultralong cavities, measuring pulses with an average 7.0 ps pulsewidth for cavity lengths between 2.25 and 3.5 km. We also demonstrate that, by filling fundamental soliton requirements, pulsewidth can be determined by length and total dispersion cavity parameters.

  2. "OPERA superluminal neutrinos explained by spontaneous emission and stimulated absorption"

    CERN Document Server

    Torrealba, Rafael

    2011-01-01

    In this work it is shown, that for short 3ns neutrino pulses reported by OPERA, a relativistic shape deforming effect of the neutrino distribution function due to spontaneous emission, produces an earlier arrival of 65.8ns in agreement with the reported 62.1ns\\pm 3.7ns, with a RMS of 16.4ns explaining the apparent superluminal effect. It is also shown, that early arrival of long 10500ns neutrinos pulse to Gran Sasso, by 57.8ns with respect to the speed of light, could be explained by a shape deforming effect due to a combination of stimulated absorption and spontaneous emission, while traveling by the decay tunnel that acts as a LASER tube.

  3. Propagation of an electromagnetic pulse through a waveguide with a barrier A time domain solution within classical electrodynamics

    CERN Document Server

    Emig, T

    1996-01-01

    An electromagnetic truncated Gaussian pulse propagates through a waveguide with piecewise different dielectric constants. The waveguide contains a barrier, namely a region of a lower dielectric constant compared to the neighboring regions. This set-up yields a purely imaginary wave vector in the region of the barrier ('electromagnetic tunneling'). We exactly calculate the time-dependent Green's function for a slightly simplified dispersion relation. In order to observe the plain tunneling effect we neglect the distortions caused by the wave guide in obtaining the transmitted pulse. The wave front of the pulse travels with the vacuum speed of light. Nevertheless, behind the barrier, the maximum of the transmitted pulse turns up at an earlier time than in the case without an barrier. This effect will be explained in terms of the energy flow across the barrier. The solutions obtained reproduce the shape of the pulses measured in the tunneling experiments of Enders and Nimtz [J. Phys. (France) I2, 1693 (1992); Ph...

  4. Propagation of Ultra-Intense Laser Pulses in Near-critical Plasmas: Depletion Mechanisms and Effects of Radiation Reaction

    CERN Document Server

    Wallin, Erik; Harvey, Christopher; Lundh, Olle; Marklund, Mattias

    2015-01-01

    Although, for current laser pulse energies, the weakly nonlinear regime of LWFA is known to be the optimal for reaching the highest possible electron energies, the capabilities of upcoming large laser systems will provide the possibility of running highly nonlinear regimes of laser pulse propagation in underdense or near-critical plasmas. Using an extended particle-in-cell (PIC) model that takes into account all the relevant physics, we show that such regimes can be implemented with external guiding for a relatively long distance of propagation and allow for the stable transformation of laser energy into other types of energy, including the kinetic energy of a large number of high energy electrons and their incoherent emission of photons. This is despite the fact that the high intensity of the laser pulse triggers a number of new mechanisms of energy depletion, which we investigate systematically.

  5. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness coupled effect on pulse wave propagation in a vascular network

    CERN Document Server

    Brault, A; Lucor, D

    2016-01-01

    SUMMARY This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is utilized to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of critical uncertainty is the spatial heterogeneity of the aortic compliance which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Resorting to a stochastic sparse pseudospectral method, we investigate the spatial sensitivity of the pulse pressure and waves reflection magnitude with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of th...

  6. Transport parameters for pulsed ultrasonic waves propagating in an aluminum foam

    Science.gov (United States)

    Tourin, Arnaud; Derode, Arnaud; Mamou, Victor; Fink, Mathias; Page, John; Cowan, Michael L.

    2002-11-01

    Aluminum foams have now been studied for many years in large part because of their applications as light-weight elastic materials (e.g., car bumpers, aerospace engineering applications). The pore size and the spatial distribution of the pores govern the mechanical behavior of the foam and can vary enormously depending on the method of manufacturing. Thus, new methods for the nondestructive characterization of these materials are needed. We present here a set of experimental ultrasonic methods in a range of frequencies where the ultrasonic waves are multiply scattered in the medium. In this regime, the propagation is described by ultrasonic transport parameters which are related to the microstructure of the foam. The diffusion coefficient and the absorption mean free path have been determined in pulse transmission experiments by fitting the solution of the diffusion equation to the average intensity, the so-called time of flight distribution. To more fully characterize the medium, the transport mean path and the diffusion coefficient have been measured in backscattering experiments using the static and dynamic coherent backscattering effects. For both methods, the properties of the sample interfaces have been taken into account.

  7. The Phantom of the OPERA: Superluminal Neutrinos

    CERN Document Server

    Ma, Bo-Qiang

    2011-01-01

    This report presents a brief review on the experimental measurements of the muon neutrino velocities from the OPERA, Fermilab and MINOS experiments and that of the (anti)-electron neutrino velocities from the supernova SN1987a, and consequently on the theoretical aspects to attribute the data as signals for superluminality of neutrinos. Different scenarios on how to understand and treat the background fields in the standard model extension frameworks are pointed out. Challenges on interpreting the OPERA result as a signal of neutrino superluminality are briefly reviewed and discussed. It is also pointed out that a covariant scenario of Lorentz violation can avoid the refutation on the OPERA experiment.

  8. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both...... uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen...

  9. On the Lorentz Factor of Superluminal Sources

    CERN Document Server

    Onuchukwu, Chika Christian

    2013-01-01

    We investigate the properties of features seen within superluminal sources often referred to as components. Our result indicates a fairly strong correlation of r=0.6 for quasars, r=0.4 for galaxies, and r=0.8 for BL Lac objects in our sample between component sizes and distances from the stationary core. Assumption of free adiabatic expanding plasma enabled us to constrain in general the Lorentz factor for superluminal sources. Ourestimated Lorentz factor of 7 - 17 for quasars, 6 - 13 for galaxies and 4- 9 for BL Lac objects indicate that BL Lac have the lowest range of Lorentz factor.

  10. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    Science.gov (United States)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa; Yamashita, Mikio

    2005-12-01

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into “bidirectional propagation equations” which are derived directly from Maxwell’s equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schrödinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6

  11. A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Baldo Ceolin, M.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gigli Berzolari, A.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Cohen, A.

    2012-01-01

    The OPERA collaboration [1] has claimed evidence of superluminal propagation between CERN and the LNGS with . We find that the neutrino energy distribution of the ICARUS events in LAr agrees with the expectations from the Monte Carlo predictions from an unaffected energy distribution of beam from CERN. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction [2] for a weak currents analog to Cherenkov radiation. In particular no events with a superluminal Cherenkov like e+e- pair or gamma emission have been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting much stricter limits to the value of delta comparable with the one due to the observations from the SN1987A.

  12. Sub-picosecond chirped return-to-zero nonlinear optical pulse propagating in dense dispersion-managed fibre

    Science.gov (United States)

    Guo, Shuqin; Le, Zichun; Quan, Bisheng

    2006-01-01

    By numerical simulation, we show that the fourth-order dispersion (FOD) makes sub-picosecond optical pulse broaden as second-order dispersion (SOD), makes optical pulse oscillate simultaneously as third-order dispersion (TOD). Based on above two reasons, sub-picosecond optical pulse will be widely broaden and lead to emission of continuum radiation during propagation. Here, resemble to two- and third-order dispersion compensation, fourth-order dispersion compensation is also suggested in a dispersion-managed optical fiber link, which is realized by arranging two kinds of fiber with opposite dispersion sign in each compensation cell. For sake of avoiding excessively broadening, ultra short scale dispersion compensation cell is required in ultra high speed optical communication system. In a full dispersion compensation optical fiber system which path average dispersion is zero about SOD, TOD, and FOD, even suffering from affection of high order nonlinear like self-steep effect and self-frequency shift, 200 fs gauss optical pulse can stable propagate over 1000 km with an optimal initial chirp. When space between neighboring optical pulse is only 2 picoseconds corresponding to 500 Gbit/s transmitting capacity, eye diagram is very clarity after 1000 km. The results demonstrate that ultra short scale dispersion compensation including FOD is need and effective in ultra-high speed optical communication.

  13. The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems. (II). Backscattering

    CERN Document Server

    Manciu, M; Sen, S

    2000-01-01

    We demonstrate that the propagation of solitons, soliton-like excitations and acoustic pulses discussed in the preceding article can be used to detect buried impurities in a chain of elastic grains with Hertzkur contacts. We also present preliminary data for 3D granular beds, where soliton-like objects can form and can be used to probe for buried impurities, thus suggesting that soliton-pulse spectroscopy has the potential to become a valuable tool for probing the structural properties of granular assemblies. The effects of restitution are briefly discussed. We refer to available experiments which support our contention.

  14. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-01-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007

  15. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    Science.gov (United States)

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  16. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    Science.gov (United States)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  17. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure

    Science.gov (United States)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing

    2016-12-01

    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  18. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    Science.gov (United States)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  19. Decelerating chirped soliton formation at femtosecond laser pulse propagation in a medium with one-photon absorption and gold nanorods

    Science.gov (United States)

    Trofimov, V. A.; Lysak, T. M.

    2017-01-01

    We demonstrate the possibility of decelerating chirped soliton formation at femtosecond pulse propagation in a medium with gold nanoparticles. We take into account the dependence of one-photon absorption on the nanorod aspect ratio and time-dependent nanorod aspect ratio changing due to nanorod reshaping because of laser energy absorption. The soliton formation occurs due to laser radiation trapping by the nanorod reshaping front. We show analytically that a chirp induced by the negative phase grating is crucial for this trapping.

  20. Pair Production Constraints on Superluminal Neutrinos Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  1. Superluminality, Black Holes and Effective Field Theory

    CERN Document Server

    Goon, Garrett

    2016-01-01

    Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-per...

  2. Effects of Higher-Order Relativistic Nonlinearity and Wakefield During a Moderately Intense Laser Pulse Propagation in a Plasma Channel

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Ping; LIU Bing-Bing; LIU San-Qiu; ZHANG Fu-Yang; LIU Jie

    2013-01-01

    Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.

  3. Simulation of Femtosecond Pulse Propagation through Hollow Fibre Filled with Noble Gases of Gradient Temperature

    Institute of Scientific and Technical Information of China (English)

    SONG Zhen-Ming; ZHANG Guang-Xiao; CAO Shi-Ying; PANG Dong-Qing; CHAI Lu; WANG Qing-Yue; ZHANG Zhi-Gang

    2008-01-01

    We propose a novel technique for generating intense few to mono-cycle femtosecond pulses.The simulation demonstrate that for the temperature difference of 300K,the spectrum of the output pulses is increased by 67%and the transform limited pulse width is reduced almost by half,compared with those obtained with hollow fibres in uniform temperature.

  4. Self-accelerating Massive Gravity: Superluminality, Cauchy Surfaces and Strong Coupling

    CERN Document Server

    Motloch, Pavel; Joyce, Austin; Motohashi, Hayato

    2015-01-01

    Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not inte...

  5. Experimental and Theoretical Investigation of Directional Wideband Electromagnetic Pulse Photoemission Generator

    Science.gov (United States)

    Petrov, P. V.; Afonin, V. I.; Zamuraev, D. O.; Zavolokov, E. V.; Kupyrin, N. V.; Lazarev, Yu. N.; Romanov, Yu. O.; Syrtsova, Yu. G.; Sorokin, I. A.; Tischenko, A. S.; Brukhnevich, G. I.; Voronkova, N. P.; Pekarskaya, L. Z.; Belolipetskiy, V. S.

    The effect of electromagnetic wave generation by the electric current pulse propagating at the superluminal velocity along a conducting surface might be promising to create a high-power wideband microwave generator. The system comprising a plane vacuum photodiode with a transparent anode and using laser radiation to initialize electron emission is a variant to realize this scheme of electromagnetic pulse generation. This chapter presents results of experimental researches in characteristics of such radiating element with the cesium-antimonide cathode of Ø50 mm. The performed researches have shown that the generated wideband pulse (f_0 ≈ 3.3 {{GHz}},Δ f/f_0 ˜ 1) propagates in the direction corresponding to specular reflection of the incident laser radiation. Under the voltage of about 50 kV the electric field strength of 44 kV/m at the distance of 1.3 m has been recorded that corresponds to the generator power ˜10 MW.

  6. Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, Dušan, E-mail: dusan.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Zemun (Serbia); Fedele, Renato, E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II,” M.S. Angelo, Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, Napoli (Italy); Belić, Milivoj, E-mail: milivoj.belic@qatar.tamu.edu [Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); De Nicola, Sergio, E-mail: sergio.denicola@spin.cnr.it [SPIN-CNR, Complesso Universitario di M.S. Angelo, Napoli (Italy)

    2015-04-15

    The interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in a regime with ultrarelativistic electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The study is applied to a laser wakefield acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse. These have fundamentally different dispersive properties since in the core the electrons are almost completely expelled by a very strong ponderomotive force, and the electromagnetic wave packet is imbedded in a vacuum channel, thus having (almost) linear properties. Conversely, at the pulse edges, the laser amplitude is smaller, and the wave is weakly nonlinear and dispersive. New nonlinear terms in the wave equation, introduced by the nonlinear phase, describe without the violation of imposed scaling laws a smooth transition to a nondispersive electromagnetic wave at very large intensities and a simultaneous saturation of the (initially cubic) nonlocal nonlinearity. The temporal evolution of the laser pulse is studied both analytically and by numerically solving the model equations in a two-dimensional geometry, with the spot diameter presently used in some laser acceleration experiments. The most stable initial pulse length is estimated to exceed ≳1.5–2 μm. Moderate stretching of the pulse in the direction of propagation is observed, followed by the development of a vacuum channel and of a very large

  7. Pulse-front propagation and interaction during the growth of CdS nanoparticles in a gel.

    Science.gov (United States)

    Al-Ghoul, Mazen; Ghaddar, Tarek; Moukalled, Tharwat

    2009-08-27

    We studied the spatiotemporal dynamics of a new system consisting of sulfide ions (outer electrolyte) diffusing into an organic gel (gelatin) containing mercaptoethanol-capped cadmium ions (inner electrolyte). The product, cadmium sulfide, exhibits a faint yellow transparent propagating front starting at the gel-outer electrolyte interface. When subjected to UV light, this system reveals fluorescing CdS nuclei localized spatially in a narrow region, called pulse, that leads the front and propagates down the tube. We show that the pulse consists of CdS nanoclusters of an average size of about 4 nm, whereas the trailing front consists of 6-8 nm cubic-phase CdS crystallites. The width of the pulse remains constant in time, t, at about 2 mm and independent of the outer concentration S0. It was found that the speed of the pulse fluctuates as the concentration of the capping agent is varied, with fastest pulses attained at a concentration of 40 mM for two different outer concentrations of sulfide ions. The origin of the yellow fluorescence of the pulse originates from emission from surface states. This dynamical system was then theoretically studied using a competitive particle growth model. The resulting evolution equations were solved numerically, and the results were compared to the experimental findings. It was shown that the model agrees in many aspects with the experiment. The densities of small particles and large particles rho were shown to evolve like a pulse and a front, respectively. The front was shown to extend "diffusively" as t1/2, as found experimentally. The distance traveled by the pulse xpeak was shown to increase with outer concentration S0 and obeys a concentration power law xpeak approximately S(0)1/4. The width w of the pulse also obeys a time power law w approximately ta with a crossover between early times (a=1/3) and intermediate times (a=0). This system would enable us to study the early time dynamics of Liesegang systems.

  8. OPERA superluminal neutrinos and Kinematics in Finsler spacetime

    CERN Document Server

    Chang, Zhe; Wang, Sai

    2011-01-01

    The OPERA collaboration recently reported that muon neutrinos could be superluminal. More recently, Cohen and Glashow pointed that such superluminal neutrinos would be suppressed since they lose their energies rapidly via bremsstrahlung. In this Letter, we propose that Finslerian nature of spacetime could account for the superluminal phenomena of particles. The Finsler spacetime permits the existence of superluminal behavior of particles while the casuality still holds. A new dispersion relation is obtained in a class of Finsler spacetime. It is shown that the superluminal speed is linearly dependent on the energy per unit mass of the particle. We find that such a superluminal speed formula is consistent with data of OPERA, MINOS and Fermilab-1979 neutrino experiments as well as observations on neutrinos from SN1987a.

  9. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Robert, E.; Darny, T.; Dozias, S.; Iseni, S.; Pouvesle, J. M. [GREMI, UMR 7344, CNRS/Université d' Orléans, BP 6744, 45067 Orléans Cedex 2 (France)

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements are in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.

  10. Pulse propagation and failure in the discrete FitzHugh-Nagumo model subject to high-frequency stimulation.

    Science.gov (United States)

    Ratas, Irmantas; Pyragas, Kestutis

    2012-10-01

    We investigate the effect of a homogeneous high-frequency stimulation (HFS) on a one-dimensional chain of coupled excitable elements governed by the FitzHugh-Nagumo equations. We eliminate the high-frequency term by the method of averaging and show that the averaged dynamics depends on the parameter A=a/ω equal to the ratio of the amplitude a to the frequency ω of the stimulating signal, so that for large frequencies an appreciable effect from the HFS is attained only at sufficiently large amplitudes. The averaged equations are analyzed by an asymptotic theory based on the different time scales of the recovery and excitable variables. As a result, we obtain the main characteristics of a propagating pulse as functions of the parameter A and derive an analytical criterion for the propagation failure. We show that depending on the parameter A, the HFS can either enhance or suppress pulse propagation and reveal the mechanism underlying these effects. The theoretical results are confirmed by numerical simulations of the original system with and without noise.

  11. Stochastic model in microwave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Mugnai, D., E-mail: d.mugnai@ifac.cnr.it [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2011-11-28

    Further experimental results of delay time in microwave propagation are reported in the presence of a lossy medium (wood). The measurements show that the presence of a lossy medium makes the propagation slightly superluminal. The results are interpreted on the basis of a stochastic (or path integral) model, showing how this model is able to describe each kind of physical system in which multi-path trajectories are present. -- Highlights: ► We present new experimental results on electromagnetic “anomalous” propagation. ► We apply a path integral theoretical model to wave propagation. ► Stochastic processes and multi-path trajectories in propagation are considered.

  12. Field signature for apparently superluminal particle motion

    Science.gov (United States)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  13. Field signature for apparently superluminal particle motion

    CERN Document Server

    Land, Martin

    2016-01-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  14. On the Lorentz factor of superluminal sources

    Institute of Scientific and Technical Information of China (English)

    Chika Christian Onuchukwu; Augustine A.Ubachukwu

    2013-01-01

    We investigate the properties of features seen within superluminal sources often referred to as components.Our result indicates a fairly strong correlation of r ~ 0.5 for quasars,r ~ 0.4 for galaxies and r ~ 0.7 for BL Lac objects in our sample between component sizes and distances from the stationary core.The assumption of free adiabatic expanding plasma enables us to constrain the Lorentz factor for superluminal sources.Our estimated Lorentz factor of γ ~ 9-13 for quasars,γ ~ 7-11for galaxies and γ ~ 4-9 for BL Lac objects indicates that BL Lacs have the lowest range of Lorentz factors.

  15. Canonical and Singular Propagation of Ultrashort Pulses in a Nonlinear Medium

    OpenAIRE

    Karl Glasner; Miroslav Kolesik; Moloney, Jerome V.; Newell, Alan C.

    2012-01-01

    We examine the two types of singular behaviors of ultrashort pulses in a nonlinear medium, pulse steepening if the weak longitudinal dispersion is normal and collapse if it is anomalous. Connections with analogous behaviors of wave packets of almost monochromatic waves in strongly dispersive media are discussed.

  16. Formation, propagation, and decay of coherent pulses of solar cosmic rays

    CERN Document Server

    Ruffolo, D

    1995-01-01

    We have performed numerical simulations of the interplanetary transport of solar cosmic rays. The particles form a coherent pulse within \\sim0.01 AU after their injection. The gradual decrease of a pulse's speed and anisotropy can be understood in terms of an equilibrium between pitch-angle scattering and focusing. The results should be useful for estimating times of particle injection.

  17. The Riemann problem method for solving a perturbed nonlinear Schroedinger equation describing pulse propagation in optic fibres

    Energy Technology Data Exchange (ETDEWEB)

    Mihalache, D.; Panoiu, N.-C.; Moldoveanu, F.; Baboiu, D.-M. [Dept. of Theor. Phys., Inst. of Atomic Phys., Bucharest (Romania)

    1994-09-21

    We used the Riemann problem method with a 3*3 matrix system to find the femtosecond single soliton solution for a perturbed nonlinear Schroedinger equation which describes bright ultrashort pulse propagation in properly tailored monomode optical fibres. Compared with the Gel'fand-Levitan-Marchenko approach, the major advantage of the Riemann problem method is that it provides the general single soliton solution in a simple and compact form. Unlike the standard nonlinear Schroedinger equation, here the single soliton solution exhibits periodic evolution patterns. (author)

  18. Controlling of Slope of Carrier-Envelope Phase of Few-Cycle Laser Pulses on Propagation Distance near the Focus

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-Heng; JIANG Hong-Bing; GONG Qi-Huang

    2007-01-01

    The effect of focusing geometry on slope of carrier-envelope (CE) phase φCE versus propagation distance from the focus in few-cycle laser pulses is investigated. The slope could be adjusted by changing the distance L between the waist of the incident beam and the lens. At the focus,(δ)φCE/(δ)(z/zR) = 0 when L = 0, and (δ)φCE/(δ)(z/zR) = -2 when L = ∞. The longer the distance L, the steeper the curve of the CE phase at the focus.

  19. The influence of the excitation pulse shape on the stress wave propagation in a bcc iron crystal

    Directory of Open Access Journals (Sweden)

    Červená O.

    2008-12-01

    Full Text Available This article presents a large-scale molecular dynamic simulations of wave propagation in a cracked bcc (body centered cubic iron crystal based on an N-body potential model which gives a good description of an anisotropic elasticity. The crystal is loaded by a stress pulse on its front face and the response is detected on its opposite face. The various shapes, amplitudes, and widths of stress pulse are considered. The simulations are performed also for a central pre-existing Griffith crack. The crack is embedded in a bcc iron crystal having a basic cubic orientation. The acquired results bring important information for further analysis oriented to new NDT nanoscale methods.

  20. Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels

    Science.gov (United States)

    Geints, Yu. E.; Zemlyanov, A. A.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2016-11-01

    We report the results of experimental and theoretical studies of the post-filamentation stage of nonlinear propagation of high-power pulsed radiation from a Ti : sapphire laser in air. We have for the first time obtained the experimental dependences of the angular divergence of specific spatially localised high-intensity light structures that are observed in the beam after its multiple filamentation (post-filamentation of channels) when varying the initial focusing of laser radiation and its energy. It is found that the angular divergence of the post-filamentation channels decreases with increasing pulse energy and reducing beam numerical aperture. The experimental dependences are qualitatively interpreted based on the diffraction model of the Bessel - Gaussian beam.

  1. Penetration and propagation into biological matter and biological effects of high-power ultra-wideband pulses: a review.

    Science.gov (United States)

    Schunck, Thérèse; Bieth, François; Pinguet, Sylvain; Delmote, Philippe

    2016-01-01

    Systems emitting ultra-wideband high power microwave (HP/UWB) pulses are developed for military and civilian applications. HP/UWB pulses typically have durations on the order of nanoseconds, rise times of picoseconds and amplitudes around 100 kV m(-1). This article reviews current research on biological effects from HP/UWB exposure. The different references were classified according to endpoints (cardiovascular system, central nervous system, behavior, genotoxicity, teratology …). The article also reviews the aspects of mechanisms of interactions and tissue damage as well as the numerical work that has been done for studying HP/UWB pulse propagation and pulse energy deposition inside biological tissues. The mechanisms proposed are the molecular conformation change, the modification of chemical reaction rates, membrane excitation and breakdown and direct electrical forces on cells or cell constituents, and the energy deposition. As regards the penetration of biological matter and the deposited energy, mainly computations were published. They have shown that the EM field inside the biological matter is strongly modified compared to the incident EM field and that the energy absorption for HP/UWB pulses occurs in the same way as for continuous waves. However, the energy carried by a HP/UWB pulse is very low and the deposited energy is low. The number of published studies dealing with the biological effects is small and only a few pointed out slight effects. It should be further noted that the animal populations used in the studies were not always large, the statistical analyses not always relevant and the teams involved in this research rather limited in number.

  2. Storage and retrieval of light pulses in a fast-light medium via active Raman gain

    Science.gov (United States)

    Xu, Datang; Bai, Zhengyang; Huang, Guoxiang

    2016-12-01

    We propose a scheme to realize the storage and retrieval of light pulses in a fast-light medium via a mechanism of active Raman gain (ARG). The system under consideration is a four-level atomic gas interacting with three (pump, signal, and control) laser fields. We show that a stable propagation of signal light pulses with superluminal velocity (i.e., fast-light pulses) is possible in such a system through the ARG contributed by the pump field and the quantum interference effect induced by the control field. We further show that a robust storage and retrieval of light pulses in such a fast-light medium can be implemented by switching on and off the pump and the control fields simultaneously. The results reported here may have potential applications for light information processing and transmission using fast-light media.

  3. Near-Field Propagation of Sub-Nanosecond Electric Pulses into Amorphous Masses

    Science.gov (United States)

    2012-02-01

    delivered at 10 Hz, the cell membrane becomes more permeable : it shows a higher leakage current compared with the cell that is not pulsed. The leakage...plication, to allow enough time for dialysis of the cytoplasm with the pipette solution. Whole-cell currents were probed by stepping the membrane...constant, were found to cause cell death and a change in membrane permeability . For the electric pulse con- dition, 200 ps, 25 kV/cm, using 1.8 million

  4. Resolving 7 problems with OPERA's superluminal neutrino experiment

    CERN Document Server

    Ehrlich, Robert

    2011-01-01

    Physicists have raised many troubling inconsistencies with the OPERA claim of superluminal neutrinos that cast doubt on its validity. This paper examines ways that 7 of these inconsistencies can be resolved. It also discusses evidence that the electron neutrino is superluminal, based on previously published cosmic ray observations, and secondarily a re-examination of tritium beta decay data.

  5. On the Superluminal Motion of Radio-Loud AGNs

    Indian Academy of Sciences (India)

    Zhi-Bin Zhang; Yi-Zhen Zhang

    2011-03-01

    Apparent superluminal motion of different radio-loud AGNs are similarly related with beaming effect. The cosmological expanding effect would play no part in the superluminal motion of radio galaxies, BL Lacertae objects as well as quasars.Meanwhile, we confirm that estimates for apparent velocity app and Doppler boosting factor based on multi-wavelength combination and variability are comparable.

  6. Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration

    CERN Document Server

    Walsh, D A; Snedden, E W; Cliffe, M J; Graham, D M; Jamison, S P

    2016-01-01

    The sub-luminal phase velocity of electromagnetic waves in free space is generally unobtainable, being closely linked to forbidden faster than light group velocities. The requirement of effective sub-luminal phase-velocity in laser-driven particle acceleration schemes imposes a fundamental limit on the total acceleration achievable in free-space, and necessitates the use of dielectric structures and waveguides for extending the field-particle interaction. Here we demonstrate a new travelling-source and free space propagation approach to overcoming the sub-luminal propagation limits. The approach exploits the relative ease of generating ultrafast optical sources with slow group velocity propagation, and a group-to-phase front conversion through non-linear optical interaction near a material-vacuum boundary. The concept is demonstrated with two terahertz generation processes, non-linear optical rectification and current-surge rectification. The phase velocity is tunable, both above and below vacuum speed of lig...

  7. Time-domain study of acoustic pulse propagation in an ocean waveguide using a new normal mode model

    Science.gov (United States)

    Sidorovskaia, Natalia Anatol'evna

    1997-11-01

    This study is focused on issues of numerical modeling of sound propagation in diverse ocean waveguides. A new normal mode acoustical model (Shallow Water Acoustic Mode Propagation-SWAMP) has been developed. The algorithm for obtaining the vertical modal solution is based on a warping matrix transformation of the solution of an isovelocity (reference) waveguide to one of arbitrary velocity profile. An efficient mode coupling scheme with an adaptive step-size in range has been implemented for range-dependent environments. The new algorithm allows fairly arbitrary ocean layering and readily works at high frequency. An important advantage of the new procedure is that vertical modal eigenfunctions can easily be transformed to a spherical representation suitable for coupling in object scattering problems. Benchmarking results of the new code against established acoustic models based on parabolic equation and existing normal mode approaches show good agreement for range-independent and up-slope and down-slope bathymetries and a very competitive calculation speed. Broad-band pulse propagation in deep and shallow water with double (surface and bottom) ducts has been modeled using the new normal mode model for a variety of ocean waveguide parameters and different frequency bands. The surface duct generates a series of the surface-duct-trapped- modes, which form amplitude-modulated precursors in the far field pulse response. It has been found that the arrival times of the precursors could not be explained by the conventional concept of group velocity so that a more general principle based on the rate of energy transfer has been used. The Airy function solution was found to explain the amplitude modulation of the precursors. It has been learned from the numerical simulation that for a range-independent environment the time separation between precursors is fixed and any variations from this have been a result of range-dependence and mode coupling in the model. The time

  8. Comment on ``Observation of Superluminal Behaviors in Wave Propagation''

    Science.gov (United States)

    Bigelow, N. P.; Hagen, C. R.

    2001-07-01

    Two Comments on the Letter by D. Mugnai, A. Ranfagni, and R. Ruggeri, Phys. Rev. Lett. 84, 4830 (2000). Points similar to those made in the following two Comments were made in papers by S. Glasgow and J. Peatross, by M. Peshkin, by L. C. Cune and M. Apostol, by W. Luis Mochán and V. L. Brudny, and by C. Altucci, C. de Lisio, B. Preziosi, and S. Solimeno.

  9. Superluminal Propagation and Acausality of Nonlinear Massive Gravity

    CERN Document Server

    Deser, S; Ong, Y C; Waldron, A

    2013-01-01

    Massive gravity is an old idea: trading geometry for mass. Much effort has been expended on establishing a healthy model, culminating in the current ghost-free version. We summarize here our recent findings -- that it is still untenable -- because it is locally acausal: CTC solutions can be constructed in a small neighborhood of any event.

  10. Experimental and Theoretical Investigation of Subnanosecond Pulse Propagation in Graded Index Fibers

    DEFF Research Database (Denmark)

    Nicolaisen, Ejner; Hansen, J. J. Ramskov

    1977-01-01

    The propagation in a fibre which does not exhibit any mode coupling is investigated by varying the launching conditions. It is shown that for this fibre there exists a trade-off between dispersion and power coupling efficiency. The measurements are compared to theoretical calculations taking leak...

  11. Exact solutions of optical pulse propagation in nonlinear meta-materials

    Science.gov (United States)

    Nanda, Lipsa

    2017-01-01

    An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.

  12. Propagation of light through small clouds of cold interacting atoms

    CERN Document Server

    Jennewein, S; Greffet, J -J; Browaeys, A

    2015-01-01

    We demonstrate experimentally that a cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m/s. Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the cloud and to the light-induced interactions between atoms. It implies that a large phase shift is imprinted on the continuous laser beam, and opens interesting perspectives for applications to quantum technologies.

  13. Propagation of light through small clouds of cold interacting atoms

    Science.gov (United States)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  14. Tunable propagation delay of femtosecond pulse in quantum-dot optical amplifier at room temperature

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed.......Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed....

  15. Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed......Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed...

  16. Enhanced Sensitivity in a Superluminal Single Mode DPAL Cavity at Room Temperature

    Science.gov (United States)

    Abi-Salloum, Tony; Yablon, Joshua; Tseng, Shih; Shahriar, Selim

    2012-06-01

    The note beat between two counter-propagating beams in a cavity is used to measure the effective change of the length of the cavity or interferometer for applications such as optical gyroscopes, vibrometers, and gravitational wave detectors. We show in this talk how a superluminal single mode laser cavity can enhance the measured note beat dramatically. We consider the inhomogeneous broadening case and study the dependence of the enhancement factor on few key parameters. We also show how Diode Pump Alkali Lasers (DPAL) are excellent candidates for such devices. Using a Rubidium based DPAL, we study the characteristics of these lasers and their effect on the proposed enhanced sensitivity.

  17. Propagation and spatiotemporal summation of electrical pulses in semiconductor nerve fibers

    Science.gov (United States)

    Samardak, A.; Taylor, S.; Nogaret, A.; Hollier, G.; Austin, J.; Ritchie, D. A.

    2007-08-01

    The authors report the propagation and analog summation of electrical impulses in artificial nerve fibers made of submicron p-n wires. These wires model the longitudinal conductivities of K + and Na+ ions inside and outside a nerve capillary as well as the transverse capacitance of the nerve membrane and the nonlinear conductance of its ion channels. They demonstrate the summation and annihilation of electrical impulses at room temperature which form the basis for making spike timing neural networks.

  18. Quantification of a propagating spin-wave packet created by an ultrashort laser pulse in a thin film of a magnetic metal

    Science.gov (United States)

    Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.

    2016-07-01

    Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.

  19. Ultrarelativistic regime in the propagation of an ultrastrong, femtosecond laser pulse in plasmas

    CERN Document Server

    Jovanović, Dušan; Belić, Milivoj; De Nicola, Sergio

    2014-01-01

    The interaction of a multi-Petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in the regime of fully relativistic electron jitter velocities and in the context of the laser wakefield acceleration scheme. The study is applied to the specifications available at present time, or planned for the near future, of the Ti:Sa Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME) in Frascati. Novel nonlinear equation is derived by a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the laser wave. They describe on an equal footing both the strong and moderate laser intensity regimes, pertinent to the core and the edges of the pulse. These have fundamentally different dispersive properties since, in the core, the electrons are almost completely expelled by a very strong ponderomotive force and the electromagnetic wave packet is imbedded in a vacuum channel and has (almost) linear properties, while a...

  20. Numerical Simulation of Ultrafast Laser Pulse Propagation in Tenuous Plasmas:Envelope Evolving and Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Yu; XIE Bai-Song

    2006-01-01

    We propose an effective and useful numerical simulation scheme for the investigation of the ultra-fast laser pulses in tenuous plasmas. The accuracy of the method is tested by numerical examples. We check some special examples to investigate the laser envelope evolving and modulation in plasmas. Asymmetric two-peak modulation structure is found and its underlying physics is analyzed. The advantages and shortages of the method are also discussed.

  1. Kilohertz Pulsed-Laser-Polymerization: Simultaneous Determination of Backbiting, Secondary, and Tertiary Radical Propagation Rate Coefficients for tert-Butyl Acrylate.

    Science.gov (United States)

    Wenn, Benjamin; Junkers, Thomas

    2016-05-01

    For the first time, a 1000 Hz pulse laser has been applied to determine detailed kinetic rate coefficients from pulsed laser polymerization-size exclusion chromatography experiments. For the monomer tert-butyl acrylate, apparent propagation rate coefficients kp (app) have been determined in the temperature range of 0-80 °C. kp (app) in the range of few hundreds to close to 50 000 L·mol(-1) ·s(-1) are determined for low and high pulse frequencies, respectively. The apparent propagation coefficients show a distinct pulse-frequency dependency, which follows an S-shape curve. From these curves, rate coefficients for secondary radial propagation (kp (SPR) ), backbiting (kbb ), midchain radical propagation (kp (tert) ), and the (residual) effective propagation rate (kp (eff) ) can be deduced via a herein proposed simple Predici fitting procedure. For kp (SPR) , the activation energy is determined to be (17.9 ± 0.6) kJ·mol(-1) in excellent agreement with literature data. For kbb , an activation energy of (25.9 ± 2.2) kJ·mol(-1) is deduced.

  2. Apparent faster than light propagation from light sterile neutrinos

    CERN Document Server

    Hannestad, Steen

    2011-01-01

    Recent data from the OPERA experiment seem to point to neutrinos propagating faster than light. One possible physics explanation for such a result is the existence of light sterile neutrinos which can propagate in a higher dimensional bulk and achieve apparent superluminal velocities when measured by an observer confined to the 4D brane of the standard model. Such a model has the advantage of easily being able to explain the non-observation of superluminal neutrinos from SN1987A. Here we discuss the phenomenological implications of such a model and show that it can provide an explanation for the observed faster than light propagation of neutrinos.

  3. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  4. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    Science.gov (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  5. Nonlinear pulse propagation in InAs/InP quantum-dot optical amplifiers: Rabi-oscillations in the presence of non-resonant nonlinearities

    CERN Document Server

    Karni, Ouri; Eisenstein, Gad; Reithmaier, Johann Peter

    2014-01-01

    We study the interplay between coherent light-matter interactions and non-resonant pulse propagation effects when ultra-short pulses propagate in room-temperature quantum-dot (QD) semiconductor optical amplifiers (SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent Rabi-oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile. These effects are incorporated into our previously developed finite-difference time-domain comprehensive model that describes the interaction between the pulses and the QD SOA. The present, generalized, model is used to investigate the combined effect of coherent and non-resonant phenomena in the gain and absorption regimes of the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like effect causes pulse compression, which coun...

  6. Defect visualization of aircraft UHF antenna radome using full-field pulse-echo ultrasonic propagation imaging system

    Science.gov (United States)

    Shin, H. J.; Hong, S. C.; Lee, J. R.; Kim, J. H.

    2016-10-01

    Most of aircraft antennas usually have various types of radome made of composite materials for protecting antenna structures. However, these antenna radome structures, which are installed on the outside of airplane, are easy to be damaged by external forces such as drag, foreign object, bird strike and others. In this study, full-field pulse-echo ultrasonic propagation imaging (PE UPI) system is proposed as the non-destructive inspection technique to visualize manufacturing defects in composite antenna radome. Based on the results of the sample case study, it is shown that the ultrasonic wave propagation imaging (UWPI) that is generated by the proposed full-field PE UPI system is able to highlight the intact internal condition of antenna structure and its defect area. Additional damage visualization techniques like ultrasonic energy mapping (UEM), variable time window amplitude map (VTWAM) and also ultrasonic spectral imaging (USI) algorithms are applied to improve the reliability of the damage visualization. It can be concluded that the proposed PE UPI system is an effective non-destructive inspection technique for the composite radome structures.

  7. Modeling of three-dimensional Lamb wave propagation excited by laser pulses.

    Science.gov (United States)

    Liu, Wenyang; Hong, Jung-Wuk

    2015-01-01

    As a type of broadband source of ultrasonic guided waves, laser pulses can be used to launch all modes of interests. In this paper, Lamb waves are excited by imposing heat flux mimicking the supply of the heat from laser pulses, and effects by defects on the received Lamb waves in a plate are investigated by means of the finite element method. In order to alleviate the heavy computational cost in solving the coupled finite element equations, a sub-regioning scheme is employed, and it reduces the computational cost significantly. A comparison of Lamb waves generated by unfocused and line-focused laser sources is conducted. To validate numerical simulations, the group velocity of A0 mode is calculated based on the received signal by using the wavelet transform. The result of A0 mode group velocity is compared with the solution of Rayleigh-Lamb equations, and close agreement is observed. Lamb waves in a plate with defects of different lengths are examined next. The out-of-plane displacement in the plate with a defect is compared with the displacement in the plate without defects, and the wavelet transform is used to determine the arrival times of Lamb waves traveling at the A0 mode group velocity. A strong correlation is observed between the extent of defects and the magnitude of wavelet coefficients.

  8. Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse

    Science.gov (United States)

    Krasovskii, E. E.; Friedrich, C.; Schattke, W.; Echenique, P. M.

    2016-11-01

    Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological result that the photoelectron moves with the group velocity d E /d ℏ k and traverses on average the distance equal to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.

  9. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    Science.gov (United States)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  10. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    CERN Document Server

    Hamido, Aliou; Madroñero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick; Frapiccini, Ana Laura; Piraux, Bernard

    2011-01-01

    We present an ab initio approach to solve the time-dependent Schr\\"odinger equation to treat electron and photon impact multiple ionization of atoms or molecules. It combines the already known time scaled coordinate method with a new high order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time scaled coordinate method namely that the scaled wave packet stays confined and evolves smoothly towards a stationary state the modulus square of which being directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multi-resolution techniques like for instance, wavelets are the most appropriate ones to represent spatially the scaled wave packet. The approach is illustrated in the case of the interaction of an one-dimensional model atom as well as atomic hydrogen with a strong osci...

  11. Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.

  12. Observation of laser pulse propagation in optical fibers with a SPAD camera

    Science.gov (United States)

    Warburton, Ryan; Aniculaesei, Constantin; Clerici, Matteo; Altmann, Yoann; Gariepy, Genevieve; McCracken, Richard; Reid, Derryck; McLaughlin, Steve; Petrovich, Marco; Hayes, John; Henderson, Robert; Faccio, Daniele; Leach, Jonathan

    2017-03-01

    Recording processes and events that occur on sub-nanosecond timescales poses a difficult challenge. Conventional ultrafast imaging techniques often rely on long data collection times, which can be due to limited device sensitivity and/or the requirement of scanning the detection system to form an image. In this work, we use a single-photon avalanche detector array camera with pico-second timing accuracy to detect photons scattered by the cladding in optical fibers. We use this method to film supercontinuum generation and track a GHz pulse train in optical fibers. We also show how the limited spatial resolution of the array can be improved with computational imaging. The single-photon sensitivity of the camera and the absence of scanning the detection system results in short total acquisition times, as low as a few seconds depending on light levels. Our results allow us to calculate the group index of different wavelength bands within the supercontinuum generation process. This technology can be applied to a range of applications, e.g., the characterization of ultrafast processes, time-resolved fluorescence imaging, three-dimensional depth imaging, and tracking hidden objects around a corner.

  13. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  14. Pulse propagation in inhomogeneous optical waveguides. Final report, September 15, 1992--March 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Menyuk, C.R.

    1998-08-17

    Accomplishments include two Ph.D. dissertations, twenty-six archival journal publications that have appeared in print, six articles that have appeared in conference or summer school proceedings, sixteen regular conference presentations, and eleven invited conference presentations. A complete record of the publications and presentations may be found in Sec. II.E. The areas in which the author has been working--randomly varying optical fiber birefringence, passively modelocked lasers, and quasi-phase matched second harmonic generation--are all still of great current interest. Recent progress in soliton transmission has been nothing short of outstanding with the recent achievement of single channel 15 Gbit/sec, nearly error-free transmission over 35,000 km. At the same time, remarkable progress with the presently used NRZ (non-return-to-zero) transmission mode makes it less clear that solitons will ultimately be used. The author has contributed in important respects to all these areas. In long-distance transmission systems, the length scale on which the birefringence varies randomly (30--100 m) is short compared to the nonlinear and dispersive scale lengths (100--1,000 km). Consequently, it is crucial to understand and characterize this randomly varying birefringence when studying long-distance evolution in optical fibers. That has been done in a series of studies that has also led to the proposal of a numerical scheme for modeling these systems that should be orders of magnitude faster than the schemes presently being used. In the studies of the fiber ring and figure-8 lasers, the author proposed that nonlinear polarization rotation is the mechanism responsible for fast saturable absorption in the fiber ring lasers--a result that was later verified experimentally. He also explored a new approach to determining the conditions for modelocking and self-starting in these lasers that uses the computer to determine the linear stability of both the pulsed and cw solutions

  15. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication

    Science.gov (United States)

    Walleczek, Jan; Grössing, Gerhard

    2016-09-01

    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time

  16. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network.

    Science.gov (United States)

    Brault, Antoine; Dumas, Laurent; Lucor, Didier

    2016-12-10

    This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is used to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of significant uncertainty is the spatial heterogeneity of the aortic compliance, which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Making use of a stochastic sparse pseudospectral method, we investigate the sensitivity of the pulse pressure and waves reflection magnitude over the arterial tree with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of the prescribed inlet flow in the proximal aorta can lead to potent variation of both the mean value and standard deviation of blood flow velocity and pressure dynamics due to the interaction of different wave propagation and reflection features. Lack of accurate knowledge in the stiffness properties of the aorta, resulting in uncertainty in the pulse wave velocity in that region, strongly modifies the statistical response, with a global increase in the variability of the quantities of interest and a spatial redistribution of the regions of higher sensitivity. These results will provide some guidance in clinical data acquisition and future coupling of arterial pulse wave propagation reduced-order model with more complex beating heart models.

  17. Controlled supercontinuum generation for optimal pulse compression : a time-warp analysis of nonlinear propagation of ultra-broad-band pulses

    NARCIS (Netherlands)

    Spanner, M; Pshenichnikov, M; Olvo, [No Value; Ivanov, M

    2003-01-01

    We describe the virtues of the pump-probe approach for controlled supercontinuum generation in nonlinear media, using the example of pulse compression by cross-phase modulation in dielectrics. Optimization of a strong (pump) pulse and a weak (probe) pulse at the input into the medium opens the route

  18. Superluminal Motion and Polarization in Blazars

    Institute of Scientific and Technical Information of China (English)

    Jun-Hui Fan; Yong-Jiu Wang; Jiang-He Yang; Cheng-Yue Su

    2004-01-01

    A relativistic beaming model has been successfully used to explain the observed properties of active galactic nuclei (AGNs). In this model there are two emission components, a boosted one and an unbeamed one, shown up in the radio band as the core and lobe components. The luminosity ratio of the core to the lobe is defined as the core-dominance parameter (R = LCore/LLobe) The de-beamed radio luminosity (Ldbjet) in the jet is assumed to be proportional to the unbeamed luminosity (Lub) in the co-moving frame, i.e., f = Ldbjet/Lub and f is determined in our previous paper. We further discuss the relationship between BL Lacertae objects(BLs) and flat spectrum radio quasars (FSRQs), which are subclasses of blazars with different degrees of polarization, using the calculated values of the ratio f for a sample of superluminal blazars. We found 1) that the BLs show smaller averaged Doppler factors and Lorentz factors, larger viewing angles and higher coredominance parameters than do the FSRQs, and 2) that in the polarization-core dominance parameter plot (P - log R) the BLs and FSRQs occupy a scattered region, but in a revised plot (logP/c(m) - logR), they gather around two different lines, suggesting that they have some different intrinsic properties.

  19. Spectrum formation in Superluminous Supernovae (Type I)

    CERN Document Server

    Mazzali, P A; Pian, E; Greiner, J; Kann, D A; ARI-LJMU,; UK,; Garching, MPA; Germany,; Southampton, Univ; INAF-IASFBO,; Italy,; Pisa, SNS; Garching, MPE; Tautenburg,; Germany),

    2016-01-01

    The near-maximum spectra of most superluminous supernovae that are not dominated by interaction with a H-rich CSM (SLSN-I) are characterised by a blue spectral peak and a series of absorption lines which have been identified as OII. SN2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/UV spectrum. Radiation transport methods are used to show that the spectra (not including SN2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ~10000-15000 km/s, several lines form in the UV. OII lines, however, arise from very highly excited lower levels, which require significant departures from Local Thermodynamic Equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is th...

  20. Super-luminous supernovae from PESSTO

    CERN Document Server

    Nicholl, M; Jerkstrand, A; Inserra, C; Chen, T -W; Kotak, R; Valenti, S; Howell, D A; McCrum, M; Margheim, S; Rest, A; Benetti, S; Fraser, M; Gal-Yam, A; Smith, K W; Sullivan, M; Young, D R; Baltay, C; Hadjiyska, E; McKinnon, R; Rabinowitz, D; Walker, E S; Feindt, U; Nugent, P; Lawrence, A; Mead, A; Anderson, J P; Sollerman, J; Taddia, F; Leloudas, G; Mattila, S; Elias-Rosa, N

    2014-01-01

    We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, \\Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models p...

  1. Superluminous Supernovae: No Threat from Eta Carinae

    Science.gov (United States)

    Thomas, Brian; Melott, A. L.; Fields, B. D.; Anthony-Twarog, B. J.

    2008-05-01

    Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous” for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.

  2. Superluminous supernovae: No threat from Eta Carinae

    CERN Document Server

    Thomas, Brian C; Fields, Brian D; Anthony-Twarog, Barbara J

    2007-01-01

    Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of ~10^44 Joules. It was proposed that the progenitor may have been a massive evolved star similar to Eta Carinae, which resides in our own galaxy at a (poorly determined) distance of ~2.5 kpc. Eta Carinae appears ready to detonate, and in fact had an outburst in 1843. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma Ray Burst oriented toward the Earth, Eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over ~10^4 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possib...

  3. First stars, hypernovae, and superluminous supernovae

    Science.gov (United States)

    Nomoto, Ken'Ichi

    2016-07-01

    After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.

  4. Tachyons, Lamb shifts and superluminal chaos

    Science.gov (United States)

    Tomaschitz, R.

    2000-10-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon background radiation are derived.

  5. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Weninger, Clemens

    2015-10-15

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  6. Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    WEN Jing; JIANG Hong-Bing; YU Jing; YANG Hong; GONG Qi-Huang

    2011-01-01

    @@ We investigate the propagation of femtosecond laser pulses in a 5-mm-thick BBO crystal along the direction of type-Ⅰ phase-matched second-harmonic generation.An intensity-asymmetric broadband conical emission (500- 2000 nm) is demonstrated when a suitable chirp is introduced.It is generated by optical parametric amplification pumped by the second-harmonic light and seeded by the fundamental light which is broadened by cascaded nonlinear processes during second-harmonic generation.

  7. How superluminal motion can lead to backward time travel

    CERN Document Server

    Nemiroff, Robert J

    2015-01-01

    It is commonly asserted that superluminal particle motion can enable backward time travel, but little has been written providing details. It is shown here that the simplest example of a "closed loop" event -- a twin paradox scenario where a single spaceship both traveling out and returning back superluminally -- does {\\it not} result in that ship straightforwardly returning to its starting point before it left. However, a more complicated scenario -- one where the superluminal ship first arrives at an intermediate destination moving subluminally -- can result in backwards time travel. This intermediate step might seem physically inconsequential but is shown to break Lorentz-invariance and be oddly tied to the sudden creation of a pair of spacecraft, one of which remains and one of which annihilates with the original spacecraft.

  8. Jet Stability and the Generation of Superluminal and Stationary Components

    Science.gov (United States)

    Agudo, Ivan; Gomez, Jose-Luis; Marti, Jose-Maria; Ibanez, Jose-Maria; Marscher, Alan P.; Alberdi, Antonio; Aloy, Miguel-Angel; Hardee, Philip E.

    2001-01-01

    We present a numerical simulation of the response of an expanding relativistic jet to the ejection of a superluminal component. The simulation has been performed with a relativistic time-dependent hydrodynamical code from which simulated radio maps are computed by integrating the transfer equations for synchrotron radiation. The interaction of the superluminal component with the underlying jet results in the formation of multiple conical shocks behind the main perturbation. These trailing components can be easily distinguished because they appear to be released from the primary superluminal component instead of being ejected from the core. Their oblique nature should also result in distinct polarization properties. Those appearing closer to the core show small apparent motions and a very slow secular decrease in brightness and could be identified as stationary components. Those appearing farther downstream are weaker and can reach superluminal apparent motions. The existence of these trailing components indicates that not all observed components necessarily represent major perturbations at the jet inlet; rather, multiple emission components can be generated by a single disturbance in the jet. While the superluminal component associated with the primary perturbation exhibits a rather stable pattern speed, trailing components have velocities that increase with distance from the core but move at less than the jet speed. The trailing components exhibit motion and structure consistent with the triggering of pinch modes by the superluminal component. The increase in velocity of the trailing components is an indirect consequence of the acceleration of the expanding fluid, which is assumed to be relativistically hot; if observed, such accelerations would therefore favor an electron-positron (as opposed to proton rest mass) dominated jet.

  9. A Blind Pilot: Who is a Super-Luminal Observer?

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2008-04-01

    Full Text Available This paper discusses the nature of a hypothetical super-luminal observer who, as well as a real (sub-light speed observer, perceives the world by light waves. This consideration is due to that fact that the theory of relativity permits different frames of reference, including light-like and super-luminal reference frames. In analogy with a blind pilot on board a supersonic jet aeroplane (or missile, perceived by blind people, it is concluded that the light barrier is observed in the framework of only the light signal exchange experiment.

  10. Statistics of Superluminal Motion in Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    Yong-Wei Zhang; Jun-Hui Fan

    2008-01-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the A-CDM model. We checked the relationships between their proper motions, redshifts,βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  11. There is Neither Classical Bug with a Superluminal Shadow Nor Quantum Absolute Collapse Nor (Subquantum) Superluminal Hidden Variable

    CERN Document Server

    Pankovic, V; Krmar, M; Radovanovic, M; Pankovic, Vladan; Predojevic, Milan; Krmar, Miodrag; Radovanovic, Milan

    2005-01-01

    In this work we analyse critically Griffiths's example of the classical superluminal motion of a bug shadow. Griffiths considers that this example is conceptually very close to quantum nonlocality or superluminality,i.e. quantum breaking of the famous Bell inequality. Or, generally, he suggests implicitly an absolute asymmetric duality (subluminality vs. superluminality) principle in any fundamental physical theory.It, he hopes, can be used for a natural interpretation of the quantum mechanics too. But we explain that such Griffiths's interpretation retires implicitly but significantly from usual, Copenhagen interpretation of the standard quantum mechanical formalism. Within Copenhagen interpretation basic complementarity principle represents, in fact, a dynamical symmetry principle (including its spontaneous breaking, i.e. effective hiding by measurement). Similarly, in other fundamental physical theories instead of Griffiths's absolute asymmetric duality principle there is a dynamical symmetry (including it...

  12. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  13. Spectrum formation in superluminous supernovae (Type I)

    Science.gov (United States)

    Mazzali, P. A.; Sullivan, M.; Pian, E.; Greiner, J.; Kann, D. A.

    2016-06-01

    The near-maximum spectra of most superluminous supernovae (SLSNe) that are not dominated by interaction with a H-rich circum-stellar medium (SLSN-I) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II. SN 2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/ultraviolet (UV) spectrum. Radiation transport methods are used to show that the spectra (not including SN 2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ˜10 000-15 000 km s-1, several lines form in the UV. O II lines, however, arise from very highly excited lower levels, which require significant departures from local thermodynamic equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energized by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterizes SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN 2011kl requires higher ejecta velocities (˜20 000 km s-1): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high-ionization near-maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification.

  14. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  15. Superluminal Physics and Instantaneous Physics as New Trends in Research

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2012-01-01

    Full Text Available In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics. In the lights of two consecutive successful CERN experiments with superlumi- nal particles in the Fall of 2011, we believe that these two new fields of research should begin developing.

  16. Superluminal Phenomena and the Quantum Preferred Frame

    CERN Document Server

    Rembielinski, J

    2000-01-01

    Motivated by a number of recent experiments, we discuss in this paper a speculative but physically admissible form and solutions of effective Maxwell-like equations describing propagation of electromagnetic field in a medium which ``feels'' a quantum preferred frame.

  17. Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium%周期量级飞秒脉冲电场在非线性克尔介质中的传输∗

    Institute of Scientific and Technical Information of China (English)

    刘丹; 洪伟毅; 郭旗

    2016-01-01

    In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.

  18. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    Science.gov (United States)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  19. Superluminal Motion Found In Milky Way

    Science.gov (United States)

    1994-08-01

    Researchers using the Very Large Array (VLA) have discovered that a small, powerful object in our own cosmic neighborhood is shooting out material at nearly the speed of light -- a feat previously known to be performed only by the massive cores of entire galaxies. In fact, because of the direction in which the material is moving, it appears to be traveling faster than the speed of light -- a phenomenon called "superluminal motion." This is the first superluminal motion ever detected within our Galaxy. During March and April of this year, Dr. Felix Mirabel of the Astrophysics Section of the Center for Studies at Saclay, France, and Dr. Luis Rodriguez of the Institute of Astronomy at the National Autonomous University in Mexico City and NRAO, observed "a remarkable ejection event" in which the object shot out material in opposite directions at 92 percent of the speed of light, or more than 171,000 miles per second. This event ejected a mass equal to one-third that of the moon with the power of 100 million suns. Such powerful ejections are well known in distant galaxies and quasars, millions and billions of light-years away, but the object Mirabel and Rodriguez observed is within our own Milky Way Galaxy, only 40,000 light-years away. The object also is much smaller and less massive than the core of a galaxy, so the scientists were quite surprised to find it capable of accelerating material to such speeds. Mirabel and Rodriguez believe that the object is likely a double-star system, with one of the stars either an extremely dense neutron star or a black hole. The neutron star or black hole is the central object of the system, with great mass and strong gravitational pull. It is surrounded by a disk of material orbiting closely and being drawn into it. Such a disk is known as an accretion disk. The central object's powerful gravity, they believe, is pulling material from a more-normal companion star into the accretion disk. The central object is emitting jets of

  20. Carrier shock and frequency conversion of a few-cycle pulse laser propagating in a non-resonant two-level atom medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2002-01-01

    We have studied the spectral behaviour of few-cycle soliton pulses in a non-resonant two-level atom medium by solving the full Maxwell-Bloch equations. It is demonstrated further that the carrier effects play an important role in the propagation of the few-cycle pulse laser. When the frequency detuning is not very large, both the population distribution and the refractive index of the medium follow the oscillatory carrier field instantaneously; in this case,carrier-wave compression or carrier shock occurs, and a supercontinuum broader than that in the resonant medium may be generated. When the frequency detuning is large, the carrier shock is weak and the spectrum is not continuous, only showing an odd harmonic radiation.

  1. Photoionization of hydrogen atom by coherent intense high-frequency short laser pulses: Direct propagation of electron wave packets on enormous spatial grids

    CERN Document Server

    Demekhin, Philipp V; Cederbaum, Lorenz S

    2013-01-01

    The time-dependent Schr\\"{o}dinger equation for the hydrogen atom and its interaction with coherent intense high-frequency short laser pulses is solved numerically exactly by employing the code implemented for the multi-configurational time-dependent Hartree-Fock (MCTDHF) method. Thereby, the wavefunction is followed in space and time for times longer than the pulse duration. Results are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic interference of photoelectrons emitted with the same kinetic energy at different times during the rising and falling sides of the pulse predicted in [\\emph{Ph.V. Demekhin and L.S. Cederbaum}, Phys. Rev. Lett. \\textbf{108}, 253001 (2012)]. In order to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave packet has to be propagated over long distances. Clearly, complex absorption potentials often employed to compute spectra of emitted particles cannot be used to detect dy...

  2. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals: e0133436

    National Research Council Canada - National Science Library

    Line Hermannsen; Jakob Tougaard; Kristian Beedholm; Jacob Nabe-Nielsen; Peter Teglberg Madsen

    2015-01-01

    .... They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which...

  3. Speed of the CERN Neutrinos released on 22.9.2011 - Was stated superluminality due to neglecting General Relativity?

    CERN Document Server

    Kundt, Wolfgang

    2011-01-01

    During the years 2009 to 2011, neutrino beams were fired repeatedly from CERN towards a detector in Italy's Gran Sasso tunnel, some 4 deg south and 7 deg east of CERN, at a distance of 730.5 km, in the shape of short bunches of particles. Their time of flight (2.5 msec) was measured at high accuracy (nsec) with caesium clocks (Reich 2011). Remarkably, the CNGS team found a deficit of 61 nsec compared with propagation at the speed of light, and concluded at superluminal speeds, of order 10$^{-4.6}$. In this communication, I will argue that this is the first experiment to test Einstein's theory for the (weak) gravity field of Earth, with the result that the neutrinos propagated (just) luminally.

  4. Multifrequency observations of the superluminal quasar 3C 345

    Science.gov (United States)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Roellig, T. P. L.; Bregman, J. D.; Witteborn, F. C.; Lester, D. F.

    1986-01-01

    Attention is given to the continuum properties of the superluminal quasar 3C 345, on the basis of radio, optical, IR, and X-ray frequency monitorings, as well as by means of simultaneous multifrequency spectra extending from the radio through the X-ray bands. Radio outbursts, which appear to follow IR-optical outbursts by about one year, first occur at the highest frequencies, as expected from optical depth effects; the peak flux is nevertheless often reached at several frequencies at once. The beginning of outbursts, as defined by mm-measurements, corresponds to the appearance of the three known 'superluminal' components. An increase in the X-ray flux during 1979-1980 corresponds to increased radio flux, while the IR flux changes in the opposite sense.

  5. The hypothesis of superluminal neutrinos: Comparing OPERA with other data

    DEFF Research Database (Denmark)

    Drago, A.; Masina, I.; Pagliara, G.

    2012-01-01

    The OPERA Collaboration reported evidence for muonic neutrinos traveling slightly faster than light in vacuum. While waiting further checks from the experimental community, here we aim at exploring some theoretical consequences of the hypothesis that muonic neutrinos are superluminal, considering...... in particular the tachyonic and the Coleman-Glashow cases. We show that a tachyonic interpretation is not only hardly reconciled with OPERA data on energy dependence, but that it clashes with neutrino production from pion and with neutrino oscillations. A Coleman-Glashow superluminal neutrino beam would also...... have problems with pion decay kinematics for the OPERA setup; it could be easily reconciled with SN1987a data, but then it would be very problematic to account for neutrino oscillations. Copyright (C) EPLA, 2012...

  6. Superluminal Spot Pair Events in Astronomical Settings: Sweeping Beams

    CERN Document Server

    Nemiroff, Robert J

    2014-01-01

    Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are {\\it not} particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when a real spot's speed toward the observer drops below $c$, while a virtual spot pair annihilation event will be observed when a real spot's radial speed away from the observer rises above $c...

  7. The hypothesis of superluminal neutrinos: Comparing OPERA with other data

    DEFF Research Database (Denmark)

    Drago, A.; Masina, I.; Pagliara, G.

    2012-01-01

    The OPERA Collaboration reported evidence for muonic neutrinos traveling slightly faster than light in vacuum. While waiting further checks from the experimental community, here we aim at exploring some theoretical consequences of the hypothesis that muonic neutrinos are superluminal, considering...... in particular the tachyonic and the Coleman-Glashow cases. We show that a tachyonic interpretation is not only hardly reconciled with OPERA data on energy dependence, but that it clashes with neutrino production from pion and with neutrino oscillations. A Coleman-Glashow superluminal neutrino beam would also...... have problems with pion decay kinematics for the OPERA setup; it could be easily reconciled with SN1987a data, but then it would be very problematic to account for neutrino oscillations. Copyright (C) EPLA, 2012...

  8. Multi-Epoch Spectroscopy of Hydrogen-Poor Superluminous Supernovae

    Science.gov (United States)

    Quimby, Robert; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul; Yan, Lin

    2016-06-01

    A growing sample of intrinsically rare supernovae is being uncovered by wide-field synoptic surveys, such as the Palomar Transient Factory (PTF). A fraction of these events have been labeled "superluminous supernovae" due to their peak luminosities, which can exceed normal supernovae by factors of 10 to 100. The power sources for these events and thus their connection to normal luminosity supernovae remains uncertain. Here we present results from 134 spectroscopic observations of 17 hydrogen-poor superluminous supernovae (SLSN-I) discovered by PTF. We select our targets from the full PTF sample using only spectroscopic information; we do not employ the traditional cut in absolute magnitude (e.g. M physical insights into the nature of these explosions offered by this unique dataset.

  9. Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Levchenko, A.O.; Shutov, A.V.; Ustinovskii, N.N. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii pr., 119991 Moscow (Russian Federation); Zvorykin, V.D. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii pr., 119991 Moscow (Russian Federation); National Research Nuclear University “MEPhI”, 31 Kashirskoe sh., 115409 Moscow (Russian Federation)

    2016-02-15

    Recent experiments on multiple filamentation of sub-picosecond terawatt-level KrF laser pulse in air and multi-photon ionization of air revealed an extremely low electron density in filaments, which is out of the conventional filamentation model considering Kerr self-focusing and plasma de-focusing. We propose here the coherent resonant scattering and ionization processes at the pulse durations significantly less than the polarization relaxation time to be possible explanation of the observed filamentation peculiarities. Namely, we argue that the plasma production results from the resonance enhanced (2+1)-photon ionization of the oxygen molecules through the two-photon excitation of the 3s metastable Rydberg state. Coherent Raman self-scattering at rotational transitions of nitrogen molecules provides self-induced focusing of the ultrashort UV laser pulse and filament formation.

  10. Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves

    Science.gov (United States)

    Efforts are currently directed towards improving the quality of sensitive tissues of fruits and vegetables after freezing and thawing. One of the methods under investigation is the combination of vacuum impregnation (VI) with cryoprotectants and pulsed electric field (PEF) applied to the plant tiss...

  11. A Research Program on the Asymptotic Description of Electromagnetic Pulse Propagation in Spatially Inhomogeneous Temporally Dispersive, Attenuative Media

    Science.gov (United States)

    2007-09-01

    significance is debatable as peak amplitude points in the dynamical pulse evolution are arguably not causally related [56] and may or may not convey...of the .Brillouin precursor in a single-resonance Lorentx model dielectric, Pure AppL Opt., 7 (1908), pp. 575-602. [37] A. SoJmMMFW, Uber die

  12. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    Science.gov (United States)

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  13. Helmholtz theorem and the v-gauge in the problem of superluminal and instantaneous signals in classical electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chubykalo, Andrew; Espinoza, Augusto; Flores, Rolando Alvarado; Rodriguez, Alejandro Gutierrez [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica

    2011-07-01

    In this work we substantiate the applying of the Helmholtz vector decomposition theorem (H-theorem) to vector fields in classical electrodynamics. Using the H-theorem, within the framework of the two-parameter Lorentz-like gauge (so called V-gauge), we show that two kinds of magnetic vector potentials exist: one of them (solenoidal) can act exclusively with the velocity of light C and the other one (irrotational) with an arbitrary finite velocity V (including a velocity more than C). We show also that the irrotational component of the electric field has a physical meaning and can propagate exclusively instantaneously. We provide a theoretical rationale (within the framework of classical electrodynamics) of a series of well-known recent experiments, which detected superluminal signals. Finally, we affirm that applying the Helmholtz theorem to classical electrodynamics allows to conclude that in classical electrodynamics so called instantaneous action at a distance with the infinite velocity of interaction can take place as well as (within the framework of the v-gauge-theory) the superluminal action with a finite velocity of interaction. (author)

  14. THE SUPERLUMINAL CHARACTER OF THE COMPACT STEEP SPECTRUM QUASAR 3C-216

    NARCIS (Netherlands)

    VENTURI, T; PEARSON, TJ; BARTHEL, PD; HERBIG, T

    We report the results of fourth epoch VLBI observations at 4990.99 MHz, with a resolution of approximately 1 mas, of the compact steep-spectrum quasar 3C 216. Superluminal motion in this object is confirmed. Although a constant superluminal expansion at upsilon(app) = 3.9c +/- 0.6 is not ruled out,

  15. Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface

    Directory of Open Access Journals (Sweden)

    Seil S. Sautbekov

    2014-01-01

    Full Text Available A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which can be solved numerically using the standard grid methods.

  16. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  17. Would Superluminal Influences Violate the Principle of Relativity?

    CERN Document Server

    Peacock, Kent A

    2013-01-01

    It continues to be alleged that superluminal influences of any sort would be inconsistent with special relativity for the following three reasons: (i) they would imply the existence of a distinguished' frame; (ii) they would allow the detection of absolute motion; and (iii) they would violate the relativity of simultaneity. This paper shows that the first two objections rest upon very elementary misunderstandings of Minkowski geometry and lingering Newtonian intuitions about instantaneity. The third objection has a basis, but rather than invalidating the notion of faster than light influences it points the way to more general conceptions of simultaneity that could allow for quantum nonlocality in a natural way.

  18. Superluminal neutrinos at OPERA confront pion decay kinematics.

    Science.gov (United States)

    Cowsik, Ramanath; Nussinov, Shmuel; Sarkar, Utpal

    2011-12-16

    Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits α=(ν(ν)-c)/c<4×10(-6). We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (ν-c)/c<10(-12).

  19. On causality, apparent 'superluminality' and reshaping in barrier penetration

    CERN Document Server

    Sokolovski, D

    2010-01-01

    We consider tunnelling of a non-relativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backwards relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac $\\delta$-function, the transmission amplitude is superoscillatory for finite momenta and tunnelling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the...

  20. Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon

    Science.gov (United States)

    Vaisseau, X.; Morace, A.; Touati, M.; Nakatsutsumi, M.; Baton, S. D.; Hulin, S.; Nicolaï, Ph.; Nuter, R.; Batani, D.; Beg, F. N.; Breil, J.; Fedosejevs, R.; Feugeas, J.-L.; Forestier-Colleoni, P.; Fourment, C.; Fujioka, S.; Giuffrida, L.; Kerr, S.; McLean, H. S.; Sawada, H.; Tikhonchuk, V. T.; Santos, J. J.

    2017-05-01

    Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism—observed only for times before the shock breakout at the inner cone tip—is due to self-generated resistive magnetic fields of ˜0.5 - 1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

  1. An Extended Model for Interaction Between Left-hand Superluminous Waves and Magnetospheric Electrons

    Institute of Scientific and Technical Information of China (English)

    Xiao Fuliang; Zheng Huinan; Wang Shui

    2005-01-01

    The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance,with the requirement of higher minimum energies, e.g., ~1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.

  2. Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    CERN Document Server

    Chatzopoulos, E; Vinko, J; Nagy, A P; Wiggins, B K; Even, W P

    2016-01-01

    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss about the lack of interaction features in the observed spectra. We find that ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun supernova interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the fin...

  3. Extended Linear and Nonlinear Lorentz Transformations and Superluminality

    Directory of Open Access Journals (Sweden)

    Dara Faroughy

    2013-01-01

    Full Text Available Two broad scenarios for extended linear Lorentz transformations (ELTs are modeled in Section 2 for mixing subluminal and superluminal sectors resulting in standard or deformed energy-momentum dispersions. The first scenario is elucidated in the context of four diverse realizations of a continuous function f ( v , with 0 ≤ f ( v ≤ 1 and f ( 0 = f ( c = 1 , which is fitted in the ELT. What goes in the making of the ELT in this scenario is not the boost speed v , as ascertained by two inertial observers in uniform relative motion (URM, but v × f ( v . The second scenario infers the preexistence of two rest-mass-dependent superluminal speeds whereby the ELTs are finite at the light speed c . Particle energies are evaluated in this scenario at c for several particles, including the neutrinos, and are auspiciously found to be below the GKZ energy cutoff and in compliance with a host of worldwide ultrahigh energy cosmic ray data. Section 3 presents two broad scenarios involving a number of novel nonlinear LTs (NLTs featuring small Lorentz invariance violations (LIVs, as well as resurrecting the notion of simultaneity for limited spacetime events as perceived by two observers in URM. These inquiries corroborate that NLTs could be potent tools for investigating LIVs past the customary LTs.

  4. Space-time measures for subluminal and superluminal motions

    CERN Document Server

    Calvo-Mozo, Benjam\\'\\in

    2014-01-01

    In present work we examine the implications on both, space-time measures and causal structure, of a generalization of the local causality postulate by asserting its validity to all motion regimes, the subluminal and superluminal ones. The new principle implies the existence of a denumerable set of metrical null cone speeds, \\{$c_k\\}$, where $c_1$ is the speed of light in vacuum, and $c_k/c \\simeq \\epsilon^{-k+1}$ for $k\\geq2$, where $\\epsilon^2$ is a tiny dimensionless constant which we introduce to prevent the divergence of the $x, t$ measures in Lorentz transformations, such that their generalization keeps $c_k$ invariant and as the top speed for every regime of motion. The non divergent factor $\\gamma_k$ equals $k\\epsilon^{-1}$ at speed $c_k$. We speak then of $k-$timelike and $k-$null intervals and of k-timelike and k-null paths on space-time, and construct a causal structure for each regime. We discuss also the possible transition of a material particle from the subluminal to the first superluminal regim...

  5. Design of a superluminal ring laser gyroscope using multilayer optical coatings with huge group delay.

    Science.gov (United States)

    Qu, Tianliang; Yang, Kaiyong; Han, Xiang; Wu, Suyong; Huang, Yun; Luo, Hui

    2014-01-01

    We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~10(3); while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors.

  6. 电磁脉冲在地下的传播特性研究%Research on Characteristics of Electromagnetic Pulse Propagating into Earth

    Institute of Scientific and Technical Information of China (English)

    王川川; 朱长青; 周星; 谷志锋; 刘登峰

    2012-01-01

    As to the propagation of EMP, the earth is a natural obstacle, so it's very siguificative to research the laws of EMP propagating into earth, which can be used into the electromagnetic protection of cables and devices. In this paper, The propagation laws of High-altitude electromagnetic pulse (HEMP) is researched, and propagation of HEMP, LEMP and UWBEMP, HEMP into earth and above earth are compared. Results show that: the electric field of high frequency EMP in earth weakens rapidly with the increase of depth, strengthens with the decrease of earth conductivity and permittivity, and the pulse width increases with the decrease of earth conductivity, weakens with the increase of polarization angle and azimuth an- gle, but strengthens with the increase of pitching angle. But the electric field of low frequency EMP in earth weakens slowly with the increase of depth. Based on these laws, some electromagnetic protection measures are proposed. The research in this paper is helpful to provide guidance for the protection design of electronic devices in the earth.%对于电磁脉冲的传播来说,大地是一道天然的障碍,因此研究电磁脉冲在地下的传播规律,并将其用于线路和设备的抗电磁干扰,是很有意义的。本文分析了HEMP电场在地下的传播规律,并比较了HEMP和雷电磁脉冲(LEMP)、超宽带电磁脉冲(UWBEMP)在地下的传播情况,比较了HEMP在地下和地上的传播情况,结果表明:高频电磁脉冲电场在地中随深度增加而快速减小,低频电磁脉冲变化较小;高频电磁脉冲电场随大地电导率减小而增大、脉宽变宽,随大地介电常数增大而减小,随入射波极化角和方位角增大而减小,随俯仰角增大而增大。然后,根据电磁脉冲在地下的传播规律提出了电磁防护措施和建议。本文的研究有利于指导地下设备的电磁防护设计。

  7. Constraints and tests of the OPERA superluminal neutrinos.

    Science.gov (United States)

    Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang

    2011-12-09

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

  8. Superluminal Velocities in the Synchronized Space-Time

    Directory of Open Access Journals (Sweden)

    Medvedev S. Yu.

    2014-07-01

    Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.

  9. On the impossibility of superluminal travel: the warp drive lesson

    CERN Document Server

    Barceló, Carlos; Liberati, Stefano

    2010-01-01

    The question of whether it is possible or not to surpass the speed of light is already centennial. The special theory of relativity took the existence of a speed limit as a principle, the light postulate, which has proven to be enormously predictive. Here we discuss some of its twists and turns when general relativity and quantum mechanics come into play. In particular, we discuss one of the most interesting proposals for faster than light travel: warp drives. Even if one succeeded in creating such spacetime structures, it would be still necessary to check whether they would survive to the switching on of quantum matter effects. Here, we show that the quantum back-reaction to warp-drive geometries, created out of an initially flat spacetime, inevitably lead to their destabilization whenever superluminal speeds are attained. We close this investigation speculating the possible significance of this further success of the speed of light postulate.

  10. Propagation peculiarities of mean field massive gravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    2015-10-01

    Full Text Available Massive gravity (mGR describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m‾GR propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS theory. The fiducial and mGR mean field background metrics in the m‾GR model correspond to the RS Minkowski metric and external EM field. The common implications in both systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR which is at least a consistent classical theory. Moreover, even though both m‾GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. This applies both to m‾GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.

  11. SIMULATION OF FORWARD AND BACKWARD WAVES EVOLUTION OF FEW-CYCLE PULSES PROPAGATING IN AN OPTICAL WAVEGUIDE WITH DISPERSION AND CUBIC NONLINEARITY OF ELECTRONIC AND ELECTRONIC-VIBRATION NATURE

    Directory of Open Access Journals (Sweden)

    L. S. Konev

    2015-09-01

    Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.

  12. Particle propagation and effective space-time in gravity's rainbow

    Science.gov (United States)

    Garattini, Remo; Mandanici, Gianluca

    2012-01-01

    Based on the results obtained in our previous study on gravity’s rainbow, we determine the quantum corrections to the space-time metric for the Schwarzschild and the de Sitter background, respectively. We analyze how quantum fluctuations alter these metrics, inducing modifications on the propagation of test particles. Significantly enough, we find that quantum corrections can become relevant not only for particles approaching the Planck energy but, due to the one-loop contribution, even for low-energy particles as far as Planckian length scales are considered. We briefly compare our results with others obtained in similar studies and with the recent experimental OPERA announcement of superluminal neutrino propagation.

  13. Particle propagation and effective space-time in Gravity's Rainbow

    CERN Document Server

    Garattini, Remo

    2011-01-01

    Basing on the results obtained in a our previous study on Gravity's Rainbow, we determine the quantum corrections to the space-time metric for the Schwarzschild and the de Sitter background, respectively. We analyze how quantum fluctuations alter these metrics inducing modifications on the propagation of test particles. Significantly enough we find that quantum corrections can become relevant not only for particles approaching the Planck energy but, due to the one loop contribution, even for low-energy particles as far as Planckian length scales are considered. We briefly compare our results with others obtained in similar studies and with the recent experimental OPERA announcement of superluminal neutrino propagation.

  14. A sub-solar metallicity is required for superluminous supernova progenitors

    CERN Document Server

    Chen, T -W; Yates, R M; Nicholl, M; Krühler, T; Schady, P; Dennefeld, M; Inserra, C

    2016-01-01

    Host galaxy properties provide strong constraints on the stellar progenitors of superluminous supernovae. By comparing a sample of 18 low-redshift superluminous supernova hosts to a volume-limited galaxy population in the local Universe, we show that sub-solar metallici- ties seems to be a requirement. All superluminous supernovae in hosts with high measured gas-phase metallicities are found to explode at large galactocentric radii, indicating that the metallicity at the explosion site is likely lower than the integrated host value. We also confirm that high specific star-formation rates are a feature of superluminous supernova host galaxies, but interpret this as simply a consequence of the anti-correlation between gas-phase metallic- ity and specific star-formation rate and the requirement of on-going star formation to produce young, massive stars greater than ~ 10-20 M_sun . Based on our sample, we propose an upper limit of ~ 0.5 Z_sun for forming superluminous supernova progenitors (assuming an N2 metal- ...

  15. Super-luminous supernovae: 56Ni power versus magnetar radiation

    CERN Document Server

    Dessart, Luc; Waldman, Roni; Livne, Eli; Blondin, Stephane

    2012-01-01

    Much uncertainty surrounds the origin of super-luminous supernovae (SNe). Motivated by the discovery of the Type Ic SN2007bi, we study its proposed association with a pair-instability SN (PISN). We compute stellar-evolution models for primordial ~200Msun stars, simulating the implosion/explosion due to the pair-production instability, and use them as inputs for detailed non-LTE time-dependent radiative-transfer simulations that include non-local energy deposition and non-thermal processes. We retrieve the basic morphology of PISN light curves from red-supergiant, blue-supergiant, and Wolf-Rayet (WR) star progenitors. Although we confirm that a progenitor 100Msun helium core (PISN model He100) fits well the SN2007bi light curve, the low ratios of its kinetic energy and 56Ni mass to the ejecta mass, similar to standard core-collapse SNe, conspire to produce cool photospheres, red spectra subject to strong line blanketing, and narrow line profiles, all conflicting with SN2007bi observations. He-core models of in...

  16. Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap

    CERN Document Server

    Arcavi, Iair; Howell, D Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A; Svirski, Gilad; Gal-Yam, Avishay; Katz, Boaz; McCully, Curtis; Cenko, S Bradley; Lidman, Chris; Sullivan, Mark; Valenti, Stefano; Astier, Pierre; Balland, Cristophe; Carlberg, Ray G; Conley, Alex; Fouchez, Dominique; Guy, Julien; Pain, Reynald; Palanque-Delabrouille, Nathalie; Perrett, Kathy; Pritchet, Chris J; Regnault, Nicolas; Rich, James; Ruhlmann-Kleider, Vanina

    2015-01-01

    We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not r...

  17. Spectropolarimetry of Superluminous Supernovae: Insight into Their Geometry

    Science.gov (United States)

    Inserra, C.; Bulla, M.; Sim, S. A.; Smartt, S. J.

    2016-11-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q - U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.

  18. Spectral evolution of superluminal components in parsec-scale jets

    CERN Document Server

    Mimica, P; Agudo, I; Martí, J M; Gómez, J L; Miralles, J A

    2008-01-01

    (Abridged) We present numerical simulations of the spectral evolution and radio emission of superluminal components in relativistic jets. We have developed an algorithm (SPEV) for the transport of a population of non-thermal particles (NTPs). For very large values of the ratio of gas pressure to magnetic field energy density ($\\sim 6\\times 10^4$), quiescent over-pressured jet models show substantial spectral evolution compared to models whithout radiative losses. Larger values of the magnetic field yield much shorter jets. Larger magnetic fields result in shorter losses-dominated regimes, with a rapid and intense radiation of energy. We also show that jets with a positive photon spectral index may result if the lower limit $\\gamma_min$ of the NTP energy distribution is placed close or above a threshold $\\gamma_M$, where the synchrotron function R has its maximum. A temporary increase of the Lorentz factor at the jet inlet produces a traveling perturbation that appears in the synthetic maps as a radio componen...

  19. The Trails of Superluminal Jet Components in 3C 111

    Science.gov (United States)

    Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; Zensus, J. A.

    2007-01-01

    The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.

  20. The Trails of Superluminal Jet Components in 3C111

    CERN Document Server

    Kadler, M; Perucho, M; Kovalev, Y Y; Homan, D C; Agudo, I; Kellermann, K I; Aller, M F; Aller, H D; Lister, M L; Zensus, J A

    2008-01-01

    In 1996, a major radio flux-density outburst occured in the broad-line radio galaxy 3C111. It was followed by a particularly bright plasma ejection associated with a superluminal jet component, which has shaped the parsec-scale structure of 3C111 for almost a decade. Here, we present results from 18 epochs of Very Long Baseline Array (VLBA) observations conducted since 1995 as part of the VLBA 2 cm Survey and MOJAVE monitoring programs. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than has been possible in other cases: the primary perturbation gives rise to the formation of a leading and a following component, which are interpreted as a forward and a backward-shock. Both components evolve in characteristically different ways and allow us to draw conclusions about the work flow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradien...

  1. Zooming In on the Progenitors of Superluminous Supernovae With HST

    CERN Document Server

    Lunnan, R; Berger, E; Rest, A; Fong, W; Scolnic, D; Jones, D; Soderberg, A M; Challis, P M; Drout, M R; Foley, R J; Huber, M E; Kirshner, R P; Leibler, C; Marion, G H; McCrum, M; Milisavljevic, D; Narayan, G; Sanders, N E; Smartt, S J; Smith, K W; Tonry, J L; Burgett, W S; Chambers, K C; Flewelling, H; Kudritzki, R -P; Wainscoat, R J; Waters, C

    2014-01-01

    We present Hubble Space Telescope rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate densities. We determine the SN locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived star formation rate densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of LGRBs (which are strongly clustered on the brightest regi...

  2. On the nature of Hydrogen-rich Superluminous Supernovae

    CERN Document Server

    Inserra, C; Gall, E E E; Leloudas, G; Chen, T -W; Schulze, S; Jerkstarnd, A; Nicholl, M; Anderson, J P; Arcavi, I; Benetti, S; Cartier, R A; Childress, M; Della Valle, M; Flewelling, H; Fraser, M; Gal-Yam, A; Gutierrez, C P; Hosseinzadeh, G; Howell, D A; Huber, M; Kankare, E; Magnier, E A; Maguire, K; McCully, C; Prajs, S; Primak, N; Scalzo, R; Schmidt, B P; Smith, K W; Tucker, B E; Valenti, S; Wilman, M; Young, D R; Yuan, F

    2016-01-01

    We present observational data for two hydrogen-rich superluminous supernovae (SLSNe), namely SN 2013hx and PS15br. These objects, together with SN 2008es are the only SLSNe showing a distinct, broad H$\\alpha$ feature during the photospheric phase and also do not show any clear sign of interaction between fast moving ejecta and circumstellar shells in their early spectra. Therefore we classify them as SLSN II as distinct from the known class of SLSN IIn. Both transients show a slow decline at later times, and monitoring of SN 2013hx out to 300 days after explosion indicates that the luminosity in this later phase does have a contribution from interaction. We detect strong, multi-component H$\\alpha$ emission at 240 days past maximum which we interpret as an indication of interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to some bright type II (or type IIL) supernovae, although they have much higher luminosity and evo...

  3. A cannonball model of gamma-ray bursts superluminal signatures

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rujula, Alvaro De

    2000-01-01

    Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...

  4. Spectropolarimetry of superluminous supernovae: insight into their geometry

    CERN Document Server

    Inserra, C; Sim, S A; Smartt, S J

    2016-01-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova at z=0.1136, namely SN 2015bn. The transient shows significant polarization at both the observed epochs: one 24 days before maximum light in the rest-frame, and the subsequent at 27 days after peak luminosity. Analysis of the Q-U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axi-symmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarisation is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarisation at the second epoch is a consequence of the increase in the asphericity of the ...

  5. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    Science.gov (United States)

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  6. Long-duration superluminous supernovae at late times

    CERN Document Server

    Jerkstrand, A; Inserra, C; Nicholl, M; Chen, T -W; Krühler, T; Sollerman, J; Taubenberger, S; Gal-Yam, A; Kankare, E; Maguire, K; Fraser, M; Valenti, S; Sullivan, M; Cartier, R; Young, D R

    2016-01-01

    We present nebular-phase observations and spectral models of Type Ic superluminous supernovae. LSQ14an and SN 2015bn both display late-time spectra similar to SN 2007bi, and the class shows strong similarity with broad-lined Type Ic SNe such as SN 1998bw. Near-infrared observations of SN 2015bn at +315d show a strong Ca II triplet, O I 9263, O I 1.13 micron and Mg I 1.50 micron, but no strong He, Si, or S emission. The high Ca II NIR/[Ca II] 7291, 7323 ratio of 2 indicates a high electron density of n_e >~ 10^8 cm^{-3}. Spectral models of oxygen-zone emission are investigated to put constraints on the emitting region. Models require M(O) >~ 10 Msun to produce enough [O I] 6300, 6364 luminosity to match observed levels, irrespective of the powering situation and the density. This is an argument against shell collisions from pair-instability pulsations for explaining the powering, as these shells are limited to a few solar masses in published models. The high oxygen-zone mass, supported by high estimated magnes...

  7. The Volumetric Rate of Superluminous Supernovae at z~1

    CERN Document Server

    Prajs, S; Smith, M; Levan, A; Karpenka, N V; Edwards, T D P; Walker, C R; Wolf, W M; Balland, C; Carlberg, R; Howell, A; Lidman, C; Pain, R; Pritchet, C; Ruhlmann-Kleider, V

    2016-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z~1, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically-identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et.al. (2010) and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91 (+76/-36) SNe/Yr/Gpc^3 at a volume-weighted redshift of z=1.13. This is equivalent to 2.2 (+1.8/-0.9) x10^-4 of the volumetric core collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formati...

  8. Rates of Superluminous Supernovae at z~0.2

    CERN Document Server

    Quimby, Robert M; Akerlof, Car; Wheeler, J Craig

    2013-01-01

    We calculate the volumetric rate of superluminous supernovae (SLSNe) based on 5 events discovered with the ROTSE-IIIb telescope. We gather light curves of 19 events from the literature and our own unpublished data and employ crude k-corrections to constrain the pseudo-absolute magnitude distributions in the rest frame ROTSE-IIIb (unfiltered) band pass for both the hydrogen poor (SLSN-I) and hydrogen rich (SLSN-II) populations. We find that the peak magnitudes of the available SLSN-I are narrowly distributed ($M = -21.7 \\pm 0.4$) in our unfiltered band pass and may suggest an even tighter intrinsic distribution when the effects of dust are considered, although the sample may be skewed by selection and publication biases. The presence of OII features near maximum light may uniquely signal a high luminosity event, and we suggest further observational and theoretical work is warranted to assess the possible utility of such SN 2005ap-like SLSN-I as distance indicators. Using the pseudo-absolute magnitude distribut...

  9. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  10. What do the remnants of superluminous supernovae look like?

    Science.gov (United States)

    Leloudas, G.

    2016-06-01

    The remnants of core-collapse supernovae often present significant asymmetries while those of thermonuclear supernovae are, more or less, spherically symmetric. As superluminous supernovae (SLSN) do not occur in Milky Way-type galaxies (they prefer metal-poor starburst dwarfs), our chances of studying directly a SLSN remnant are very limited, except perhaps in the Magellanic clouds. Therefore, the only way of probing the SLSN geometry, and thus identifying potential SLSN remnant candidates, is through polarimetry of the explosions themselves. I will present the first polarimetric observations of SLSNe obtained through a dedicated ToO program at the VLT. LSQ14mo is a SLSN-I that showed only a very limited degree of polarisation (P = 0.52%), which corresponds to an upper limit of 10% in the photosphere asphericity. In addition, this signal can be entirely due to interstellar polarisation in the host galaxy. This is perhaps surprising as the leading models for H-poor SLSNe involve a magnetar or CSM interaction, i.e. configurations that are not expected to be spherically symmetric. Observations of a SLSN-II yielded a more significant degree of polarisation, while preliminary analysis for a SLSN-R reveals similarly low levels of asphericity as for LSQ14mo.

  11. Superluminal motions? A bird-eye view of the experimental situation

    CERN Document Server

    Recami, E

    2001-01-01

    In this article (after some brief theoretical considerations) a bird-eye view is presented -with the help of nine figures- of the various experimental sectors of physics in which Superluminal motions seem to appear. In particular, a panorama is presented of the experiments with evanescent waves and/or tunnelling photons, and with the "localized Superluminal solutions" to the Maxwell equations (e.g., with the so-called X-shaped ones). The present paper is sketchy, but is followed by a large enough bibliography to allow the interested reader deepening the preferred topic.

  12. Nonspreading Light Pulses in Photonic Crystals

    OpenAIRE

    Staliunas, K.; Serrat, C.; Herrero, R; Cojocaru, C.; Trull, J.

    2005-01-01

    We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals.

  13. Propagation of short laser pulses in partially stripped plasma%有限长激光脉冲在部分离化等离子体中的传播

    Institute of Scientific and Technical Information of China (English)

    柳剑鹏; 刘明萍; 陶向阳; 刘三秋

    2015-01-01

    In order to study the propagation characteristics of short laser pulses in partially stripped plasma , parameters evolution equation of short laser pulses in partially ionized plasma was derived using variational method .The effect parameters of wakefield , relativistic self-focusing and intensity of partially stripped plasma were analyzed .The coupled evolution equations of the laser spot size and the pulse length were derived and the propagation of a short laser pulse in partially stripped plasma was analyzed under the effects of transverse wakefield ( TWF ) and longitudinal wakefield (LWF).The results show that laser pulse can be allowed to propagate in patitally stripped plasma only when a certain condition is satisfied .The evolution of the pulse length should be considered in partially stripped plasma .When laser pulse and plasma density is constant , with the increasing of ionization degree , wakefield will enhance the self-focusing of the laser pulse further .Longitudinal wakefield has more obvious effect on self-focusing of laser pulse than transverse wakefield .The results may be significant theoretically to the mechanism of ionization-induced injection and acceleration by an intense laser pulse.%为了研究有限长激光脉冲在部分离化等离子体中的传播特性,采用变分法推导出有限长激光脉冲在部分离化等离子体中的参量演化方程,分析了尾波场、相对论自聚焦和部分离化非线性极化强度的影响因素;通过分析焦斑半径和脉冲宽度满足的耦合方程,讨论了横向和纵向尾波场影响下的激光脉冲传播特性。结果表明,由于焦斑半径和脉冲宽度的耦合,激光脉冲在部分离化等离子体中传播必须满足一定条件;在部分离化等离子体中,考虑激光传播时脉冲宽度的变化是有必要的;对给定强度的激光脉冲,等离子体密度不变时,随着电离程度增大,尾波场会进一步增强激光脉冲的自

  14. The volumetric rate of superluminous supernovae at z ˜ 1

    Science.gov (United States)

    Prajs, S.; Sullivan, M.; Smith, M.; Levan, A.; Karpenka, N. V.; Edwards, T. D. P.; Walker, C. R.; Wolf, W. M.; Balland, C.; Carlberg, R.; Howell, D. A.; Lidman, C.; Pain, R.; Pritchet, C.; Ruhlmann-Kleider, V.

    2017-01-01

    We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z ˜ 1.0, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et al. and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91^{+76}_{-36} SNe yr-1 Gpc-3 at a volume-weighted redshift of z = 1.13. This is equivalent to 2.2^{+1.8}_{-0.9}× 10^{-4} of the volumetric core-collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formation history. We also estimate the rate of ultra-long gamma-ray bursts based on the events discovered by the Swift satellite, and show that it is comparable to the rate of SLSNe, providing further evidence of a possible connection between these two classes of events. We also examine the host galaxies of the SLSNe discovered in SNLS, and find them to be consistent with the stellar-mass distribution of other published samples of SLSNe.

  15. Analytical characterization of Gaussian pulse propagation in semiconductor optical amplifiers with dispersion%高斯脉冲在半导体光放大器中传输的解析表征

    Institute of Scientific and Technical Information of China (English)

    贺炜; 惠战强; 吴惠民

    2012-01-01

    采用解析方法,在考虑材料损耗和色散的情况下,详细研究了无啁啾高斯脉冲和啁啾高斯脉冲在半导体光放大器中传输的物理过程,分析了强度增益、脉冲宽度和频率啁嗽与线宽增强因子、色散系数、小信号增益特征参数及初始啁啾之间的关系.结果表明:当输入变换极限的高斯脉冲时,色散会引起增益压缩,脉冲展宽和频率啁啾;同样情况下,线宽增强因子越大,脉宽加宽越明显,输出脉冲啁嗽越大,且随着线宽增强因子的增大,输出脉冲啁啾极大值向特征参数值较小的一边移动.当输入啁啾高斯脉冲时,初始脉冲啁嗽越大,增益压缩越明显,啁啾系数为正时,脉冲单纯展宽,输出啁啾随特征参数的增大而逐渐减小,啁啾系数为负时,初始啁啾与群速度色散导致的啁啾相互竞争,致使脉冲先被压缩后被展宽;脉冲最窄处对应的特征参数随线宽增强因子的增大而先增大后减小,输出啁啾随特征参数的增大而经历振荡后趋于平稳.%Analytical characterization of un-chirped Gaussian pulse and chirped Gaussian pulse propagating through a semiconductor optical amplifier (SOA) is presented under consideration of material loss and dispersion.The physical mechanism of interaction between Gaussian pulse and semiconductor material is analyzed.Energy gain,pulse width as well as frequency chirp of Gaussian pulse output from SOA are investigated.The results demonstrate that linewidth enhancement factor,dispersion coefficient and feature parameter all play important roles in deciding the output pulse characteristic.The material dispersion has no obvious impact on gain compression induced by group velocity dispersion.The pulse width is broadened under the combined effect of material dispersion and group velocity dispersion.When a chirped Gaussian pulse propagates in an SOA,the same chirp component means the same gain compression no matter the chirp is positive

  16. Generation and controlling of the dispersive wave by femtosecond pulses propagating in the normal dispersion regimes of the birefringent photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper studies the generation of the dispersive wave (DW) in the normal dispersion regimes of the birefringent photonic crystal fiber (BPCF) fabricated in this work. The remarkable blue-shifted radiation is found to be generated when 30 fs pulses are input in the normal dispersion regime of the BPCF for the first time. The characteristics of the blue-shifted DW strongly depend on the polarization of the input pulse. As a result, two peaks appear in the blue-shifted region of the spectrum when the input pulses polarize along the slow axis of the BPCF. With the increase of the center wavelength of the initial input pulse, the difference between the wavelengths of the two peaks widens. The peak location in the spectrum can be explained by the phase matching condition between the DW and the input pulse. In addition, when the input polarization is set to an angle of 45° with respect to the principal axes of the BPCF, the cross-phase modulation and coherent coupling between two orthogonally polarized modes would result in pulse trapping in the BPCF. Accordingly, the DW shift toward short wavelength is restrained. The DW generation in the normal-dispersion regimes of BPCF can be controlled by the phase matching condition and polarization of the input pulse.

  17. Discussions of the Quantum Superluminality%论量子超光速性

    Institute of Scientific and Technical Information of China (English)

    黄志洵

    2012-01-01

    chief study.In 1985,we proposed the model of quantum potential barrier equivalent circuit.In 1991,we first indicated that there could be the wave velocity v p 0 and v g 0 in the evanescent waves mode of the waveguide below cut off and the book "An Introduction to the Theory of waveguide Below Cut-off "made me get the First National Scientific and Technology Book Award of China.Moreover,in 2003 we through an experiment in the coaxial photonic crystal,a superluminal group velocity of(1.5 ~ 2.4) c are observed in the stop-band of frequency.In 2005,we suggested the term of General Information Velocity(GIV);and in 2010,we suggested the term of Quantum Superluminality(QS),and also suggested remodel the existing accelerator to discover the superluminal strange electron.Now,this paper discusses some problems of Quantum Superluminality profoundly,such as the velocity definition of the microscopic particles,the relation between the EPR thinking and the faster-than-light research,the interaction speed of the quantum entangle-state,superluminality of the quantum tunneling,the negative wave velocity,QS of the Casimir effect.We show that the unite of Quantum Optics(QO) and classical physical sujects are becoming more important.Since 2000,the negative group velocity experiments are always employing some atomic metal(such as Cs、Ka、Rb) vapor for tests.It make full use of the latest achievement in laser science and technology,then it was modern physical experiment in QO,not the classical physical experiment.The negative group velocity not only the special situation of faster-than-light,but also has the features: the exiting pulse’s peak can appear to exit the medium before the peak of the input pulse enters.So it was different that of classical causality.Although that knowledges and discovers of QS are widen and lively,then it greatly inspired us;but it is not the immediate conclusion that answers some questions about the possibility of material,energy and information according to

  18. The superluminal radio source 4c 39. 25 as relativistic jet prototype. El cuasar superluminal 4C 93. 25 como prototipo de jet relativistia

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.

  19. Ionization Break-Out from Millisecond Pulsar Wind Nebulae: an X-ray Probe of the Origin of Superluminous Supernovae

    CERN Document Server

    Metzger, Brian D; Hascoet, Romain; Beloborodov, Andrei M

    2013-01-01

    Magnetic spin-down of a millisecond neutron star has been proposed as the power source of hydrogen-poor "superluminous" supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ~0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity L_X ~ 1e43-1e45 erg/s. This "ionization break-out" may explain the luminous ...

  20. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.

    Science.gov (United States)

    Shaarawi, Amr M; Tawfik, Bassem H; Besieris, Ioannis M

    2002-10-01

    A study of X waves undergoing frustrated total internal reflection at a planar slab is provided. This is achieved by choosing the spectral plane wave components of the incident X wave to fall on the upper interface at angles greater than the critical angle. Thus, evanescent fields are generated in the slab and the peak of the field tunneling through the slab appears to be transmitted at a superluminal speed. Furthermore, it is shown that for deep barrier penetration, the peak of the transmitted field emerges from the rear interface of the slab before the incident peak reaches the front interface. To understand this advanced transmission of the peak of the pulse, a detailed study of the behavior of the evanescent fields in the barrier region is undertaken. The difference in tunneling behavior between deep and shallow barrier penetrations is shown to be influenced by the sense of the Goos-Hänchen shift.

  1. Study on the Superluminal Group Velocity in a Coaxial Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LuGuizhen; HuangZhixun; GuanJian

    2004-01-01

    In this paper, the superluminal group velocity in a coaxial photonic crystal is studied. The simulation of the effective refraction index in coaxial photonic crystal is performed. The group velocity is calculated based on the transmission line equations and compared with experimental results.

  2. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    Science.gov (United States)

    Moriya, Takashi J.; Liu, Zheng-Wei; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-12-01

    We propose that nebular Hα emission, as detected in the Type Ic superluminous supernova iPTF13ehe, stems from matter that is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Hα luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Hα luminosity of iPTF13ehe. We find a stripped mass of 0.1-0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Hα emission, an interaction-powered model is not favored for iPTF13ehe if the Hα emission is from stripped matter. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion formed a massive close binary system. If Type Ic superluminous supernovae generally occur in massive close binary systems, the early brightening observed previously in several Type Ic superluminous supernovae may also be due to the collision with a close companion. Observations of nebular hydrogen emission in future Type Ic superluminous supernovae will enable us to test this interpretation.

  3. Infrared spectroscopy of the superluminal Galactic source GRS 1915+105 during the 1994 September outburst

    DEFF Research Database (Denmark)

    CastroTirado, A.J.; Geballe, T.R.; Lund, Niels

    1996-01-01

    We have obtained K-band IR spectra of the superluminal Galactic source GRS 1915+105 on two different dates. The second spectrum, obtained immediately after a bright X-ray outburst in 1994 September, has shown prominent H and He emission lines. The lines are not Doppler shifted, as are those obser...

  4. Superluminal neutrinos and extra dimensions: constraints from the null energy condition

    OpenAIRE

    Gubser, Steven S.

    2011-01-01

    In light of the recent results from the OPERA collaboration, indicating that neutrinos can travel superluminally, I review a simple extra-dimensional strategy for accommodating such behavior; and I also explain why it is hard in this strategy to avoid violating the null energy condition somewhere in the extra dimensions.

  5. NEW SUPERLUMINAL QUASAR-1633+382 AND THE BLAZAR-GAMMA-RAY CONNECTION

    NARCIS (Netherlands)

    BARTHEL, PD; CONWAY, JE; MYERS, ST; PEARSON, TJ; READHEAD, ACS

    1995-01-01

    We report detection of superluminal motion in the core of 4C 38.41, associated with the z = 1.814 quasar 1633+382. The dominant nucleus in the similar to 30 kpc triple morphology of the radio source displays a core-jet structure on the milliarcsecond scale, and a jet component is found moving

  6. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Science.gov (United States)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  7. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Directory of Open Access Journals (Sweden)

    Jifei Zhao

    2016-06-01

    Full Text Available As an important electron source, Micro-Pulse electron Gun (MPG which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR, Free Electron Laser (FEL. The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  8. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jifei; Lu, Xiangyang, E-mail: xylu@pku.edu.cn; Yang, Ziqin; Yang, Deyu; Tan, Weiwei; Yang, Yujia [Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871 (China); Zhou, Kui; Luo, Xing [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-06-15

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  9. Remnant Symmetry, Propagation and Evolution in f(T) Gravity

    CERN Document Server

    Chen, Pisin; Nester, James M; Ong, Yen Chin

    2014-01-01

    It was recently argued that f(T) gravity could inherit "remnant symmetry" from the full Lorentz group, despite the fact that the theory is not locally Lorentz invariant. Confusion has arisen regarding the implication of this result for the previous works, which established that f(T) gravity is pathological due to superluminal propagation, local acausality, and non-unique time evolution. We clarify that the existence of the "remnant group" does not rid the theory of these various problems, but instead strongly supports it.

  10. Influence of Raman Effect on the Propagation Properties of Ultrashort Pulse in Metamaterials%拉曼效应对负折射介质中超短脉冲传输的影响

    Institute of Scientific and Technical Information of China (English)

    张景贵; 李勇帆; 赵晋琴

    2013-01-01

    Influence of Raman effect on self-focusing propagation properties of ultrashort laser pulse in metamaterials is studied through numerical solutions of ( 3 +1) -dimensional nonlinear Schrodinger equation including the contribution of the Raman delayed response, and the especial attention is paid to the anomalous propagation phenomena not found in ordinary materials. It is found that Raman effect will lead to the occurrence of the blueshifted frequencies during the self-focusing process of ultrashort pulse, opposite to the corresponding case in ordinary materials. However, its influence on the self-focus properties of the self-focusing of ultrashort pulse is the same as the case in ordinary materials, namely, it will make the self-focus occurring firstly in the leading part of pulse. Our works are of very important significance in the practical application, such as controlling a train of ultrashort pulse and self focus etal by using metamaterials.%通过数值法对包含拉曼延迟响应的(3+1)维非线性薛定谔方程进行求解,研究了超短脉冲激光在负折射介质中传输时拉曼效应对自聚焦传输特性的影响,着重分析其不同与常规介质的反常传输现象.结果表明:由于负的折射率影响,拉曼效应将导致超短脉冲在自聚焦过程中频谱发生蓝移现象,这与常规介质对应情形相反;而它对负折射介质中超短脉冲的自聚焦特性的影响与常规介质相同,即拉曼效应将诱导自聚焦效应首先发生在脉冲的前沿.本文研究工作对将来利用负折射介质来操控超短光脉冲串产生、自聚焦等许多实际应用领域研究具有重要的指导意义.

  11. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.

    Science.gov (United States)

    Richou, B; Schertz, I; Gobin, I; Richou, J

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage.

  12. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation

    Energy Technology Data Exchange (ETDEWEB)

    Richou, B.; Richou, J. [Laboratoire d` Optoelectronique, Faculte des Sciences, Universite de Toulon et du Var, BP 132, La Garde 83957 (France); Schertz, I.; Gobin, I. [Commissariat a l`Energie Atomique/Vaujours, Moronvilliers, BP 7, Courtry 77181 (France)

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage. {copyright} 1997 Optical Society of America

  13. Discussions of the Quantum Superluminality%论量子超光速性

    Institute of Scientific and Technical Information of China (English)

    黄志洵

    2012-01-01

    , the experiments proved that Einstein' s ideas didn' t hold water. In Bell' s opinion, to get rid of the difficulties after the announce- ment of the Aspect' s experiments, it intends to go back to Lorentz and Poincare, and assume that ether existed as a referential system in which matters went faster than light. Bell repeatedly pointed out that be wanted to go back to ether because EPR had predicted there was something faster than light in the back- ground. …… Since 1992, it is reported that there have been many successful faster than light experi-ments. Some of them are based on quantum tunneling effect;some are based on classic physical phenome- na such as evanescent waves, anomalous dispersion. And in 2008, D. Salart et. al. performed a experiment using entangled photons between two villages separated by 18km. In conclusion ,the speed of the influence of quantum entanglement would have to exceed than of light by at least four orders of magnitude, i. e. 10^4c 10^7c. Anyway, this experiment was the summation of discussions about the EPR thesis for a long time. For the past 25 years Quantum Superluminality was one subject of my chief study. In 1985 ,we pro- posed the model of quantum potential barrier equivalent circuit. In 1991, we first indicated that there could be the wave velocity vp 〈 0 and vg 〈 0 in the evanescent waves mode of the waveguide below cut off and the book "An Introduction to the Theory of waveguide Below Cut -off " made me get the First Na- tional Scientific and Technology Book Award of China. Moreover, in 2003 we through an experiment in the coaxial photonic crystal, a superluminal group velocity of ( 1.5 - 2.4) c are observed in the stop - band of frequency. In 2005, we suggested the term of General Information Velocity (GIV) ;and in 2010, we sugges- ted the term of Quantum Superluminality ( QS), and also suggested remodel the existing accelerator to dis- cover the superluminal strange electron. Now,this paper discusses some problems of

  14. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  15. Fast electron propagation in Ti foils irradiated with sub-picosecond laser pulses at $I\\lambda^{2} > 10^{18}$ Wcm$^{-2} \\mu m^{2}$

    CERN Document Server

    Makita, M; McKeever, K; Dzelzainis, T; White, S; Kettle, B; Dromey, B; Doria, D; Zepf, M; Lewis, CLS; Riley, D; Hansen, S B; Robinson, A P L

    2014-01-01

    We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-{\\alpha} radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effects of refluxing.

  16. A Non-Mainstream Viewpoint on Apparent Superluminal Phenomena in AGN Jet

    Indian Academy of Sciences (India)

    Wen-Po Liu; Li-Yan Liu; Chun-Cheng Wang

    2014-09-01

    The group velocity of light in material around the AGN jet is acquiescently one ( as a unit), but this is only a hypothesis. Here, we re-derive apparent superluminal and Doppler formulas for the general case (it is assumed that the group velocity of light in the uniform and isotropic medium around a jet (a beaming model) is not necessarily equal to one, e.g., Araudo et al. (2010) thought that there may be dense clouds around AGN jet base), and show that the group velocity of light close to one could seriously affect apparent superluminal phenomena and Doppler effect in the AGN jet (when the viewing angle and Lorentz factor take some appropriate values).

  17. Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Zhao-Guo; ZHANG Sai; SU Zhen-Peng; CHEN Liang-Xu

    2011-01-01

    Temporal evolution of outer radiation belt electron dynamics resulting from superluminous L-O mode waves is simulated at L=6.5. Diffusion rates are evaluated and then used as inputs to solve a 2D momentum-pitch-angle diffusion equation, particularly with and without cross diffusion terms. Simulated results demonstrate that phase space density(PSD) of energetic electrons due to L-O mode waves can enhance significantly within 24 h, covering a broader pitch-angle range in the absence of cross terms than that in the presence of cross terms. PSD evolution is also determined by the peak wave frequency, particularly at high kinetic energies. This result indicates that superluminous waves can be a potential candidate responsible for outer radiation belt electron dynamics.

  18. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.

  19. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neelamkavil, Raphael

    2014-07-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  20. On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos

    OpenAIRE

    Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao

    2011-01-01

    The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant $\\Lambda_{eff}$ which is the sum of the quantum zero point energy $\\Lambda_{dark energy}$ and the geometric cosmological constant $\\Lambda$. The OPERA experiment can be applied to determine the geometric cosmological constant $\\Lambda$. It is the first time to distingui...

  1. Swift and LT UV and optical observations of type IIn superluminous supernova 2017gir

    Science.gov (United States)

    Cano, Zach; Kuin, Paul; Chandra, Poonam; Ashall, Chris; Malesani, Daniele; Pastorello, Andrea

    2017-09-01

    We observed the field of the type IIn superluminous supernova 2017gir (ATLAS17jsb, Tonry et al. 2017; Lyman et al. 2017, ATel 10674) with Swift via a target-of-opportunity for three epochs (6th, 16th and 19th of September, 2017) in the three UVOT UV filters (w1, m1, w2). The SN is clearly detected in all three filters, and it is seen that its brightness fades over this timescale.

  2. Properties of Magnetars Mimicking 56Ni-powered Light Curves in Type IC Superluminous Supernovae

    Science.gov (United States)

    Moriya, Takashi J.; Chen, Ting-Wan; Langer, Norbert

    2017-02-01

    Many Type Ic superluminous supernovae have light-curve decline rates after their luminosity peak, which are close to the nuclear decay rate of {}56{Co}, consistent with the interpretation that they are powered by {}56{Ni} and possibly pair-instability supernovae. However, their rise times are typically shorter than those expected from pair-instability supernovae, and Type Ic superluminous supernovae are often suggested to be powered by magnetar spin-down. If magnetar spin-down is actually a major mechanism to power Type Ic superluminous supernovae, it should be able to produce decline rates similar to the {}56{Co} decay rate rather easily. In this study, we investigate the conditions for magnetars under which their spin-down energy input can behave like the {}56{Ni} nuclear decay energy input. We find that an initial magnetic field strength within a certain range is sufficient to keep the magnetar energy deposition within a factor of a few of the {}56{Co} decay energy for several hundreds of days. Magnetar spin-down needs to be by almost pure dipole radiation with the braking index close to three to mimic {}56{Ni} in a wide parameter range. Not only late-phase {}56{Co}-decay-like light curves, but also rise time and peak luminosity of most {}56{Ni}-powered light curves can be reproduced by magnetars. Bolometric light curves for more than 700 days are required to distinguish the two energy sources solely by them. We expect that more slowly declining superluminous supernovae with short rise times should be found if they are mainly powered by magnetar spin-down.

  3. Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry

    OpenAIRE

    Yan, Mu-Lin; Xiao, Neng-Chao; Huang, Wei; Hu, Sen

    2011-01-01

    We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein a photon is treated as a massless particle in the framework of Special Relativity. In Special Relativity (SR) we have the universal parameter $c$, the photon velocity $c_{photon}$ and the phase velocity of a light wave in vacuum $c_{wave}=\\lambda\

  4. Considerations about the apparent ''superluminal expansions'' observed in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.

    1986-06-11

    The orthodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much successful, especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. To prepare the ground, we start from a variational principle, introduce the elements of a tachyon mechanics within special relativity, and argue about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. We then review and develop the simplet ''Superluminal models'', paying particular attention to the observations which they would give rise to. We conclude that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones.

  5. Experimental Investigation of Stochastic Pulsation and Formation of Light Bullets with Megagauss Magnetic Fields by an Intense Laser Pulse Propagating in a Preionized Plasma

    Science.gov (United States)

    Vogel, Nadja I.; Kochan, N.

    2001-01-01

    The generation of extremely stable light bullets in a preformed plasma near critical density has been observed experimentally during the interaction of intense picosecond laser beam with a metallic target in air. Optical probing measurements indicate the formation of pulsating channels, typically of about 5 μm in diameter, directed towards a heating laser beam, as well as of disconnected massive plasma blocks moving also towards the laser beam. The velocities of the dense plasma blocks reach the values of 4.5×108 cm/s. The blocks are stable during their acceleration and propagation in air. Self-generated magnetic fields up to 4-7 MG were observed by means of the Faraday rotation of a probe laser beam.

  6. Estimación de la velocidad de propagación aórtica basada en el análisis de la onda de pulso radial Velocity estimation of aortic propagation based on radial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Fernando Clara

    2011-06-01

    specified coefficient in normotensive individuals increased linearly with age, in a similar way to the increase in aortic propagation velocity measured by other methods. The procedure was repeated on another set of 125 individuals with hypertension, without other risk factors, aged between the 3rd and 7th decade. This time we found similar values to normotensive individuals only on the 3th decade, and a pronounced increase on the velocity coefficient at advanced ages was observed. These findings support the feasibility of using this type of signals to indirectly evaluate the propagation velocity together with the increase index, a parameter commonly used in pulse wave analysis.

  7. Aspects of Quantum Non-Locality I: Superluminal Signalling, Action-at-a-Distance, Non-Separability and Holism

    Science.gov (United States)

    Berkovitz, Joseph

    In this paper and its sequel, I consider the significance of Jarrett's and Shimony's analyses of the so-called factorisability (Bell-locality) condition for clarifying the nature of quantum non-locality. In this paper, I focus on four types of non-locality: superluminal signalling, action-at-a-distance, non-separability and holism. In the second paper, I consider a fifth type of non-locality: superluminal causation according to 'logically weak' concepts of causation, where causal dependence requires neither action nor signalling. In this connection, I pay special attention to the difficulties that superluminal causation raises in relativistic space-time. I conclude by evaluating the relevance of Jarrett's and Shimony's analyses for clarifying the question of the compatibility of quantum non-locality with relativity theory. My main conclusions are, first: these analyses are significant for clarifying the questions of superluminal signalling in quantum phenomena and for the compatibility of these phenomena with relativity. But, second, by contrast: these analyses are not very significant for the study of action-at-a distance, superluminal causation, non-separability and holism in quantum phenomena.

  8. A proposal for a feasible quantum-optical scheme to test for the existence of superluminal signals via quantum mechanical entanglement

    CERN Document Server

    Kalamidas, Demetrios A

    2011-01-01

    Motivated by a proposal from Greenberger [Physica Scripta T76, p.57 (1998) ] for superluminal signaling, and inspired by an experiment from Mandel [Phys. Rev. Lett. 67, p.318 (1991) ] showing interference effects within multi-particle entanglement without coincidence detection, we propose a feasible quantum-optical scheme that purports to manifest the capacity for superluminal transfer of information between distant parties.

  9. Probes of Lorentz violation in neutrino propagation

    Science.gov (United States)

    Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.

    2008-08-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.

  10. Investigation on Propagation of Back-Pressure in Air-Breathing Pulse Detonation Engine%吸气式脉冲爆震发动机反压传播规律研究

    Institute of Scientific and Technical Information of China (English)

    彭畅新; 王治武; 郑龙席; 卢杰; 陈星谷

    2013-01-01

    With gasoline as fuel and air as oxidizer, experiments were performed to investigate the propagation of back-pressure in an air-breathing pulse detonation engine (PDE) with inner diameter 60mm, The back-pressure was measured at different operation frequencies ranging from 10 Hz to 30 Hz. The experimental results show that the back-pressure approximately increases linearly with increasing frequency. The ratio that the time of pressure fluctuation to a cycle time increases with increasing frequency. The pressure oscillation has a maximum value with operation frequency of 20Hz. The numerical model was developed and the characteristic of formation and propagation of the back-pressure was numerically investigated. The simulation results confirm that the back-pressure is induced by the retonation wave. The experimental and numerical results agree well, indicating that the method of simulation can reasonably reflect the propagation process of back-pressure.%以汽油为燃料,空气为氧化剂,在内径为60mm的吸气式脉冲爆震发动机上进行了反压传播规律实验研究.测量了10 ~30Hz频率范围内进气道内的反传压力.实验结果表明,进气道内的反压峰值随着工作频率的增加而增加,两者基本呈线性关系.随着工作频率的增加,压力波动的时间占每个工作循环时间的比例增加.压力脉动比在20Hz时达到最大.建立了数值模型,采用小能量点火及温度梯度自适应方法,计算得到了反压的形成及传播特性.计算结果印证了反压是由于回传爆震引起的.将计算结果与实验结果进行了比较,结果表明两者符合地较好.

  11. More about tunnelling times and superluminal tunnelling (Hartmann effect)

    Energy Technology Data Exchange (ETDEWEB)

    Olkhovsky, V.S. [Ukrainian Akademy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research]|[INFN-Sezione di Catania (Italy); Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[State Univ. at Campinas, Campinas (Brazil); Raciti, F. [Catania Univ. (Italy); Zaichenko, A. [Ukrainian Akademy of Sciences, Kiev (Ukraine). Inst. for Nuclear Reserch

    1995-05-01

    Aims of the present paper are: (i) presenting and analysing the results of various numerical calculations on the penetration and return times <{tau}{sub Pen}>, <{tau}{sub Ret}>, during tunnelling inside a rectangular potential barrier, for various penetration depths x{sub f}; (ii) putting forth and discussing suitable definitions, besides of the mean values, also of the variances (or dispersions) D{sub {tau}T} and D{sub {tau}R} for the time durations of transmission and reflection processes; (iii) mentioning, moreover, that our definition <{tau}{sub T}> for the average transmission time results to constitute an improvement of the ordinary dwell- time formula; (iv) commenting, at last, on the basis of the new numerical results, upon some recent criticism by C.R. Leavens. The paper stresses that numerical evaluations confirm that the approach implied, and implies, the existence of the Hartmann effect: an effect that in these days (due to the theoretical connections between tunnelling and evanescent-wave propagation) is receiving - at Cologne, Berkeley, Florence and Vienna - indirect, but quite interesting, experimental verification.

  12. Attractor scenarios and superluminal signals in k-essence cosmology

    CERN Document Server

    Kang, Jin U; Winitzki, Sergei

    2007-01-01

    Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the "coincidence problem") because of the attractor-like dynamics of the k-essence field \\phi. It was recently shown that all k-essence scenarios with Lagrangians p=L(X)/\\phi^2, necessarily involve an epoch where perturbations of \\phi propagate faster than light (the "no-go theorem"). We carry out a comprehensive study of attractor-like cosmological solutions ("trackers") involving a k-essence scalar field \\phi and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K(\\phi)L(X) . Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous "no-go theorem" still holds for...

  13. Slowly fading super-luminous supernovae that are not pair-instability explosions

    Science.gov (United States)

    Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R.; Narayan, G.; Stubbs, C. W.; Foley, R. J.; Lunnan, R.; Soderberg, A.; Sanders, N.; Milisavljevic, D.; Margutti, R.; Kirshner, R. P.; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.

    2013-10-01

    Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of `pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10-6 times that of the core-collapse rate.

  14. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    Science.gov (United States)

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

  15. 超光速佯谬和中微子%Superluminal Paradox and Neutrino

    Institute of Scientific and Technical Information of China (English)

    倪光炯

    2002-01-01

    爱因斯坦的狭义相对论和因果原理意味着任何运动物体的速度不能超过光在真空中的速度.然而,有许多讨论超光速运动粒子的尝试,这些讨论或者是在狭义相对论的框架下进行的,或者是超越了狭义相对论.这些讨论都遇到一系列难以克服的困难,即"超光速佯谬".文中详细分析了这种佯谬,并证明它在与狭义相对论兼容的量子理论中显然是不出现的.在实在世界中,中微子最可能是一种超光速粒子.%Einstein′s theory of special relativity (SR) and the principle of causality imply that the speed of any moving object can not exceed that of light in a vacuum (c). However, there were many attempts in literature discussing the particle moving with speed u>c(called as superluminal particle or tachyon) either in the scheme of SR or beyond it. These theories all encountered a series of insurmountable difficulties which will be named "superluminal paradox"in this paper. We will analyze it in some detail and then prove that the paradox disappears unambiguously in quantum theory, which is compatible with SR. Most likely, the superluminal particle in real world is just a kind of known particle, the neutrino.

  16. Closed timelike curves, superluminal signals, and "free will" in universal quantum mechanics

    CERN Document Server

    Nikolic, H

    2010-01-01

    We explore some implications of the hypothesis that quantum mechanics (QM) is universal, i.e., that QM does not merely describe information accessible to observers, but that it also describes the observers themselves. From that point of view, "free will" (FW) - the ability of experimentalists to make free choices of initial conditions - is merely an illusion. As a consequence, by entangling a part of brain (responsible for the illusion of FW) with a distant particle, one may create nonlocal correlations that can be interpreted as superluminal signals. In addition, if FW is an illusion, then QM on a closed timelike curve can be made consistent even without the Deutch nonlinear consistency constraint.

  17. Superluminal Energy Transmission in the Goos-Hanchen Shift of Total Reflection

    CERN Document Server

    Wang, Z Y

    2011-01-01

    This paper is to give a counter example for the theory of relativity. Firstly, the dispersion relation of surface electromagnetic waves is corresponding to that of a tachyon where the coefficient of proportionality is the squared Planck constant. Then we prove the energy flow velocity S/w of the Goos-Hanchen shift in vacuum is cn.sinI>c as well according to electrodynamics. These two different ways lead to a same conclusion that energy transport in the Goos-Hanchen effect of total reflection is faster than light. It is also helpful to study the tachyon of particle physics and superluminal motion observed in astronomy,etc.

  18. On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos

    CERN Document Server

    Yan, Mu-Lin; Huang, Wei; Xiao, Neng-Chao

    2011-01-01

    The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant $\\Lambda_{eff}$ which is the sum of the quantum zero point energy $\\Lambda_{dark energy}$ and the geometric cosmological constant $\\Lambda$. The OPERA experiment can be applied to determine the geometric cosmological constant $\\Lambda$. It is the first time to distinguish the contributions of $\\Lambda$ and $\\Lambda_{dark energy}$ from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter space-time symmetry.

  19. Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry

    CERN Document Server

    Yan, Mu-Lin; Huang, Wei

    2011-01-01

    We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein, the photon is treated as the massless particle in the SR mechanics. The meanings of the universal parameter $c$ and the photon velocity $c_{photon}$ in SR have been analyzed. $c$ can be determined by means of the velocity-composition law in SR kinematically. And $c_{photon}$ is determined by the dispersion relations of SR. It is revealed that $c=c_{photon}$ in Einstein's Special Relativity (E-SR), but $c\

  20. Slow to superluminal light waves in thin 3D photonic crystals.

    Science.gov (United States)

    Galisteo-López, J F; Galli, M; Balestreri, A; Patrini, M; Andreani, L C; López, C

    2007-11-12

    Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few mum size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.

  1. Causal ubiquity in quantum physics a superluminal and local-causal physical ontology

    CERN Document Server

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That

  2. Universe of superluminal velocities: tests of astrophysics, from dogma-to reality

    Science.gov (United States)

    Chechelnitsky, A.

    The Barrier of speed of light is the most chained and, perhaps, the most unreasonable Interdiction of the standard (astro) physics and cosmology. Its theoretical bases are speculative and unconvincing, and it actually has not been proved by observations from the very beginning of its promulgations. Moreover, it is gradually increase a stream of the observational data frankly contradicting to the Barrier. This monumental Dogma substantially holds down the initiative of researchers and development of sciences about the Universe. Resolving proofs of absence of the Barrier and real existence of superluminal velocities can come, most likely, from the side of observational astrophysics, when appear fair predictions, based on the alternative theory. Predictions and observational Tests, in particular, are those. The advanced astrophysical researches will lead to accumulation of the precision data and construction of histograms of the velocities observable in the Universe (in the centers of galaxies, AGN, blazàrs, BL Lac, etc), which will show: i) Distribution of the transversal (in a picture plane) superluminal velocities has distinct peaks near to the values specified by the alternative theory: (in G[ -6] Shell) β =v/c: 1.77; 1.48; 1.25; 1.05; 0.88; 0.74; 0.62; 0.52; 0.44; (G[ -7] Shell) β =v/c:: 6.48 ; 5.45; 4.58; 3.85; 3.24; 2.72; 2.29; 1.92; 1.62; (G[ -8] Shell) β =v/c: 23.79; 20.00; 16.82; 14.14; 11.89; 10.00; 8.41; 7.07; 5.95 ii) The same peaks are available (already now, - and it can be shown on the basis of the spectroscopic data) in distribution (histograms) of beam (radial) superluminal velocities (with the same multiplicator M = 2 = 1.1892). iii) The predicted property of discreteness, quantization of superluminal velocities (as well as subluminal) velocities is the exclusive pattern, essentially distinguishing alternative representations (Wave Universe Concept [Chechelnitsky 1980-2004]; see, in particular, the bibliography in Advances in Space Research, v

  3. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  4. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

    CERN Document Server

    McCrum, M; Kotak, R; Rest, A; Jerkstrand, A; Inserra, C; Rodney, S A; Chen, T -W; Howell, D A; Huber, M E; Pastorello, A; Tonry, J L; Bresolin, F; Kudritzki, R -P; Chornock, R; Berger, E; Smith, K; Botticella, M T; Foley, R J; Fraser, M; Milisavljevic, D; Nicholl, M; Riess, A G; Stubbs, C W; Valenti, S; Wood-Vasey, W M; Wright, D; Young, D R; Drout, M; Czekala, I; Burgett, W S; Chambers, K C; Draper, P; Flewelling, H; Hodapp, K W; Kaiser, N; Magnier, E A; Metcalfe, N; Sweeney, W; Wainscoat, R J

    2013-01-01

    We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of M_u = -21.4 mag and bolometric luminosity of 8 x 10^43 ergs^-1 before settling onto a relatively shallow gradient of decline. The observed decline is significantly slower than those of the superluminous type Ic SNe which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay timescale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 days before peak to 230 days after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do no...

  5. Slowly fading super-luminous supernovae that are not pair-instability explosions

    CERN Document Server

    Nicholl, M; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T -W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-01-01

    Super-luminous supernovae that radiate more than 10^44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-30 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae...

  6. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system

    CERN Document Server

    Chen, T -W; Smartt, S J; Mazzali, P A; Yates, R M; Moriya, T J; Inserra, C; Langer, N; Kruehler, T; Pan, Y -C; Kotak, R; Galbany, L; Schady, P; Wiseman, P; Greiner, J; Schulze, S; Man, A W S; Jerkstrand, A; Smith, K W; Dennefeld, M; Baltay, C; Bolmer, J; Kankare, E; Knust, F; Maguire, K; Rabinowitz, D; Rostami, S; Sullivan, M; Young, D R

    2016-01-01

    We present and analyse an extensive dataset of the superluminous supernova LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor superluminous supernova. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially ...

  7. Predictions for signatures of the quark-nova in superluminous supernovae

    CERN Document Server

    Ouyed, Rachid; Jaikumar, Prashanth

    2009-01-01

    [Abridged] Superluminous Supernovae (SN2006gy, SN2005gj, SN2005ap, SN2008fz, SN2003ma) have been a challenge to explain by standard models. We present an alternative scenario involving a quark-nova (QN), an explosive transition of the newly born neutron star to a quark star in which a second explosion (delayed) occurs inside the already expanding ejecta of a normal SN. The reheated SN ejecta can radiate at higher levels for longer periods of time primarily due to reduced adiabatic expansion losses, unlike the standard SN case. Our model is successfully applied to SN2006gy, SN2005gj, SN2005ap, SN2008fz, SN2003ma with encouraging fits to the lightcurves. There are four predictions in our model: (i) superluminous SNe optical lightcurves should show a double-hump with the SN hump at weaker magnitudes occurring days to weeks before the QN; (ii) Two shock breakouts should be observed vis-a-vis one for a normal SN. Depending on the time delay, this would manifest as two distinct spikes in the X-ray region or a broad...

  8. Superluminal motion in a compact steep spectrum radio source 3C 138

    CERN Document Server

    Shen, Z Q; Kameno, S; Chen, Y J

    2001-01-01

    We present the results of 5 GHz VLBI observations of a compact steep spectrum source 3C 138. The data are consistent with the western end being the location of the central activity. The observed offset between different frequencies in the central region of 3C 138 can be accounted for by a frequency dependent shift of the synchrotron self-absorbed core. Our new measurements confirm the existence of a superluminal motion, but its apparent velocity of 3.3c is three times slower than the reported one. This value is consistent with the absence of parsec-scale counter-jet emission in the inner region, but seems still too high to allow the overall counter-jet to be seen in terms of Doppler boosting of an intrinsically identical jet. Either an interaction of jet with central dense medium, or an intrinsically asymmetrical jet must be invoked to reconcile the detected superluminal speed with the observed large scale asymmetry in 3C 138.

  9. ASASSN-15lh: A Superluminous Ultraviolet Rebrightening Observed by Swift and Hubble

    CERN Document Server

    Brown, Peter J; Cooke, Jeff; Olaes, Melanie; Quimby, Robert M; Baade, Dietrich; Gehrels, Neil; Hoeflich, Peter; Maund, Justyn; Mould, Jeremy; Patat, Ferdinando; Wang, Lifan; Wheeler, J Craig

    2016-01-01

    We present and discuss ultraviolet (UV) and optical photometry from the Ultraviolet/Optical Telescope (UVOT) and X-ray limits from the X-Ray Telescope on Swift and imaging polarimetry and UV/optical spectroscopy with the Hubble Space Telescope (HST) of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I) more luminous than any other supernova observed. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the UV, with a UV luminosity a hundred times greater than the hydrogen-rich, UV-bright SLSN II SN~2008es. A late rebrightening -- most prominent at shorter wavelengths -- is seen about two months after the peak brightness, which by itself is as bright as a superluminous supernova. ASASSN-15lh is not detected in the X-rays in individual observations or when the data are summed into two separate bins for the early phase and the rebrightening. The HST UV spectrum during the rebrightening is do...

  10. Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey

    CERN Document Server

    Howell, D A; Lidman, C; Sullivan, M; Conley, A; Astier, P; Carlberg, C Balland R G; Fouchez, D; Guy, J; Hardin, D; Pain, R; Palanque-Delabrouille, N; Perrett, K; Pritchet, C J; Regnault, N; Rich, J; Ruhlmann-Kleider, V

    2013-01-01

    We present spectra and lightcurves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M_U = -22.7 is one of the most luminous SNe ever observed, and gives a rare glimpse into the restframe ultraviolet where these supernovae put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but based on the supernova spectrum, we estimate it to be at z ~ 1.5. Both supernovae have similar observer-frame griz lightcurves, which map to restframe lightcurves in the U-band and UV, rising in ~ 20 restframe days or longer, and declining over a similar timescale. The lightcurves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra to theoretical models, and identify lines of C II, C III, Fe III, and Mg II in the spectrum of SNLS 06D4eu and SCP 06F6...

  11. Special relativity and superluminal motions: a discussion of some recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.

  12. Extensions of Born’s rule to non-linear quantum mechanics, some of which do not imply superluminal communication

    Science.gov (United States)

    Helou, Bassam; Chen, Yanbei

    2017-08-01

    Nonlinear modifications of quantum mechanics have a troubled history. They were initially studied for many promising reasons: resolving the measurement problem, formulating a theory of quantum mechanics and gravity, and understanding the limits of standard quantum mechanics. However, certain non-linear theories have been experimentally tested and failed. More significantly, it has been shown that, in general, deterministic non-linear theories can be used for superluminal communication. We highlight another serious issue: the distribution of measurement results predicted by non-linear quantum mechanics depends on the formulation of quantum mechanics. In other words, Born’s rule cannot be uniquely extended to non-linear quantum mechanics. We present these generalizations of Born’s rule, and then examine whether some exclude superluminal communication. We determine that a large class do not allow for superluminal communication, but many lack a consistent definition. Nonetheless, we find a single extension of Born’s rule with a sound operational definition, and that does not exhibit superluminal communication. The non-linear time-evolution leading to a certain measurement event is driven by the state conditioned on measurements that lie within the past light cone of that event.

  13. Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-ray Emission

    CERN Document Server

    Cheung, C C; Stawarz, L

    2007-01-01

    Superluminal motion is a common feature of radio jets in powerful gamma-ray emitting active galactic nuclei. Conventionally, the variable emission is assumed to originate near the central supermassive black-hole where the jet is launched on parsec scales or smaller. Here, we report the discovery of superluminal radio features within a distinct flaring X-ray emitting region in the jet of the nearby radio galaxy M87 with the Very Long Baseline Array. This shows that these two phenomenological hallmarks -- superluminal motion and high-energy variability -- are associated, and we place this activity much further (>=120 pc) from the ``central engine'' in M87 than previously thought in relativistic jet sources. We argue that the recent excess very high-energy TeV emission from M87 reported by the H.E.S.S. experiment originates from this variable superluminal structure, thus providing crucial insight into the production region of gamma-ray emission in more distant blazars.

  14. Pulse frequency classification based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; WANG Xu; YANG Dan; FU Rong

    2006-01-01

    In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.

  15. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  16. Pulsed cathodoluminescence and Raman spectra of MoS{sub 2} and WS{sub 2} nanocrystals and their combination MoS{sub 2}/WS{sub 2} produced by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi, E-mail: farabi.bozheyev@gmail.com [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan); Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., 010000 Astana (Kazakhstan); Valiev, Damir [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); Nemkayeva, Renata [National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan)

    2016-02-29

    Molybdenum and tungsten disulfide nanoplates were produced by self-propagating high-temperature synthesis in argon atmosphere. This method provides an easy way to produce MoS{sub 2} and WS{sub 2} from nanoplates up to single- and several layers. The Raman peak intensities corresponding to in-plane E{sup 1}{sub 2g} and out-of-plane A{sub 1g} vibration modes and their shifts strongly depend on the thicknesses of the MoS{sub 2} and WS{sub 2} platelets indicating size-dependent scaling laws and properties. An electron beam irradiation of MoS{sub 2} and WS{sub 2} powders leads to an occurrence of pulsed cathodoluminescence (PCL) spectra at 575 nm (2.15 eV) and 550 nm (2.25 eV) characteristic to their intrinsic band gaps. For the combination of MoS{sub 2} and WS{sub 2} nanopowders, a PCL shoulder at 430 nm (2.88 eV) was observed, which is explained by the radiative electron-hole recombination at the MoS{sub 2}/WS{sub 2} grain boundaries. The luminescence decay kinetics of the MoS{sub 2}/WS{sub 2} nanoplates appears to be slower than for individual MoS{sub 2} and WS{sub 2} platelets due to a spatial separation of electrons and holes at MoS{sub 2}/WS{sub 2} junction resulting in extension of recombination time.

  17. Slow wave propagation in soft adhesive interfaces.

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-11-16

    Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.

  18. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  19. 3D Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources

    CERN Document Server

    Aloy, M A; Gómez, J L; Agudo, I; Müller, E; Ibanyez, J M; Aloy, Miguel Angel; Marti, Jose Maria; Gomez, Jose Luis; Agudo, Ivan; Mueller, Ewald; Ibanyez, Jose Maria

    2003-01-01

    We present the results of a three-dimensional, relativistic, hydrodynamic simulation of a precessing jet into which a compact blob of matter is injected. A comparison of synthetic radio maps computed from the hydrodynamic model, taking into account the appropriate light travel time delays, with those obtained from observations of actual superluminal sources shows that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or the external medium. These results question the hydrodynamic properties inferred from observed apparent motions and radio structures, and reveal that shock-in-jet models may be overly simplistic.

  20. Superluminal Neutrinos and a Curious Phenomenon in the Relativistic Quantum Hamilton-Jacobi Equation

    CERN Document Server

    Matone, Marco

    2011-01-01

    OPERA's results, if confirmed, pose the question of superluminal neutrinos. We investigate the kinematics defined by the quantum version of the relativistic Hamilton-Jacobi equation, i.e. E^2=p^2c^2+m^2c^4+2mQc^2, with Q the quantum potential of the free particle. The key point is that the quantum version of the Hamilton-Jacobi equation is a third-order differential equation, so that it has integration constants which are missing in the Schr\\"odinger and Klein-Gordon equations. In particular, a non-vanishing imaginary part of an integration constant leads to a quantum correction to the expression of the velocity which is curiously in agreement with OPERA's results.

  1. Can pair-instability supernova models match the observations of superluminous supernovae?

    CERN Document Server

    Kozyreva, Alexandra

    2015-01-01

    An increasing number of so-called superluminous supernovae (SLSNe) are discovered. It is believed that at least some of them with slowly fading light curves originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models naturally predict pair instability supernovae (PISNe) from very massive stars at wide range of metallicities (up to Z=0.006, Yusof et al. 2013). In the scope of this study we analyse whether PISN models can match the observational properties of SLSNe with various light curve shapes. Specifically, we explore the influence of different degrees of macroscopic chemical mixing in PISN explosive products on the resulting observational properties. We artificially apply mixing to the 250 Msun PISN evolutionary model from Kozyreva et al. (2014) and explore its supernova evolution with the one-dimensional radiation hydrodynamics code STELLA. The greatest success in matching SLSN observations is achieved in the case of an extreme macroscopic mixing, where all r...

  2. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  3. Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh

    Science.gov (United States)

    Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.

    2016-09-01

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ˜40 M ⊙ star interacting with a hydrogen-poor shell of ˜20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1-2 ms and magnetic field of 0.1-1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.

  4. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    Energy Technology Data Exchange (ETDEWEB)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Djorgovski, S. George; Mahabal, Ashish A. [California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States); Glikman, Eilat [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Koposov, Sergey, E-mail: zkostrzewa@astrouw.edu.pl, E-mail: simkoz@astrouw.edu.pl, E-mail: wyrzykow@astrouw.edu.pl [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-12-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m {sub g} < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M{sub B} = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M {sub g} < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  5. Propagation failures, breathing fronts, and nonannihilation collisions in the ferroin-bromate-pyrocatechol system.

    Science.gov (United States)

    Harati, Mohammad; Wang, Jichang

    2009-06-01

    The emergence of propagating pulses was investigated with the photosensitive ferroin-bromate-pyrocatechol reaction in capillary tubes, in which various interesting spatiotemporal behaviors such as propagation failure, breathing fronts, and transitions between propagating pulses and fronts have been observed. Rather than a mutual annihilation, the collision of a propagating pulse and a growing front forces the front to recede gradually. A phase diagram in the pyrocatechol-bromate concentration space shows that the pulse instabilities take place throughout the conditions at which the system generates wave activities, suggesting that the presence of coupled autocatalytic feedbacks may facilitate the onset of pulse instabilities.

  6. A self-consistent Maltsev pulse model

    Science.gov (United States)

    Buneman, O.

    1985-04-01

    A self-consistent model for an electron pulse propagating through a plasma is presented. In this model, the charge imbalance between plasma ions, plasma electrons and pulse electrons creates the travelling potential well in which the pulse electrons are trapped.

  7. Green's function of a massless scalar field in curved space-time and superluminal phase velocity of the retarded potential

    CERN Document Server

    Dai, De-Chang

    2012-01-01

    We study a retarded potential solution of a massless scalar field in curved space-time. In a special ansatz for a particle at rest whose magnitude of the (scalar) charge is changing with time, we found an exact analytic solution. The solution indicates that the phase velocity of the retarded potential of a non-moving scalar charge is position dependent, and may easily be greater than the speed of light at a given point. In the case of the Schwarzschild space-time, at the horizon, the phase velocity becomes infinitely faster than the coordinate speed of light at that point. Superluminal phase velocity is relatively common phenomenon, with the the phase velocity of the massive Klein-Gordon field as the best known example. We discuss why it is possible to have modes with superluminal phase velocity even for a massless field.

  8. Ladder型三能级介质中传播的少周期激光脉冲的空间分布%Spatial Distribution of Few-cycle Laser Pulses Propagating in a Ladder-type Three-level Medium

    Institute of Scientific and Technical Information of China (English)

    王蕾; 王振东; 梁变; 樊锡君

    2011-01-01

    利用由时域有限差分法和预估校正法求得全波Maxwell-Bloch 方程的数值解,研究少周期超短激光脉冲在Ladder型三能级原子介质中传播时脉冲及介质粒子布居的空间分布.结果表明,脉冲及介质粒子布居的空间分布规律随脉冲面积的改变而发生明显的变化.当脉冲面积较小时,脉冲形状不规则,振荡次数较多;当脉冲面积较大时,脉冲形状变得较为规则,振荡次数明显减少.随着脉冲面积的增大,脉冲振幅和传播速度逐渐增大,各能级粒子布居振荡次数增多,不同时刻的脉冲和粒子布居空间分布的变化明显减小.粒子布居的空间分布与脉冲的空间分布密切相关.%With numerical solution of full Maxwell-Bloch equations obtained by finite-difference time-domain method and iterative predictor-corrector method, spatial distributions of pulse and populations of few-cycle laser pulse propagates in a ladder-type three-level atomic medium are investigated. It shows that, spatial distributions changes evidently with pulse area. As the pulse area is smallr, the pulse shape is irregular and oscillation time increases. As the pulse area is large, the pulse shape becomes relatively regular and oscillation times decreases evidently. With increasing of pulse area, amplitude and group velocity of pulse increase progressively,oscillation times of populations increase gradually and variation of spatial distributions of the pulse and populations at different moments decreases considerably. Moreover, spatial distribution of populations correlates closely to spatial distribution of the pulse.

  9. 超光速:可能与不可能%On the Superluminal Movement:Possible and Impossible?

    Institute of Scientific and Technical Information of China (English)

    黄政新

    2012-01-01

    The OPERA experimental results indicate that neutrinos move even faster than the speed of light,which triggers extensive skepticism with regards of Einstein's assertion that superluminal movement does not exists in nature.This paper first makes a brief review to the history of tachyon(faster-than-light particle) research home and abroad in the past half-century.It then points out that:(1) there is no solid and sufficient reason in Einstein's assertion that superluminal movement does not exists in nature;(2) so far there is no solid experimental foundation for those currently established superluminal theories;(3) a correct superluminal theory should return to special relativity under extreme conditions(i.e.when the velocity approaches the speed of light).%"奥佩拉"(OPERA)实验结果显示中微子运动得比光速还快。这引起许多人对爱因斯坦关于自然界不存在超光速运动这一断言的怀疑。本文回顾了半个世纪以来国内外快子(超光速粒子)研究的简要历史。接着,本文指出:(1)爱因斯坦断言自然界不存在超光速运动是没有充分理由的;(2)所有已建立的超光速理论都没有坚实的实验基础;(3)一个正确的超光理论在极限条件下(当速度趋于光速时)时应当回归狭义相对论。

  10. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....

  11. Two superluminous supernovae from the early universe discovered by the supernova legacy survey

    Energy Technology Data Exchange (ETDEWEB)

    Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasen, D. [Departments of Physics and Astronomy, University of California, Berkeley, Berkeley, CA 94720-7300 (United States); Lidman, C. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Sullivan, M. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N. [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, F-13288 Marseille Cedex 9 (France); Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V. [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Perrett, K. [DRDC Ottawa, 3701 Carling Avenue, Ottawa, ON K1A 0Z4 (Canada); Pritchet, C. J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2013-12-20

    We present spectra and light curves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae (SNe) discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M{sub U} = –22.7 it is one of the most luminous SNe ever observed, and it gives a rare glimpse into the rest-frame ultraviolet where these SNe put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but on the basis of the SN spectrum, we estimate it to be at z ∼ 1.5. Both SNe have similar observer-frame griz light curves, which map to rest-frame light curves in the U band and UV, rising in ∼20 rest-frame days or longer and declining over a similar timescale. The light curves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra with theoretical models, and we identify lines of C II, C III, Fe III, and Mg II in the spectra of SNLS 06D4eu and SCP 06F6 and find that they are consistent with an expanding explosion of only a few solar masses of carbon, oxygen, and other trace metals. Thus, the progenitors appear to be related to those suspected for SNe Ic. A high kinetic energy, 10{sup 52} erg, is also favored. Normal mechanisms of powering core-collapse or thermonuclear SNe do not seem to work for these SNe. We consider models powered by {sup 56}Ni decay and interaction with circumstellar material, but we find that the creation and spin-down of a magnetar with a period of 2 ms, a magnetic field of 2 × 10{sup 14} G, and a 3 M {sub ☉} progenitor provides the best fit to the data.

  12. Deterministic simulation of UWB indoor propagation channel

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Zhang Naitong; Zhang Qinyu; Zhang Zhongzhao

    2008-01-01

    A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.

  13. Low Frequency Sound Propagation in Lipid Membranes

    CERN Document Server

    Mosgaard, Lars D; Heimburg, Thomas

    2012-01-01

    In the recent years we have shown that cylindrical biological membranes such as nerve axons under physiological conditions are able to support stable electromechanical pulses called solitons. These pulses share many similarities with the nervous impulse, e.g., the propagation velocity as well as the measured reversible heat production and changes in thickness and length that cannot be explained with traditional nerve models. A necessary condition for solitary pulse propagation is the simultaneous existence of nonlinearity and dispersion, i.e., the dependence of the speed of sound on density and frequency. A prerequisite for the nonlinearity is the presence of a chain melting transition close to physiological temperatures. The transition causes a density dependence of the elastic constants which can easily be determined by experiment. The frequency dependence is more difficult to determine. The typical time scale of a nerve pulse is 1 ms, corresponding to a characteristic frequency in the range up to one kHz. ...

  14. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  15. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  16. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  17. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, D.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209 (China); Pascoe, D. J.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Keppens, R., E-mail: Ding.Yuan@wis.kuleuven.be, E-mail: bbl@sdu.edu.cn [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.

  18. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  19. On the propagation speed of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, A.P.L. [State Univ. of Campinas, Campinas (Brazil)]|[Universidad Federal Fluminense (Brazil); Hernandez Figueroa, H.E. [State Univ. of Campinas, Campinas (Brazil); Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil)

    2000-03-01

    The group velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be superluminal. By contrast, it is known that the precursor speed in vacuum cannot be larger than c. This paper, by computer simulations based on Maxwell equations only, shows the existence of both phenomena and verifies the actual possibility of superluminal group velocities, without violating the so-called (naive) Einstein causality.

  20. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    CERN Document Server

    Moriya, Takashi J; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-01-01

    We propose that nebular Halpha emission as detected in the Type Ic superluminous supernova iPTF13ehe stems from matter which is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Halpha luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Halpha luminosity of iPTF13ehe. We find a stripped mass of 0.1 - 0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Halpha emission, an interaction-powered model is not favored for iPTF13ehe. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion ...

  1. A plausible (overlooked) super-luminous supernova in the SDSS Stripe 82 data

    CERN Document Server

    Kostrzewa-Rutkowska, Zuzanna; Wyrzykowski, Lukasz; Djorgovski, S George; Glikman, Eilat; Mahabal, Ashish A

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova peaked at M_g<-21.3 mag in the second half of September 2005, but was missed by the real-time supernova hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN2007bi type. Spectrum of the host galaxy reveals a redshift of z=0.281 and the distance modulus of \\mu=40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with the absolute magnitude of M_B=-18.2+/-0.2 mag and the oxygen abundance of 12+log[O/H]=8.3+/-0.2. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity ...

  2. On the early-time excess emission in hydrogen-poor superluminous supernovae

    CERN Document Server

    Vreeswijk, Paul M; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A; Quimby, Robert M; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O; Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper; Valenti, Stefano; Arcavi, Iair; Howell, D Andrew; Filippenko, Alexei V; Cenko, S Bradley; Yaron, Ofer; Kasliwal, Mansi M; Cao, Yi; Ben-Ami, Sagi; Horesh, Assaf; Rubin, Adam; Lunnan, Ragnhild; Nugent, Peter E; Laher, Russ; Rebbapragada, Umaa D; Woźniak, Przemysław; Kulkarni, Shrinivas R

    2016-01-01

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to those observed in other SLSNe-I, such as SN2006oz, LSQ14bdq and DES14X3taz. In contrast, the long-duration (>30 days) early excess emission in iPTF13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time light-curve decline in both SLSNe is suggestively close to that expected from the radioactive decay of $^{56}$Ni and $^{56}$Co, the amount of nickel req...

  3. Superluminal non-ballistic jet swing in the quasar NRAO 150 revealed by mm-VLBI

    CERN Document Server

    Agudo, I; Krichbaum, T P; Marscher, A P; Gonidakis, I; Diamond, P J; Perucho, M; Alef, W; Graham, D A; Witzel, A; Zensus, J A; Bremer, M; Acosta-Pulido, J A; Barrena, R

    2007-01-01

    NRAO 150 -a compact and bright radio to mm source showing core/jet structure- has been recently identified as a quasar at redshift z=1.52 through a near-IR spectral observation. To study the jet kinematics on the smallest accessible scales and to compute the first estimates of its basic physical properties, we have analysed the ultra-high-resolution images from a new monitoring program at 86 GHz and 43 GHz with the GMVA and the VLBA, respectively. An additional archival and calibration VLBA data set, covering from 1997 to 2007, has been used. Our data shows an extreme projected counter-clock-wise jet position angle swing at an angular rate of up to ~11 deg./yr within the inner ~31 pc of the jet, which is associated with a non-ballistic superluminal motion of the jet within this region. The results suggest that the magnetic field could play an important role in the dynamics of the jet in NRAO 150, which is supported by the large values of the magnetic field strength obtained from our first estimates. The extre...

  4. An extreme ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine

    CERN Document Server

    Nicholl, M; Margutti, R; Blanchard, P K; Milisavljevic, D; Challis, P; Metzger, B D; Chornock, R

    2016-01-01

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below $\\sim 3000$ \\AA. Yan et al (2016) have recently presented HST UV spectra and attributed the UV flux to low metallicity and hence reduced line blanketing. Here we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by $\\sim 10$-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV cont...

  5. Gaia16apd -- a link between fast-and slowly-declining type I superluminous supernovae

    CERN Document Server

    Kangas, T; Mattila, S; Lundqvist, P; Fraser, M; Hardy, L K; Stritzinger, M D; Cappellaro, E; Elias-Rosa, N; Harmanen, J; Hsiao, E Y; Kankare, E; Nielsen, M B; Reynolds, T M; Rhodes, L; Somero, A; Wyrzykowski, L

    2016-01-01

    We present ultraviolet, optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd, covering its evolution from 27 d before the $g$-band peak to the nebular phase, including the latest spectrum ever obtained for a fast-declining type Ic SLSN at 150.9 d. Gaia16apd is one of the closest SLSNe known ($z = 0.102\\pm0.001$), with detailed optical and \\emph{Swift} ultraviolet (UV) band observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O {\\sc ii} absorption, and reaches a peak $M_{g} = -21.8 \\pm 0.1$ mag. However, photometrically it exhibits an evolution intermediate between the fast- and slowly-declining type Ic SLSNe, with an early evolution closer to the fast-declining events. It is unusually UV-bright even for a SLSN, reaching a non-$K$-corrected $M_{uvm2} \\simeq -23.2$ mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. This event highlights the...

  6. Studies of the Jet in BL Lacertae. II. Superluminal Alfv\\'en Waves

    CERN Document Server

    Cohen, M H; Arshakian, T G; Clausen-Brown, E; Homan, D C; Hovatta, T; Kovalev, Y Y; Lister, M L; Pushkarev, A B; Richards, J L; Savolainen, T

    2014-01-01

    Ridge lines on the pc-scale jet of the active galactic nucleus BL Lac display transverse patterns that move superluminally downstream. The patterns are not ballistic, but are analogous to waves on a whip. Their apparent speeds $\\beta_\\mathrm{app}$ (units of $c$) range from 4.2 to 13.5, corresponding to $\\beta_\\mathrm{wave}^\\mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are longitudinal Alfv\\'en waves. The wave-induced transverse speed of the jet is non-relativistic ($\\beta_\\mathrm{tr}^\\mathrm{gal}\\sim 0.09$) and in agreement with our assumption of low-amplitude waves. In 2010 the wave activity subsided and the jet displayed a mild wiggle that had a complex oscillatory behavior. The waves are excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking it. Simple models of the system are presen...

  7. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    Science.gov (United States)

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  8. Polarimetry of the Superluminous Supernova LSQ14mo: No Evidence for Significant Deviations from Spherical Symmetry

    Science.gov (United States)

    Leloudas, Giorgos; Patat, Ferdinando; Maund, Justyn R.; Hsiao, Eric; Malesani, Daniele; Schulze, Steve; Contreras, Carlos; de Ugarte Postigo, Antonio; Sollerman, Jesper; Stritzinger, Maximilian D.; Taddia, Francesco; Wheeler, J. Craig; Gorosabel, Javier

    2015-12-01

    We present the first polarimetric observations of a Type I superluminous supernova (SLSN). LSQ14mo was observed with VLT/FORS2 at five different epochs in the V band, with the observations starting before maximum light and spanning 26 days in the rest frame (z = 0.256). During this period, we do not detect any statistically significant evolution (\\lt 2σ ) in the Stokes parameters. The average values we obtain, corrected for interstellar polarization in the Galaxy, are Q = -0.01% (±0.15%) and U = -0.50% (±0.14%). This low polarization can be entirely due to interstellar polarization in the SN host galaxy. We conclude that, at least during the period of observations and at the optical depths probed, the photosphere of LSQ14mo does not present significant asymmetries, unlike most lower-luminosity hydrogen-poor SNe Ib/c. Alternatively, it is possible that we may have observed LSQ14mo from a special viewing angle. Supporting spectroscopy and photometry confirm that LSQ14mo is a typical SLSN I. Further studies of the polarization of Type I SLSNe are required to determine whether the low levels of polarization are a characteristic of the entire class and to also study the implications for the proposed explosion models.

  9. Host-Galaxy Properties of 32 Low-Redshift Superluminous Supernovae from the Palomar Transient Factory

    CERN Document Server

    Perley, Daniel A; Yan, Lin; Vreeswijk, Paul; De Cia, Annalisa; Lunnan, Ragnhild; Gal-Yam, Avishay; Yaron, Ofer; Filippenko, Alexei V; Graham, Melissa L; Nugent, Peter E

    2016-01-01

    We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M 0.5 Z_sun. Extremely low metallicities are not required, and indeed provide no further increase in the relative SLSN rate. Several SLSN-I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star-formation histories. Type-II (hydrogen-rich) SLSNe are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is a Type I SLSN in a massive, luminous infrared galaxy at re...

  10. SN 2012aa - a transient between Type Ibc core-collapse and superluminous supernovae

    CERN Document Server

    Roy, R; Silverman, J M; Pastorello, A; Fransson, C; Drake, A; Taddia, F; Fremling, C; Kankare, E; Kumar, B; Cappellaro, E; Bose, S; Benetti, S; Filippenko, A V; Valenti, S; Nyholm, A; Ergon, M; Sutaria, F; Kumar, B; Pandey, S B; Nicholl, M; Garcia-Alvarez, D; Tomasella, L; Karamehmetoglu, E; Migotto, K

    2016-01-01

    Context: Research on supernovae (SNe) over the past decade has confirmed that there is a distinct class of events which are much more luminous (by $\\sim2$ mag) than canonical core-collapse SNe (CCSNe). These events with visual peak magnitudes $\\lesssim-21$ are called superluminous SNe (SLSNe). Aims: There are a few intermediate events which have luminosities between these two classes. Here we study one such object, SN 2012aa. Methods: The optical photometric and spectroscopic follow-up observations of the event were conducted over a time span of about 120 days. Results: With V_abs at peak ~-20 mag, the SN is an intermediate-luminosity transient between regular SNe Ibc and SLSNe. It also exhibits an unusual secondary bump after the maximum in its light curve. We interpret this as a manifestation of SN-shock interaction with the CSM. If we would assume a $^{56}$Ni-powered ejecta, the bolometric light curve requires roughly 1.3 M_sun of $^{56}$Ni and an ejected mass of ~14 M_sun. This would also imply a high kin...

  11. Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry

    CERN Document Server

    Leloudas, Giorgos; Maund, Justyn R; Hsiao, Eric; Malesani, Daniele; Schulze, Steve; Contreras, Carlos; Postigo, Antonio de Ugarte; Sollerman, Jesper; Stritzinger, Maximilian D; Taddia, Francesco; Wheeler, J Craig; Gorosabel, Javier

    2015-01-01

    We present the first polarimetric observations of a Type I superluminous supernova (SLSN). LSQ14mo was observed with VLT/FORS2 at 5 different epochs in the V band, observations starting before maximum light and spanning 26 days in the rest-frame (z=0.256). During this period, we do not detect any statistically significant evolution (< 2$\\sigma$) in the Stokes parameters. The average values we obtain, corrected for interstellar polarisation in the Galaxy, are Q = -0.01% ($\\pm$ 0.15%) and U = - 0.50% ($\\pm$ 0.14%). This low polarisation can be entirely due to interstellar polarisation in the SN host galaxy. We conclude that, at least during the period of observations and at the optical depths probed, the photosphere of LSQ14mo does not present significant asymmetries, unlike most lower-luminosity hydrogen-poor SNe Ib/c. Alternatively, it is possible that we may have observed LSQ14mo from a special viewing angle. Supporting spectroscopy and photometry confirm that LSQ14mo is a typical SLSN I. Further studies ...

  12. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam: Interaction and Radioactive Decay

    Science.gov (United States)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Sorokina, Elena; Quimby, Robert; Baklanov, Petr

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a 56Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of 56Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M⊙ ejecta and 20–40 M⊙ circumstellar medium. The ejected 56Ni mass is about 6 M⊙, which results from explosive nucleosynthesis with large explosion energy (2–3) × 1052 erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  13. Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae

    Science.gov (United States)

    Moriya, Takashi J.; Tauris, Thomas M.

    2016-07-01

    Superluminous supernovae (SLSNe) have been suggested to be powered by strongly magnetized, rapidly rotating neutron stars which are often called magnetars. In this process, rotational energy of the magnetar is radiated via magnetic dipole radiation and heats the supernova ejecta. However, if magnetars are highly distorted in their geometric shape, rotational energy is mainly lost as gravitational wave radiation and thus such magnetars cannot power SLSNe. By simply comparing electromagnetic and gravitational wave emission time-scales, we constrain upper limits to the ellipticity of magnetars by assuming that they power the observed SLSNe. We find that their ellipticity typically needs to be less than about a few 10-3. This indicates that the toroidal magnetic field strengths in these magnetars are typically less than a few 1016 G so that their distortions remain small. Because light-curve modelling of SLSNe shows that their dipole magnetic field strengths are of the order of 1014 G, the ratio of poloidal to toroidal magnetic field strengths is found to be larger than ˜0.01 in magnetars powering SLSNe.

  14. Constraining the ellipticity of strongly-magnetized neutron stars powering superluminous supernovae

    CERN Document Server

    Moriya, Takashi J

    2016-01-01

    Superluminous supernovae (SLSNe) have been suggested to be powered by strongly-magnetized, rapidly-rotating neutron stars which are often called magnetars. In this process, rotational energy of the magnetar is radiated via magnetic dipole radiation and heats the supernova ejecta. However, if magnetars are highly distorted in their geometric shape, rotational energy is mainly lost as gravitational wave radiation and thus such magnetars cannot power SLSNe. By simply comparing electromagnetic and gravitational wave emission timescales, we constrain upper limits to the ellipticity of magnetars by assuming that they power the observed SLSNe. We find that their ellipticity typically needs to be less than about a few 1e-3. This indicates that the toroidal magnetic field strengths in these magnetars are typically less than a few 1e16 G so that their distortions remain small. Because light-curve modeling of SLSNe shows that their dipole magnetic field strengths are of the order of 1e14 G, the ratio of poloidal to toro...

  15. A Triple-energy-source Model for Superluminous Supernova iPTF13ehe

    Science.gov (United States)

    Wang, S. Q.; Liu, L. D.; Dai, Z. G.; Wang, L. J.; Wu, X. F.

    2016-09-01

    Almost all superluminous supernovae (SLSNe) whose peak magnitudes are ≲ -21 mag can be explained by the 56Ni-powered model, the magnetar-powered (highly magnetized pulsar) model, or the ejecta-circumstellar medium (CSM) interaction model. Recently, iPTF13ehe challenged these energy-source models, because the spectral analysis shows that ˜ 2.5{M}⊙ of 56Ni have been synthesized, but are inadequate to power the peak bolometric emission of iPTF13ehe, while the rebrightening of the late-time light curve (LC) and the Hα emission lines indicate that the ejecta-CSM interaction must play a key role in powering the late-time LC. Here we propose a triple-energy-source model, in which a magnetar together with some amount (≲ 2.5{M}⊙ ) of 56Ni may power the early LC of iPTF13ehe, while the late-time rebrightening can be quantitatively explained by an ejecta-CSM interaction. Furthermore, we suggest that iPTF13ehe is a genuine core-collapse supernova rather than a pulsational pair-instability supernova candidate. Further studies on similar SLSNe in the future would eventually shed light on their explosion and energy-source mechanisms.

  16. DES13S2cmm: The First Superluminous Supernova from the Dark Energy Survey

    CERN Document Server

    Papadopoulos, A; Sullivan, M; Nichol, R C; Barbary, K; Biswas, R; Brown, P J; Covarrubias, R A; Finley, D A; Fischer, J A; Foley, R F; Goldstein, D; Gupta, R R; Kessler, R; Kovacs, E; Kuhlmann, S E; Lidman, C; March, M; Nugent, P E; Sako, M; Smith, R C; Spinka, H; Wester, W; Abbott, T M C; Abdalla, F; Allam, S S; Banerji, M; Bernstein, J P; Bernstein, R A; Carnero, A; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Eifler, T; Evrard, A E; Flaugher, B; Frieman, J A; Gerdes, D; Gruen, D; Honscheid, K; James, D; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J L; Merritt, K W; Miller, C J; Miquel, R; Ogando, R; Plazas, A A; Roe, N A; Romer, A K; Rykoff, E; Sanchez, E; Santiago, B X; Scarpine, V; Schubnell, M; Sevilla, I; Santos, M Soares-; Suchyta, E; Swanson, M; Tarle, G; Thaler, J; Tucker, D L; Wechsler, R H; Zuntz, J

    2015-01-01

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the b...

  17. Comments on Musha's theorem that an evanescent photon in the microtubule is a superluminal particle.

    Science.gov (United States)

    Hari, Syamala D

    2014-07-01

    Takaaki Musha's research of high performance quantum computation in living systems is motivated by the theories of Penrose and Hameroff that microtubules in the brain function as quantum computers, and by those of Jibu and Yasue that the quantum states of microtubules depend upon boson condensates of evanescent photons. His work is based on the assumption that the evanescent photons described by Jibu et al. are superluminal and that they are tachyons defined and discussed by well-known physicists such as Sudarshan, Feinberg and Recami. Musha gives a brief justification for the assumption and sometimes calls it a theorem. However, the assumption is not valid because Jibu et al. stated that the evanescent photons have transmission speed smaller than that of light and that their mass is real and momentum is imaginary whereas a tachyon's mass is imaginary and momentum is real. We show here that Musha's proof of the "theorem" has errors and hence his theorem/assumption is not valid. This article is not meant to further discuss any biological aspects of the brain but only to comment on the consistency of the quantum-physical aspects of earlier work by Musha et al.

  18. SN 2015bn: a detailed multi-wavelength view of a nearby superluminous supernova

    CERN Document Server

    Nicholl, M; Smartt, S J; Margutti, R; Kamble, A; Alexander, K D; Chen, T -W; Inserra, C; Arcavi, I; Blanchard, P K; Cartier, R; Chambers, K C; Childress, M J; Chornock, R; Cowperthwaite, P S; Drout, M; Flewelling, H A; Fraser, M; Gal-Yam, A; Galbany, L; Harmanen, J; Holoien, T W -S; Hosseinzadeh, G; Howell, D A; Huber, M E; Jerkstrand, A; Kankare, E; Kochanek, C S; Lin, Z -Y; Lunnan, R; Magnier, E A; Maguire, K; McCully, C; McDonald, M; Metzger, B D; Milisavljevic, D; Mitra, A; Reynolds, T; Saario, J; Shappee, B J; Smith, K W; Valenti, S; Villar, V A; Waters, C; Young, D R

    2016-01-01

    We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at $z=0.1136$. As well as being one of the closest SLSNe, it is intrinsically brighter ($M_U\\approx-23.1$) and in a fainter host ($M_B\\approx-16.0$) than other SLSNe at $z\\sim0.1$. We collected the most extensive dataset for an SLSN I to date, including spectroscopy and UV to NIR photometry from $-$50 to +250 d from maximum light. SN 2015bn is a slowly-declining SLSN, but exhibits surprising undulations in the light curve on a timescale of 30-50 d, which are more pronounced in the UV. The spectrum resembles other SLSNe, but our well-sampled data reveal extraordinarily slow evolution except for a rapid transformation between +7 and +30 d. We detect weak features that we tentatively suggest may be hydrogen and helium. At late times, blue colours and a trio of lines around 6000 \\AA\\ seem to distinguish slowly-declining SLSNe from faster ones. We derive physical properties i...

  19. Experimental demonstration of a new radiation mechanism: emission by an oscillating, accelerated, superluminal polarization current

    CERN Document Server

    Ardavan, A; Ardavan, H; Fopma, J; Halliday, D; Hayes, W

    2004-01-01

    We describe the experimental implementation of a superluminal ({\\it i.e.} faster than light {\\it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that the radiation emitted from each volume element of such a polarization current will comprise a \\v{C}erenkov-like envelope with two sheets that meet along a cusp. The emission from the experimental machine is in good agreement with these expectations, the combined effect of the volume elements leading to tightly-defined beams of a well-defined geometry, determined by the source speed and trajectory. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These are due to the detection over a short time period (in the laboratory frame) of radiation emitted over a considerably longer period of source time. Consequently, the intensity of the radiation at these angles was observed to decline more slowly with increasing d...

  20. Pulse compression and prepulse suppression apparatus

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.

    1993-11-09

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).