Extended Linear and Nonlinear Lorentz Transformations and Superluminality
Directory of Open Access Journals (Sweden)
Dara Faroughy
2013-01-01
Full Text Available Two broad scenarios for extended linear Lorentz transformations (ELTs are modeled in Section 2 for mixing subluminal and superluminal sectors resulting in standard or deformed energy-momentum dispersions. The first scenario is elucidated in the context of four diverse realizations of a continuous function f ( v , with 0 ≤ f ( v ≤ 1 and f ( 0 = f ( c = 1 , which is fitted in the ELT. What goes in the making of the ELT in this scenario is not the boost speed v , as ascertained by two inertial observers in uniform relative motion (URM, but v × f ( v . The second scenario infers the preexistence of two rest-mass-dependent superluminal speeds whereby the ELTs are finite at the light speed c . Particle energies are evaluated in this scenario at c for several particles, including the neutrinos, and are auspiciously found to be below the GKZ energy cutoff and in compliance with a host of worldwide ultrahigh energy cosmic ray data. Section 3 presents two broad scenarios involving a number of novel nonlinear LTs (NLTs featuring small Lorentz invariance violations (LIVs, as well as resurrecting the notion of simultaneity for limited spacetime events as perceived by two observers in URM. These inquiries corroborate that NLTs could be potent tools for investigating LIVs past the customary LTs.
On the Lorentz Factor of Superluminal Sources
Onuchukwu, Chika Christian
2013-01-01
We investigate the properties of features seen within superluminal sources often referred to as components. Our result indicates a fairly strong correlation of r=0.6 for quasars, r=0.4 for galaxies, and r=0.8 for BL Lac objects in our sample between component sizes and distances from the stationary core. Assumption of free adiabatic expanding plasma enabled us to constrain in general the Lorentz factor for superluminal sources. Ourestimated Lorentz factor of 7 - 17 for quasars, 6 - 13 for galaxies and 4- 9 for BL Lac objects indicate that BL Lac have the lowest range of Lorentz factor.
On the Lorentz factor of superluminal sources
Institute of Scientific and Technical Information of China (English)
Chika Christian Onuchukwu; Augustine A.Ubachukwu
2013-01-01
We investigate the properties of features seen within superluminal sources often referred to as components.Our result indicates a fairly strong correlation of r ～ 0.5 for quasars,r ～ 0.4 for galaxies and r ～ 0.7 for BL Lac objects in our sample between component sizes and distances from the stationary core.The assumption of free adiabatic expanding plasma enables us to constrain the Lorentz factor for superluminal sources.Our estimated Lorentz factor of γ ～ 9-13 for quasars,γ ～ 7-11for galaxies and γ ～ 4-9 for BL Lac objects indicates that BL Lacs have the lowest range of Lorentz factors.
Extended Lorentz code of a superluminal particle
Ter-Kazarian, G
2012-01-01
While the OPERA experimental scrutiny is ongoing in the community, in the present article we construct a toy model of {\\it extended Lorentz code} (ELC) of the uniform motion, which will be a well established consistent and unique theoretical framework to explain the apparent violations of the standard Lorentz code (SLC), the possible manifestations of which arise in a similar way in all particle sectors. We argue that in the ELC-framework the propagation of the superluminal particle, which implies the modified dispersion relation, could be consistent with causality. Furthermore, in this framework, we give a justification of forbiddance of Vavilov-Cherenkov (VC)-radiation/or analog processes in vacuum. To be consistent with the SN1987A and OPERA data, we identify the neutrinos from SN1987A and the light as so-called {\\it 1-th type} particles carrying the {\\it individual Lorentz motion code} with the velocity of light $c_{1}\\equiv c$ in vacuum as maximum attainable velocity for all the 1-th type particles. Ther...
Generalizing the Lorentz transformations
Chappell, James M; Iannella, Nicolangelo; Hartnett, John G; Iqbal, Azhar; Abbott, Derek
2016-01-01
In this paper we develop a framework allowing a natural extension of the Lorentz transformations. To begin, we show that by expanding conventional four-dimensional spacetime to eight-dimensions that a natural generalization is indeed obtained. We then find with these generalized coordinate transformations acting on Maxwell's equations that the electromagnetic field transformations are nevertheless unchanged. We find further, that if we assume the absence of magnetic monopoles, in accordance with Maxwell's theory, our generalized transformations are then restricted to be the conventional ones. While the conventional Lorentz transformations are indeed recovered from our framework, we nevertheless provide a new perspective into why the Lorentz transformations are constrained to be the conventional ones. Also, this generalized framework may assist in explaining several unresolved questions in electromagnetism as well as to be able to describe quasi magnetic monopoles found in spin-ice systems.
Lorentz transformations: Einstein's derivation simplified
Rothenstein, B; Popescu, Stefan; Rothenstein, Bernhard
2007-01-01
We show that the Lorentz transformations for the space-time coordinates of the same event are a direct consequence of the principle of relativity and of Einstein's distant clocks synchronization procedure. In our approach, imposing the linear character of the Lorentz transformations we guess that the transformation equation for the space coordinate has the form x=ax'+cbt'. Imposing the condition that it accounts for the time dilation relativistic effect and taking into account the fact that due to the clock synchronization a la Einstein the space-time coordinates of the same event in the two frames are related by x=ct and x'=ct', we find out expressions for a and b. Dividing the transformation equation for the space coordinate by c we obtain the transformation equation for the time coordinate t=at'+b/cx'. Combining the two transformation equations we obtain directly the inverse Lorentz transformations.
One way to Lorentz's Transformations
Bessonov, E G
2012-01-01
The derivation of Lorentz Transformations (LT) based on the Principle of Relativity and dependence of the rate of clocks tick (time dilation) on their velocity is presented. The analysis of different ways of the LT derivation allows to look at LT and their consequences from different standpoints, to make them more accessible to a wide circle of readers interested in the relativistic physics.
Fractional Fourier transform of Lorentz beams
Institute of Scientific and Technical Information of China (English)
Zhou Guo-Quan
2009-01-01
This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
Passive Lorentz transformations with spacetime algebra
Paiva, C R
2005-01-01
In special relativity spacetime algebra developed by David Hestenes, STA, provides a powerful and insightful approach to an invariant formulation of physics, the spacetime physics, through an elegant and concise manipulation of active Lorentz transformations. Therefore, it should come as an oddity, to say the least, to relate STA with passive Lorentz transformations. Nevertheless, length contraction, time dilation and all that are the bread and butter of most introductory courses on relativistic physics. To overcome the coordinate virus, it is necessary to be able to translate and dissolve passive Lorentz transformations in the fluidity and flexibility of STA, thereby bridging the gap between relativistic physics and proper spacetime physics. That is the aim of this paper.
Deduction of Lorentz Transformations from Classical Thermodynamics
Directory of Open Access Journals (Sweden)
Angela M. Ares de Parga
2015-01-01
Full Text Available The Lorentz transformations are obtained by assuming that the laws of classical thermodynamics are invariant under changes of inertial reference frames. As Maxwell equations are used in order to deduce a wave equation that shows the constancy of the speed of light, by means of the laws of classical thermodynamics, the invariance of the Carnot cycle is deduced under reference frame changes. Starting with this result and the blackbody particle number density in a rest frame, the Lorentz transformations are obtained. A discussion about the universality of classical thermodynamics is given.
Lorentz Transformation and General Covariance Principle
Kleyn, Aleks
2008-01-01
I tell about different mathematical tool that is important in general relativity. The text of the book includes definition of geometrical object, concept of reference frame, geometry of metric-affinne manifold. Using this concept I learn few physical applications: dynamics and Lorentz transformation in gravitational fields, Doppler shift. A reference frame in event space is a smooth field of orthonormal bases. Every reference frame is equipped by anholonomic coordinates. Using anholonomic coordinates allows to find out relative speed of two observers and appropriate Lorentz transformation. Synchronization of a reference frame is an anholonomic time coordinate. Simple calculations show how synchronization influences time measurement in the vicinity of the Earth. Measurement of Doppler shift from the star orbiting the black hole helps to determine mass of the black hole. We call a manifold with torsion and nonmetricity the metric\\hyph affine manifold. The nonmetricity leads to a difference between the auto para...
Larmor and the Prehistory of the Lorentz Transformations
Kittel, C.
1974-01-01
A historical analysis is given of the development in 1900 of the Lorentz transformation of coordinates and time, and of electric and magnetic field components. The earlier work of Voight is discussed. (RH)
Composition of Lorentz Transformations in Terms of Their Generators
Martínez, F S J
2001-01-01
Two-forms in Minkowski space-time may be considered as generators of Lorentz transformations. Here, the covariant and general expression for the composition law (Baker-Campbell-Hausdorff formula) of two Lorentz transformations in terms of their generators is obtained. Every subalgebra of the Lorentz algebra of such generators, up to one, may be generated by a sole pair of generators. When the subalgebra is known, the above BCH formula for the two two-forms simplifies. Its simplified expressions for all such subalgebras are also given.
Non Linear Lorentz Transformation and Doubly Special Relativity
Atehortua, A N; Mira, J M; Vanegas, N
2012-01-01
We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.
Heras, Ricardo
2017-01-01
In this paper I briefly discuss and compare four easy derivations of the Lorentz transformations. Two of these derivations assume the invariance of the Minkowski spacetime interval in inertial frames and the other two assume the invariance of the d’Alembert operator in these frames. These derivations are suitable for a first view of special relativity. Finally, I discuss the comment made by Di Rocco on my original paper, ‘Lorentz transformations and the wave equation’ (2016 Eur. J. Phys. 37 025603).
The generators of Lorentz transformation in momentum space
Institute of Scientific and Technical Information of China (English)
张鹏飞; 阮图南
2002-01-01
In the momentum space, the angular momentum operator and the boost vector operator,i.e. the generators for the Lorentz transformation of a particle with arbitrary spin and nonzero mass are discussed. Some new expressions are obtained in terms of the orbital and spin parts.``
Teleparallel equivalent of general relativity and local Lorentz transformation: Revisited
Nashed, Gamal G L
2016-01-01
It is well known that the field equations of teleparallel theory which is equivalent to general relativity (TEGR) completely agree with the field equation of general relativity (GR). However, TEGR has six extra degrees of freedom which spoil the true physics. These extra degrees are related to the local Lorentz transformation. In this study, we give three different tetrads of flat horizon space-time that depend only on the radial coordinate. One of these tetrads contains an arbitrary function which comes from local Lorentz transformation. We show by explicate calculations that this arbitrary function spoils the calculations of the conserved charges. We formulate {\\it a skew-symmetric tensor} whose vanishing value put a constraint on the arbitrary function. This constraint makes the conserved charges are free from the arbitrary function.
Getting the Lorentz transformations without requiring an invariant speed
Pelissetto, A
2015-01-01
The structure of the Lorentz transformations follows purely from the absence of privileged inertial reference frames and the group structure (closure under composition) of the transformations---two assumptions that are simple and physically necessary. The existence of an invariant speed is \\textit{not} a necessary assumption, and in fact is a consequence of the principle of relativity (though the finite value of this speed must, of course, be obtained from experiment). Von Ignatowsky derived this result in 1911, but it is still not widely known and is absent from most textbooks. Here we present a completely elementary proof of the result, suitable for use in an introductory course in special relativity.
An acoustic spacetime and the Lorentz transformation in aeroacoustics
Gregory, Alastair Logan; Agarwal, Anurag; Lasenby, Joan
2014-01-01
This paper introduces acoustic space-time and Geometric Algebra as a new theoretical framework for modelling aeroacoustic phenomena. This new framework is applied to sound propagation in uniform flows. The problem is modelled by means of transformations that turn the convected wave equation into an ordinary wave equation, in either time-space coordinates or frequency-wavenumber coordinates. The transformations are shown to combine a Galilean transformation with a Lorentz transformation and geometrical and physical interpretations are provided. The Lorentzian frame is the natural frame for describing acoustic waves in uniform flow. A key feature of this frame is that it combines space and time in a way that is best described using a hyperbolic geometry. The power of this new theoretical framework is illustrated by providing simple derivations for two classical aeroacoustic problems: the free-field Greens function for the convected wave equation and the Doppler shift for a stationary observer and a source in un...
Direct measurement of Lorentz transformation with Doppler effects
Chen, Shao-Guang
, r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.
The remnant group of local Lorentz transformations in f(T) theories
Ferraro, Rafael
2014-01-01
It is shown that the extended teleparallel gravitational theories, known as f(T) theories, inherit some \\emph{on shell} local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss some enlightening examples, such as Minkowski spacetime and cosmological (FRW and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as an incapability in the selection of a preferred parallelization at a local level, due to the fact that the infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on the subject, we conclude that the set of tetrads responsible of the parallelization of these manifolds is quite vast and that the remnant group of local Lorentz transformations includes one and two dimensional abelian subgroups of the Lorentz group.
Galilean and Lorentz Transformations in a Space with Generalized Uncertainty Principle
Tkachuk, V. M.
2016-12-01
We consider a space with Generalized Uncertainty Principle (GUP) which can be obtained in the frame of the deformed commutation relations. In the space with GUP we have found transformations relating coordinates and times of moving and rest frames of reference in the first order over the parameter of deformation. In the non-relativistic case we find the deformed Galilean transformation which is rotation in Euclidian space-time. This transformation is similar to the Lorentz one but written for Euclidean space-time where the speed of light is replaced by some velocity related to the parameter of deformation. We show that for relativistic particle in the space with GUP the coordinates of the rest and moving frames of reference satisfy the Lorentz transformation with some effective speed of light.
Field, J H
2012-01-01
Evaluation of the additive constants in the space-time Lorentz transformation equations required, according to Einstein, to correctly describe synchronised clocks at different spatial locations, reveals the spurious and unphysical nature of the 'relativity of simultaneity' and 'length contraction' effects of conventional special relativity. Unlike time dilation, there is no experimental evidence for these putative effects. Only a universal (position independent) time dilation effect for different inertial frames distinguishes special from Galilean relativity.
Nashed, Gamal G L
2012-01-01
Applying a non-diagonal spherically symmetric tetrad field having arbitrary function, $S(r)$, that is corresponding to local Lorentz transformation, to the field equations of f(T) gravity theories. An analytic vacuum solutions with constants of integration are derived. These constants are studied by calculating the total conserved charge associated to each solution. The study has shown that the obtained solutions represent Schwarzschild-Ads spacetime.
Energy Technology Data Exchange (ETDEWEB)
Nashed, Gamal G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Sherouk City (Egypt); Ain Shams University, Mathematics Department, Faculty of Science, Cairo (Egypt)
2013-04-15
In this paper a non-diagonal, spherically symmetric, tetrad field that contains an arbitrary function, S(r), which corresponds to a local Lorentz transformation, is applied to the field equations of f(T) gravity theories. Analytic vacuum solutions with integration constants are derived. These constants are studied by calculating the total conserved charge associated with each solution. The study shows that the obtained solutions represent the Schwarzschild-Ads spacetime. (orig.)
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
Höhn, Philipp A.; Müller, Markus P.
2016-06-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern-Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.
About Lorentz-M{\\o}ller-Nelson transformation to rigid noninertial frame of reference
Voytik, Vitaliy V
2012-01-01
With a special Lorentz-M{\\o}ller-Nelson (LMN) transformation found transformation of velocity from the laboratory system S to an arbitrary rigid progressively moving reference frame s. Set the physical meaning of the parameter $\\mathbf{v}(t)$ in the appropriate LMN transformation. For small distances, and their proper smooth motion without jerks suggested the reverse special LMN transformation. The main consequences of this transformation is considered, namely, a) the desync in moving frame of reference s of proper clocks of the pre-synchronized in the laboratory frame S and b) the Lorentz contraction of proper rulers frame s in the frame S. The applicability of the reverse LMN transformation for real frames with maximum rigidity is established. Equations for the rotation matrix is obtained. It is shown that the intrinsic rotation of the axes s, considered with respect to S is not rigid. Found the direct and inverse transformation of affine velocity S in the comoving but not rotating frame of s. It is shown t...
Fock-Lorentz transformations and time-varying speed of light
Manida, S N
1999-01-01
The theory of relativity was built up on linear Lorentz transformation. However, in his fundamental work "Theory of Space, Time and Gravitation" V.A.Fock shows that the general form of the transformation between the coordinates in the two inertial frames could be taken to be linear fractional. The implicit form of this transformation contains two constants of different space-time dimensions. They can be reduced to the constant "c" with the dimension of speed ("speed of light"), and to the constant "R" with the dimension of length (an invariant radius of the visible part of the Universe). The geometry of the "light cones" shows that "R" is a fundamental constant, but "c" depends on the time of transformation.
Energy Technology Data Exchange (ETDEWEB)
Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu
2017-03-28
A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.
The Lorentz Transformation as a Planck Vacuum Phenomenon in a Galilean Coordinate System
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2011-04-01
Full Text Available In a seminal Masters' dissertation Pemper derived the relativistic electric and magnetic fields of a uniformly moving charge from the response of some continuum to the perturbation from the charge's Coulomb field. The results seem to imply that the Maxwell equations and the Lorentz transformation are associated with some type of vacuum state. Unbeknownst at the time, Pemper had discovered the Planck vacuum (PV quasi-continuum and its interaction with the free charge. The importance of this derivation, its obscurity in the literature, and its connection to the PV justifies the following rework of that derivation.
The Lorentz Transformation as a Planck Vacuum Phenomenon in a Galilean Coordinate System
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2011-04-01
Full Text Available In a seminal Masters’ dissertation [1] Pemper derived the relativistic electric and mag- netic fields of a uniformly moving charge from the response of some continuum to the perturbation from the charge’s Coulomb field. The results seem to imply that the Maxwell equations and the Lorentz transformation are associated with some type of vacuum state. Unbeknownst at the time, Pemper had discovered the Planck vacuum (PV quasi-continuum [2] and its interaction with the free charge. The importance of this derivation, its obscurity in the literature, and its connection to the PV justifies the following rework of that derivation.
The Phantom of the OPERA: Superluminal Neutrinos
Ma, Bo-Qiang
2011-01-01
This report presents a brief review on the experimental measurements of the muon neutrino velocities from the OPERA, Fermilab and MINOS experiments and that of the (anti)-electron neutrino velocities from the supernova SN1987a, and consequently on the theoretical aspects to attribute the data as signals for superluminality of neutrinos. Different scenarios on how to understand and treat the background fields in the standard model extension frameworks are pointed out. Challenges on interpreting the OPERA result as a signal of neutrino superluminality are briefly reviewed and discussed. It is also pointed out that a covariant scenario of Lorentz violation can avoid the refutation on the OPERA experiment.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Between the transformations, witch can transform the compressible wave equation to the incompressible flow, a kind of relativity character can be found, which have the almost equal character as Lorenz time and space relation. This result leads to a new inference: incompressible wave equation with time and space structure of sonic special relativity is only different description of approximate compressible flow. This conclusion can be extended to Euler equation, and arise the interest of "compressible expression" of Maxwell equation. To study the rule of compressibility and thermodynamic character of metastructure field, a try is made by the using KamanTsian virtual gas method, this would give the relation,similar as mass and energy of special relativity theory.At first searching a transformation, witch can transform the compressible wave equation to the incompressible flow, but it is almost equal Lorenz time and space relation, So arrive to the conclusion: incompressible wave equation with approximate Lorentz transformation is only different description of compressible flow. This conclusion is expected be used to Maxwell equation, because its wave equation is also perfectly equal form. To search the rule of electromagnet and gravity field, by the using of Kaman-Tsian virtual gas method, the relation of mass and energy of relativity theory is given.``
Invisibility cloaking without superluminal propagation
Energy Technology Data Exchange (ETDEWEB)
Perczel, Janos; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Tyc, Tomas, E-mail: jp394@st-andrews.ac.uk, E-mail: tomtyc@physics.muni.cz, E-mail: ulf@st-andrews.ac.uk [Faculty of Science, Kotlarska 2 and Faculty of Informatics, Botanicka 68a, Masaryk University, 61137 Brno (Czech Republic)
2011-08-15
Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needs media with superluminal propagation. Here we show by giving an example that this is no longer necessary.
Neutrino oscillations and superluminal propagation
Magueijo, Joao
2011-01-01
We digress on the implications of recent claims of superluminal neutrino propagation. No matter how we turn it around such behaviour is very odd and sits uncomfortably even within "far-fetched" theories. In the context of non-linear realizations of the Lorentz group (where superluminal misbehaviour is run of the mill) one has to accept rather contrived constructions to predict superluminal properties for the neutrino. The simplest explanation is to require that at least one of the mass states be tachyonic. We show that due to neutrino mixing, the flavor energy does not suffer from the usual runaway pathologies of tachyons. For non-tachyonic mass states the theories become more speculative. A neutrino specific dispersion relation is exhibited, rendering the amplitude of the effect reasonable for a standard Planck energy. This uses the fact that the beam energy is close to the geometrical average of the neutrino and Planck mass; or, seen in another way, the beam energy is unexceptional but its gamma factor is v...
From E = mc{sup 2} to the Lorentz transformations via the law of addition of relativistic velocities
Energy Technology Data Exchange (ETDEWEB)
Criado, C [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Alamo, N [Departamento de Algebra, Geometria y Topologia, Universidad de Malaga, 29071 Malaga (Spain)
2005-07-01
In this paper, we show how to get the Lorentz transformations from E mc{sup 2}, the laws of conservation of energy and momentum, and the special relativity principle. To this end, we first deduce the law of addition of relativistic velocities.
Pair Production Constraints on Superluminal Neutrinos Revisited
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.
2012-02-16
We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.
Space-time measures for subluminal and superluminal motions
Calvo-Mozo, Benjam\\'\\in
2014-01-01
In present work we examine the implications on both, space-time measures and causal structure, of a generalization of the local causality postulate by asserting its validity to all motion regimes, the subluminal and superluminal ones. The new principle implies the existence of a denumerable set of metrical null cone speeds, \\{$c_k\\}$, where $c_1$ is the speed of light in vacuum, and $c_k/c \\simeq \\epsilon^{-k+1}$ for $k\\geq2$, where $\\epsilon^2$ is a tiny dimensionless constant which we introduce to prevent the divergence of the $x, t$ measures in Lorentz transformations, such that their generalization keeps $c_k$ invariant and as the top speed for every regime of motion. The non divergent factor $\\gamma_k$ equals $k\\epsilon^{-1}$ at speed $c_k$. We speak then of $k-$timelike and $k-$null intervals and of k-timelike and k-null paths on space-time, and construct a causal structure for each regime. We discuss also the possible transition of a material particle from the subluminal to the first superluminal regim...
Einstein’s sigh: hidden symmetry in Einstein’s derivation of the Lorentz transformation
Chao, Sheng D.
2017-03-01
‘Das hätte ich einfacher sagen können (I could have said that more simply).’ was Einstein’s sigh when he had a chance to remark on his own derivation of the Lorentz transformation (LT) in the 1905 seminal paper. In fact, in a popular science exposition of the theory of relativity Einstein did provide such a simple derivation of the LT. It is a curious historical fact that the latter derivation was presented in 1916, while Einstein’s remark was made in 1943. Was the 1916 derivation simple enough to relieve his sigh? Had he expected an even simpler derivation beyond his thoughts? In this paper, Einstein’s simple derivation of the LT is revisited and analysed. We show that the LT can be obtained from a symmetry principle hidden in Einstein’s logical reasoning. First, the relativity principle can be restated as a mirror principle based on the space-time exchange-inversion operation. Second, the assumed constancy of the speed of light (Einstein’s second postulate) can be derived by using the velocity reciprocity property, which is a deductive result of the space-time homogeneity and the space isotropy. Therefore, Einstein could have presented his derivation of the LT more simply, thus turning Einstein’s sigh of regret into a sigh of relief.
Opera's neutrinos and the Robertson test theory of the Lorentz transformations
Vargas, Jose G
2011-01-01
The difference in light's travel time from CERN to GPS to Gran Sasso, on the one hand, and light going the direct route in vacuum (mimicked by neutrinos), on the other hand, is analyzed with a modified Robertson test theory of the Lorentz transformations. The modification consists simply in removing the restriction of what Robertson referred to as agreement to equate the to and from speeds of light. For reasons that will be contained in a paper to soon follow, we restrict ourselves, within the new freedom, to the case of preferred frame kinematics with absolute simultaneity. At the level of not assuming any concomitant dynamical changes in this alternative, the analysis yields \\QTR{it}{zero effect}, i.e. no change with respect to special relativity (to be expected). The 60 ns would thus remain unexplained. However, a gravitation related effect that would likely accompany an alternative kinematics yields that value up to uncertainties due to the need to simplify the experimental set up for analysis. The effect...
On Superluminal Particles and the Extended Relativity Theories
Castro, Carlos
2012-09-01
Superluminal particles are studied within the framework of the Extended Relativity theory in Clifford spaces ( C-spaces). In the simplest scenario, it is found that it is the contribution of the Clifford scalar component π of the poly-vector-valued momentum which is responsible for the superluminal behavior in ordinary spacetime due to the fact that the effective mass {M} = sqrt{ M2 - π2 } is imaginary (tachyonic). However, from the point of view of C-space, there is no superluminal (tachyonic) behavior because the true physical mass still obeys M 2>0. Therefore, there are no violations of the Clifford-extended Lorentz invariance and the extended Relativity principle in C-spaces. It is also explained why the charged muons (leptons) are subluminal while its chargeless neutrinos may admit superluminal propagation. A Born's Reciprocal Relativity theory in Phase Spaces leads to modified dispersion relations involving both coordinates and momenta, and whose truncations furnish Lorentz-violating dispersion relations which appear in Finsler Geometry, rainbow-metrics models and Double (deformed) Special Relativity. These models also admit superluminal particles. A numerical analysis based on the recent OPERA experimental findings on alleged superluminal muon neutrinos is made. For the average muon neutrino energy of 17 GeV, we find a value for the magnitude |{M } | = 119.7 MeV that, coincidentally, is close to the mass of the muon m μ =105.7 MeV.
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
Hoehn, Philipp A
2015-01-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest within a much simpler setting that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distant laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are "enough" observables that can be measured jointly on different types of systems, we show that the observers' descriptions are related by an element of the Lorentz group O^+(3,1), together with a global ...
How superluminal motion can lead to backward time travel
Nemiroff, Robert J
2015-01-01
It is commonly asserted that superluminal particle motion can enable backward time travel, but little has been written providing details. It is shown here that the simplest example of a "closed loop" event -- a twin paradox scenario where a single spaceship both traveling out and returning back superluminally -- does {\\it not} result in that ship straightforwardly returning to its starting point before it left. However, a more complicated scenario -- one where the superluminal ship first arrives at an intermediate destination moving subluminally -- can result in backwards time travel. This intermediate step might seem physically inconsequential but is shown to break Lorentz-invariance and be oddly tied to the sudden creation of a pair of spacecraft, one of which remains and one of which annihilates with the original spacecraft.
Jentschura, U D
2012-01-01
Consider a gedanken experiment in which a massive left-handed neutrino, traveling on an autobahn at a speed of v=0.999c is overtaken by a tuned-up Cagiva V-Raptor 1000 traveling at a speed of 0.999999c. The biker, looking back, would see a right-handed neutrino. Unless one invokes exotic mechanisms like a sterile neutrino, this "autobahn paradox" implies that a massive subluminal (tardyonic) neutrino necessarily has to be a Majorana particle, i.e, equal to its own antiparticle. In turn, this would require us to assign the same lepton number to charged leptons and antileptons, essentially voiding the concept of lepton number. By contrast, an infinitesimally superluminal (tachyonic) neutrino is not equal to its own antiparticle and allows us to assign proper lepton number, just as if the neutrino were a Weyl particle. Furthermore, if Lorentz symmetry holds, then an infinitesimally tachyonic neutrino remains superluminal upon Lorentz transformation, which implies that it is impossible to overtake it in a gedanke...
Nonlinearity without Superluminality
Kent, A
2002-01-01
Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signalling. As Gisin and Polchinski first pointed out, this is not true for general nonlinear modifications of the Schroedinger equation. Excluding superluminal signalling has thus been taken to rule out most nonlinear versions of quantum theory. The no superluminal signalling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by non-relativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which di...
Cosmology with Superluminous Supernovae
Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon
2015-01-01
We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...
Superluminal Recession Velocities
Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.
2000-01-01
Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.
Dolgov, D S
1993-01-01
The new solution of the Einstein equations in empty space is presented. The solution is constructed using Schwarzschild solution but essentially differs from it. The basic properties of the solution are: the existence of a horizon which is a hyperboloid of one sheet moving along its axis with superluminal velocity, right signature of the metric outside the horizon and Minkovsky-flatness of it at infinity outside the horizon. There is also a discussion in the last chapter, including comparing with recent astronomical observations.
Superluminality and UV Completion
Shore, G M
2007-01-01
The idea that the existence of a consistent UV completion satisfying the fundamental axioms of local quantum field theory or string theory may impose positivity constraints on the couplings of the leading irrelevant operators in a low-energy effective field theory is critically discussed. Violation of these constraints implies superluminal propagation, in the sense that the low-frequency limit of the phase velocity $v_{\\rm ph}(0)$ exceeds $c$. It is explained why causality is related not to $v_{\\rm ph}(0)$ but to the high-frequency limit $v_{\\rm ph}(\\infty)$ and how these are related by the Kramers-Kronig dispersion relation, depending on the sign of the imaginary part of the refractive index $\\Ima n(\\w)$ which is normally assumed positive. Superluminal propagation and its relation to UV completion is investigated in detail in three theories: QED in a background electromagnetic field, where the full dispersion relation for $n(\\w)$ is evaluated numerically for the first time and the role of the null energy con...
Superluminal neutrinos at OPERA confront pion decay kinematics.
Cowsik, Ramanath; Nussinov, Shmuel; Sarkar, Utpal
2011-12-16
Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits α=(ν(ν)-c)/c<4×10(-6). We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (ν-c)/c<10(-12).
Superluminal Neutrinos and Monopoles
Wang, Peng; Yang, Haitang
2011-01-01
In this letter, we show that superluminal neutrinos announced by OPERA could be explained by the existence of a monopole, which is left behind after the spontaneous symmetry braking (SSB) phase transition of some scalar fields in the universe. We assume the 't Hooft-Polyakov monopole couples to the neutrinos but not photon fields. The monopole causes effective metric to the neutrinos, different from the Minkovski one. We find that the monopoles have influences on neutrinos only within the range about $10^3$ cm. Neutrinos always arrive earlier than photons by the same amount of time, once there exists a monopole on or close to their trajectories. This result reconciles the contradiction between OPERA and supernova neutrinos.
Cosmology with superluminous supernovae
Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.
2016-02-01
We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.
Realisation of a Lorentz algebra in Lorentz violating theory
Energy Technology Data Exchange (ETDEWEB)
Ganguly, Oindrila [S. N. Bose National Centre for Basic Sciences, Kolkata (India)
2012-11-15
A Lorentz non-invariant higher derivative effective action in flat spacetime, characterised by a constant vector, can be made invariant under infinitesimal Lorentz transformations by restricting the allowed field configurations. These restricted fields are defined as functions of the background vector in such a way that background dependence of the dynamics of the physical system is no longer manifest. We show here that they also provide a field basis for the realisation of a Lorentz algebra and allow the construction of a Poincare invariant symplectic two-form on the covariant phase space of the theory. (orig.)
Challenges Confronting Superluminal Neutrino Models
Evslin, Jarah
2012-12-01
This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.
Challenges Confronting Superluminal Neutrino Models
Evslin, Jarah
2011-01-01
This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.
Superluminal Motion and Polarization in Blazars
Institute of Scientific and Technical Information of China (English)
Jun-Hui Fan; Yong-Jiu Wang; Jiang-He Yang; Cheng-Yue Su
2004-01-01
A relativistic beaming model has been successfully used to explain the observed properties of active galactic nuclei (AGNs). In this model there are two emission components, a boosted one and an unbeamed one, shown up in the radio band as the core and lobe components. The luminosity ratio of the core to the lobe is defined as the core-dominance parameter (R = LCore/LLobe) The de-beamed radio luminosity (Ldbjet) in the jet is assumed to be proportional to the unbeamed luminosity (Lub) in the co-moving frame, i.e., f = Ldbjet/Lub and f is determined in our previous paper. We further discuss the relationship between BL Lacertae objects(BLs) and flat spectrum radio quasars (FSRQs), which are subclasses of blazars with different degrees of polarization, using the calculated values of the ratio f for a sample of superluminal blazars. We found 1) that the BLs show smaller averaged Doppler factors and Lorentz factors, larger viewing angles and higher coredominance parameters than do the FSRQs, and 2) that in the polarization-core dominance parameter plot (P - log R) the BLs and FSRQs occupy a scattered region, but in a revised plot (logP/c(m) - logR), they gather around two different lines, suggesting that they have some different intrinsic properties.
Superluminal travel requires negative energies
Olum, Ken D.
1998-01-01
I investigate the relationship between faster-than-light travel and weak-energy-condition violation, i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space. To avoid such difficulties, I propose a definition of superluminal travel which requires that the path to be traveled reach a destination surface at an earlier time than any neig...
Renninger, M.
Jegliche Erhöhung der Eigenenergie eines mit einer Uhr ausgestatteten Objekts, E = E - E0 (wobei E0 die Ruhenergie) ist verbunden mit einer Erhöhung seiner Zeitablaufgeschwindigkeit, t/t0 = E/E0 (EINSTEIN 1907). Faktische Beobachtung dieses beschleunigenden Einflusses auf die Ganggeschwindigkeit jeder an der Energieerhöhung teilhabenden Uhr ist auf denjenigen durch Erhöhung der potentiellen Energie beschränkt. Energieerhöhung in Form von kinetischer Energie ist im Gegenteil mit einer Verlangsamung des Zeitgangs verbunden, einer Verlangsamung von genau demselben, d.h. invers gleich großen, durch die Lorentz-Transformation bestimmten Betrag , dem Betrag der relativistischen Zeitdilatation, des Transversalen Dopplereffekts. Die Lorentz-Transformation ist eine ausschließlich kinematische Aussage, ohne Beziehung zu der mit jeder Bewegung verbundenen Energieerhöhung.Anbetrachts des Fehlens jedes vernünftigen Grunds, warum der zeitbeschleunigende Einfluß von Energieerhöhung im Fall von kinetischer Energie fehlen sollte, erscheint seine Berücksichtigung unerläßlich. Der faktische, den Zeitgang verlangsamende Effekt muß daher als eine Superposition des gangbeschleunigenden Energieeffekts und eines invers doppelt so großen kinematischen Effekts (1 - v2/c2) angesetzt werden.Es werden modifizierte Transformationsgleichungen hergeleitet, die dieser Forderung nach Unterteilung der tatsächlichen Raum-Zeit-Beziehungen Rechnung tragen, deren integrale Form jedoch identisch ist mit der klassischen Lorentz-Transformation, dann, wenn ausschließlich kinetische Energie ins Spiel kommt.Natürlich steht diese Unterteilung des Sinngehalts der Transformationsgleichungen im Widerspruch zum Relativitätsprinzip, sie setzt die Existenz eines in bezug auf das Universum absolut ruhenden Systems voraus. Eine Reihe von Argumenten wird vorgebracht, welche die Vorstellung von einem solchen Absolut-System faszinierender erscheinen lassen als die geläufige von der Gleichwertigkeit
Background Dependent Lorentz Violation from String Theory
Li, Tianjun
2011-01-01
We revisit Lorentz violations in the Type IIB string theory with D3-branes and D7-branes. We study the relativistic particle velosities in details, and show that there exist both subluminal and superluminal particle propagations. In particular, the additional contributions to the particle velosity \\delta v\\equiv (v-c)/c from string theory is proportional to both the particle energy and the D3-brane number density, and is inversely proportional to the string scale. Thus, we can realize the background dependent Lorentz violation naturally by varying the D3-brane number density in space time. To explain the superluminal neutrino propagations in the OPERA and MINOS experiments, we obtain the string scale should be around 10^5 GeV. With very tiny D3-brane number density at the interstellar scale, we can also explain the time delays for the high energy photons compared to the low energy photons in the MAGIC, HESS, and FERMI experiments simultaneously. Interestingly, we can automatically satisfy all the stringent co...
A note on superluminal neutrinos
Cutolo, A.
2012-05-01
Although characterized by a possible experimental error, the first results of the Opera experiment at CERN have opened up a hot discussion on the possibility of superluminal neutrinos already observed in some space events. In particular, Cohen and Glashow (CG) have considered it simply an error justifying their position on the basis of the bremsstrahlung of electron-positron pairs. In this paper, we would like to discuss this position also in view of the recent derivation of the superluminal limit as a consequence of the classical causality principle. Even if the final answer is related only to the review of all the experimental results, we believe that neutral particles (neutrinos, photons, etc.) might exhibit superluminal behavior also in view of the fact that the analysis performed by Cohen and Glashow does not contain any absolute limit, like that present in the case of the Cherenkov effect in vacuum, which is absolutely impossible, as its violation would require an infinite energy amount. CG conclusions are not in contrast with superluminal neutrinos, which, in turn, are fully compatible with the theoretical analysis reported as well.
Popper's Experiment and Superluminal Communication
Gerjuoy, E; Gerjuoy, Edward; Sessler, Andrew M.
2005-01-01
We comment on Tabesh Qureshi, "Understanding Popper's Experiment," AJP 73, 541 (June 2005), in particular on the implications of its section IV. We show, in the situation envisaged by Popper, that analysis solely with conventional non-relativistic quantum mechanics suffices to exclude the possibility of superluminal communication.
Probing Superluminal Neutrinos Via Refraction
Stebbins, Albert
2011-01-01
One phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by OPERA and MINOS, is that neutrinos travel faster inside of matter than in vacuum. If so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. Such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. For NuMI this could...
Constraints and tests of the OPERA superluminal neutrinos.
Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang
2011-12-09
The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.
The Shape of Superluminous Supernovae
Kohler, Susanna
2016-11-01
What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it
Valente, Mario Bacelar
2013-01-01
In this work, Einstein's view of geometry as physical geometry is taken into account in the analysis of diverse issues related to the notions of inertial motion and inertial reference frame. Einstein's physical geometry enables a non-conventional view on Euclidean geometry (as the geometry associated to inertial motion and inertial reference frames) and on the uniform time. Also, by taking into account the implications of the view of geometry as a physical geometry, it is presented a critical reassessment of the so-called boostability assumption (implicit according to Einstein in the formulation of the theory) and also of 'alternative' derivations of the Lorentz transformations that do not take into account the so-called 'light postulate'. Finally it is addressed the issue of the eventual conventionality of the one-way speed of light or, what is the same, the conventionality of distant simultaneity (within the same inertial reference frame). It turns out that it is possible to see the (possible) conventionali...
Superluminality in the Bi- and Multi Galileon
de Fromont, Paul; Heisenberg, Lavinia; Matas, Andrew
2013-01-01
We re-explore the Bi- and Multi-Galileon models with trivial asymptotic conditions at infinity and show that propagation of superluminal fluctuations is a common and unavoidable feature of these theories, unlike previously claimed in the literature. We show that all Multi-Galileon theories containing a Cubic Galileon term exhibit superluminalities at large distances from a point source, and that even if the Cubic Galileon is not present one can always find sensible matter distributions in which there are superluminal modes at large distances. In the Bi-Galileon case we explicitly show that there are always superluminal modes around a point source even if the Cubic Galileon is not present. Finally, we briefly comment on the possibility of avoiding superluminalities by modifying the asymptotic conditions at infinity.
A Non-Mainstream Viewpoint on Apparent Superluminal Phenomena in AGN Jet
Indian Academy of Sciences (India)
Wen-Po Liu; Li-Yan Liu; Chun-Cheng Wang
2014-09-01
The group velocity of light in material around the AGN jet is acquiescently one ( as a unit), but this is only a hypothesis. Here, we re-derive apparent superluminal and Doppler formulas for the general case (it is assumed that the group velocity of light in the uniform and isotropic medium around a jet (a beaming model) is not necessarily equal to one, e.g., Araudo et al. (2010) thought that there may be dense clouds around AGN jet base), and show that the group velocity of light close to one could seriously affect apparent superluminal phenomena and Doppler effect in the AGN jet (when the viewing angle and Lorentz factor take some appropriate values).
Relativistic solitons and superluminal signals
Energy Technology Data Exchange (ETDEWEB)
Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it
2005-02-01
Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.
Lorentz Invariance Violation and Generalized Uncertainty Principle
Tawfik, A; Ali, A Farag
2016-01-01
Recent approaches for quantum gravity are conjectured to give predictions for a minimum measurable length, a maximum observable momentum and an essential generalization for the Heisenberg uncertainty principle (GUP). The latter is based on a momentum-dependent modification in the standard dispersion relation and leads to Lorentz invariance violation (LIV). The main features of the controversial OPERA measurements on the faster-than-light muon neutrino anomaly are used to calculate the time of flight delays $\\Delta t$ and the relative change $\\Delta v$ in the speed of neutrino in dependence on the redshift $z$. The results are compared with the OPERA measurements. We find that the measurements are too large to be interpreted as LIV. Depending on the rest mass, the propagation of high-energy muon neutrino can be superluminal. The comparison with the ultra high energy cosmic rays seems to reveals an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly ...
Lorentz symmetry violation, dark matter and dark energy
Gonzalez-Mestres, Luis
2009-01-01
Taking into account the experimental results of the HiRes and AUGER collaborations, the present status of bounds on Lorentz symmetry violation (LSV) patterns is discussed. Although significant constraints will emerge, a wide range of models and values of parameters will still be left open. Cosmological implications of allowed LSV patterns are discussed focusing on the origin of our Universe, the cosmological constant, dark matter and dark energy. Superbradyons (superluminal preons) may be the actual constituents of vacuum and of standard particles, and form equally a cosmological sea leading to new forms of dark matter and dark energy.
Lorentz Covariant Canonical Symplectic Algorithms for Dynamics of Charged Particles
Wang, Yulei; Qin, Hong
2016-01-01
In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSA) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of discrete symplectic structure and Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which is difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when th...
Wave Scattering by Superluminal Spacetime Slab
Deck-Léger, Zoé-Lise
2016-01-01
Spacetime media offers new opportunities for wave manipulation. Here we study superluminal slabs, and show that the amplitudes of the reflected waves are controlled by the velocity of the medium. In addition, the backward wave continuously scans from the specular to the collinear angle. A diagrammatic method is provided for insight into the deflection angles. A fundamental symmetry between sub- and superluminal scattering is derived from this diagrammatic description.
Is OPERA Neutrino Superluminal Propagation similar to Gain-Assisted Superluminal Light Propagation
Pankovic, Vladan
2011-01-01
In this work we consider a possible conceptual similarity between recent, amazing OPERA experiment of the superluminal propagation of neutrino and experiment of the gain-assisted superluminal light propagation realized about ten years ago. Last experiment refers on the propagation of the light, precisely laser pulse through a medium, precisely caesium atomic gas, with characteristic anomalous dispersion and corresponding negative group-velocity index that implies superluminal propagation of the light through this medium. Nevertheless all this, at it has been pointed out by authors, "is not at odds with causality or special relativity", since it simply represents "a direct consequence of the classical interference between ... different frequency components". We observe that OPERA experiment is in many aspects conceptually very similar to the gain-assisted superluminal light propagation, including superposition of the neutrinos component and superluminality magnitudes. For this reason we suppose that OPERA expe...
Negative refraction and positive refraction are not Lorentz covariant
Energy Technology Data Exchange (ETDEWEB)
Mackay, Tom G., E-mail: T.Mackay@ed.ac.u [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)] [NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.ed [NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)
2009-12-28
Refraction into a half-space occupied by a pseudochiral omega material moving at constant velocity was studied by directly implementing the Lorentz transformations of electric and magnetic fields. Numerical studies revealed that negative refraction, negative phase velocity and counterposition are not Lorentz-covariant phenomenons in general.
Spectral evolution of superluminal components in parsec-scale jets
Mimica, P; Agudo, I; Martí, J M; Gómez, J L; Miralles, J A
2008-01-01
(Abridged) We present numerical simulations of the spectral evolution and radio emission of superluminal components in relativistic jets. We have developed an algorithm (SPEV) for the transport of a population of non-thermal particles (NTPs). For very large values of the ratio of gas pressure to magnetic field energy density ($\\sim 6\\times 10^4$), quiescent over-pressured jet models show substantial spectral evolution compared to models whithout radiative losses. Larger values of the magnetic field yield much shorter jets. Larger magnetic fields result in shorter losses-dominated regimes, with a rapid and intense radiation of energy. We also show that jets with a positive photon spectral index may result if the lower limit $\\gamma_min$ of the NTP energy distribution is placed close or above a threshold $\\gamma_M$, where the synchrotron function R has its maximum. A temporary increase of the Lorentz factor at the jet inlet produces a traveling perturbation that appears in the synthetic maps as a radio componen...
Spectroscopy of superluminous supernova host galaxies
DEFF Research Database (Denmark)
Leloudas, G.; Kruehler, T.; Schulze, S
2015-01-01
Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both...... uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen...
Interpolation theorems on weighted Lorentz martingale spaces
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper several interpolation theorems on martingale Lorentz spaces are given.The proofs are based on the atomic decompositions of martingale Hardy spaces over weighted measure spaces.Applying the interpolation theorems,we obtain some inequalities on martingale transform operator.
Probes of Lorentz violation in neutrino propagation
Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.
2008-08-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.
Superluminality, Black Holes and Effective Field Theory
Goon, Garrett
2016-01-01
Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-per...
OPERA superluminal neutrinos and Kinematics in Finsler spacetime
Chang, Zhe; Wang, Sai
2011-01-01
The OPERA collaboration recently reported that muon neutrinos could be superluminal. More recently, Cohen and Glashow pointed that such superluminal neutrinos would be suppressed since they lose their energies rapidly via bremsstrahlung. In this Letter, we propose that Finslerian nature of spacetime could account for the superluminal phenomena of particles. The Finsler spacetime permits the existence of superluminal behavior of particles while the casuality still holds. A new dispersion relation is obtained in a class of Finsler spacetime. It is shown that the superluminal speed is linearly dependent on the energy per unit mass of the particle. We find that such a superluminal speed formula is consistent with data of OPERA, MINOS and Fermilab-1979 neutrino experiments as well as observations on neutrinos from SN1987a.
Symmetry, causal structure and superluminality in Finsler spacetime
Chang, Zhe; Wang, Sai
2012-01-01
The superluminal behaviors of neutrinos were reported by the OPERA collaboration recently. It was also noticed by Cohen and Glashow that, in standard quantum field theory, the superluminal neutrinos would lose their energy via the Cherenkov-like process rapidly. Finslerian special relativity may provide a framework to cooperate with the OPERA neutrino superluminality without Cherenkov-like process. We present clearly the symmetry, causal structure and superluminality in Finsler spacetime. The principle of relativity and the causal law are preserved. The energy and momentum are well defined and conserved in Finslerian special relativity. The Cherenkov-like process is proved to be forbidden kinematically and the superluminal neutrinos would not lose energy in their distant propagations from CERN to the Gran Sasso Laboratory. The energy dependence of neutrino superluminality is studied based on the reported data of the OPERA collaboration as well as other groups.
Superluminal Velocities in the Synchronized Space-Time
Directory of Open Access Journals (Sweden)
Medvedev S. Yu.
2014-07-01
Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.
Lorentz violation naturalness revisited
Belenchia, Alessio; Liberati, Stefano
2016-01-01
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-en...
Lorentz- and CPT-violating extension of the standard model
Kostelecky, V A
1999-01-01
The formulation and some experimental implications of a general Lorentz-violating extension of the standard model are reviewed. The theory incorporates both CPT-preserving and CPT-breaking terms. It is otherwise a conventional quantum field theory, obtained under the assumption that Lorentz symmetry is spontaneously broken in an underlying model. The theory contains the usual standard-model gauge structure, and it is power-counting renormalizable. Energy and momentum are conserved. Despite the violation of Lorentz symmetry, the theory exhibits covariance under Lorentz transformations of the observer inertial frame. A general Lorentz-violating extension of quantum electrodynamics can be extracted. The standard-model extension implies potentially observable effects in a wide variety of experiments, including among others measurements on neutral-meson oscillations, comparative studies in Penning traps, spectroscopy of hydrogen and antihydrogen, bounds on cosmological birefringence, measurements of muon propertie...
Lorentz Harmonics, Squeeze Harmonics and Their Physical Applications
Directory of Open Access Journals (Sweden)
Marilyn E. Noz
2011-02-01
Full Text Available Among the symmetries in physics, the rotation symmetry is most familiar to us. It is known that the spherical harmonics serve useful purposes when the world is rotated. Squeeze transformations are also becoming more prominent in physics, particularly in optical sciences and in high-energy physics. As can be seen from Dirac’s light-cone coordinate system, Lorentz boosts are squeeze transformations. Thus the squeeze transformation is one of the fundamental transformations in Einstein’s Lorentz-covariant world. It is possible to define a complete set of orthonormal functions defined for one Lorentz frame. It is shown that the same set can be used for other Lorentz frames. Transformation properties are discussed. Physical applications are discussed in both optics and high-energy physics. It is shown that the Lorentz harmonics provide the mathematical basis for squeezed states of light. It is shown also that the same set of harmonics can be used for understanding Lorentz-boosted hadrons in high-energy physics. It is thus possible to transmit physics from one branch of physics to the other branch using the mathematical basis common to them.
Field signature for apparently superluminal particle motion
Land, Martin
2015-05-01
In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.
Field signature for apparently superluminal particle motion
Land, Martin
2016-01-01
In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.
Superluminal propagation: Light cone and Minkowski spacetime
Energy Technology Data Exchange (ETDEWEB)
Mugnai, D. [' Nello Carrara' Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)]. E-mail: d.mugnai@ifac.cnr.it
2007-05-14
Superluminal behavior has been extensively studied in recent years, especially with regard to the topic of superluminality in the propagation of a signal. Particular interest has been devoted to Bessel-X waves propagation, since some experimental results showed that these waves have both phase and group velocities greater that light velocity c. However, because of the lack of an exact definition of signal velocity, no definite answer about the signal propagation (or velocity of information) has been found. The present Letter is a short note that deals in a general way with this vexed question. By analyzing the field of existence of the Bessel X-pulse in pseudo-Euclidean spacetime, it is possible to give a general description of the propagation, and to overcome the specific question related to a definition of signal velocity.
Superluminal radiation by uniformly moving charges
Tomaschitz, Roman
2003-03-01
The emission of superluminal quanta (tachyons) by freely propagating particles is scrutinized. Estimates are derived for spontaneous superluminal radiation from electrons moving close to the speed of the Galaxy in the microwave background. This is the threshold velocity for tachyon radiation to occur, a lower bound. Quantitative estimates are also given for the opposite limit, tachyon radiation emitted by ultra-relativistic electrons in linear colliders and supernova shock waves. The superluminal energy flux is studied and the spectral energy density of the radiation is derived, classically as well as in second quantization. There is a transversal bosonic and a longitudinal fermionic component of the radiation. We calculate the power radiated, its angular dependence, the mean energy of the radiated quanta, absorption and emission rates, as well as tachyonic number counts. We explain how the symmetry of the Einstein /A-coefficients connects to time-symmetric wave propagation and to the Wheeler-Feynman absorber theory. A relation between the tachyon mass and the velocity of the Local Group of galaxies is suggested.
Limits on Lorentz violation from forbidden β decays.
Noordmans, J P; Wilschut, H W; Timmermans, R G E
2013-10-25
Forbidden (slow) β decays offer new opportunities to test the invariance of the weak interaction under Lorentz transformations. Within a general effective field theory framework we analyze and reinterpret the only two relevant experiments, performed in the 1970s, dedicated to search for a preferred direction in space in first- and second-forbidden β decays. We show that the results of these experiments put strong and unique limits on Lorentz violation, and in particular on the presence of several interactions in the modern Lorentz-violating standard model extension. We discuss prospects to improve on these limits.
Resolving 7 problems with OPERA's superluminal neutrino experiment
Ehrlich, Robert
2011-01-01
Physicists have raised many troubling inconsistencies with the OPERA claim of superluminal neutrinos that cast doubt on its validity. This paper examines ways that 7 of these inconsistencies can be resolved. It also discusses evidence that the electron neutrino is superluminal, based on previously published cosmic ray observations, and secondarily a re-examination of tritium beta decay data.
On the Superluminal Motion of Radio-Loud AGNs
Indian Academy of Sciences (India)
Zhi-Bin Zhang; Yi-Zhen Zhang
2011-03-01
Apparent superluminal motion of different radio-loud AGNs are similarly related with beaming effect. The cosmological expanding effect would play no part in the superluminal motion of radio galaxies, BL Lacertae objects as well as quasars.Meanwhile, we confirm that estimates for apparent velocity app and Doppler boosting factor based on multi-wavelength combination and variability are comparable.
Maxwell Duality, Lorentz Invariance, and Topological Phase
Dowling, J P; Franson, J D; Dowling, Jonathan P.; Williams, Colin P.
1999-01-01
We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena. We also elucidate Lorentz transformations that allow these effects to be understood in an intuitive fashion in the rest frame of the moving quantum particle. Finally, we propose a realistic set up for measuring and interpreting the He-McKellar-Wilkens phase directly in an experiment.
Superluminality in the Bi- and Multi-Galileon
de Fromont, Paul; de Rham, Claudia; Heisenberg, Lavinia; Matas, Andrew
2013-07-01
We re-explore the Bi- and Multi-Galileon models with trivial asymptotic conditions at infinity and show that propagation of superluminal fluctuations is a common and unavoidable feature of these theories, unlike previously claimed in the literature. We show that all Multi-Galileon theories containing a Cubic Galileon term exhibit superluminalities at large distances from a point source, and that even if the Cubic Galileon is not present one can always find sensible matter distributions in which there are superluminal modes at large distances. In the Bi-Galileon case we explicitly show that there are always superluminal modes around a point source even if the Cubic Galileon is not present. Finally, we briefly comment on the possibility of avoiding superluminalities by modifying the asymptotic conditions at infinity.
Lorentz violation naturalness revisited
Energy Technology Data Exchange (ETDEWEB)
Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano [SISSA - International School for Advanced Studies, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste, via Valerio 2, 34127 Trieste (Italy)
2016-06-08
We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.
Has superluminal light propagation been observed?
Zhang, Yuan-Zhong
2000-01-01
It says in the report$^1$ by Wang et al. that a negative group velocity $u=-c/310$ is obtained and that a pulse advancement shift 62-ns is measured. The authors claim that the negative group velocity is associated with superluminal light propagation and that the pulse advancement is not at odds with causality or special relativity. However, it is shown here that their conclusions above are not true. Furthermore, I give some suggestion concerning a re-definition of group-velocity and a new exp...
Stecker, Floyd W.
2014-01-01
The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).
Gravitomagnetism and the Lorentz Invariance of Gravity
Kopeikin, S M
2006-01-01
Experimental discovery of the gravitomagnetic fields generated by translational and/or rotational currents of matter is one of primary goals of modern gravitational physics. The rotational (intrinsic) gravitomagnetic field of the Earth is currently measured by the Gravity Probe B. The present paper makes use of a parametrized post-Newtonian (PN) expansion of the Einstein equations to demonstrate how the extrinsic gravitomagnetic field generated by the translational current of matter can be measured by observing the relativistic time delay caused by a moving gravitational lens. We prove that measuring the extrinsic gravitomagnetic field is equivalent to testing of the relativistic effect of the aberration of gravity caused by the Lorentz transformation of the gravitational field. We unfold that the recent Jovian deflection experiment is a null-type experiment testing the Lorentz invariance of the gravitational field (aberration of gravity), thus, confirming existence of the extrinsic gravitomagnetic field asso...
Unravelling Lorentz Covariance and the Spacetime Formalism
Directory of Open Access Journals (Sweden)
Cahill R. T.
2008-10-01
Full Text Available We report the discovery of an exact mapping from Galilean time and space coordinates to Minkowski spacetime coordinates, showing that Lorentz covariance and the space-time construct are consistent with the existence of a dynamical 3-space, and absolute motion. We illustrate this mapping first with the standard theory of sound, as vibrations of a medium, which itself may be undergoing fluid motion, and which is covariant under Galilean coordinate transformations. By introducing a different non-physical class of space and time coordinates it may be cast into a form that is covariant under Lorentz transformations wherein the speed of sound is now the invariant speed. If this latter formalism were taken as fundamental and complete we would be lead to the introduction of a pseudo-Riemannian spacetime description of sound, with a metric characterised by an invariant speed of sound. This analysis is an allegory for the development of 20th century physics, but where the Lorentz covariant Maxwell equations were constructed first, and the Galilean form was later constructed by Hertz, but ignored. It is shown that the Lorentz covariance of the Maxwell equations only occurs because of the use of non-physical space and time coordinates. The use of this class of coordinates has confounded 20th century physics, and resulted in the existence of a allowing dynamical 3-space being overlooked. The discovery of the dynamics of this 3-space has lead to the derivation of an extended gravity theory as a quantum effect, and confirmed by numerous experiments and observations
Lorentz violation and neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)
2011-12-15
Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.
Bluhm, R
2004-01-01
A status report is given of some recent theoretical and experimental investigations looking for signals of Lorentz violation in QED. Experiments with light, charged particles, and atoms have exceptional sensitivity to small shifts in energy caused by Lorentz violation, including effects that could originate from new physics at the Planck scale.
A stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos
Borriello, Enrico; Mirizzi, Alessandro; Serpico, Pasquale Dario
2013-01-01
It has been speculated that Lorentz invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would rapidly lose energy via the bremssthralung of electron-positron pairs, damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta = (v^2-1) ~ 10^5 M_Pl (M_QG >~ 10^{-4} M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
Unravelling Lorentz Covariance and the Spacetime Formalism
Directory of Open Access Journals (Sweden)
Cahill R. T.
2008-10-01
Full Text Available We report the discovery of an exact mapping from Galilean time and space coordinates to Minkowski spacetime coordinates, showing that Lorentz covariance and the space- time construct are consistent with the existence of a dynamical 3-space, and “absolute motion”. We illustrate this mapping first with the standard theory of sound, as vibra- tions of a medium, which itself may be undergoing fluid motion, and which is covari- ant under Galilean coordinate transformations. By introducing a different non-physical class of space and time coordinates it may be cast into a form that is covariant under “Lorentz transformations” wherein the speed of sound is now the “invariant speed”. If this latter formalism were taken as fundamental and complete we would be lead to the introduction of a pseudo-Riemannian “spacetime” description of sound, with a metric characterised by an “invariant speed of sound”. This analysis is an allegory for the development of 20th century physics, but where the Lorentz covariant Maxwell equa- tions were constructed first, and the Galilean form was later constructed by Hertz, but ignored. It is shown that the Lorentz covariance of the Maxwell equations only occurs because of the use of non-physical space and time coordinates. The use of this class of coordinates has confounded 20th century physics, and resulted in the existence of a “flowing” dynamical 3-space being overlooked. The discovery of the dynamics of this 3-space has lead to the derivation of an extended gravity theory as a quantum effect, and confirmed by numerous experiments and observations
Astroparticle tests of Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)
2016-07-01
Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.
Liberati, Stefano
2016-01-01
While General Relativity ranks undoubtedly among the best physics theories ever developed, it is also among those with the most striking implications. In particular, General Relativity admits solutions which allow faster than light motion and consequently time travel. Here we shall consider a "pre-emptive" chronology protection mechanism that destabilises superluminal warp drives via quantum matter back-reaction and hence forbids even the conceptual possibility to use these solutions for building a time machine. This result will be considered both in standard quantum field theory in curved spacetime as well as in the case of a quantum field theory with Lorentz invariance breakdown at high energies. Some lessons and future perspectives will be finally discuss.
Energy Technology Data Exchange (ETDEWEB)
Chubykalo, Andrew; Espinoza, Augusto; Flores, Rolando Alvarado; Rodriguez, Alejandro Gutierrez [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica
2011-07-01
In this work we substantiate the applying of the Helmholtz vector decomposition theorem (H-theorem) to vector fields in classical electrodynamics. Using the H-theorem, within the framework of the two-parameter Lorentz-like gauge (so called V-gauge), we show that two kinds of magnetic vector potentials exist: one of them (solenoidal) can act exclusively with the velocity of light C and the other one (irrotational) with an arbitrary finite velocity V (including a velocity more than C). We show also that the irrotational component of the electric field has a physical meaning and can propagate exclusively instantaneously. We provide a theoretical rationale (within the framework of classical electrodynamics) of a series of well-known recent experiments, which detected superluminal signals. Finally, we affirm that applying the Helmholtz theorem to classical electrodynamics allows to conclude that in classical electrodynamics so called instantaneous action at a distance with the infinite velocity of interaction can take place as well as (within the framework of the v-gauge-theory) the superluminal action with a finite velocity of interaction. (author)
超洛伦兹-高斯光束SLG11模的分数傅里叶变换特性%Fractional Fourier transform of super Lorentz-Gauss SLG11 mode
Institute of Scientific and Technical Information of China (English)
周益民; 周国泉
2011-01-01
An orthogonal family of super Lorentz-Gauss(SLG) beam has been introduced to describe the highly divergent higher-order modes, e.g. the far-field distributions of the highly divergent higher-order mode generated by diode lasers. The fractional Fourier transform(FRFT) is applied to treat the propagation of SLG11 mode. By means of the convolution theorem of Fourier transform, an analytical expression for the field of SLG11 mode passing through an FRFT system has been derived. According to the derived analytical formula, the properties of SLG11 mode in the FRFT plane are graphically illustrated with numerical examples. The influences of the fractional order and three beam parameters on the normalized intensity of SLG11 mode in the FRFT plane are systemically analyzed. The dependence of the normalized intensity distribution of SLG11 mode in the FRFT plane on the fractional order is periodic, and the period is 2. With increasing the beam parameters, the beam spot size of SLG11 mode in the FRFT plane also increases.%引入了一簇互相正交的超洛伦兹-高斯光束以描述半导体激光器所产生的大角度高阶模远场分布.将分数傅里叶变换应用于超洛伦兹-高斯光束SLG11模的传输特性的研究中.利用傅里叶变换的卷积原理,导出了SLG11模经分数傅里叶变换系统后场分布的解析表达式.根据所得到的公式进行了数值计算,系统分析了分数傅里叶变换阶数和光束各参数对SLG11模在分数傅里叶变换面上光强分布的影响.结果显示:SLG11模在分数傅里叶变换面上的归一化强度分布随分数傅里叶变换的阶数呈周期性变化,周期为2;随着光束参数的增大,SLG11模在分数傅里叶变换面上的光斑尺寸增大.
Radio Astronomical Polarimetry and the Lorentz Group
Britton, M C
1999-01-01
In radio astronomy the polarimetric properties of radiation are often modified during propagation and reception. Effects such as Faraday rotation, receiver cross-talk, and differential amplification act to change the state of polarized radiation. A general description of such transformations is useful for the investigation of these effects and for the interpretation and calibration of polarimetric observations. Such a description is provided by the Lorentz group, which is intimately related to the transformation properties of polarized radiation. In this paper the transformations that commonly arise in radio astronomy are analyzed in the context of this group. This analysis is then used to construct a model for the propagation and reception of radio waves. The implications of this model for radio astronomical polarimetry are discussed.
Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication
Walleczek, Jan; Grössing, Gerhard
2016-09-01
It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time
Limits on Lorentz Violation from Forbidden beta Decays
Noordmans, J.P.; Wilschut, H.W.; Timmermans, R.G.E.
2013-01-01
Forbidden (slow) beta decays offer new opportunities to test the invariance of the weak interaction under Lorentz transformations. Within a general effective field theory framework we analyze and reinterpret the only two relevant experiments, performed in the 1970s, dedicated to search for a
Inertial frames without the relativity principle: breaking Lorentz symmetry
Baccetti, Valentina; Visser, Matt
2013-01-01
We investigate inertial frames in the absence of Lorentz invariance, reconsidering the usual group structure implied by the relativity principle. We abandon the relativity principle, discarding the group structure for the transformations between inertial frames, while requiring these transformations to be at least linear (to preserve homogeneity). In theories with a preferred frame (aether), the set of transformations between inertial frames forms a groupoid/pseudogroup instead of a group, a characteristic essential to evading the von Ignatowsky theorems. In order to understand the dynamics, we also demonstrate that the transformation rules for energy and momentum are in general affine. We finally focus on one specific and compelling model implementing a minimalist violation of Lorentz invariance.
Spectrum formation in Superluminous Supernovae (Type I)
Mazzali, P A; Pian, E; Greiner, J; Kann, D A; ARI-LJMU,; UK,; Garching, MPA; Germany,; Southampton, Univ; INAF-IASFBO,; Italy,; Pisa, SNS; Garching, MPE; Tautenburg,; Germany),
2016-01-01
The near-maximum spectra of most superluminous supernovae that are not dominated by interaction with a H-rich CSM (SLSN-I) are characterised by a blue spectral peak and a series of absorption lines which have been identified as OII. SN2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/UV spectrum. Radiation transport methods are used to show that the spectra (not including SN2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ~10000-15000 km/s, several lines form in the UV. OII lines, however, arise from very highly excited lower levels, which require significant departures from Local Thermodynamic Equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is th...
Super-luminous supernovae from PESSTO
Nicholl, M; Jerkstrand, A; Inserra, C; Chen, T -W; Kotak, R; Valenti, S; Howell, D A; McCrum, M; Margheim, S; Rest, A; Benetti, S; Fraser, M; Gal-Yam, A; Smith, K W; Sullivan, M; Young, D R; Baltay, C; Hadjiyska, E; McKinnon, R; Rabinowitz, D; Walker, E S; Feindt, U; Nugent, P; Lawrence, A; Mead, A; Anderson, J P; Sollerman, J; Taddia, F; Leloudas, G; Mattila, S; Elias-Rosa, N
2014-01-01
We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, \\Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models p...
Superluminous Supernovae: No Threat from Eta Carinae
Thomas, Brian; Melott, A. L.; Fields, B. D.; Anthony-Twarog, B. J.
2008-05-01
Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous” for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.
Superluminous supernovae: No threat from Eta Carinae
Thomas, Brian C; Fields, Brian D; Anthony-Twarog, Barbara J
2007-01-01
Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of ~10^44 Joules. It was proposed that the progenitor may have been a massive evolved star similar to Eta Carinae, which resides in our own galaxy at a (poorly determined) distance of ~2.5 kpc. Eta Carinae appears ready to detonate, and in fact had an outburst in 1843. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma Ray Burst oriented toward the Earth, Eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over ~10^4 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possib...
First stars, hypernovae, and superluminous supernovae
Nomoto, Ken'Ichi
2016-07-01
After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.
Tachyons, Lamb shifts and superluminal chaos
Tomaschitz, R.
2000-10-01
An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon background radiation are derived.
Jet Stability and the Generation of Superluminal and Stationary Components
Agudo, Ivan; Gomez, Jose-Luis; Marti, Jose-Maria; Ibanez, Jose-Maria; Marscher, Alan P.; Alberdi, Antonio; Aloy, Miguel-Angel; Hardee, Philip E.
2001-01-01
We present a numerical simulation of the response of an expanding relativistic jet to the ejection of a superluminal component. The simulation has been performed with a relativistic time-dependent hydrodynamical code from which simulated radio maps are computed by integrating the transfer equations for synchrotron radiation. The interaction of the superluminal component with the underlying jet results in the formation of multiple conical shocks behind the main perturbation. These trailing components can be easily distinguished because they appear to be released from the primary superluminal component instead of being ejected from the core. Their oblique nature should also result in distinct polarization properties. Those appearing closer to the core show small apparent motions and a very slow secular decrease in brightness and could be identified as stationary components. Those appearing farther downstream are weaker and can reach superluminal apparent motions. The existence of these trailing components indicates that not all observed components necessarily represent major perturbations at the jet inlet; rather, multiple emission components can be generated by a single disturbance in the jet. While the superluminal component associated with the primary perturbation exhibits a rather stable pattern speed, trailing components have velocities that increase with distance from the core but move at less than the jet speed. The trailing components exhibit motion and structure consistent with the triggering of pinch modes by the superluminal component. The increase in velocity of the trailing components is an indirect consequence of the acceleration of the expanding fluid, which is assumed to be relativistically hot; if observed, such accelerations would therefore favor an electron-positron (as opposed to proton rest mass) dominated jet.
A Blind Pilot: Who is a Super-Luminal Observer?
Directory of Open Access Journals (Sweden)
Rabounski D.
2008-04-01
Full Text Available This paper discusses the nature of a hypothetical super-luminal observer who, as well as a real (sub-light speed observer, perceives the world by light waves. This consideration is due to that fact that the theory of relativity permits different frames of reference, including light-like and super-luminal reference frames. In analogy with a blind pilot on board a supersonic jet aeroplane (or missile, perceived by blind people, it is concluded that the light barrier is observed in the framework of only the light signal exchange experiment.
Control of superluminal transit through a heterogeneous medium
Kulkarni, M; Rao, V S C Manga; Gupta, S Dutta
2004-01-01
We consider pulse propagation through a two component composite medium (metal inclusions in a dielectric host) with or without cavity mirrors. We show that a very thin slab of such a medium, under conditions of localized plasmon resonance, can lead to significant superluminality with detectable levels of transmitted pulse. A cavity containing the heterogeneous medium is shown to lead to subluminal-to-superluminal transmission depending on the volume fraction of the metal inclusions. The predictions of phase time calculations are verified by explicit calculations of the transmitted pulse shapes. We also demonstrate the independence of the phase time on system width and the volume fraction under specific conditions.
Statistics of Superluminal Motion in Active Galactic Nuclei
Institute of Scientific and Technical Information of China (English)
Yong-Wei Zhang; Jun-Hui Fan
2008-01-01
We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the A-CDM model. We checked the relationships between their proper motions, redshifts,βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.
Pankovic, V; Krmar, M; Radovanovic, M; Pankovic, Vladan; Predojevic, Milan; Krmar, Miodrag; Radovanovic, Milan
2005-01-01
In this work we analyse critically Griffiths's example of the classical superluminal motion of a bug shadow. Griffiths considers that this example is conceptually very close to quantum nonlocality or superluminality,i.e. quantum breaking of the famous Bell inequality. Or, generally, he suggests implicitly an absolute asymmetric duality (subluminality vs. superluminality) principle in any fundamental physical theory.It, he hopes, can be used for a natural interpretation of the quantum mechanics too. But we explain that such Griffiths's interpretation retires implicitly but significantly from usual, Copenhagen interpretation of the standard quantum mechanical formalism. Within Copenhagen interpretation basic complementarity principle represents, in fact, a dynamical symmetry principle (including its spontaneous breaking, i.e. effective hiding by measurement). Similarly, in other fundamental physical theories instead of Griffiths's absolute asymmetric duality principle there is a dynamical symmetry (including it...
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Spectrum formation in superluminous supernovae (Type I)
Mazzali, P. A.; Sullivan, M.; Pian, E.; Greiner, J.; Kann, D. A.
2016-06-01
The near-maximum spectra of most superluminous supernovae (SLSNe) that are not dominated by interaction with a H-rich circum-stellar medium (SLSN-I) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II. SN 2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/ultraviolet (UV) spectrum. Radiation transport methods are used to show that the spectra (not including SN 2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ˜10 000-15 000 km s-1, several lines form in the UV. O II lines, however, arise from very highly excited lower levels, which require significant departures from local thermodynamic equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energized by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterizes SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN 2011kl requires higher ejecta velocities (˜20 000 km s-1): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high-ionization near-maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification.
Lorentz-violating inflationary magnetogenesis
Energy Technology Data Exchange (ETDEWEB)
Campanelli, Leonardo [Universita di Bari, Dipartimento di Fisica, Bari (Italy)
2015-06-15
A non-conformally invariant coupling between the inflaton and the photon in the minimal Lorentz-violating standard model extension is analyzed. For specific forms of the Lorentz-violating background tensor, the strong-coupling and back-reaction problems of magnetogenesis in de Sitter inflation with scale ∝ 10{sup 16} GeV are evaded, the electromagnetic-induced primordial spectra of (Gaussian and non-Gaussian) scalar and tensor curvature perturbations are compatible with cosmic microwave background observations, and the inflation-produced magnetic field directly accounts for cosmic magnetic fields. (orig.)
Neutrino mixing and Lorentz invariance
Blasone, M; Pires-Pacheco, P; Blasone, Massimo; Magueijo, Joao; Pires-Pacheco, Paulo
2003-01-01
We use previous work on the Hilbert space for mixed fields to derive deformed dispersion relations for neutrino flavor states. We then discuss how these dispersion relations may be incorporated into frameworks encoding the breakdown of Lorentz invariance. We consider non-linear relativity schemes (of which doubly special relativity is an example), and also frameworks allowing for the existence of a preferred frame. In both cases we derive expressions for the spectrum and end-point of beta decay, which may be used as an experimental probe of the peculiar way in which neutrinos experience Lorentz invariance.
Lorentz violation, gravity, dissipation and holography
National Research Council Canada - National Science Library
Kiritsis, Elias
2013-01-01
We reconsider Lorentz Violation (LV) at the fundamental level. We argue that Lorentz Violation is intimately connected with gravity and that LV couplings in QFT must always be fields in a gravitational sector...
Transport properties of stochastic Lorentz models
Beijeren, H. van
1982-01-01
Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed waiti
Lorentz violation in supersymmetric field theories.
Nibbelink, Stefan Groot; Pospelov, Maxim
2005-03-04
We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.
Nuclear beta decay with Lorentz violation
Noordmans, J.P.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
We consider the possibility of Lorentz-invariance violation in weak-decay processes. We present a general approach that entails modifying the W-boson propagator by adding a Lorentz-violating tensor to it. We describe the effects of Lorentz violation on nuclear beta decay in this scenario. In
Testing local Lorentz invariance with gravitational waves
Kostelecky, Alan
2016-01-01
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Testing local Lorentz invariance with gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Kostelecký, V. Alan, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Mewes, Matthew [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)
2016-06-10
The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.
Superluminal Physics and Instantaneous Physics as New Trends in Research
Directory of Open Access Journals (Sweden)
Smarandache F.
2012-01-01
Full Text Available In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics. In the lights of two consecutive successful CERN experiments with superlumi- nal particles in the Fall of 2011, we believe that these two new fields of research should begin developing.
Supergravity with broken Lorentz invariance
Directory of Open Access Journals (Sweden)
Marakulin Arthur
2016-01-01
Full Text Available The supersymmetric extension of the Lorentz violating Einstein-aether theory of gravity is considered. The most general Lagrangian of the linearized Einstein-aether supergravity is constructed using the superfield formalism. The constraints imposed by supersymmetry on the parameters of the theory are obtained.
Lorentz invariance with an invariant energy scale
Magueijo, J; Magueijo, Joao; Smolin, Lee
2002-01-01
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a non-linear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants, and we highlight the similarities between the group action found and a transformation previously proposed by Fock. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Superluminal Motion Found In Milky Way
1994-08-01
Researchers using the Very Large Array (VLA) have discovered that a small, powerful object in our own cosmic neighborhood is shooting out material at nearly the speed of light -- a feat previously known to be performed only by the massive cores of entire galaxies. In fact, because of the direction in which the material is moving, it appears to be traveling faster than the speed of light -- a phenomenon called "superluminal motion." This is the first superluminal motion ever detected within our Galaxy. During March and April of this year, Dr. Felix Mirabel of the Astrophysics Section of the Center for Studies at Saclay, France, and Dr. Luis Rodriguez of the Institute of Astronomy at the National Autonomous University in Mexico City and NRAO, observed "a remarkable ejection event" in which the object shot out material in opposite directions at 92 percent of the speed of light, or more than 171,000 miles per second. This event ejected a mass equal to one-third that of the moon with the power of 100 million suns. Such powerful ejections are well known in distant galaxies and quasars, millions and billions of light-years away, but the object Mirabel and Rodriguez observed is within our own Milky Way Galaxy, only 40,000 light-years away. The object also is much smaller and less massive than the core of a galaxy, so the scientists were quite surprised to find it capable of accelerating material to such speeds. Mirabel and Rodriguez believe that the object is likely a double-star system, with one of the stars either an extremely dense neutron star or a black hole. The neutron star or black hole is the central object of the system, with great mass and strong gravitational pull. It is surrounded by a disk of material orbiting closely and being drawn into it. Such a disk is known as an accretion disk. The central object's powerful gravity, they believe, is pulling material from a more-normal companion star into the accretion disk. The central object is emitting jets of
Wigner rotations, Bell states, and Lorentz invariance of entanglement and von Neumann entropy
Soo, C; Soo, Chopin; Lin, Cyrus C. Y.
2003-01-01
We compute, for massive particles, the explicit Wigner rotations of one-particle states for arbitrary Lorentz transformations; and the explicit Hermitian generators of the infinite-dimensional unitary representation. For a pair of spin 1/2 particles, Einstein-Podolsky-Rosen-Bell entangled states and their behaviour under the Lorentz group are analysed in the context of quantum field theory. Group theoretical considerations suggest a convenient definition of the Bell states which is slightly different from the conventional assignment. The behaviour of Bell states under arbitrary Lorentz transformations can then be described succinctly. Reduced density matrices applicable to identical particles are defined through Yang's prescription. The von Neumann entropy of each of the reduced density matrix is Lorentz invariant; and its relevance as a measure of entanglement is discussed, and illustrated with an explicit example. A regularization of the entropy in terms of generalized zeta functions is also suggested.
Wigner–Souriau translations and Lorentz symmetry of chiral fermions
Directory of Open Access Journals (Sweden)
C. Duval
2015-03-01
Full Text Available Chiral fermions can be embedded into Souriau's massless spinning particle model by “enslaving” the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a Wigner–Souriau (WS translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincaré group, whereas the natural Poincaré action corresponds to action on the left.
Wigner-Souriau translations and Lorentz symmetry of chiral fermions
Duval, C; Horvathy, P A; Zhang, P -M
2014-01-01
Chiral fermions can be embedded into Souriau's massless spinning particle model by "enslaving" the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a subsequent Wigner-Souriau (WS) translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincare group, whereas the natural Poincare action corresponds to action on the left.
Convolution of Lorentz Invariant Ultradistributions and Field Theory
Bollini, C G
2003-01-01
In this work, a general definition of convolution between two arbitrary four dimensional Lorentz invariant (fdLi) Tempered Ultradistributions is given, in both: Minkowskian and Euclidean Space (Spherically symmetric tempered ultradistributions). The product of two arbitrary fdLi distributions of exponential type is defined via the convolution of its corresponding Fourier Transforms. Several examples of convolution of two fdLi Tempered Ultradistributions are given. In particular we calculate exactly the convolution of two Feynman's massless propagators. An expression for the Fourier Transform of a Lorentz invariant Tempered Ultradistribution in terms of modified Bessel distributions is obtained in this work (Generalization of Bochner's formula to Minkowskian space). At the same time, and in a previous step used for the deduction of the convolution formula, we obtain the generalization to the Minkowskian space, of the dimensional regularization of the perturbation theory of Green Functions in the Euclidean conf...
Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation
Bogoslovsky, G Yu
2004-01-01
The work is devoted to the generalization of the Dirac equation for a flat locally anisotropic, i.e., Finslerian space-time. At first we reproduce the corresponding metric and a group of the generalized Lorentz transformations, which has the meaning of the relativistic symmetry group of such event space. Next, proceeding from the requirement of the generalized Lorentz invariance we find a generalized Dirac equation in its explicit form. An exact solution of the nonlinear generalized Dirac equation is also presented.
Lorentz Force Electrical Impedance Tomography
Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril
2014-01-01
This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...
Energy Technology Data Exchange (ETDEWEB)
Fernandez Guasti, M; Zagoya, C [Lab. de Optica Cuantica, Depto. de Fisica, Universidad A. Metropolitana-Iztapalapa, 09340 Mexico D.F., Ap. postal. 55-534 (Mexico)], E-mail: mfgxanum@uam.mx
2009-03-15
The Lorentz length contraction for a rod in uniform motion is derived performing two measurements at arbitrary times. Provided that the velocity of the rod is known, this derivation does not require the simultaneous measurement of two events. It thus avoids uncomfortable superluminal relationships. Furthermore, since the observer's simultaneous measurement is not needed in order to observe spatial contraction, this procedure is more akin to the Lorentzian relativity approach and is better suited for more general schemes such as deformed spacetime versions of special relativity. An example of a space contraction measurement from the same rest position in the observer's frame illustrates the procedure.
Setare, M. R.; Adami, H.
2016-01-01
In the first order formalism of gravity theories, there are some theories which are not Lorentz-diffeomorphism covariant. In the framework of such theories we cannot apply the method of conserved charge calculation used in Lorentz-diffeomorphism covariant theories. In this paper we firstly introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Secondly, in order to obtain the conserved charges of Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa method [1]. This extension includes not only Lorentz gauge transformation but also the diffeomorphism. We apply this method to the Chern-Simons-like theories of gravity (CSLTG) and obtain a general formula for the entropy of black holes in those theories. Finally, some examples on CSLTG are provided and the entropy of the BTZ black hole is calculated in the context of the examples.
Directory of Open Access Journals (Sweden)
M.R. Setare
2016-01-01
Full Text Available In the first order formalism of gravity theories, there are some theories which are not Lorentz-diffeomorphism covariant. In the framework of such theories we cannot apply the method of conserved charge calculation used in Lorentz-diffeomorphism covariant theories. In this paper we firstly introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Secondly, in order to obtain the conserved charges of Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa method [1]. This extension includes not only Lorentz gauge transformation but also the diffeomorphism. We apply this method to the Chern–Simons-like theories of gravity (CSLTG and obtain a general formula for the entropy of black holes in those theories. Finally, some examples on CSLTG are provided and the entropy of the BTZ black hole is calculated in the context of the examples.
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir; Adami, H., E-mail: hamed.adami@yahoo.com
2016-01-15
In the first order formalism of gravity theories, there are some theories which are not Lorentz-diffeomorphism covariant. In the framework of such theories we cannot apply the method of conserved charge calculation used in Lorentz-diffeomorphism covariant theories. In this paper we firstly introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Secondly, in order to obtain the conserved charges of Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa method [1]. This extension includes not only Lorentz gauge transformation but also the diffeomorphism. We apply this method to the Chern–Simons-like theories of gravity (CSLTG) and obtain a general formula for the entropy of black holes in those theories. Finally, some examples on CSLTG are provided and the entropy of the BTZ black hole is calculated in the context of the examples.
Setare, M R
2016-01-01
In the first order formalism of gravity theories, may be exist some theories which are not Lorentz-difeomorphism covariant so for such theories a method for which one can calculate conserved charges of Lorentz-difeomorphism covariant theories are useless. In this letter we introduce the total variation of a quantity due to an infinitesimal Lorentz-diffeomorphism transformation. Then using this concept, in order to obtain the conserved charges in Lorentz-diffeomorphism non-covariant theories, we extend the Tachikawa's method \\cite{3} so that it includes Lorentz gauge transformation in addition to diffeomorphism. We apply this method on the Chern-Simons-like theories of gravity and we find out a general formula for the entropy of black holes in those theories. Eventually, we consider some examples and calculate entropy of the BTZ black hole in the context of this examples.
Multifrequency observations of the superluminal quasar 3C 345
Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Neugebauer, G.; Soifer, B. T.; Matthews, K.; Roellig, T. P. L.; Bregman, J. D.; Witteborn, F. C.; Lester, D. F.
1986-01-01
Attention is given to the continuum properties of the superluminal quasar 3C 345, on the basis of radio, optical, IR, and X-ray frequency monitorings, as well as by means of simultaneous multifrequency spectra extending from the radio through the X-ray bands. Radio outbursts, which appear to follow IR-optical outbursts by about one year, first occur at the highest frequencies, as expected from optical depth effects; the peak flux is nevertheless often reached at several frequencies at once. The beginning of outbursts, as defined by mm-measurements, corresponds to the appearance of the three known 'superluminal' components. An increase in the X-ray flux during 1979-1980 corresponds to increased radio flux, while the IR flux changes in the opposite sense.
The hypothesis of superluminal neutrinos: Comparing OPERA with other data
DEFF Research Database (Denmark)
Drago, A.; Masina, I.; Pagliara, G.
2012-01-01
The OPERA Collaboration reported evidence for muonic neutrinos traveling slightly faster than light in vacuum. While waiting further checks from the experimental community, here we aim at exploring some theoretical consequences of the hypothesis that muonic neutrinos are superluminal, considering...... in particular the tachyonic and the Coleman-Glashow cases. We show that a tachyonic interpretation is not only hardly reconciled with OPERA data on energy dependence, but that it clashes with neutrino production from pion and with neutrino oscillations. A Coleman-Glashow superluminal neutrino beam would also...... have problems with pion decay kinematics for the OPERA setup; it could be easily reconciled with SN1987a data, but then it would be very problematic to account for neutrino oscillations. Copyright (C) EPLA, 2012...
Superluminal Spot Pair Events in Astronomical Settings: Sweeping Beams
Nemiroff, Robert J
2014-01-01
Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are {\\it not} particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when a real spot's speed toward the observer drops below $c$, while a virtual spot pair annihilation event will be observed when a real spot's radial speed away from the observer rises above $c...
The hypothesis of superluminal neutrinos: Comparing OPERA with other data
DEFF Research Database (Denmark)
Drago, A.; Masina, I.; Pagliara, G.
2012-01-01
The OPERA Collaboration reported evidence for muonic neutrinos traveling slightly faster than light in vacuum. While waiting further checks from the experimental community, here we aim at exploring some theoretical consequences of the hypothesis that muonic neutrinos are superluminal, considering...... in particular the tachyonic and the Coleman-Glashow cases. We show that a tachyonic interpretation is not only hardly reconciled with OPERA data on energy dependence, but that it clashes with neutrino production from pion and with neutrino oscillations. A Coleman-Glashow superluminal neutrino beam would also...... have problems with pion decay kinematics for the OPERA setup; it could be easily reconciled with SN1987a data, but then it would be very problematic to account for neutrino oscillations. Copyright (C) EPLA, 2012...
Multi-Epoch Spectroscopy of Hydrogen-Poor Superluminous Supernovae
Quimby, Robert; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul; Yan, Lin
2016-06-01
A growing sample of intrinsically rare supernovae is being uncovered by wide-field synoptic surveys, such as the Palomar Transient Factory (PTF). A fraction of these events have been labeled "superluminous supernovae" due to their peak luminosities, which can exceed normal supernovae by factors of 10 to 100. The power sources for these events and thus their connection to normal luminosity supernovae remains uncertain. Here we present results from 134 spectroscopic observations of 17 hydrogen-poor superluminous supernovae (SLSN-I) discovered by PTF. We select our targets from the full PTF sample using only spectroscopic information; we do not employ the traditional cut in absolute magnitude (e.g. M physical insights into the nature of these explosions offered by this unique dataset.
Subluminal and Superluminal Phenomena in a Four-Level Atom
Institute of Scientific and Technical Information of China (English)
HAN Ding-An; ZENG Ya-Guang; CAO Hui
2008-01-01
In a four-level atomic system,we investigate the light pulse propagation properties interacting with only one laser field.It is shown that in the steady state,the group velocity of the light pulse can be changed from subluminal to superluminal by varying the field detuning.Meanwhile,the effects of the field intensity on the group velocity are also shown.At last,with special parameters,the analytical solution for the group index is also obtained.
Superluminal light propagation via quantum interference in decay channels
Arun, R.
2016-01-01
We examine the propagation of a weak probe light through a coherently driven $Y$-type system. Under the condition that the excited atomic levels decay via same vacuum modes, the effects of quantum interference in decay channels are considered. It is found that the interference in decay channels results in a lossless anomalous dispersion between two gain peaks. We demonstrate that the probe pulse propagation can in principle be switched from subluminal to superluminal due to the decay-induced ...
Unified interpretation of superluminal behaviors in wave propagation
Energy Technology Data Exchange (ETDEWEB)
Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Viliani, G. [Dipartimento di Fisica, Universita di Trento, 38050 Povo, Trento (Italy); Ranfagni, C. [Facolta di Scienze Matematiche Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Firenze (Italy); Mignani, R. [Dipartimento di Fisica ' Edoardo Amaldi' , Universita degli Studi di Roma ' Roma Tre' , Via della Vasca Navale 84, 00146 Roma (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy)
2007-10-29
By using two approaches, we demonstrate that superluminal behaviors in wave propagation can be attributed to mechanisms acting in the near-field limit. One approach is based on complex waves, while the other relies on a path-integral treatment of stochastic motion. The results of the two approaches are comparable, and suitable for interpreting the data obtained in microwave experiments; these experiments, over a wide range of distances, show a time advance which, in any case, is limited to nanoseconds.
Asymptotic behavior of Lorentz violation on orbifolds
Uekusa, Nobuhiro
2010-01-01
Momentum dependence of quantum corrections with higher-dimensional Lorentz violation is examined in electrodynamics on orbifolds. It is shown that effects of the Lorentz violation are not decoupled at high energy scales. Despite the loss of the higher-dimensional Lorentz invariance, a higher-dimensional Ward identity is found to be fulfilled for one-loop vacuum polarization. This implies that gauge invariance may be prior to Lorentz invariance as a guiding principle in higher-dimensional field theory. As a universal application of electrodynamics, an extra-dimensional aspect for Furry's theorem is emphasized.
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J. D.; Pérez-Lorenzana, A.
2017-04-01
Field models with n extra spatial dimensions have a larger SO(1, 3 + n) Lorentz symmetry which is broken down to the standard SO(1, 3) four-dimensional one by the compactification process. By considering Lorentz violating operators in a 5D supersymmetric Wess-Zumino model, which otherwise conserve the standard four-dimensional Poincaré invariance, we show that supersymmetry (SUSY) can be restored upon a simple deformation of the supersymmetric transformations. However, SUSY is not preserved in the effective 4D theory that arises after compactification when the 5D Lorentz violating operators do not preserve Z2 : y →-y bulk parity. Our mechanism unveils a possible connection among Lorentz violation and the Scherk-Schwarz mechanism. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Constraining Lorentz violation with cosmology.
Zuntz, J A; Ferreira, P G; Zlosnik, T G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities.
Noncommutativity in (2+1)-dimensions and the Lorentz group
Falomir, H; Gamboa, J; Méndez, F; Loewe, M
2012-01-01
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schr\\"odinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp's shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to no-commutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) c...
THE SUPERLUMINAL CHARACTER OF THE COMPACT STEEP SPECTRUM QUASAR 3C-216
VENTURI, T; PEARSON, TJ; BARTHEL, PD; HERBIG, T
We report the results of fourth epoch VLBI observations at 4990.99 MHz, with a resolution of approximately 1 mas, of the compact steep-spectrum quasar 3C 216. Superluminal motion in this object is confirmed. Although a constant superluminal expansion at upsilon(app) = 3.9c +/- 0.6 is not ruled out,
Lorentz-Force Hydrophone Characterization
Grasland-Mongrain, Pol; Gilles, Bruno; Poizat, Adrien; Chapelon, Jean-Yves; Lafon, Cyril
2014-01-01
A Lorentz-force hydrophone consists of a thin wire placed inside a magnetic field. When under the influence of an ultrasound pulse, the wire vibrates and an electrical signal is induced by the Lorentz force that is proportional to the pulse amplitude. In this study a compact prototype of such a hydrophone is introduced and characterized, and the hydrodynamic model previously developed is refined. It is shown that the wire tension has a negligible effect on the measurement of pressure. The frequency response of the hydrophone reaches 1 MHz for wires with a diameter ranging between 70 and 400 \\micro m. The hydrophone exhibits a directional response such that the signal amplitude differs by less than 3dB as the angle of the incident ultrasound pulse varies from -20$^o$ and +20$^o$. The linearity of the measured signal is confirmed across the 50 kPa to 10 MPa pressure range, and an excellent resistance to cavitation is observed. This hydrophone is of interest for high pressure ultrasound measurements including Hi...
Possibilities for Lorentz violation in nonleptonic decays
Keri Vos, K.; Wilschut, H.W.; Timmermans, R.G.E.
2015-01-01
The weak interaction offers an interesting portal to search for Lorentz symmetry breaking. We explore the possibilities to study Lorentz violation in nonleptonic decays, focusing on the recent measurement of the KLOE collaboration of the directional dependence of the lifetime of the neutral kaon
Cosmological constraints on Lorentz violation in electrodynamics.
Kostelecký, V A; Mewes, M
2001-12-17
Infrared, optical, and ultraviolet spectropolarimetry of cosmological sources is used to constrain the pure electromagnetic sector of a general Lorentz-violating standard-model extension. The coefficients for Lorentz violation are bounded to less than 3 x 10(-32).
CPT violation implies violation of Lorentz invariance.
Greenberg, O W
2002-12-02
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.
Lorentz violation and deep inelastic scattering
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2017-06-01
Full Text Available The effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Lorentz violation and deep inelastic scattering
Kostelecký, V. Alan; Lunghi, E.; Vieira, A. R.
2017-06-01
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Noncommutative field theory and Lorentz violation.
Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T
2001-10-01
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).
Hiding Lorentz invariance violation with MOND
Sanders, R. H.
2011-01-01
Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is
Lorentz violation and deep inelastic scattering
Kostelecky, Alan; Vieira, A R
2016-01-01
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Parton model in Lorentz invariant noncommutative space
Haghighat, M.; Ettefaghi, M. M.
2004-08-01
We consider the Lorentz invariant noncommutative QED and complete the Feynman rules for the theory up to the order θ2. In the Lorentz invariant version of the noncommutative QED the particles with fractional charges can be also considered. We show that in the parton model, even at the lowest order, the Bjorken scaling violates as ˜θ2Q4.
Testing Lorentz invariance in β decay
Sytema, Auke
2016-01-01
In this thesis we investigate violation of Lorentz invariance in the weak interaction, specifically in β decay. For this purpose an experiment is performed with nuclear-spin-polarized 20Na that decays by emitting a β particle. Lorentz invariance is the property that the laws of nature do not depend
Question of Lorentz violation in muon decay
Noordmans, J. P.; Onderwater, C. J. G.; Wilschut, H. W.; Timmermans, R. G. E.
2016-01-01
Possibilities to test the Lorentz invariance of the weak interaction in muon decay are considered. We derive the direction-dependent muon-decay rate with a general Lorentz-violating addition to the W-boson propagator. We discuss measurements of the directional and boost dependence of the Michel para
Gluonic Lorentz violation and chiral perturbation theory
Noordmans, J. P.
2017-04-01
By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Lin; YU Hong-Wei
2005-01-01
@@ We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundaries can be obtained from those of the static case by Lorentz transformation. We explicitly derive the Lorentz transformations relating the dispersions of the two cases and then apply them to the case of the Brownian motion of a test particle with a constant classical velocity parallel to the boundary between two conducting planes. Our results show that the influence of a nonzero initial velocity is negligible for nonrelativistic test particles.
Would Superluminal Influences Violate the Principle of Relativity?
Peacock, Kent A
2013-01-01
It continues to be alleged that superluminal influences of any sort would be inconsistent with special relativity for the following three reasons: (i) they would imply the existence of a distinguished' frame; (ii) they would allow the detection of absolute motion; and (iii) they would violate the relativity of simultaneity. This paper shows that the first two objections rest upon very elementary misunderstandings of Minkowski geometry and lingering Newtonian intuitions about instantaneity. The third objection has a basis, but rather than invalidating the notion of faster than light influences it points the way to more general conceptions of simultaneity that could allow for quantum nonlocality in a natural way.
A Michelson-Morley Test of Lorentz Symmetry for Electrons
Pruttivarasin, T; Porsev, S G; Tupitsyn, I I; Safronova, M; Hohensee, M A; Haeffner, H
2014-01-01
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the Standard Model of physics by requiring all particles and fields to be invariant under Lorentz transformations. The most well-known test of this important cornerstone of physics are Michelson-Morley-type experiments\\cite{MM, Herrmann2009,Eisele2009} verifying the isotropy of the speed of light. Lorentz symmetry also implies that the kinetic energy of an electron should be independent of the direction of its velocity, \\textit{i.e.,} its dispersion relation should be isotropic in space. In this work, we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron-wavepacket bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95~ms. As the Earth rotates, the absolute spatial orientation of the wavepackets changes and anisotropies in ...
Lorentz violation and perpetual motion
Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-05-01
We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.
Lorentz violation and perpetual motion
Eling, C; Jacobson, T; Wall, A C; Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.
2007-01-01
We show that any Lorentz violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole {\\it perpetuum mobile}, but argue that these can be neglected if the black hole mass is sufficiently large.
Jentschura, Ulrich D
2016-01-01
Current experiments do not exclude the possibility that one or more neutrinos are very slightly superluminal or that they have a very small tachyonic mass. Important bounds on the size of a hypothetical tachyonic neutrino mass term are set by lepton pair Cerenkov radiation (LPCR), i.e., by the decay channel nu -> e^+ e^- nu which proceeds via a virtual Z0 boson. Here, we use a Lorentz-invariant dispersion relation which leads to very tight constraints on the tachyonic mass of neutrinos; we also calculate decay and energy loss rates. A possible cutoff seen in the IceCube neutrino spectrum for E_nu > 2 PeV, due to the potential onset of LPCR, is discussed.
The Lorentz Group with Dual-Translations and the Conformal Group
Shurtleff, Richard
2016-01-01
For those finite-matrix representations of the Lorentz group of rotations/boosts that can also represent translations, two possible translation subgroups qualify. Of these two, one is selected, and one is discarded to represent the Poincar\\'{e} group of rotations/boosts with translations in spacetime. Instead, let us discard the requirement that spacetime symmetries include just one translation subgroup. Then the transformations of both possible translation subgroups combine with those of the Lorentz group. The commutation relations of the generators of the dual-translations are calculated and presented here. Furthermore, spins are sought and found for those Lorentz reps that give a closed group while keeping new-transformation expansion in check. One finds that the Dirac 4-spinor formalism is the only solution and the slightly expanded group it represents is the conformal group. It follows as a corollary that the Dirac 4-spinor formalism is the only matrix representation of the conformal group.
Alternative theories of gravity and Lorentz violation
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Photon gravitational defection in Lorentz violating scenarios
Accioly, Antonio; Helayël-Neto, José
2016-01-01
The effect of Lorentz symmetry violation in the phenomenon of photon gravitational bending, is investigated. Using a semiclassical approach, where the photon is described by the Carrol-Field-Jackiw (CFJ) electrodynamics which is responsible for implementing the Lorentz symmetry violation, the gravitational deflection angle related to the CFJ photon is computed. As expected, this bending angle experiences a deviation from the usual Einstein result and the latter is recovered in the appropriate limit. A comparison between the theoretical prediction and the experimental results allows to conclude that no trace of Lorentz symmetry breaking is found provided the components of the background vector field are $\\lesssim 10^{-8}$ eV.
What do we know about Lorentz invariance?
Tasson, Jay D
2014-06-01
The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational standard-model extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.
Classical Gravitational Interactions and Gravitational Lorentz Force
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.
Lorentz gauge quantization in synchronous coordinates
Garner, Christopher
2016-01-01
It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-Bleuler approach fails in general in non-static space-times. More recently, however, the Dirac method of quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in conformally flat space-times. In this paper we generalize this result by using Dirac's method to impose the Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.
What Do We Know About Lorentz Invariance?
Tasson, Jay D
2014-01-01
The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational Standard-Model Extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.
Testing Lorentz invariance in orbital electron capture
Vos, K K; Timmermans, R G E
2015-01-01
Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear $\\beta$ decay [1]. From experiments on forbidden $\\beta$-decay transitions strong limits in the range of $10^{-6}$-$10^{-8}$ were obtained on Lorentz-violating components of the $W$-boson propagator [2]. In order to improve on these limits strong sources have to be considered. In this Brief Report we study isotopes that undergo orbital electron capture and allow experiments at high decay rates and low dose. We derive the expressions for the Lorentz-violating differential decay rate and discuss the options for competitive experiments and their required precision.
Cosmological Background torsion limits from Lorentz violation
Garcia de Andrade, L C
2001-01-01
Cosmological limits on Lorentz invariance breaking in Chern-Simons $(3+1)-dimensional$ electrodynamics are used to place limits on torsion. Birefrigence phenomena is discussed by using extending the propagation equation to Riemann-Cartan spacetimes instead of treating it in purely Riemannian spaces. The parameter of Lorentz violation is shown to be proportional to the axial torsion vector which allows us to place a limit on cosmological background torsion from the Lorentz violation constraint which is given by $ 10^{-33} eV <|S^{\\mu}| < 10^{-32} eV$ where $|S^{\\mu}|$ is the axial torsion vector.
Extreme Supernova Models for the Superluminous Transient ASASSN-15lh
Chatzopoulos, E; Vinko, J; Nagy, A P; Wiggins, B K; Even, W P
2016-01-01
The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss about the lack of interaction features in the observed spectra. We find that ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun supernova interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the fin...
Generalized Lorentz invariance with an invariant energy scale
Magueijo, J; Magueijo, Joao; Smolin, Lee
2003-01-01
The hypothesis that the Lorentz transformations may be modified at Planck scale energies is further explored. We present a general formalism for theories which preserve the relativity of inertial frames with a non-linear action of the Lorentz transformations on momentum space. Several examples are discussed in which the speed of light varies with energy and elementary particles have a maximum momenta and/or energy. Energy and momentum conservation are suitably generalized and a proposal is made for how the new transformation laws apply to composite systems. We then use these results to explain the ultra high energy cosmic ray anomaly and we find a form of the theory that explains the anomaly, and leads also to a maximum momentum and a speed of light that diverges with energy. We finally propose that the spatial coordinates be identified as the generators of translation in Minkowski spacetime. In some examples this leads to a commutative geometry, but with an energy dependent Planck constant.
Superluminal two-color light in a multiple Raman gain medium
Kudriašov, V.
2014-09-17
We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.
Qu, Tianliang; Yang, Kaiyong; Han, Xiang; Wu, Suyong; Huang, Yun; Luo, Hui
2014-01-01
We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~10(3); while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors.
Energy Technology Data Exchange (ETDEWEB)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).
DEFF Research Database (Denmark)
Peters, Terri
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
DEFF Research Database (Denmark)
Peters, Terri
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
Lorentz violation. Motivation and new constraints
Energy Technology Data Exchange (ETDEWEB)
Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-09-15
We review the main theoretical motivations and observational constraints on Planck scale sup-pressed violations of Lorentz invariance. After introducing the problems related to the phenomenological study of quantum gravitational effects, we discuss the main theoretical frameworks within which possible departures from Lorentz invariance can be described. In particular, we focus on the framework of Effective Field Theory, describing several possible ways of including Lorentz violation therein and discussing their theoretical viability. We review the main low energy effects that are expected in this framework. We discuss the current observational constraints on such a framework, focusing on those achievable through high-energy astrophysics observations. In this context we present a summary of the most recent and strongest constraints on QED with Lorentz violating non-renormalizable operators. Finally, we discuss the present status of the field and its future perspectives. (orig.)
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...
Grasland-Mongrain, Pol
2014-01-01
The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...
The Scientific Correspondence of H A Lorentz
Kox, AJ
2008-01-01
Presents a selection of more than 400 letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death.
Recent Progress in Lorentz and CPT Violation
Kostelecky, Alan
2016-01-01
This contribution to the CPT'16 meeting briefly highlights some of the recent progress in the phenomenology of Lorentz and CPT violation, with emphasis on research performed at the Indiana University Center for Spacetime Symmetries.
Antimatter-Gravity Couplings, and Lorentz Symmetry
Tasson, Jay D
2015-01-01
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
On Lorentz invariants in relativistic magnetic reconnection
Yang, Shu-Di; Wang, Xiao-Gang
2016-08-01
Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.
Probes of Lorentz Violation in Neutrino Propagation
Ellis, Jonathan Richard; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S
2008-01-01
It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R. S.; Sobreiro, Rodrigo F.
2016-12-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R S
2016-01-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the BRST formalism within of the algebraic renormalization approach, reducing our study to a cohomology problem. Since that this approach is independent of the renormalization scheme, the results here obtained are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted
2008-01-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe the arguments leading to that conclusion. We suggest the implication that Lorentz symmetry should be viewed as an emergent property of the macroscopic world, required by the second law of black hole thermodynamics.
Macroscopic Objects, Intrinsic Spin, and Lorentz Violation
Atkinson, David W; Tasson, Jay D
2013-01-01
The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.
Lorentz violation and Condensed Matter Physics
Ajaib, Muhammad Adeel
2014-01-01
We present heuristic arguments that hint to a possible connection of Lorentz violation with observed phenomenon in condensed matter physics. Various references from condensed matter literature are cited where operators in the Standard Model Extension (SME) appear to be enhanced. Based on this we propose that, in the non-relativistic limit, Lorentz violation in the context of the SME exhibits itself in various condensed matter systems.
Hadronic Lorentz violation in chiral perturbation theory
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
Test of Lorentz symmetry with trapped ions
Pruttivarasin, Thaned
2016-05-01
The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).
Baker, W.R.
1959-08-25
Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2016-01-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would manifest an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with $q$-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is $E_*>10^{14}\\,\\text{GeV}$ (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value $1/2$. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not...
Lorentz violations in multifractal spacetimes
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)
2017-05-15
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E{sub *} > 10{sup 14} GeV (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E{sub *} > 10{sup 17} GeV or greater. (orig.)
Lorentz violations in multifractal spacetimes
Calcagni, Gianluca
2017-05-01
Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E_{*}>10^{14} {GeV} (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E_{*}> 10^{17} {GeV} or greater.
Cosmic rays and the search for a Lorentz Invariance Violation
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2008-11-15
This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors {gamma} {proportional_to} O(10{sup 11}). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous {gamma}-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic {gamma}-rays. For multi TeV {gamma}-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects
Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity
Chang, Zhe; Wang, Sai; 10.1016/j.physletb.2012.03.002
2012-01-01
Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. {\\bf 107}, 181803 (2011)] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality (arXiv:1110.6673[hep-ph]). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this paper, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.
Superluminal solutions to the Klein-Gordon equation and a causality problem
Borghardt, A A; Karpenko, D Y
2003-01-01
We present a new axially symmetric monochromatic free-space solution to the Klein-Gordon equation propagating with a superluminal group velocity and show that it gives rise to an imaginary part of the causal propagator outside the light cone. We address the question about causality of the spacelike paths and argue that the signal with a well-defined wavefront formed by the superluminal modes would propagate in vacuum with the light speed.
Bessel-X waves: superluminal propagation and the Minkowski space-time
Mugnai, D.
2006-01-01
Superluminal behavior has been extensively studied in recent years, especially with regard to the topic of superluminality in the propagation of a signal. Particular interest has been devoted to Bessel-X waves propagation, since some experimental results showed that these waves have both phase and group velocities greater that light velocity c. However, because of the lack of an exact definition of signal velocity, no definite answer about the signal propagation (or velocity of information) h...
On the impossibility of superluminal travel: the warp drive lesson
Barceló, Carlos; Liberati, Stefano
2010-01-01
The question of whether it is possible or not to surpass the speed of light is already centennial. The special theory of relativity took the existence of a speed limit as a principle, the light postulate, which has proven to be enormously predictive. Here we discuss some of its twists and turns when general relativity and quantum mechanics come into play. In particular, we discuss one of the most interesting proposals for faster than light travel: warp drives. Even if one succeeded in creating such spacetime structures, it would be still necessary to check whether they would survive to the switching on of quantum matter effects. Here, we show that the quantum back-reaction to warp-drive geometries, created out of an initially flat spacetime, inevitably lead to their destabilization whenever superluminal speeds are attained. We close this investigation speculating the possible significance of this further success of the speed of light postulate.
"OPERA superluminal neutrinos explained by spontaneous emission and stimulated absorption"
Torrealba, Rafael
2011-01-01
In this work it is shown, that for short 3ns neutrino pulses reported by OPERA, a relativistic shape deforming effect of the neutrino distribution function due to spontaneous emission, produces an earlier arrival of 65.8ns in agreement with the reported 62.1ns\\pm 3.7ns, with a RMS of 16.4ns explaining the apparent superluminal effect. It is also shown, that early arrival of long 10500ns neutrinos pulse to Gran Sasso, by 57.8ns with respect to the speed of light, could be explained by a shape deforming effect due to a combination of stimulated absorption and spontaneous emission, while traveling by the decay tunnel that acts as a LASER tube.
SN 2015bn: a detailed multi-wavelength view of a nearby superluminous supernova
Nicholl, M; Smartt, S J; Margutti, R; Kamble, A; Alexander, K D; Chen, T -W; Inserra, C; Arcavi, I; Blanchard, P K; Cartier, R; Chambers, K C; Childress, M J; Chornock, R; Cowperthwaite, P S; Drout, M; Flewelling, H A; Fraser, M; Gal-Yam, A; Galbany, L; Harmanen, J; Holoien, T W -S; Hosseinzadeh, G; Howell, D A; Huber, M E; Jerkstrand, A; Kankare, E; Kochanek, C S; Lin, Z -Y; Lunnan, R; Magnier, E A; Maguire, K; McCully, C; McDonald, M; Metzger, B D; Milisavljevic, D; Mitra, A; Reynolds, T; Saario, J; Shappee, B J; Smith, K W; Valenti, S; Villar, V A; Waters, C; Young, D R
2016-01-01
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at $z=0.1136$. As well as being one of the closest SLSNe, it is intrinsically brighter ($M_U\\approx-23.1$) and in a fainter host ($M_B\\approx-16.0$) than other SLSNe at $z\\sim0.1$. We collected the most extensive dataset for an SLSN I to date, including spectroscopy and UV to NIR photometry from $-$50 to +250 d from maximum light. SN 2015bn is a slowly-declining SLSN, but exhibits surprising undulations in the light curve on a timescale of 30-50 d, which are more pronounced in the UV. The spectrum resembles other SLSNe, but our well-sampled data reveal extraordinarily slow evolution except for a rapid transformation between +7 and +30 d. We detect weak features that we tentatively suggest may be hydrogen and helium. At late times, blue colours and a trio of lines around 6000 \\AA\\ seem to distinguish slowly-declining SLSNe from faster ones. We derive physical properties i...
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J D
2016-01-01
Field models with $n$ extra spatial dimensions have a larger $SO(1,3+n)$ Lorentz symmetry which is broken down to the standard $SO(1,3)$ four dimensional symmetry by the compactification process. By considering all Lorentz violating operators in a $5D$ supersymmetric Wess-Zumino mo\\-del, which otherwise conserve standard Poincare invariance in four dimensions, we show that Supersymmetry can be restored upon a simple deformation of the supersymmetric transformations. However, Supersymmetry shall not be preserved in the effective $4D$ theory that arises after compactification when the $5D$ Lorentz violating operators do not preserve $Z_2: y\\rightarrow -y$ bulk parity. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-12-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the standard model, allow for neutrino oscillations that depend on the neutrino’s direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Because of the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by 3 orders of magnitude with respect to limits set by other experiments.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Energy Technology Data Exchange (ETDEWEB)
IceCube; etal, Abbasi, R,
2010-11-11
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillationmodels, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. Adiscrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improveconstraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Singh, K; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P
2010-01-01
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.
Spontaneous Breaking of Lorentz Symmetry by Ghost Condensation in Perturbative Quantum Gravity
Faizal, Mir
2011-01-01
In this paper we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci-Ferrari gauge. We will also analyse modification of the BRST and the anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and the modified anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.
Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity
Faizal, Mir
2011-10-01
In this paper, we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci-Ferrari gauge. We will also analyse the modification of the BRST and anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.
Lorentz covariance of loop quantum gravity
Rovelli, Carlo
2010-01-01
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the "projected" spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleuler formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are preciseley in K on the boundary. This c...
Why is High Energy Physics Lorentz Invariant?
Afshordi, Niayesh
2015-01-01
Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...
Baryogenesis in Lorentz-violating gravity theories
Sakstein, Jeremy; Solomon, Adam R.
2017-10-01
Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-order coupling of such vectors to U (1)-symmetric scalars can naturally give rise to baryogenesis in a manner akin to the Affleck-Dine mechanism. We calculate the cosmology of this new mechanism, demonstrating that a net B - L can be generated in the early Universe, and that the resulting baryon-to-photon ratio matches that which is presently observed. We discuss constraints on the model using solar system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories can give rise to the observed matter-antimatter asymmetry without violating any current bounds.
Looking for Lorentz violation with gravitational waves
Schreck, M
2016-01-01
The current letter has been inspired by the recent direct detection of gravitational waves reported by Advanced LIGO. In this context, a particular Lorentz-violating framework for classical, massive particles is on the focus. The latter is characterized by a preferred direction in spacetime comprised of CPT-odd components with mass dimension 1. Curvature effects in spacetime, which are caused by a propagating gravitational wave, are assumed to deform the otherwise constant background field. In accordance with spontaneous Lorentz violation, a particular choice for the vector field is taken, which was proposed elsewhere. The geodesic equations for a particle that is subject to this type of Lorentz violation are obtained. Subsequently, their numerical solutions are computed and discussed. The particular model considered leads to changes in the particle trajectory, which interferometric gravitational-wave experiments could be sensitive for. Since such effects have not been observed in the gravitational-wave event...
Infrared Lorentz violation and slowly instantaneous electricity.
Dvali, Gia; Papucci, Michele; Schwartz, Matthew D
2005-05-20
We study a modification of electromagnetism which violates Lorentz invariance at large distances. In this theory, electromagnetic waves are massive, but the static force between charged particles is Coulomb, not Yukawa. At very short distances the theory looks just like QED. But for distances larger than 1/m the massive dispersion relation of the waves can be appreciated, and the Coulomb force can be used to communicate faster than the speed of light. In fact, electrical signals are transmitted instantly, but take a time approximately 1/m to build up to full strength. After that, undamped oscillations of the electric field are set in and continue until they are dispersed by the arrival of the Lorentz-obeying part of the transmission. Experimental constraints imply that the Compton wavelength of the photon may be as small as 6000 km. This bound is weaker than for a Lorentz-invariant mass, essentially because the Coulomb constraint is removed.
Velocity in Lorentz-Violating Fermion Theories
Altschul, B D; Colladay, Don
2004-01-01
We consider the role of the velocity in Lorentz-violating fermionic quantum theory, especially emphasizing the nonrelativistic regime. Information about the velocity will be important for the kinematical analysis of scattering and other problems. Working within the minimal standard model extension, we derive new expressions for the velocity. We find that generic momentum and spin eigenstates may not have well-defined velocities. We also demonstrate how several different techniques may be used to shed light on different aspects of the problem. A relativistic operator analysis allows us to study the behavior of the Lorentz-violating Zitterbewegung. Alternatively, by studying the time evolution of Gaussian wave packets, we find that there are Lorentz-violating modifications to the wave packet spreading and the spin structure of the wave function.
Testing Lorentz invariance in weak decays
Energy Technology Data Exchange (ETDEWEB)
Sytema, Auke; Dijck, Elwin; Hoekstra, Steven; Jungmann, Klaus; Mueller, Stefan; Noordmans, Jacob; Onderwater, Gerco; Pijpker, Coen; Timmermans, Rob; Vos, Keri; Willmann, Lorenz; Wilschut, Hans [Van Swinderen Institute, University of Groningen (Netherlands)
2015-07-01
Lorentz invariance is the invariance of physical laws under orientations and boosts. It is a key assumption in Special Relativity and the Standard Model of Particle Physics. Several theories unifying General Relativity and Quantum Mechanics allow breaking of Lorentz invariance. At the Van Swinderen Institute in Groningen a theoretical and experimental research program was started to study Lorentz invariance violation (LIV) in weak interactions. The theoretical work allowed a systematic approach to LIV in weak decays. Limits could be set on parameters that quantify LIV. A novel beta decay experiment was designed which tests rotational invariance with respect to the orientation of nuclear spin. In particular, using the isotope {sup 20}Na, the decay rate dependence on the nuclear polarization direction was measured. Searching for sidereal variations, systematic errors can be suppressed. The result of the experiment is presented.
Test of Lorentz Invariance with Atmospheric Neutrinos
:,; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tanaka, H; Tomura, T; Ueno, K; Wendell, R A; Yokozawa, T; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; McLachlan, T; Nishimura, Y; Richard, E; Okumura, K; Labarga, L; Fernandez, P; Gustafson, J; Kearns, E; Raaf, J L; Berkman, S; Tanaka, H A; Tobayama, S; Stone, J L; Sulak, L R; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Weatherly, P; Renshaw, A; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Kikawa, T; Minamino, A; Murakami, A; Nakaya, T; Suzuki, K; Takahashi, S; Tateishi, K; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yamaguchi, R; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Suda, Y; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Connolly, K; Wilkes, R J
2014-01-01
A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the non-perturbative Standard Model Extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the $e\\mu$, $\\mu\\tau$, and $e\\tau$ sectors, improving the existing limits by up to seven orders of magnitude and setting limits for the first time in the neutrino $\\mu\\tau$ sector of the SME.
Discussions of the Quantum Superluminality%论量子超光速性
Institute of Scientific and Technical Information of China (English)
黄志洵
2012-01-01
A.Einstein held an opposite attitude towards Quantum Mechanics(QM),which first appeared in 1926 and reached the top in 1935 when he,together with B.Podolsky,N.Rosen published the EPR thesis and it promotes science development in an opposite side.The EPR thesis is based on Special Relativity(SR).Both SR and EPR deny the possibility of faster-than-light.But QM allows the existence of faster-than-light,agreeing to non-locality of QM is the premise of researching in faster-than light.In 1965,during the interview John Bell confided that his unequality was the outcome of EPR thinking,which denied ultra-space effect under EPR thesis,conditions resulted in quite peculiar correlations that QM predicted.The results of Aspect’s experiments were within expectation that QM has never been wrong now and will not in the future despite of strict requirements.Undoubtedly,the experiments proved that Einstein’s ideas didn’t hold water.In Bell’s opinion,to get rid of the difficulties after the announcement of the Aspect’s experiments,it intends to go back to Lorentz and Poincarè,and assume that ether existed as a referential system in which matters went faster than light.Bell repeatedly pointed out that be wanted to go back to ether because EPR had predicted there was something faster than light in the background.…… Since 1992,it is reported that there have been many successful faster than light experiments.Some of them are based on quantum tunneling effect;some are based on classic physical phenomena such as evanescent waves,anomalous dispersion.And in 2008,D.Salart et.al.performed a experiment using entangled photons between two villages separated by 18km.In conclusion,the speed of the influence of quantum entanglement would have to exceed than of light by at least four orders of magnitude,i.e.10 4 c ~ 10 7 c.Anyway,this experiment was the summation of discussions about the EPR thesis for a long time.For the past 25 years Quantum Superluminality was one subject of my
Comments on Holography with Broken Lorentz Invariance
Gordeli, Ivan
2009-01-01
Recently a family of solutions of the Einstein equations in backgrounds with broken Lorentz invariance was found ArXiv:0712.1136. We show that the gravitational solution recently obtained by Kachru, Liu and Mulligan in ArXiv:0808.1725 is a part of the former solution which was derived earlier in the framework of extra dimensional theories. We show how the energy-momentum and Einstein tensors are related and establish a correspondence between parameters which govern Lorentz invariance violation. At the end we speculate on relations between the RG flow of a boundary theory and asymptotic behavior of gravitational solutions in the bulk.
Lorentz violation in simple QED processes
de Brito, G P; Kroff, D; Malta, P C; Marques, C
2016-01-01
We determine the effect of a CPT-even and Lorentz violating non-minimal coupling on the differential cross sections for some of the most important tree-level processes in QED, namely, Compton and Bhabha scatterings, as well as electron-positron annihilation. Experimental limits constraining the allowed deviation of the differential cross sections relative to pure QED allow us to place upper bounds on the Lorentz violating parameters. A constraint based on the decay rate of para-positronium is also obtained.
Einstein-Yang-Mills-Lorentz Black Holes
Cembranos, Jose A R
2015-01-01
Different black hole solutions of the coupled Einstein-Yang-Mills equations are well known from long time. They have attracted much attention from mathematicians and physicists from their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
Testing Lorentz Symmetry using Chiral Perturbation Theory
Noordmans, J P
2016-01-01
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
Particle-Dependent Deformations of Lorentz Symmetry
Directory of Open Access Journals (Sweden)
Giovanni Amelino-Camelia
2012-07-01
Full Text Available I report results suggesting that it is possible to introduce laws of relativistic kinematics endowing different types of particles with suitably different deformed-Lorentz-symmetry properties. I also consider some possible applications of these results, among which I highlight those relevant for addressing a long-standing challenge in the description of composite particles, such as atoms, within quantum-gravity-inspired scenarios with Planck-scale deformations of Lorentz symmetry. Some of the new elements here introduced in the formulation of relativistic kinematics appear to also provide the starting point for the development of a correspondingly novel mathematical formulation of spacetime-symmetry algebras.
Lorentz-violating electrodynamics and the cosmic microwave background.
Kostelecký, V Alan; Mewes, Matthew
2007-07-06
Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.
The Lorentz Theory of Electrons and Einstein's Theory of Relativity
Goldberg, Stanley
1969-01-01
Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…
On the Origin of Gravitational Lorentz Covariance
Khoury, Justin; Tolley, Andrew J
2013-01-01
We provide evidence that general relativity is the unique spatially covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector.
Testing Lorentz and CPT invariance with neutrinos
Diaz, Jorge S
2016-01-01
Neutrino experiments can be considered sensitive tools to test Lorentz and CPT invariance. Taking advantage of the great variety of neutrino experiments, including neutrino oscillations, weak decays, and astrophysical neutrinos, the generic experimental signatures of the breakdown of these fundamental symmetries in the neutrino sector are presented.
Deviations from Fick's law in Lorentz gases
Lowe, C.P.; Frenkel, D.; Hoef, M.A. van der
1997-01-01
We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this
Emergent Lorentz invariance in fermion sector
Directory of Open Access Journals (Sweden)
Kharuk Ivan
2016-01-01
Full Text Available By using holographic description of strongly interacting field theories we show that under common assumptions Lorentz invariance emerges as an effective low–energy symmetry of the theory, despite fundamental theory at hight energies being Lorentz–violating. We consider fermions sector and show that the notion of chirality also automatically arises in the infrared.
Deviations from Fick's law in Lorentz gases
Lowe, C.P.; Frenkel, D.; Hoef, M.A. van der
1997-01-01
We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this
Extra dimensions and violations of Lorentz symmetry
Overduin, James M
2016-01-01
We use experimental limits on Lorentz violation to obtain new constraints on Kaluza-Klein-type theories in which the extra dimensions may be large but do not necessarily have units of length. The associated variation in fundamental quantities such as rest mass must occur slowly, on cosmological scales.
Testing Lorentz invariance in orbital electron capture
Vos, K. K.; Wilschut, H. W.; Timmermans, R. G. E.
2015-01-01
Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear beta decay [Noordmans, Wilschut, and Timmermans, Phys. Rev. C 87, 055502 (2013)]. From experiments on forbidden beta-decay transitions, strong limits in the range of 10(-6) to 10(-8) were obta
Lorentz Spengler's descriptions of chitons (Mollusca: Polyplacophora)
Kaas, P.; Knudsen, J.
1992-01-01
The present paper deals with an important Danish paper on the Polyplacophora, published in 1797 by Lorentz Spengler: Udförlig Beskrivelse over det mangeskallede Konkylie-Slaegt, af Linnaeus kaldet Chiton; med endeel nye Arter og Varieteter. -Skrivter af Naturhistorie-Selskabet, 4e Bind, Ie Hefte, VI
Lorentz Violating Julia-Toulouse Mechanism
Gaete, P; Gaete, Patricio; Wotzasek, Clovis
2007-01-01
We propose a new Lorentz invariant violating extension for the pure photonic sector of the Standard Model due to the condensation of topological defects in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
A sub-solar metallicity is required for superluminous supernova progenitors
Chen, T -W; Yates, R M; Nicholl, M; Krühler, T; Schady, P; Dennefeld, M; Inserra, C
2016-01-01
Host galaxy properties provide strong constraints on the stellar progenitors of superluminous supernovae. By comparing a sample of 18 low-redshift superluminous supernova hosts to a volume-limited galaxy population in the local Universe, we show that sub-solar metallici- ties seems to be a requirement. All superluminous supernovae in hosts with high measured gas-phase metallicities are found to explode at large galactocentric radii, indicating that the metallicity at the explosion site is likely lower than the integrated host value. We also confirm that high specific star-formation rates are a feature of superluminous supernova host galaxies, but interpret this as simply a consequence of the anti-correlation between gas-phase metallic- ity and specific star-formation rate and the requirement of on-going star formation to produce young, massive stars greater than ~ 10-20 M_sun . Based on our sample, we propose an upper limit of ~ 0.5 Z_sun for forming superluminous supernova progenitors (assuming an N2 metal- ...
Jiang, Qichang; Zhang, Yan; Wang, Dan; Ahrens, Sven; Zhang, Junxiang; Zhu, Shiyao
2016-10-17
We report the experimental manipulation of the group velocities of reflected and transmitted light pulses in a degenerate two-level atomic system driven by a standing wave, which is created by two counter-propagating light beams of equal frequencies but variable amplitudes. It is shown that the light pulse is reflected with superluminal group velocity while the transmitted pulse propagates from subluminal to superluminal velocities via changing the power of the backward coupling field. We find that the simultaneous superluminal light reflection and transmission can be reached when the power of the backward field becomes closer or equal to the forward power, in this case the periodical absorption modulation for photonic structure is established in atoms. The theoretical discussion shows that the anomalous dispersion associated with a resonant absorption dip within the gain peak due to four-wave mixing leads to the superluminal reflection, while the varying dispersion from normal to anomalous at transparency, transparency within absorption, and electromagnetically induced absorption windows leads to the subluminal to superluminal transmission.
Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons
Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.
2017-07-01
Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.
Super-luminous supernovae: 56Ni power versus magnetar radiation
Dessart, Luc; Waldman, Roni; Livne, Eli; Blondin, Stephane
2012-01-01
Much uncertainty surrounds the origin of super-luminous supernovae (SNe). Motivated by the discovery of the Type Ic SN2007bi, we study its proposed association with a pair-instability SN (PISN). We compute stellar-evolution models for primordial ~200Msun stars, simulating the implosion/explosion due to the pair-production instability, and use them as inputs for detailed non-LTE time-dependent radiative-transfer simulations that include non-local energy deposition and non-thermal processes. We retrieve the basic morphology of PISN light curves from red-supergiant, blue-supergiant, and Wolf-Rayet (WR) star progenitors. Although we confirm that a progenitor 100Msun helium core (PISN model He100) fits well the SN2007bi light curve, the low ratios of its kinetic energy and 56Ni mass to the ejecta mass, similar to standard core-collapse SNe, conspire to produce cool photospheres, red spectra subject to strong line blanketing, and narrow line profiles, all conflicting with SN2007bi observations. He-core models of in...
Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap
Arcavi, Iair; Howell, D Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A; Svirski, Gilad; Gal-Yam, Avishay; Katz, Boaz; McCully, Curtis; Cenko, S Bradley; Lidman, Chris; Sullivan, Mark; Valenti, Stefano; Astier, Pierre; Balland, Cristophe; Carlberg, Ray G; Conley, Alex; Fouchez, Dominique; Guy, Julien; Pain, Reynald; Palanque-Delabrouille, Nathalie; Perrett, Kathy; Pritchet, Chris J; Regnault, Nicolas; Rich, James; Ruhlmann-Kleider, Vanina
2015-01-01
We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not r...
Spectropolarimetry of Superluminous Supernovae: Insight into Their Geometry
Inserra, C.; Bulla, M.; Sim, S. A.; Smartt, S. J.
2016-11-01
We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q - U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.
The Trails of Superluminal Jet Components in 3C 111
Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; Zensus, J. A.
2007-01-01
The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.
The Trails of Superluminal Jet Components in 3C111
Kadler, M; Perucho, M; Kovalev, Y Y; Homan, D C; Agudo, I; Kellermann, K I; Aller, M F; Aller, H D; Lister, M L; Zensus, J A
2008-01-01
In 1996, a major radio flux-density outburst occured in the broad-line radio galaxy 3C111. It was followed by a particularly bright plasma ejection associated with a superluminal jet component, which has shaped the parsec-scale structure of 3C111 for almost a decade. Here, we present results from 18 epochs of Very Long Baseline Array (VLBA) observations conducted since 1995 as part of the VLBA 2 cm Survey and MOJAVE monitoring programs. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than has been possible in other cases: the primary perturbation gives rise to the formation of a leading and a following component, which are interpreted as a forward and a backward-shock. Both components evolve in characteristically different ways and allow us to draw conclusions about the work flow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradien...
Zooming In on the Progenitors of Superluminous Supernovae With HST
Lunnan, R; Berger, E; Rest, A; Fong, W; Scolnic, D; Jones, D; Soderberg, A M; Challis, P M; Drout, M R; Foley, R J; Huber, M E; Kirshner, R P; Leibler, C; Marion, G H; McCrum, M; Milisavljevic, D; Narayan, G; Sanders, N E; Smartt, S J; Smith, K W; Tonry, J L; Burgett, W S; Chambers, K C; Flewelling, H; Kudritzki, R -P; Wainscoat, R J; Waters, C
2014-01-01
We present Hubble Space Telescope rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate densities. We determine the SN locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived star formation rate densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of LGRBs (which are strongly clustered on the brightest regi...
On the nature of Hydrogen-rich Superluminous Supernovae
Inserra, C; Gall, E E E; Leloudas, G; Chen, T -W; Schulze, S; Jerkstarnd, A; Nicholl, M; Anderson, J P; Arcavi, I; Benetti, S; Cartier, R A; Childress, M; Della Valle, M; Flewelling, H; Fraser, M; Gal-Yam, A; Gutierrez, C P; Hosseinzadeh, G; Howell, D A; Huber, M; Kankare, E; Magnier, E A; Maguire, K; McCully, C; Prajs, S; Primak, N; Scalzo, R; Schmidt, B P; Smith, K W; Tucker, B E; Valenti, S; Wilman, M; Young, D R; Yuan, F
2016-01-01
We present observational data for two hydrogen-rich superluminous supernovae (SLSNe), namely SN 2013hx and PS15br. These objects, together with SN 2008es are the only SLSNe showing a distinct, broad H$\\alpha$ feature during the photospheric phase and also do not show any clear sign of interaction between fast moving ejecta and circumstellar shells in their early spectra. Therefore we classify them as SLSN II as distinct from the known class of SLSN IIn. Both transients show a slow decline at later times, and monitoring of SN 2013hx out to 300 days after explosion indicates that the luminosity in this later phase does have a contribution from interaction. We detect strong, multi-component H$\\alpha$ emission at 240 days past maximum which we interpret as an indication of interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to some bright type II (or type IIL) supernovae, although they have much higher luminosity and evo...
A cannonball model of gamma-ray bursts superluminal signatures
Dar, Arnon; Dar, Arnon; Rujula, Alvaro De
2000-01-01
Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...
Spectropolarimetry of superluminous supernovae: insight into their geometry
Inserra, C; Sim, S A; Smartt, S J
2016-01-01
We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova at z=0.1136, namely SN 2015bn. The transient shows significant polarization at both the observed epochs: one 24 days before maximum light in the rest-frame, and the subsequent at 27 days after peak luminosity. Analysis of the Q-U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axi-symmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarisation is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarisation at the second epoch is a consequence of the increase in the asphericity of the ...
Astronomy. ASASSN-15lh: A highly super-luminous supernova.
Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R
2016-01-15
We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.
Long-duration superluminous supernovae at late times
Jerkstrand, A; Inserra, C; Nicholl, M; Chen, T -W; Krühler, T; Sollerman, J; Taubenberger, S; Gal-Yam, A; Kankare, E; Maguire, K; Fraser, M; Valenti, S; Sullivan, M; Cartier, R; Young, D R
2016-01-01
We present nebular-phase observations and spectral models of Type Ic superluminous supernovae. LSQ14an and SN 2015bn both display late-time spectra similar to SN 2007bi, and the class shows strong similarity with broad-lined Type Ic SNe such as SN 1998bw. Near-infrared observations of SN 2015bn at +315d show a strong Ca II triplet, O I 9263, O I 1.13 micron and Mg I 1.50 micron, but no strong He, Si, or S emission. The high Ca II NIR/[Ca II] 7291, 7323 ratio of 2 indicates a high electron density of n_e >~ 10^8 cm^{-3}. Spectral models of oxygen-zone emission are investigated to put constraints on the emitting region. Models require M(O) >~ 10 Msun to produce enough [O I] 6300, 6364 luminosity to match observed levels, irrespective of the powering situation and the density. This is an argument against shell collisions from pair-instability pulsations for explaining the powering, as these shells are limited to a few solar masses in published models. The high oxygen-zone mass, supported by high estimated magnes...
The Volumetric Rate of Superluminous Supernovae at z~1
Prajs, S; Smith, M; Levan, A; Karpenka, N V; Edwards, T D P; Walker, C R; Wolf, W M; Balland, C; Carlberg, R; Howell, A; Lidman, C; Pain, R; Pritchet, C; Ruhlmann-Kleider, V
2016-01-01
We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z~1, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically-identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et.al. (2010) and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91 (+76/-36) SNe/Yr/Gpc^3 at a volume-weighted redshift of z=1.13. This is equivalent to 2.2 (+1.8/-0.9) x10^-4 of the volumetric core collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formati...
Rates of Superluminous Supernovae at z~0.2
Quimby, Robert M; Akerlof, Car; Wheeler, J Craig
2013-01-01
We calculate the volumetric rate of superluminous supernovae (SLSNe) based on 5 events discovered with the ROTSE-IIIb telescope. We gather light curves of 19 events from the literature and our own unpublished data and employ crude k-corrections to constrain the pseudo-absolute magnitude distributions in the rest frame ROTSE-IIIb (unfiltered) band pass for both the hydrogen poor (SLSN-I) and hydrogen rich (SLSN-II) populations. We find that the peak magnitudes of the available SLSN-I are narrowly distributed ($M = -21.7 \\pm 0.4$) in our unfiltered band pass and may suggest an even tighter intrinsic distribution when the effects of dust are considered, although the sample may be skewed by selection and publication biases. The presence of OII features near maximum light may uniquely signal a high luminosity event, and we suggest further observational and theoretical work is warranted to assess the possible utility of such SN 2005ap-like SLSN-I as distance indicators. Using the pseudo-absolute magnitude distribut...
RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP
Energy Technology Data Exchange (ETDEWEB)
Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others
2016-03-01
We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.
What do the remnants of superluminous supernovae look like?
Leloudas, G.
2016-06-01
The remnants of core-collapse supernovae often present significant asymmetries while those of thermonuclear supernovae are, more or less, spherically symmetric. As superluminous supernovae (SLSN) do not occur in Milky Way-type galaxies (they prefer metal-poor starburst dwarfs), our chances of studying directly a SLSN remnant are very limited, except perhaps in the Magellanic clouds. Therefore, the only way of probing the SLSN geometry, and thus identifying potential SLSN remnant candidates, is through polarimetry of the explosions themselves. I will present the first polarimetric observations of SLSNe obtained through a dedicated ToO program at the VLT. LSQ14mo is a SLSN-I that showed only a very limited degree of polarisation (P = 0.52%), which corresponds to an upper limit of 10% in the photosphere asphericity. In addition, this signal can be entirely due to interstellar polarisation in the host galaxy. This is perhaps surprising as the leading models for H-poor SLSNe involve a magnetar or CSM interaction, i.e. configurations that are not expected to be spherically symmetric. Observations of a SLSN-II yielded a more significant degree of polarisation, while preliminary analysis for a SLSN-R reveals similarly low levels of asphericity as for LSQ14mo.
Macke, Bruno; Ségard, Bernard
2016-09-01
In a recent theoretical article [S.H. Kazemi, S. Ghanbari, M. Mahmoudi, Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.
Observation of image pair creation and annihilation from superluminal scattering sources
Clerici, Matteo; Warburton, Ryan E; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele
2015-01-01
The invariance of the speed of light implies a series of consequences related to our perception of simultaneity and of time itself. Whilst these consequences are experimentally well studied for subluminal speeds, the kinematics of superluminal motion lack direct evidence. Using high temporal resolution imaging techniques, we demonstrate that if a source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backwards. If the source changes its speed, crossing the interface between sub- and super-luminal propagation, we observe image pair annihilation and creation. These results show that it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone.
Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman
2015-05-01
A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.
Macke, Bruno
2016-01-01
In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.
Search for anisotropic Lorentz invariance violation with {\\gamma}-rays
Kislat, Fabian
2015-01-01
While Lorentz invariance, the fundamental symmetry of Einstein's theory of General Relativity, has been tested to a great level of detail, Grand Unified Theories that combine gravity with the other three fundamental forces may result in a violation of Lorentz symmetry at the Planck scale. These energies are unattainable experimentally. However, minute deviations from Lorentz invariance may still be present at much lower energies. These deviations can accumulate over large distances, making astrophysical measurements the most sensitive tests of Lorentz symmetry. One effect of Lorentz invariance violation is an energy dependent photon dispersion of the vacuum resulting in differences of the light travel time from distant objects. The Standard-Model Extension (SME) is an effective theory to describe the low-energy behaviour of a more fundamental Grand Unified Theory, including Lorentz and CPT violating terms. In the SME the Lorentz violating operators can in part be classified by their mass-dimension d, with the...
SN 2015BN: A Detailed Multi-wavelength View of a Nearby Superluminous Supernova
Nicholl, M.; Berger, E.; Smartt, S. J.; Margutti, R.; Kamble, A.; Alexander, K. D.; Chen, T.-W.; Inserra, C.; Arcavi, I.; Blanchard, P. K.; Cartier, R.; Chambers, K. C.; Childress, M. J.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Flewelling, H. A.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Harmanen, J.; Holoien, T. W.-S.; Hosseinzadeh, G.; Howell, D. A.; Huber, M. E.; Jerkstrand, A.; Kankare, E.; Kochanek, C. S.; Lin, Z.-Y.; Lunnan, R.; Magnier, E. A.; Maguire, K.; McCully, C.; McDonald, M.; Metzger, B. D.; Milisavljevic, D.; Mitra, A.; Reynolds, T.; Saario, J.; Shappee, B. J.; Smith, K. W.; Valenti, S.; Villar, V. A.; Waters, C.; Young, D. R.
2016-07-01
We present observations of SN 2015bn (=PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter ({M}U≈ -23.1) and in a fainter galaxy ({M}B≈ -16.0) than other SLSNe at z˜ 0.1. We used this opportunity to collect the most extensive data set for any SLSN I to date, including densely sampled spectroscopy and photometry, from the UV to the NIR, spanning -50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a ≳ 10 M {}⊙ stripped progenitor exploding with ˜ {10}51 erg kinetic energy, forming a magnetar with a spin-down timescale of ˜20 days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario—interaction with ˜20 M {}⊙ of dense, inhomogeneous circumstellar material—can be tested with continuing radio follow-up.
BPS Lorentz-violating vortex solutions
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica; Hora, E. da [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Fisica
2011-07-01
In this work, we deal with the construction of static Bogomol'nyi-Prasad-Sommerfield (BPS) rotationally symmetric configurations on the dimensional CPT-even Lorentz-breaking photonic sector of the Standard Model Extension (SME). The main objective of this presentation is to show the possibility of obtaining such BPS solutions, even in the presence of a Lorentz-violating background. A secondary objective is to analyze the effects of this background on such topologically non-trivial BPS configurations. In order to obtain these results, we deal with some specific components of Lorentz-violating field, handling with the static Euler-Lagrange equation of motion to gauge field, from which we fix temporal gauge (absence of electric field) as a proper gauge choice. Also, considering this equation, we consistently determine an interesting configuration (discarding non-interesting ones) to the Lorentz-breaking sector. Using this configuration and the standard rotationally symmetric vortex Ansatz (which describes the behaviors of Higgs and gauge fields via two profile functions, g(r) and a(r), respectively), we construct a rotationally symmetric expression to the energy density of the system. To obtain BPS solutions, we rewrite this expression in order to have static vortex solutions satisfying a set of first order differential equations (BPS ones). The existence of such solutions is strongly constrained by a relation between some parameters of the model, including the Lorentz-breaking one. Naturally, we show that the total energy of these BPS solutions is proportional to their magnetic flux, which is quantized according to their winding number. Using suitable boundary conditions (near the origin and asymptotically), we numerically integrate the BPS equations (by means of the shooting method). By this way, we obtain solutions for some physical quantities (Higgs field, magnetic field and energy density) for several values of the Lorentz-violating parameters. From these
Superluminal motions? A bird-eye view of the experimental situation
Recami, E
2001-01-01
In this article (after some brief theoretical considerations) a bird-eye view is presented -with the help of nine figures- of the various experimental sectors of physics in which Superluminal motions seem to appear. In particular, a panorama is presented of the experiments with evanescent waves and/or tunnelling photons, and with the "localized Superluminal solutions" to the Maxwell equations (e.g., with the so-called X-shaped ones). The present paper is sketchy, but is followed by a large enough bibliography to allow the interested reader deepening the preferred topic.
The K\\"all\\'en-Lehmann representation for Lorentz-violating field theory
Potting, Robertus
2011-01-01
We consider field-theoretic models, one consisting purely of scalars, the other also involving fermions, that couple to a set of constant background coupling coefficients transforming as a symmetric observer Lorentz two-tensor. We show that the exact propagators can be cast in the form of a K\\"all\\'en-Lehmann representation. We work out the resulting form of the Feynman propagators and the equal-time field commutators, and derive sum rules for the spectral density functions.
Classical Radiation Reaction Off-Shell Corrections to the Covariant Lorentz Force
Oron, O.; Horwitz, L. P.
2000-01-01
It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham-Lorentz-Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg- Feynman-Schwinger covariant mechanics...
The volumetric rate of superluminous supernovae at z ˜ 1
Prajs, S.; Sullivan, M.; Smith, M.; Levan, A.; Karpenka, N. V.; Edwards, T. D. P.; Walker, C. R.; Wolf, W. M.; Balland, C.; Carlberg, R.; Howell, D. A.; Lidman, C.; Pain, R.; Pritchet, C.; Ruhlmann-Kleider, V.
2017-01-01
We present a measurement of the volumetric rate of superluminous supernovae (SLSNe) at z ˜ 1.0, measured using archival data from the first four years of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We develop a method for the photometric classification of SLSNe to construct our sample. Our sample includes two previously spectroscopically identified objects, and a further new candidate selected using our classification technique. We use the point-source recovery efficiencies from Perrett et al. and a Monte Carlo approach to calculate the rate based on our SLSN sample. We find that the three identified SLSNe from SNLS give a rate of 91^{+76}_{-36} SNe yr-1 Gpc-3 at a volume-weighted redshift of z = 1.13. This is equivalent to 2.2^{+1.8}_{-0.9}× 10^{-4} of the volumetric core-collapse supernova rate at the same redshift. When combined with other rate measurements from the literature, we show that the rate of SLSNe increases with redshift in a manner consistent with that of the cosmic star formation history. We also estimate the rate of ultra-long gamma-ray bursts based on the events discovered by the Swift satellite, and show that it is comparable to the rate of SLSNe, providing further evidence of a possible connection between these two classes of events. We also examine the host galaxies of the SLSNe discovered in SNLS, and find them to be consistent with the stellar-mass distribution of other published samples of SLSNe.
From scale invariance to Lorentz symmetry
Sibiryakov, Sergey
2014-01-01
It is shown that a unitary translationally invariant field theory in (1+1) dimensions satisfying isotropic scale invariance, standard assumptions about the spectrum of states and operators and the requirement that signals propagate with finite velocity possesses an infinite dimensional symmetry given by one or a product of several copies of conformal algebra. In particular, this implies presence of one or several Lorentz groups acting on the operator algebra of the theory.
The Lorentz anomaly via operator product expansion
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Stefan, E-mail: stefan.fredenhagen@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut Am Mühlenberg 1, 14476 Golm (Germany); Hoppe, Jens, E-mail: hoppe@kth.se; Hynek, Mariusz, E-mail: mkhynek@kth.se [Department of Mathematics, Royal Institute of Technology, KTH 100 44 Stockholm (Sweden)
2015-10-15
The emergence of a critical dimension is one of the most striking features of string theory. One way to obtain it is by demanding closure of the Lorentz algebra in the light-cone gauge quantisation, as discovered for bosonic strings more than forty years ago. We give a detailed derivation of this classical result based on the operator product expansion on the Lorentzian world-sheet.
Astroparticle Physics Tests of Lorentz Invariance Violation
Lang, R. G.; de Souza, V.
2017-06-01
Testing Lorentz invariance is essential as it is one of the pillars of modern physics. Moreover, its violation is foreseen in several popular Quantum Gravity models. Several authors study the effects of Lorentz invariance violation (LIV) in the propagation of ultra-high energy cosmic rays. These particles are the most energetic events ever detected and therefore represent a promising framework to test LIV. In this work we present an analytic calculation of the inelasticity for any a + b → c + d interaction using first order perturbation in the dispersion relation that violates Lorentz invariance. The inelasticity can be calculated by solving a third-order polynomial equation containing: a) the kinematics of the interaction, b) the LIV term for each particle and c) the geometry of the interaction. We use the inelasticity we calculate to investigate the proton propagation in the intergalactic media. The photopion production of the proton interaction with the CMB is taken into account using the inelasticity and the attenuation length in different LIV scenarios. We show how the allowed phase space for the photopion production changes when LIV is considered for the interaction. The calculations presented here are going to be extended in order to calculated the modified ultra-high energy cosmic rays spectrum and compare it to the data.
Energy Technology Data Exchange (ETDEWEB)
Alberdi, A.; Gomez, J.L.; Marcaide, J.M.
1993-01-01
We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.
Energy Technology Data Exchange (ETDEWEB)
Radozycki, Tomasz [Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences, College of Sciences, Warsaw (Poland)
2015-09-15
The Lorentz transformation properties of the equal-time bound-state Bethe-Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a 'meson') this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles ('quarks'), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Radożycki, Tomasz, E-mail: t.radozycki@uksw.edu.pl [Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938, Warsaw (Poland)
2015-09-24
The Lorentz transformation properties of the equal-time bound-state Bethe–Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a ‘meson’) this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles (‘quarks’), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties.
Study on the Superluminal Group Velocity in a Coaxial Photonic Crystal
Institute of Scientific and Technical Information of China (English)
LuGuizhen; HuangZhixun; GuanJian
2004-01-01
In this paper, the superluminal group velocity in a coaxial photonic crystal is studied. The simulation of the effective refraction index in coaxial photonic crystal is performed. The group velocity is calculated based on the transmission line equations and compared with experimental results.
Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission
Moriya, Takashi J.; Liu, Zheng-Wei; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert
2015-12-01
We propose that nebular Hα emission, as detected in the Type Ic superluminous supernova iPTF13ehe, stems from matter that is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Hα luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Hα luminosity of iPTF13ehe. We find a stripped mass of 0.1-0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Hα emission, an interaction-powered model is not favored for iPTF13ehe if the Hα emission is from stripped matter. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion formed a massive close binary system. If Type Ic superluminous supernovae generally occur in massive close binary systems, the early brightening observed previously in several Type Ic superluminous supernovae may also be due to the collision with a close companion. Observations of nebular hydrogen emission in future Type Ic superluminous supernovae will enable us to test this interpretation.
DEFF Research Database (Denmark)
CastroTirado, A.J.; Geballe, T.R.; Lund, Niels
1996-01-01
We have obtained K-band IR spectra of the superluminal Galactic source GRS 1915+105 on two different dates. The second spectrum, obtained immediately after a bright X-ray outburst in 1994 September, has shown prominent H and He emission lines. The lines are not Doppler shifted, as are those obser...
Superluminal neutrinos and extra dimensions: constraints from the null energy condition
Gubser, Steven S.
2011-01-01
In light of the recent results from the OPERA collaboration, indicating that neutrinos can travel superluminally, I review a simple extra-dimensional strategy for accommodating such behavior; and I also explain why it is hard in this strategy to avoid violating the null energy condition somewhere in the extra dimensions.
NEW SUPERLUMINAL QUASAR-1633+382 AND THE BLAZAR-GAMMA-RAY CONNECTION
BARTHEL, PD; CONWAY, JE; MYERS, ST; PEARSON, TJ; READHEAD, ACS
1995-01-01
We report detection of superluminal motion in the core of 4C 38.41, associated with the z = 1.814 quasar 1633+382. The dominant nucleus in the similar to 30 kpc triple morphology of the radio source displays a core-jet structure on the milliarcsecond scale, and a jet component is found moving
Observation of image pair creation and annihilation from superluminal scattering sources.
Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele
2016-04-01
The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.
Discussions of the Quantum Superluminality%论量子超光速性
Institute of Scientific and Technical Information of China (English)
黄志洵
2012-01-01
, the experiments proved that Einstein' s ideas didn' t hold water. In Bell' s opinion, to get rid of the difficulties after the announce- ment of the Aspect' s experiments, it intends to go back to Lorentz and Poincare, and assume that ether existed as a referential system in which matters went faster than light. Bell repeatedly pointed out that be wanted to go back to ether because EPR had predicted there was something faster than light in the back- ground. …… Since 1992, it is reported that there have been many successful faster than light experi-ments. Some of them are based on quantum tunneling effect;some are based on classic physical phenome- na such as evanescent waves, anomalous dispersion. And in 2008, D. Salart et. al. performed a experiment using entangled photons between two villages separated by 18km. In conclusion ,the speed of the influence of quantum entanglement would have to exceed than of light by at least four orders of magnitude, i. e. 10^4c 10^7c. Anyway, this experiment was the summation of discussions about the EPR thesis for a long time. For the past 25 years Quantum Superluminality was one subject of my chief study. In 1985 ,we pro- posed the model of quantum potential barrier equivalent circuit. In 1991, we first indicated that there could be the wave velocity vp 〈 0 and vg 〈 0 in the evanescent waves mode of the waveguide below cut off and the book "An Introduction to the Theory of waveguide Below Cut -off " made me get the First Na- tional Scientific and Technology Book Award of China. Moreover, in 2003 we through an experiment in the coaxial photonic crystal, a superluminal group velocity of ( 1.5 - 2.4) c are observed in the stop - band of frequency. In 2005, we suggested the term of General Information Velocity (GIV) ;and in 2010, we sugges- ted the term of Quantum Superluminality ( QS), and also suggested remodel the existing accelerator to dis- cover the superluminal strange electron. Now,this paper discusses some problems of
Lorentz violation in Bhabha scattering at finite temperature
Santos, A. F.; Khanna, Faqir C.
2017-06-01
Corrections to the Bhabha scattering cross section, due to Lorentz violation, at finite temperature are calculated. The vertex interaction between fermions and photons is modified by introducing the Lorentz violation, for the Standard Model extension, from C P T odd nonminimal coupling. The finite temperature corrections are calculated using the thermo field dynamics formalism. The Lorentz violation corrections are presented for zero to high temperatures.
Lorentz symmetry breaking effects on relativistic EPR correlations
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)
Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy
Ando, Shin'ichiro; Mocioiu, Irina
2009-01-01
If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in \
Low Energy Lorentz Violation from Modified Dispersion at High Energies.
Husain, Viqar; Louko, Jorma
2016-02-12
Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.
Looking for Lorentz Violation in Short-Range Gravity
Xu, Rui
2016-01-01
General violations of Lorentz symmetry can be described by the Standard-Model Extension (SME) framework. The SME predicts modifications to existing physics and can be tested in high-precision experiments. By looking for small deviations from Newton gravity, short-range gravity experiments are expected to be sensitive to possible gravitational Lorentz-violation signals. With two group's short-range gravity data analyzed recently, no nonminimal Lorentz violation signal is found at the micron distance scale, which gives stringent constraints on nonminimal Lorentz-violation coefficients in the SME.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua
2016-01-01
The prospects are explored for testing Lorentz- and CPT-violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to six, and we discuss some of its properties. The theory is used to derive Lorentz- and CPT-violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and CPT violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Prokopidis, Konstantinos; Kalialakis, Christos
2014-10-01
It is proposed that a recently used ad hoc modified Lorentz dielectric function for metals can be physically interpreted via the Lorentz-Dirac force. The Lorentz-Dirac force considers the radiation reaction of electrons, an effect that is ignored in classical dispersion relationships. A suitable reduced order form of the Lorentz-Dirac force that does not suffer from pre-acceleration and runaway artifacts is employed in the derivation of the modified dispersion model. The frequency characteristics and the causality of the Lorentz-Dirac dielectric model are studied in detail. Furthermore, the superiority of the Lorentz-Dirac dielectric function as a means of improved fitting of experimental data is demonstrated for gold, silver, and silicon in the infrared and optical region.
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.
2017-09-01
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of {E}{{QG}1}> 5.5× {10}17 {GeV} (4.5× {10}17 {GeV}) for a linear, and {E}{{QG}2}> 5.9× {10}10 {GeV} (5.3× {10}10 {GeV}) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%–42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.
Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography
Energy Technology Data Exchange (ETDEWEB)
Phatak, C., E-mail: cd@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Gürsoy, D. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)
2015-03-15
Intense ongoing research on complex nanomagnetic structures requires a fundamental understanding of the 3D magnetization and the stray fields around the nano-objects. 3D visualization of such fields offers the best way to achieve this. Lorentz transmission electron microscopy provides a suitable combination of high resolution and ability to quantitatively visualize the magnetization vectors using phase retrieval methods. In this paper, we present a formalism to represent the magnetic phase shift of electrons as a Radon transform of the magnetic induction of the sample. Using this formalism, we then present the application of common tomographic methods particularly the iterative methods, to reconstruct the 3D components of the vector field. We present an analysis of the effect of missing wedge and the limited angular sampling as well as reconstruction of complex 3D magnetization in a nanowire using simulations. - Highlights: • We present a formalism to represent electron-optical magnetic phase shift as a Radon transform of the 3D magnetic induction of the nano-object. • We have analyzed four different tomographic reconstruction methods for vectorial data reconstruction. • Reconstruction methods were tested for varying experimental limitations such as limited tilt range and limited angular sampling. • The analysis showed that Gridrec and SIRT methods performed better with lower errors than other reconstruction methods.
Lorentz Invariance Violation in Modified Gravity
Brax, Philippe
2012-01-01
We consider an environmentally dependent violation of Lorentz invariance in scalar-tensor models of modified gravity where General Relativity is retrieved locally thanks to a screening mechanism. We find that fermions have a modified dispersion relation and would go faster than light in an anisotropic and space-dependent way along the scalar field lines of force. We analyse briefly the OPERA results and show that they could be reproduced with chameleon models. We suggest that neutrinos emitted radially, at different energies, and observed on the other side of the earth would provide a test of these models.
Testing Lorentz invariance in β decay
Directory of Open Access Journals (Sweden)
Sytema A.
2014-03-01
Experimentally we exploit the Gamow-Teller transition of polarized 20Na, where we can test the dependence of the β-decay rate on the spin orientation of 20Na. The polarization degree is measured using the β asymmetry, while the decay rate is measured by the γ yield. A change in the γ rate, when reversing the spin, implies Lorentz invariance violation. The decay rate should depend on sidereal time and the polarization direction relative to the rotation axis of the earth. The method of the measurement will be presented, together with the first results.
Spontaneously broken Lorentz symmetry and gravity
Jacobson, T; Jacobson, Ted; Mattingly, David
2000-01-01
We study a generally covariant model in which local Lorentz invariance is broken "spontaneously" by a dynamical unit timelike vector field $u^a$---the "aether". Such a model makes it possible to study the gravitational and cosmological consequences of preferred frame effects, such as ``variable speed of light" or high frequency dispersion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an action for an effective theory of the aether which involves only the antisymmetrized derivative $\
Testing Lorentz violation using propagating UHECRs
Institute of Scientific and Technical Information of China (English)
Cong-Xin Qiu; Zi-Gao Dai
2009-01-01
Lorentz invariant violation (LIV) test is important for studying modem physics.All the known astrophysical constraints either have a very small examinable parameter space or are only suitable for some special theoretical models. Here, we suggest that it is possible to directly detect the time-delay of ultra-high-energy cosmic-rays (UHECRs). We discuss some difficulties in our method, including the intergalactic magnetic fields. It seems that none of them are crucial, hence this method could give a larger examinable parameter space and a stronger constraint on LIV.
Mixed Lorentz boosted $Z^{0}'s$
Kjaer, N J
2001-01-01
A novel technique is proposed to study systematic errors on jet reconstruction in W physics measurements at LEP2 with high statistical precision. The method is based on the emulation of W pair events using Mixed Lorentz Boosted Z0 events. The scope and merits of the method and its statistical accuracy are discussed in the context of the DELPHI W mass measurement in the fully hadronic channel. The numbers presented are preliminary in the sense that they do not constitute the final DELPHI systematic errors.
Dirac Monopole from Lorentz Symmetry in N-Dimensions: I. The Generator Extension
Land, M
2006-01-01
It is by now well-known that a Lorentz force law and the homogeneous Maxwell equations can be derived from commutation relations among Euclidean coordinates and velocities, without explicit reference to momentum, action or variational principle. This result was extended to the relativistic case and shown to correspond to a Stueckelberg-type quantum theory, in which gauge transformations may depend on the invariant evolution parameter, such that the associated the five-dimensional electromagnetism becomes standard Maxwell theory in the equilibrium limit. Building on the work of Berard, Grandati, Lages and Mohrbach, we construct an extension of the Lorentz generators in N-dimensions that restores the canonical commutation relations in the presence of a Maxwell field, and renders the extended generators constants of the classical motion. The algebra imposes conditions on the Maxwell field, leading to a Dirac monopole solution. The construction can be maximally satisfied in a three dimensional subspace of the ful...
Perepelitsa, Vassili F
2016-01-01
Some features of a Lorentz-violating (but Lorentz-covariant) Lagrangian of a scalar tachyon field are considered in this note. It is shown that the equation of motion and the Feynman propagator resulting from it are Lorentz-invariant, while the Lorentz symmetry of the suggested tachyon field model can be defined as spontaneously broken.
Energy Technology Data Exchange (ETDEWEB)
Delgado Acosta, E.G.; Banda Guzman, V.M.; Kirchbach, M. [UASLP, Instituto de Fisica, San Luis Potosi (Mexico)
2015-03-01
We propose a general method for the description of arbitrary single spin-j states transforming according to (j, 0) + (0, j) carrier spaces of the Lorentz algebra in terms of Lorentz tensors for bosons, and tensor-spinors for fermions, and by means of second-order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher ∂{sup 2j} order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz tensor (tensor-spinor) representation spaces hosting one sole (j, 0) + (0, j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin-j sector of interest from the rest, while preserving the separate Lorentz and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are of second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2, 0) + (0, 3/2) is comfortably described by a second-order Lagrangian in the basis of the totally anti-symmetric Lorentz tensor-spinor of second rank, Ψ {sub [μν]}. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2, 0) + (0, 3/2) as part of Ψ {sub [μν]} we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross-section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc. (orig.)
Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M.
2015-03-01
We propose a general method for the description of arbitrary single spin- j states transforming according to ( j, 0) ⊕ (0, j) carrier spaces of the Lorentz algebra in terms of Lorentz tensors for bosons, and tensor-spinors for fermions, and by means of second-order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher ∂2 j order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz tensor (tensor-spinor) representation spaces hosting one sole ( j, 0) ⊕ (0, j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin- j sector of interest from the rest, while preserving the separate Lorentz and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are of second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2, 0) ⊕ (0, 3/2) is comfortably described by a second-order Lagrangian in the basis of the totally anti-symmetric Lorentz tensor-spinor of second rank, Ψ [ μν]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2, 0) ⊕ (0, 3/2) as part of Ψ [ μν] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross-section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.
Test of Lorentz Invarience from Compton Scattering
Mohanmurthy, Prajwal; Narayan, Amrendra
2015-01-01
In the recent times, test of Lorentz Invariance has been used as a means to probe theories of physics beyond the standard model, especially those such as extensions to String Theory and Quantum Gravity. Tests of Lorentz invariance could go a long way in setting the stage for possible quantum gravity theories which are beyond the standard model. We describe a simple way of utilizing the polarimeters, which are a critical beam instrument at precision and intensity frontier nuclear physics labs such as Stanford Linear Accelerator Center (SLAC) and Jefferson Lab (JLab), to limit the dependence of speed of light with the energy of the photons. Furthermore, we also describe a way of limiting directional dependence of speed of light at previously unprecedented levels of precision by studying the sidereal variations. We obtain a limit of MSME parameters: $\\sqrt{\\kappa_X^2 + \\kappa_Y^2} < 2.4 \\times 10^{-17}$ and $\\sqrt{\\left( 2c_{TX} - (\\tilde{\\kappa}_{0^+}^{YZ} \\right)^2 + \\left( 2c_{TY} - (\\tilde{\\kappa}_{0^+}^{...
Cosmological constraints on Lorentz violating dark energy
Audren, B; Lesgourgues, J; Sibiryakov, S
2013-01-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of ...
Testing Lorentz symmetry with Lunar Laser Ranging
Bourgoin, A; Bouquillon, S; Poncin-Lafitte, C Le; Francou, G; Angonin, M -C
2016-01-01
Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity (GR) and the Standard Model of particle physics called the Standard-Model Extension (SME). We present new constraints on pure gravity SME coefficients obtained by analyzing Lunar Laser Ranging (LLR) observations. We use a new numerical lunar ephemeris computed in the SME framework and we perform a LLR data analysis using a set of 20721 normal points covering the period August 1969 to December 2013. We emphasize that linear combination of SME coefficients to which LLR data are sensitive are not the same as those fitted in previous post-fit residuals analysis using LLR observations and based on theoretical grounds. We found no evidence for Lorentz violation at the level of $10^{-8}$ for $\\bar{s}^{TX}$, $10^{-12}$ for $\\bar{s}^{XY}$ and $\\bar{s}^{XZ}$, $10^{-11}$ for $\\bar{s}^{XX}-\\bar{s}^{YY}$ and $\\bar{s}^{XX}+\\bar{s}^{YY}-2\\bar{s}^{ZZ}-0.045\\bar{s}^{YZ}$ and $10^{-9}$ for $\\bar{s}^{TY}+...
Testing Lorentz Symmetry with Lunar Laser Ranging
Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.-C.
2016-12-01
Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both general relativity and the standard model of particle physics called the standard-model extension (SME). We present new constraints on pure gravity SME coefficients obtained by analyzing lunar laser ranging (LLR) observations. We use a new numerical lunar ephemeris computed in the SME framework and we perform a LLR data analysis using a set of 20 721 normal points covering the period of August, 1969 to December, 2013. We emphasize that linear combination of SME coefficients to which LLR data are sensitive and not the same as those fitted in previous postfit residuals analysis using LLR observations and based on theoretical grounds. We found no evidence for Lorentz violation at the level of 10-8 for s¯T X, 10-12 for s¯X Y and s¯X Z, 10-11 for s¯X X-s¯Y Y and s¯X X+s¯Y Y-2 s¯Z Z-4.5 s¯Y Z, and 10-9 for s¯T Y+0.43 s¯T Z. We improve previous constraints on SME coefficient by a factor up to 5 and 800 compared to postfit residuals analysis of respectively binary pulsars and LLR observations.
QCD breaks Lorentz invariance and colour
Balachandran, A. P.
2016-03-01
In the previous work [A. P. Balachandran and S. Vaidya, Eur. Phys. J. Plus 128, 118 (2013)], we have argued that the algebra of non-Abelian superselection rules is spontaneously broken to its maximal Abelian subalgebra, that is, the algebra generated by its completing commuting set (the two Casimirs, isospin and a basis of its Cartan subalgebra). In this paper, alternative arguments confirming these results are presented. In addition, Lorentz invariance is shown to be broken in quantum chromodynamics (QCD), just as it is in quantum electrodynamics (QED). The experimental consequences of these results include fuzzy mass and spin shells of coloured particles like quarks, and decay life times which depend on the frame of observation [D. Buchholz, Phys. Lett. B 174, 331 (1986); D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982; J. Fröhlich, G. Morchio and F. Strocchi, Phys. Lett. B 89, 61 (1979); A. P. Balachandran, S. Kürkçüoğlu, A. R. de Queiroz and S. Vaidya, Eur. Phys. J. C 75, 89 (2015); A. P. Balachandran, S. Kürkçüoğlu and A. R. de Queiroz, Mod. Phys. Lett. A 28, 1350028 (2013)]. In a paper under preparation, these results are extended to the ADM Poincaré group and the local Lorentz group of frames. The renormalisation of the ADM energy by infrared gravitons is also studied and estimated.
Quantizations of D = 3 Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Lukierski, J. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Tolstoy, V.N. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2017-04-15
Using the isomorphism o(3; C) ≅ sl(2; C) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical r-matrices) for real forms o(3) and o(2,1) of the complex Lie algebra o(3; C) in terms of real forms of sl(2; C): su(2), su(1,1) and sl(2; R). We prove that the D = 3 Lorentz symmetry o(2,1) ≅ su(1,1) ≅ sl(2; R) has three different Hopf-algebraic quantum deformations, which are expressed in the simplest way by two standard su(1,1) and sl(2; R) q-analogs and by simple Jordanian sl(2; R) twist deformation. These quantizations are presented in terms of the quantum Cartan-Weyl generators for the quantized algebras su(1,1) and sl(2; R) as well as in terms of quantum Cartesian generators for the quantized algebra o(2,1). Finally, some applications of the deformed D = 3 Lorentz symmetry are mentioned. (orig.)
Testing Lorentz Invariance with neutrino burst from supernova neutronization
Chakraborty, Sovan; Sigl, Günter
2012-01-01
Quantum-gravity (QG) effects might generate Lorentz invariance violation by the interaction of energetic particles with the foamy structure of the space-time. As a consequence, particles may not travel at the universal speed of light. We propose to constrain Lorentz invariance violation for energetic neutrinos exploiting the $\
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-03-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Lorentz violation in neutron decay and allowed nuclear beta decay
Noordmans, J. P.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
Background: The search for violations of Lorentz invariance is nowadays motivated by attempts to unify the standard model of particle physics with general relativity. Such theories of "quantum gravity" predict Lorentz-violating signals that could be detected in low-energy precision experiments. In
Limits on Lorentz violation from charged-pion decay
P. Noordmans, J.; K. Vos, K.
2014-01-01
Charged-pion decay offers many opportunities to study Lorentz violation. Using an effective field theory approach, we study Lorentz violation in the lepton, W-boson, and quark sectors and derive the differential pion-decay rate, including muon polarization. Using coordinate redefinitions we are able
Testing Lorentz and CPT Symmetries in Penning Traps
Ding, Yunhua
2016-01-01
A modified Dirac equation with general Lorentz- and CPT-violating operators in the electromagnetic field is studied. Constraints on and possible sensitivities to Lorentz-violating coefficients in the nonminimal sector up to mass-dimension six can be obtained by analyzing Penning-trap results involving anomaly frequencies.
Lorentz-Dirac equation and circularly moving charges
Comay, E.
1987-09-01
The Lorentz-Dirac equation of radiation reaction is tested in a system of circularly moving changes. It is shown that this equation together with the Lienard-Wiechert retarded fields is consistent with energy conservation. Therefore, in this particular experiment, any alternative expression of radiation reaction must agree with the Lorentz-Dirac equation.
Testing local Lorentz invariance with short-range gravity
Kostelecky, Alan
2016-01-01
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Elastic Sturmian spirals in the Lorentz-Minkowski plane
Directory of Open Access Journals (Sweden)
Uçum Ali
2016-01-01
Full Text Available In this paper we consider some elastic spacelike and timelike curves in the Lorentz-Minkowski plane and obtain the respective vectorial equations of their position vectors in explicit analytical form. We study in more details the generalized Sturmian spirals in the Lorentz-Minkowski plane which simultaneously are elastics in this space.
In-depth Study on Cylinder Wake Controlled by Lorentz Force
Institute of Scientific and Technical Information of China (English)
张辉; 范宝春; 陈志华
2011-01-01
The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed.The effects of Lorentz force are found to be composed of two parts,one is its direct action on the cylinder(the wall Lorentz force)and the other is applied to the fluid(called the field Lorentz force)near the cylinder surface.Our results show that the wall Lorentz force can generate thrust and reduce the drag; the field Lorentz force increases the drag.However,the cylinder drag is dominated by the wall Lorentz force.In addition,the field Lorentz force above the upper surface decreases the lift,while the upper wall Lorentz force increases it.The total lift is dominated by the upper wall Lorentz force.%The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed. The effects of Lorentz force are found to be composed of two parts, one is its direct action on the cylinder (the wall Lorentz force) and the other is applied to the fluid (called the field Lorentz force) near the cylinder surface. Our results show that the wall Lorentz force can generate thrust and reduce the drag; the Geld Lorentz force increases the drag. However, the cylinder drag is dominated by the wall Lorentz force. In addition, the field Lorentz force above the upper surface decreases the lift, while the upper wall Lorentz force increases it. The total lift is dominated by the upper wall Lorentz force.
Attitude dynamics and control of spacecraft using geomagnetic Lorentz force
Abdel-Aziz, Yehia A
2014-01-01
The attitude stabilization of a charged rigid spacecraft in Low Earth Orbit (LEO) using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth magnetic field will be subject to perturbations from Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of the gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to...
Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance
Armendariz-Picon, Cristian; Penco, Riccardo
2010-01-01
We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.
Discussion on Neutrino Oscillation and CPT/Lorentz Invariance Violation
Luo, Cui-Bai; Du, Yi-Lun; Wang, Yong-Long; Zong, Hong-Shi
2016-01-01
Depending on deformed canonical anticommutation relations, massless neutrino oscillation based on CPT /Lorentz invariance viol ation is discussed. It is found that the deformed canonical anti-commutation relations should satisfy the condition of new Moy al product and new non standard commutation relations. Furthermore, by comparing the neutrino experimental data and the above relations, we find that the orders of magnitude of noncommutative parameters or Lorentz invariant Violation parameters $\\mathi t{A}$ is not self-consistent. This means that the previous studies about Lorentz invariance violation in noncommutative field theory may not naturally explain massless neutrino oscillation. In other words, it should be impossible to explain neutrino os cillation by lorentz invariance violation. This conclusion is supported by the latest atmospheric neutrinos experimental resul ts from Super-Kamiokande Collaboration, which show that no evidence of Lorentz invariance violation on atmospheric neutrinos w as observe...
Supernovae powered by magnetars that transform into black holes
Moriya, Takashi J; Blinnikov, Sergei I
2016-01-01
Rapidly rotating, strongly magnetized neutron stars (magnetars) can release their enormous rotational energy via magnetic spin-down, providing a power source for bright transients such as superluminous supernovae. On the other hand, particularly massive (so-called supramassive) neutron stars require a minimum rotation rate to support their mass against gravitational collapse, below which the neutron star collapses to a black hole. We model the light curves of supernovae powered by magnetars which transform into black holes. Although the peak luminosities can reach high values in the range of superluminous supernovae, their post maximum light curves can decline very rapidly because of the sudden loss of the central energy input. Early black hole transformation also enhances the shock breakout signal from the magnetar-driven bubble relative to the main supernova peak. Our synthetic light curves of supernovae powered by magnetars transforming to black holes are consistent with those of some rapidly evolving brig...
Institute of Scientific and Technical Information of China (English)
XIAO Fu-Liang; HE Zhao-Guo; ZHANG Sai; SU Zhen-Peng; CHEN Liang-Xu
2011-01-01
Temporal evolution of outer radiation belt electron dynamics resulting from superluminous L-O mode waves is simulated at L＝6.5. Diffusion rates are evaluated and then used as inputs to solve a 2D momentum-pitch-angle diffusion equation, particularly with and without cross diffusion terms. Simulated results demonstrate that phase space density(PSD) of energetic electrons due to L-O mode waves can enhance significantly within 24 h, covering a broader pitch-angle range in the absence of cross terms than that in the presence of cross terms. PSD evolution is also determined by the peak wave frequency, particularly at high kinetic energies. This result indicates that superluminous waves can be a potential candidate responsible for outer radiation belt electron dynamics.
Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.
Emission of correlated photon pairs from superluminal perturbations in dispersive media
Piazza, Francesco Dalla; Cacciatori, Sergio Luigi; Faccio, Daniel
2012-01-01
We develop a perturbative theory that describes a superluminal refractive perturbation propagating in a dispersive medium and the subsequent excitation of the quantum vacuum zero-point fluctuations. We find a process similar to the anomalous Doppler effect: photons are emitted in correlated pairs and mainly within a Cerenkov-like cone, one on the forward and the other in backward directions. The number of photon pairs emitted from the perturbation increases strongly with the degree of superluminality and under realizable experimental conditions, it can reach up to ~0.01 photons per pulse. Moreover, it is in principle possible to engineer the host medium so as to modify the effective group refractive index. In the presence of "fast light" media, e.g. a with group index smaller than unity, a further ~10x enhancement may be achieved and the photon emission spectrum is characterized by two sharp peaks that, in future experiments would clearly identify the correlated emission of photon pairs.
Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system
Hamide Kazemi, S.; Ghanbari, S.; Mahmoudi, M.
2016-01-01
The propagation of a probe laser field in a cavity optomechanical system with a Bose-Einstein condensate is studied. The transmission properties of the system are investigated and it is shown that the group velocity of the probe pulse field can be controlled by Rabi frequency of the pump laser field. The effect of the decay rate of the cavity photons on the group velocity is studied and it is demonstrated that for small values of the decay rates, the light propagation switches from subluminal to superluminal just by changing the Rabi frequency of the pump field. Then, the gain-assisted superluminal light propagation due to the cross-Kerr nonlinearity is established in cavity optomechanical system with a Bose-Einstein condensate. Such behavior can not appear in the pump-probe two-level atomic systems in the normal phase. We also find that the amplification is achieved without inversion in the population of the quantum energy levels.
Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology
Energy Technology Data Exchange (ETDEWEB)
Neelamkavil, Raphael
2014-07-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.
Sub- and super-luminal light propagation using a Rydberg state
Bharti, Vineet
2016-01-01
We present a theoretical study to investigate sub- and super-luminal light propagation in a rubidium atomic system consisting of a Rydberg state by using density matrix formalism. The analysis is performed in a 4-level vee+ladder system interacting with a weak probe, and strong control and switching fields. The dispersion and absorption profiles are shown for stationary atoms as well as for moving atoms by carrying out Doppler averaging at room temperature. We also present the group index variation with control Rabi frequency and observe that a transparent medium can be switched from sub- to super-luminal propagation in the presence of switching field. Finally, the transient response of the medium is discussed, which shows that the considered 4-level scheme has potential applications in absorptive optical switching.
Self-accelerating Massive Gravity: Superluminality, Cauchy Surfaces and Strong Coupling
Motloch, Pavel; Joyce, Austin; Motohashi, Hayato
2015-01-01
Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not inte...
Symmetry of the Lorentz boost: the relativity of colocality and Lorentz time contraction
Sharp, Jonathan C.
2016-09-01
Since the Lorentz boost is symmetric under exchange of x and ct, special relativistic phenomena will also manifest this symmetry. Firstly, simultaneity becomes paired with ‘colocality’ (‘at the same place’), and the ‘Relativity of Colocality’ becomes the dual to the well-known ‘Relativity of Simultaneity’. Further, Lorentz time contraction arises from reversal of the observation conditions pertaining to time dilation, expressible figuratively as ‘Moving clocks run slow, but moving time runs fast’. Symmetry also dictates that the most fundamental observational modes are: (1) the simultaneous observation of length, a process involving both the relativity of simultaneity and length contraction; and (2) the colocal measurement of duration, involving both the relativity of colocality and time contraction. Only the first of these modes is well known. The adoption of this symmetrical lexicon provides a necessary logical basis for interpretational studies of observation and measurement in special relativity.
Yan, Mu-Lin; Hu, Sen; Huang, Wei; Xiao, Neng-Chao
2011-01-01
The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant $\\Lambda_{eff}$ which is the sum of the quantum zero point energy $\\Lambda_{dark energy}$ and the geometric cosmological constant $\\Lambda$. The OPERA experiment can be applied to determine the geometric cosmological constant $\\Lambda$. It is the first time to distingui...
Swift and LT UV and optical observations of type IIn superluminous supernova 2017gir
Cano, Zach; Kuin, Paul; Chandra, Poonam; Ashall, Chris; Malesani, Daniele; Pastorello, Andrea
2017-09-01
We observed the field of the type IIn superluminous supernova 2017gir (ATLAS17jsb, Tonry et al. 2017; Lyman et al. 2017, ATel 10674) with Swift via a target-of-opportunity for three epochs (6th, 16th and 19th of September, 2017) in the three UVOT UV filters (w1, m1, w2). The SN is clearly detected in all three filters, and it is seen that its brightness fades over this timescale.
Properties of Magnetars Mimicking 56Ni-powered Light Curves in Type IC Superluminous Supernovae
Moriya, Takashi J.; Chen, Ting-Wan; Langer, Norbert
2017-02-01
Many Type Ic superluminous supernovae have light-curve decline rates after their luminosity peak, which are close to the nuclear decay rate of {}56{Co}, consistent with the interpretation that they are powered by {}56{Ni} and possibly pair-instability supernovae. However, their rise times are typically shorter than those expected from pair-instability supernovae, and Type Ic superluminous supernovae are often suggested to be powered by magnetar spin-down. If magnetar spin-down is actually a major mechanism to power Type Ic superluminous supernovae, it should be able to produce decline rates similar to the {}56{Co} decay rate rather easily. In this study, we investigate the conditions for magnetars under which their spin-down energy input can behave like the {}56{Ni} nuclear decay energy input. We find that an initial magnetic field strength within a certain range is sufficient to keep the magnetar energy deposition within a factor of a few of the {}56{Co} decay energy for several hundreds of days. Magnetar spin-down needs to be by almost pure dipole radiation with the braking index close to three to mimic {}56{Ni} in a wide parameter range. Not only late-phase {}56{Co}-decay-like light curves, but also rise time and peak luminosity of most {}56{Ni}-powered light curves can be reproduced by magnetars. Bolometric light curves for more than 700 days are required to distinguish the two energy sources solely by them. We expect that more slowly declining superluminous supernovae with short rise times should be found if they are mainly powered by magnetar spin-down.
Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry
Yan, Mu-Lin; Xiao, Neng-Chao; Huang, Wei; Hu, Sen
2011-01-01
We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein a photon is treated as a massless particle in the framework of Special Relativity. In Special Relativity (SR) we have the universal parameter $c$, the photon velocity $c_{photon}$ and the phase velocity of a light wave in vacuum $c_{wave}=\\lambda\
On asymptotic flatness and Lorentz charges
Energy Technology Data Exchange (ETDEWEB)
Compere, Geoffrey [KdV Institute for Mathematics, Universiteit van Amsterdam (Netherlands); Dehouck, Francois; Virmani, Amitabh, E-mail: gcompere@uva.nl, E-mail: fdehouck@ulb.ac.be, E-mail: avirmani@ulb.ac.be [Physique Theorique et Mathematique, Universite Libre de Bruxelles, Bruxelles (Belgium)
2011-07-21
In this paper we establish two results concerning four-dimensional asymptotically flat spacetimes at spatial infinity. First, we show that the six conserved Lorentz charges are encoded in two unique, distinct, but mutually dual symmetric divergence-free tensors that we construct from the equations of motion. Second, we show that the integrability of Einstein's equations in the asymptotic expansion is sufficient to establish the equivalence between counter-term charges defined from the variational principle and charges defined by Ashtekar and Hansen. These results clarify earlier constructions of conserved charges in the hyperboloid representation of spatial infinity. In showing this, the parity condition on the mass aspect is not needed. Along the way in establishing these results, we prove two lemmas on tensor fields on three-dimensional de Sitter spacetime stated by Ashtekar-Hansen and Beig-Schmidt and state and prove three additional lemmas.
Testing Lorentz symmetry with planetary orbital dynamics
Hees, Aurélien; Poncin-Lafitte, Christophe Le; Bourgoin, Adrien; Rivoldini, Attilio; Lamine, Brahim; Meynadier, Frédéric; Guerlin, Christine; Wolf, Peter
2015-01-01
Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.
Universal Gravitation as Lorentz-covariant Dynamics
Kauffmann, Steven Kenneth
2014-01-01
Einstein's equivalence principle implies that the acceleration of a particle in a "specified" gravitational field is independent of its mass. While this is certainly true to great accuracy for bodies we observe in the Earth's gravitational field, a hypothetical body of mass comparable to the Earth's would perceptibly cause the Earth to fall toward it, which would feed back into the strength as a function of time of the Earth's gravitational field affecting that body. In short, Einstein's equivalence principle isn't exact, but is an approximation that ignores recoil of the "specified" gravitational field, which sheds light on why general relativity has no clearly delineated native embodiment of conserved four-momentum. Einstein's 1905 relativity of course doesn't have the inexactitudes he unwittingly built into GR, so it is natural to explore a Lorentz-covariant gravitational theory patterned directly on electromagnetism, wherein a system's zero-divergence overall stress-energy, including all gravitational fee...
Recent Results on the Periodic Lorentz Gas
Golse, François
2009-01-01
The Drude-Lorentz model for the motion of electrons in a solid is a classical model in statistical mechanics, where electrons are represented as point particles bouncing on a fixed system of obstacles (the atoms in the solid). Under some appropriate scaling assumption -- known as the Boltzmann-Grad scaling by analogy with the kinetic theory of rarefied gases -- this system can be described in some limit by a linear Boltzmann equation, assuming that the configuration of obstacles is random [G. Gallavotti, [Phys. Rev. (2) vol. 185 (1969), 308]). The case of a periodic configuration of obstacles (like atoms in a crystal) leads to a completely different limiting dynamics. These lecture notes review several results on this problem obtained in the past decade as joint work with J. Bourgain, E. Caglioti and B. Wennberg.
Dynamical properties of the Lorentz gas
Sharma, K. C.; Ranganathan, S.; Egelstaff, P. A.; Soper, A. K.
1987-07-01
A Lorentz gas interacting with a Lennard-Jones (LJ) potential and obeying classical equations of motion has been simulated by the molecular-dynamics method. A system of 255 Ar particles and one H2 molecule at a reduced Ar density 0.413 and temperature 2.475 is simplified by allowing the ``argon'' to have infinite mass, and the hydrogen molecule interacts with Ar atoms via the LJ potential. The simulated incoherent dynamic structure factor Ss(Q,ω) for the hydrogen molecule, which is corrected for the rotational states, is found to be in reasonable agreement with the experimental data of Egelstaff et al. (unpublished). One-parameter phenomenological model calculations are also compared to these data.
Lorentz invariance violation and generalized uncertainty principle
Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag
2016-01-01
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.
Considerations about the apparent ''superluminal expansions'' observed in astrophysics
Energy Technology Data Exchange (ETDEWEB)
Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.
1986-06-11
The orthodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much successful, especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. To prepare the ground, we start from a variational principle, introduce the elements of a tachyon mechanics within special relativity, and argue about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. We then review and develop the simplet ''Superluminal models'', paying particular attention to the observations which they would give rise to. We conclude that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones.
On the Lorentz invariance of bit-string geometry
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1995-09-01
We construct the class of integer-sided triangles and tetrahedra that respectively correspond to two or three discriminately independent bit-strings. In order to specify integer coordinates in this space, we take one vertex of a regular tetrahedron whose common edge length is an even integer as the origin of a line of integer length to the {open_quotes}point{close_quotes} and three integer distances to this {open_quotes}point{close_quotes} from the three remaining vertices of the reference tetrahedron. This - usually chiral - integer coordinate description of bit-string geometry is possible because three discriminately independent bit-strings generate four more; the Hamming measures of these seven strings always allow this geometrical interpretation. On another occasion we intend to prove the rotational invariance of this coordinate description. By identifying the corners of these figures with the positions of recording counters whose clocks are synchronized using the Einstein convention, we define velocities in this space. This suggests that it may be possible to define boosts and discrete Lorentz transformations in a space of integer coordinates. We relate this description to our previous work on measurement accuracy and the discrete ordered calculus of Etter and Kauffman (DOC).
The Impact of Lorentz Violation on the Klein Tunneling Effect
Xiao, Zhi
2016-01-01
We discuss the impact of a tiny Lorentz-violating $b^\\mu$ term on the one dimensional motion of a Dirac particle scattering on a rectangular barrier. We assume the experiment is performed in a particular inertial frame, where the components of $b^\\mu$ are assumed constants. The results show that Lorentz-violation modification to the transmission rate depends on the observer Lorentz nature of $b^\\mu$. For a spacelike or lightlike $b^\\mu$ the induced resonant frequency shift depends on the polarization, while for timelike $b^\\mu$ there is essentially no modification.
On radiation reaction and the Abraham-Lorentz-Dirac equation
de Oca, Alejandro Cabo Montes
2013-01-01
It is underlined that the Lienard-Wiechert solutions indicate that after the external force is instantly removed from a small charged particle, the field in its close neighborhood becomes a Lorentz boosted Coulomb field. It suggests that the force of the self-field on the particle should instantaneously vanish after a sudden removal of the external force. A minimal modification of Abraham-Lorentz-Dirac equation is searched seeking to implement this property. A term assuring this behavior is added to the equation by maintaining Lorentz covariance and vanishing scalar product with the four-velocity. The simple Dirac constant force example does not show runaway acceleration.
Limits on Lorentz violation from synchrotron and inverse Compton sources.
Altschul, B
2006-05-26
We derive new bounds on Lorentz violations in the electron sector from existing data on high-energy astrophysical sources. Synchrotron and inverse Compton data give precisely complementary constraints. The best bound on a specific combination of electron Lorentz-violating coefficients is at the 6 x 10(-20) level, and independent bounds are available for all the Lorentz-violating c coefficients at the 2 x 10(-14)level or better. This represents an improvement in some bounds by 14 orders of magnitude.
Combined Search for Lorentz Violation in Short-Range Gravity.
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan
2016-08-12
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Combined search for Lorentz violation in short-range gravity
Shao, Cheng-Gang; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecky, Alan
2016-01-01
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of $10^{-9}$ m$^2$, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Møller scattering and Lorentz-violating Z bosons
Fu, Hao; Lehnert, Ralf
2016-11-01
Lorentz-symmetry breakdown in weak-interaction physics is studied. In particular, the CPT-even Lorentz-violating contributions to the Z boson in the minimal Standard-Model Extension are considered, and in this context polarized electron-electron scattering is investigated. Corrections to the usual parity-violating asymmetry are determined at tree level. Together with available data, this result can be used to improve existing estimates for the Lorentz-violating kW coefficient by two orders of magnitude. Some implications for past and future experiments are mentioned.
Standard model with Lorentz and CPT violations in Finsler spacetime
Chang, Zhe
2012-01-01
Standard model with intrinsic Lorentz and CPT violations is proposed in a Finsler geometric framework. We present explicitly Lorentz and CPT--breaking Lagrangians of the matter fields and the gauge fields in locally Minkowski spacetime. The Lorentz invariance violation is found to be originated from the spacetime background deviating from the Minkowski one. Similarly, the CPT violation is determined by the behaviors of the locally Minkowski metric under the parity and time reversal operations. To help understanding phenomenologies, we compare the Finslerian model with the standard--model extension (SME) term by term at a first order approximation.
Restrictive scenarios from Lorentz Invariance Violation to cosmic rays propagation
Martínez-Huerta, H
2016-01-01
Lorentz Invariance Violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well defined secondary threshold.
Bound on Lorentz and CPT violating boost effects for the neutron.
Canè, F; Bear, D; Phillips, D F; Rosen, M S; Smallwood, C L; Stoner, R E; Walsworth, R L; Kostelecký, V Alan
2004-12-03
A search for an annual variation of a daily sidereal modulation of the frequency difference between colocated 129Xe and 3He Zeeman masers sets a stringent limit on boost-dependent Lorentz and CPT violation involving the neutron, consistent with no effect at the level of 150 nHz. In the framework of the general standard-model extension, the present result provides the first clean test for the fermion sector of the symmetry of spacetime under boost transformations at a level of 10(-27) GeV.
A modified Lorentz theory as a test theory of special relativity
Chang, T.; Torr, D. G.; Gagnon, D. R.
1988-01-01
Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.
Berkovitz, Joseph
In this paper and its sequel, I consider the significance of Jarrett's and Shimony's analyses of the so-called factorisability (Bell-locality) condition for clarifying the nature of quantum non-locality. In this paper, I focus on four types of non-locality: superluminal signalling, action-at-a-distance, non-separability and holism. In the second paper, I consider a fifth type of non-locality: superluminal causation according to 'logically weak' concepts of causation, where causal dependence requires neither action nor signalling. In this connection, I pay special attention to the difficulties that superluminal causation raises in relativistic space-time. I conclude by evaluating the relevance of Jarrett's and Shimony's analyses for clarifying the question of the compatibility of quantum non-locality with relativity theory. My main conclusions are, first: these analyses are significant for clarifying the questions of superluminal signalling in quantum phenomena and for the compatibility of these phenomena with relativity. But, second, by contrast: these analyses are not very significant for the study of action-at-a distance, superluminal causation, non-separability and holism in quantum phenomena.
A Gauge and Lorentz covariant Approximation for the Quark Propagator in an arbitrary Gluon Field
Gromes, D
2001-01-01
We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.
A Gauge and Lorentz covariant approximation for the quark propagator in an arbitrary gluon field
Gromes, D.
2001-05-01
We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.
Kalamidas, Demetrios A
2011-01-01
Motivated by a proposal from Greenberger [Physica Scripta T76, p.57 (1998) ] for superluminal signaling, and inspired by an experiment from Mandel [Phys. Rev. Lett. 67, p.318 (1991) ] showing interference effects within multi-particle entanglement without coincidence detection, we propose a feasible quantum-optical scheme that purports to manifest the capacity for superluminal transfer of information between distant parties.
Test of Lorentz Violation with Astrophysical Neutrino Flavor
Katori, Teppei; Salvado, Jordi
2016-01-01
The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to investigate tiny effects caused by Lorentz and CPT violation. There are 3 main findings; (1) current limits on Lorentz and CPT violation in neutrino sector are not tight and they allow for any flavor ratios, (2) however, the observable flavor ratio on the Earth is tied with the flavor ratio at production, this means we can test both the presence of new physics and the astrophysical neutrino production mechanism simultaneously, and (3) the astrophysical neutrino flavor ratio is one of the most stringent tests of Lorentz and CPT violation.
Lorentz breaking Effective Field Theory and observational tests
Liberati, Stefano
2012-01-01
Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lore...
Vacuum photon splitting in Lorentz-violating quantum electrodynamics.
Kostelecký, V Alan; Pickering, Austin G M
2003-07-18
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
CPT/Lorentz Invariance Violation and Quantum Field Theory
Arias, P; Gamboa-Rios, J; López-Sarrion, J; Méndez, F; Arias, Paola; Das, Ashok; Gamboa, Jorge; Lopez-Sarrion, Justo; Mendez, Fernando
2006-01-01
Analogies between the noncommutative harmonic oscillator and noncommutative fields are analyzed. Following this analogy we construct examples of quantum fields theories with explicit CPT and Lorentz symmetry breaking. Some applications to baryogenesis and neutrino oscillation are also discussed
Lorentz-violating Euler-Heisenberg effective action
Furtado, J
2014-01-01
In this work, we study the radiative generation of the Lorentz-violating Euler-Heisenberg action, in the weak field approximation. For this, we first consider a nonperturbative calculation in the coefficient $c_{\\mu\
Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics
Kostelecky, V A; Kostelecky, Alan; Pickering, Austin
2003-01-01
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
Tests of Lorentz Symmetry in the Gravitational Sector
Directory of Open Access Journals (Sweden)
Aurélien Hees
2016-12-01
Full Text Available Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays, … In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some sensitivity analyses for future observations.
THE HOMOTHETIC MOTIONS IN THE LORENTZ 3-SPACE
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this article, the properties of the homothetic motions in three-dimensional Lorentz space are investigated. Also, some geometric results between velocity and acceleration vectors of a point in a spatial motion are obtained.
Lorentz-violating spinor electrodynamics and Penning traps
Ding, Yunhua; Kostelecký, V. Alan
2016-09-01
The prospects are explored for testing Lorentz- and C P T -violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to 6, and we discuss some of its properties. The theory is used to derive Lorentz- and C P T -violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and C P T violation, using sidereal variations of observables and comparisons between particles and antiparticles.
Tests of Lorentz symmetry in the gravitational sector
Hees, Aurélien; Bourgoin, Adrien; Bars, Hélène Pihan-Le; Guerlin, Christine; Poncin-Lafitte, Christophe Le
2016-01-01
Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME) framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays,... In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some s...
The Lorentz-Dirac equation and the structure of spacetime
De Souza, M M
1995-01-01
A new interpretation of the causality implementation in the Lienard-Wiechert solution raises new doubts against the validity of the Lorentz-Dirac equation and the limits of validity of the Minkowski structure of spacetime.
Lorentz invariant CPT breaking in the Dirac equation
Fujikawa, Kazuo
2016-01-01
If one modifies the Dirac equation in momentum space to $[\\gamma^{\\mu}p_{\\mu}-m-\\Delta m(\\theta(p_{0})-\\theta(-p_{0})) \\theta(p_{\\mu}^{2})]\\psi(p)=0$, the symmetry of positive and negative energy eigenvalues is lifted by $m\\pm \\Delta m$ for a small $\\Delta m$. The mass degeneracy of the particle and antiparticle is thus lifted in a Lorentz invariant manner since the combinations $\\theta(\\pm p_{0})\\theta(p_{\\mu}^{2})$ with step functions are manifestly Lorentz invariant. We explain an explicit construction of this CPT breaking term in coordinate space, which is Lorentz invariant but non-local at a distance scale of the Planck length. The application of this Lorentz invariant CPT breaking mechanism to the possible mass splitting of the neutrino and antineutrino in the Standard Model is briefly discussed.
Lorentz-violating effects in three-dimensional $QED$
Bufalo, R
2014-01-01
Inspired in discussions presented lately regarding Lorentz-violating interaction terms in \\cite{13,6}, we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a $\\left( 2+1\\right) $-dimensional spacetime. We define the Lagrangian density with a Lorentz-violating interaction, where the the spacetime dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the spacetime dimensionality. With that in mind we expect that the spacetime dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.
Dynamics and control of Lorentz-augmented spacecraft relative motion
Yan, Ye; Yang, Yueneng
2017-01-01
This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.
Tests of Lorentz Symmetry in Single Beta Decay
Directory of Open Access Journals (Sweden)
Jorge S. Díaz
2014-01-01
Full Text Available Low-energy experiments studying single beta decay can serve as sensitive probes of Lorentz invariance that can complement interferometric searches for deviations from this spacetime symmetry. Experimental signatures of a dimension-three operator for Lorentz violation which are unobservable in neutrino oscillations are described for the decay of polarized and unpolarized neutrons as well as for measurements of the spectral endpoint in beta decay.
Consistency analysis of a nonbirefringent Lorentz-violating planar model
Casana, Rodolfo; Moreira, Roemir P M
2011-01-01
In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman's propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor $\\kappa_{\\mu\
UHECR bounds on Lorentz violation in the photon sector
Klinkhamer, F. R.
2008-01-01
The aim of this brief review is to present a case study of how astrophysics data can be used to get bounds on Lorentz-violating parameters. For this purpose, a particularly simple Lorentz-violating modification of the Maxwell theory of photons is considered, which maintains gauge invariance, CPT, and renormalization. With a standard spin-one-half Dirac particle minimally coupled to this nonstandard photon, the resulting modified-quantum-electrodynamics model involves nineteen dimensionless "d...
Letter: On the Solutions of the Lorentz-Dirac Equation
Vogt, D.; Letelier, P. S.
2003-12-01
We discuss the unstable character of the solutions of the Lorentz-Dirac equation and stress the need of methods like order reduction to derive a physically acceptable equation of motion. The discussion is illustrated with the paradigmatic example of the non-relativistic harmonic oscillator with radiation reaction. We also illustrate the removal of the noncausal pre-acceleration with the introduction of a small correction in the Lorentz-Dirac equation.
The BTZ black hole as a Lorentz-flat geometry
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rodríguez, Eduardo, E-mail: eduarodriguezsal@unal.edu.co [Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Concepción (Chile); Salgado-Rebolledo, Patricio, E-mail: pasalgado@udec.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)
2014-11-10
It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider class of black hole geometries and point particles in three-dimensional spacetime.
Cavity tests of parity-odd Lorentz violations in electrodynamics
Mewes, Matthew; Petroff, Alexander
2007-03-01
Electromagnetic resonant cavities form the basis for a number modern tests of Lorentz invariance. The geometry of most of these experiments implies unsuppressed sensitivities to parity-even Lorentz violations only. Parity-odd violations typically enter through suppressed boost effects, causing a reduction in sensitivity by roughly 4 orders of magnitude. Here we discuss possible techniques for achieving unsuppressed sensitivities to parity-odd violations using asymmetric resonators.
Finsler-like structures from Lorentz-breaking classical particles
Russell, Neil
2015-01-01
A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.
Direct Lorentz force compensation flowmeter for electrolytes
Energy Technology Data Exchange (ETDEWEB)
Vasilyan, S., E-mail: suren.vasilyan@tu-ilmenau.de; Froehlich, Th. [Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, 98684 Ilmenau (Germany)
2014-12-01
A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known “electromagnetic force” compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6 }S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.
The electrodeless Lorentz force thruster experiment
Weber, Thomas E.
The Electrodeless Lorentz Force (ELF) thruster is a novel type of plasma thruster, which utilizes Rotating Magnetic Field current drive within a diverging magnetic field to form, accelerate, and eject a Field Reversed Configuration plasmoid. The ELF program is a result of a Small Business Technology Transfer grant awarded to MSNW LLC by the Air Force Office of Scientific Research for the research of the revolutionary space propulsion concept represented by ELF. These grants are awarded to small businesses working in collaboration with a university, in this case, the University of Washington. The program was split into two concurrent research efforts; a numerical modeling study undertaken at the UW branch of the Plasma Science and Innovation Center, and an experimental effort taking place at the UW Plasma Dynamics Laboratory with additional support from MSNW (the latter being the subject of this dissertation). It is the aim of this dissertation is to present to the reader the necessary background information needed to understand the operation of the ELF thruster, an overview of the experimental setup, a review of the significant experimental findings, and a discussion regarding the operation and performance of the thruster.
Direct Lorentz force compensation flowmeter for electrolytes
Vasilyan, S.; Froehlich, Th.
2014-12-01
A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known "electromagnetic force" compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 106 S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.
Entropy production due to Lorentz invariance violation
Mohammadzadeh, Hosein; Farahmand, Mehrnoosh; Maleki, Mahnaz
2017-07-01
It is generally believed that the concept of the spacetime continuum should be modified for distances as small as the Planck length. This is a length scale at which the spacetime might have a discrete structure and quantum gravity effects are dominant. Presumably, the microscopic fluctuations within the geometry of spacetime should result in an enormous entropy production. In the present work, we look for the effects of Lorentz invariance violation (LIV) in flat and curved backgrounds that can be measured by quantum entanglement and quantum thermodynamic entropies for scalar modes. Our results show that the general behavior of these entropies is the same. We also consider variations of the entropies with respect to LIV and cosmological and field parameters. Using the properties of these entropies, along with detecting the most entangled modes, we extract information about the past existence of LIV, which in turn might be useful in recovering the quantum structure of gravity. Indeed, the occurrence of a peak in the behavior of these entropies for a specific momentum could provide information about the expansion parameters. Moreover, information about the LIV parameter is codified in this peak.
Lorentz symmetry and very long baseline interferometry
Le Poncin-Lafitte, C.; Hees, A.; Lambert, S.
2016-12-01
Lorentz symmetry violations can be described by an effective field theory framework that contains both general relativity and the Standard Model of particle physics called the Standard Model extension (SME). Recently, postfit analysis of Gravity Probe B and binary pulsars led to an upper limit at the 10-4 level on the time-time coefficient s¯T T of the pure-gravity sector of the minimal SME. In this work, we derive the observable of very long baseline interferometry (VLBI) in SME and then implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of s¯T T and errors obtained with various analysis schemes, including global estimations over several time spans, and with various Sun elongation cutoff angles, and by analysis of radio source coordinate time series. We obtain a constraint on s¯ T T=(-5 ±8 )×10-5 , directly fitted to the observations and improving by a factor of 5 previous postfit analysis estimates.
Lorentz Force Based Satellite Attitude Control
Giri, Dipak Kumar; Sinha, Manoranjan
2016-07-01
Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.
ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION
Energy Technology Data Exchange (ETDEWEB)
Amelino-Camelia, Giovanni [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sez. Roma1, P.le A. Moro 2, I-00185 Roma (Italy); Guetta, D. [Osservatorio astronomico di Roma, v. Frascati 33, I-00040 Monte Porzio Catone (Italy); Piran, Tsvi [The Racah Institute for Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2015-06-20
The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.
Dynamical 3-Space: neo-Lorentz Relativity
Cahill, Reginald T
2012-01-01
The major extant relativity theories - Galileo's Relativity (GaR), Lorentz's Relativity (LR) and Einstein's Special Relativity (SR), with the latter much celebrated, while the LR is essentially ignored. Indeed it is often incorrectly claimed that SR and LR are experimentally indistinguishable. Here we show that (i) SR and LR are experimentally distinguishable, (ii) that comparison of gas-mode Michelson interferometer experiments with spacecraft earth-flyby Doppler shift data demonstrate that it is LR that is consistent with the data, while SR is in conflict with the data, (iii) SR is exactly derivable from GaR by means of a mere linear change of space and time coordinates that mixes the Galilean space and time coordinates. So it is GaR and SR that are equivalent. Hence the well-known SR relativistic effects are purely coordinate effects, and cannot correspond to the observed relativistic effects. The connections between these three relativity theories has become apparent following the discovery that space is ...
Lorentz symmetry and Very Long Baseline Interferometry
Poncin-Lafitte, C Le; lambert, S
2016-01-01
Lorentz symmetry violations can be described by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics called the Standard-Model extension (SME). Recently, post-fit analysis of Gravity Probe B and binary pulsars lead to an upper limit at the $10^{-4}$ level on the time-time coefficient $\\bar s^{TT}$ of the pure-gravity sector of the minimal SME. In this work, we derive the observable of Very Long Baseline Interferometry (VLBI) in SME and then we implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of $\\bar s^{TT}$ and errors obtained with various analysis schemes, including global estimations over several time spans and with various Sun elongation cut-off angles, and with analysis of radio source coordinate time series. We obtain a constraint on $\\bar s^{TT}=(-5\\pm 8)\\times 10^{-5}$, directly fitted to the observations and improving by a factor 5 pr...
Geometrical Lorentz Violation and Quantum Mechanical Physics
Mignani, R; Cardone, F
2013-01-01
On the basis of the results of some experiments dealing with the violation of Local Lorentz Invariance (LLI) and on the formalism of the Deformed Special Relativity (DSR), we examine the connections between the local geometrical structure of space-time and the foundation of Quantum Mechanics. We show that Quantum Mechanics, beside being an axiomatic theory, can be considered also a deductive physical theory, deducted from the primary physical principle of Relativistic Correlation. This principle is synonym of LLI and of a rigid and at minkowskian space-time. The results of the experiments mentioned above show the breakdown of LLI and hence the violation of the principle of Relativistic Correlation. The formalism of DSR allows to highlight the deep meaning of LLI breakdown in terms of the geometrical structure of local space-time which, far from being rigid and at, is deformed by the energy of the physical phenomena that take place and in this sense it has an active part in the dynamics of the whole physical p...
Antonello, M.; Baibussinov, B.; Baldo Ceolin, M.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gigli Berzolari, A.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Cohen, A.
2012-01-01
The OPERA collaboration [1] has claimed evidence of superluminal propagation between CERN and the LNGS with . We find that the neutrino energy distribution of the ICARUS events in LAr agrees with the expectations from the Monte Carlo predictions from an unaffected energy distribution of beam from CERN. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction [2] for a weak currents analog to Cherenkov radiation. In particular no events with a superluminal Cherenkov like e+e- pair or gamma emission have been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting much stricter limits to the value of delta comparable with the one due to the observations from the SN1987A.
Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.
Pruttivarasin, T; Ramm, M; Porsev, S G; Tupitsyn, I I; Safronova, M S; Hohensee, M A; Häffner, H
2015-01-29
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation
Lorentz, the Solvay Councils and the Physics Institute
Berends, Frits A.
2015-09-01
This paper describes the crucial role which Lorentz played in shaping and continuing the Solvay Councils and the Physics Institute. At the same time it will become clear that Lorentz* intensive involvement in these activities added significantly to his influence on, and recognition in, the international physics community. The first Solvay Council in 1911 was an initiative of the German physical chemist Walther Nernst. It was generously supported by the wealthy industrialist and philantropist Ernest Solvay. About five months before the Council*s start Nernst invited Lorentz to chair the meeting. That was no simple task in view of the fundamental problem of the quanta and the practical problem of communication in different languages. Lorentz*s way of presiding the conference impressed all participants. When, after the meeting, Solvay was willing to support research in the field, it was only natural to ask Lorentz for a plan. Within two months Lorentz provided Solvay with a draft which would serve as an outline for the statutes of an institute. The international Solvay Institute of Physics was founded on 1 May 1912. It would support research proposals in a specified field and would regularly organize Councils. An international scientific committee would decide on grants which could be requested from everywhere. Between the Institute*s beginnings and the outbreak of WWI, 97 requests were considered and 40 proposals - originating from 7 countries - were accepted. A second Council took place in 1913. Lorentz was given the possibility to spend considerable time on chairing the scientific committee when in 1912 his full time professorship in Leiden was changed into a part-time one. During WWI Lorentz maintained contacts with Solvay and with several of his foreign colleagues in the countries at war. He tried to remain objective, impartial and helpful, and did not lose hope that pre-war international scientific relations would eventually be re-established. After the war he
Slowly fading super-luminous supernovae that are not pair-instability explosions
Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R.; Narayan, G.; Stubbs, C. W.; Foley, R. J.; Lunnan, R.; Soderberg, A.; Sanders, N.; Milisavljevic, D.; Margutti, R.; Kirshner, R. P.; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.
2013-10-01
Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of `pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10-6 times that of the core-collapse rate.
Slowly fading super-luminous supernovae that are not pair-instability explosions.
Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C
2013-10-17
Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.
超光速佯谬和中微子%Superluminal Paradox and Neutrino
Institute of Scientific and Technical Information of China (English)
倪光炯
2002-01-01
爱因斯坦的狭义相对论和因果原理意味着任何运动物体的速度不能超过光在真空中的速度.然而,有许多讨论超光速运动粒子的尝试,这些讨论或者是在狭义相对论的框架下进行的,或者是超越了狭义相对论.这些讨论都遇到一系列难以克服的困难,即"超光速佯谬".文中详细分析了这种佯谬,并证明它在与狭义相对论兼容的量子理论中显然是不出现的.在实在世界中,中微子最可能是一种超光速粒子.%Einstein′s theory of special relativity (SR) and the principle of causality imply that the speed of any moving object can not exceed that of light in a vacuum (c). However, there were many attempts in literature discussing the particle moving with speed u＞c(called as superluminal particle or tachyon) either in the scheme of SR or beyond it. These theories all encountered a series of insurmountable difficulties which will be named "superluminal paradox"in this paper. We will analyze it in some detail and then prove that the paradox disappears unambiguously in quantum theory, which is compatible with SR. Most likely, the superluminal particle in real world is just a kind of known particle, the neutrino.
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Enhanced Sensitivity in a Superluminal Single Mode DPAL Cavity at Room Temperature
Abi-Salloum, Tony; Yablon, Joshua; Tseng, Shih; Shahriar, Selim
2012-06-01
The note beat between two counter-propagating beams in a cavity is used to measure the effective change of the length of the cavity or interferometer for applications such as optical gyroscopes, vibrometers, and gravitational wave detectors. We show in this talk how a superluminal single mode laser cavity can enhance the measured note beat dramatically. We consider the inhomogeneous broadening case and study the dependence of the enhancement factor on few key parameters. We also show how Diode Pump Alkali Lasers (DPAL) are excellent candidates for such devices. Using a Rubidium based DPAL, we study the characteristics of these lasers and their effect on the proposed enhanced sensitivity.
Closed timelike curves, superluminal signals, and "free will" in universal quantum mechanics
Nikolic, H
2010-01-01
We explore some implications of the hypothesis that quantum mechanics (QM) is universal, i.e., that QM does not merely describe information accessible to observers, but that it also describes the observers themselves. From that point of view, "free will" (FW) - the ability of experimentalists to make free choices of initial conditions - is merely an illusion. As a consequence, by entangling a part of brain (responsible for the illusion of FW) with a distant particle, one may create nonlocal correlations that can be interpreted as superluminal signals. In addition, if FW is an illusion, then QM on a closed timelike curve can be made consistent even without the Deutch nonlinear consistency constraint.
Superluminal Energy Transmission in the Goos-Hanchen Shift of Total Reflection
Wang, Z Y
2011-01-01
This paper is to give a counter example for the theory of relativity. Firstly, the dispersion relation of surface electromagnetic waves is corresponding to that of a tachyon where the coefficient of proportionality is the squared Planck constant. Then we prove the energy flow velocity S/w of the Goos-Hanchen shift in vacuum is cn.sinI>c as well according to electrodynamics. These two different ways lead to a same conclusion that energy transport in the Goos-Hanchen effect of total reflection is faster than light. It is also helpful to study the tachyon of particle physics and superluminal motion observed in astronomy,etc.
Yan, Mu-Lin; Huang, Wei; Xiao, Neng-Chao
2011-01-01
The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant $\\Lambda_{eff}$ which is the sum of the quantum zero point energy $\\Lambda_{dark energy}$ and the geometric cosmological constant $\\Lambda$. The OPERA experiment can be applied to determine the geometric cosmological constant $\\Lambda$. It is the first time to distinguish the contributions of $\\Lambda$ and $\\Lambda_{dark energy}$ from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter space-time symmetry.
Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry
Yan, Mu-Lin; Huang, Wei
2011-01-01
We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein, the photon is treated as the massless particle in the SR mechanics. The meanings of the universal parameter $c$ and the photon velocity $c_{photon}$ in SR have been analyzed. $c$ can be determined by means of the velocity-composition law in SR kinematically. And $c_{photon}$ is determined by the dispersion relations of SR. It is revealed that $c=c_{photon}$ in Einstein's Special Relativity (E-SR), but $c\
Slow to superluminal light waves in thin 3D photonic crystals.
Galisteo-López, J F; Galli, M; Balestreri, A; Patrini, M; Andreani, L C; López, C
2007-11-12
Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few mum size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.
Causal ubiquity in quantum physics a superluminal and local-causal physical ontology
Neelamkavil, Raphael
2014-01-01
A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That
Diffraction effects in microwave propagation at the origin of superluminal behaviors
Energy Technology Data Exchange (ETDEWEB)
Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Firenze (Italy)
2008-10-27
Superluminal behaviors, as evidenced by the presence of forerunners, in advanced position with respect to the main luminal peak, have been revealed in microwave propagation experiments by using a radar technique. The results are interpreted on the basis of (fast) complex waves, usually considered only in the near-field region, but still surviving beyond this limit. Consideration of further diffraction effects, as due to geometrical limitations of the experimental set-up, allows for the obtainment of a plausible description of the results.
SGC Switching Between Subluminal to Superluminal Propagation in V-Type Atom
Institute of Scientific and Technical Information of China (English)
HAN Ding-An; GUO Hong; BAI Yan-Feng; SUN Hui; ZENG Ya-Guang
2006-01-01
For a V-type three-level atomic system with two closely spaced upper levels, we investigate the light pulse propagation properties with only one laser field. Due to spontaneously generated coherence, the group velocity of the light pulse can be changed from subluminal to superluminal. The effects of the field intensity and the two-upper level splitting on the group velocity are also shown. At last, an analytical expression for the group velocity is given in the case of a weak field.
Yum, H N; Jang, Y J; Liu, X; Shahriar, M S
2012-08-13
In a white light cavity (WLC), the group velocity is superluminal over a finite bandwidth. For a WLC-based data buffering system we recently proposed, it is important to visualize the behavior of pulses inside such a cavity. The conventional plane wave transfer functions, valid only over space that is translationally invariant, cannot be used for the space inside WLC or any cavity, which is translationally variant. Here, we develop the plane wave spatio temporal transfer function (PWSTTF) method to solve this problem, and produce visual representations of a Gaussian input pulse incident on a WLC, for all times and positions.
Universe of superluminal velocities: tests of astrophysics, from dogma-to reality
Chechelnitsky, A.
The Barrier of speed of light is the most chained and, perhaps, the most unreasonable Interdiction of the standard (astro) physics and cosmology. Its theoretical bases are speculative and unconvincing, and it actually has not been proved by observations from the very beginning of its promulgations. Moreover, it is gradually increase a stream of the observational data frankly contradicting to the Barrier. This monumental Dogma substantially holds down the initiative of researchers and development of sciences about the Universe. Resolving proofs of absence of the Barrier and real existence of superluminal velocities can come, most likely, from the side of observational astrophysics, when appear fair predictions, based on the alternative theory. Predictions and observational Tests, in particular, are those. The advanced astrophysical researches will lead to accumulation of the precision data and construction of histograms of the velocities observable in the Universe (in the centers of galaxies, AGN, blazàrs, BL Lac, etc), which will show: i) Distribution of the transversal (in a picture plane) superluminal velocities has distinct peaks near to the values specified by the alternative theory: (in G[ -6] Shell) β =v/c: 1.77; 1.48; 1.25; 1.05; 0.88; 0.74; 0.62; 0.52; 0.44; (G[ -7] Shell) β =v/c:: 6.48 ; 5.45; 4.58; 3.85; 3.24; 2.72; 2.29; 1.92; 1.62; (G[ -8] Shell) β =v/c: 23.79; 20.00; 16.82; 14.14; 11.89; 10.00; 8.41; 7.07; 5.95 ii) The same peaks are available (already now, - and it can be shown on the basis of the spectroscopic data) in distribution (histograms) of beam (radial) superluminal velocities (with the same multiplicator M = 2 = 1.1892). iii) The predicted property of discreteness, quantization of superluminal velocities (as well as subluminal) velocities is the exclusive pattern, essentially distinguishing alternative representations (Wave Universe Concept [Chechelnitsky 1980-2004]; see, in particular, the bibliography in Advances in Space Research, v
A Real Lorentz-FitzGerald Contraction
Barceló, Carlos; Jannes, Gil
2008-02-01
Many condensed matter systems are such that their collective excitations at low energies can be described by fields satisfying equations of motion formally indistinguishable from those of relativistic field theory. The finite speed of propagation of the disturbances in the effective fields (in the simplest models, the speed of sound) plays here the role of the speed of light in fundamental physics. However, these apparently relativistic fields are immersed in an external Newtonian world (the condensed matter system itself and the laboratory can be considered Newtonian, since all the velocities involved are much smaller than the velocity of light) which provides a privileged coordinate system and therefore seems to destroy the possibility of having a perfectly defined relativistic emergent world. In this essay we ask ourselves the following question: In a homogeneous condensed matter medium, is there a way for internal observers, dealing exclusively with the low-energy collective phenomena, to detect their state of uniform motion with respect to the medium? By proposing a thought experiment based on the construction of a Michelson-Morley interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald contraction takes place, so that internal observers are unable to find out anything about their ‘absolute’ state of motion. Therefore, we also show that an effective but perfectly defined relativistic world can emerge in a fishbowl world situated inside a Newtonian (laboratory) system. This leads us to reflect on the various levels of description in physics, in particular regarding the quest towards a theory of quantum gravity.
Lorentz Violation of the Photon Sector in Field Theory Models
Directory of Open Access Journals (Sweden)
Lingli Zhou
2014-01-01
Full Text Available We compare the Lorentz violation terms of the pure photon sector between two field theory models, namely, the minimal standard model extension (SME and the standard model supplement (SMS. From the requirement of the identity of the intersection for the two models, we find that the free photon sector of the SMS can be a subset of the photon sector of the minimal SME. We not only obtain some relations between the SME parameters but also get some constraints on the SMS parameters from the SME parameters. The CPT-odd coefficients (kAFα of the SME are predicted to be zero. There are 15 degrees of freedom in the Lorentz violation matrix Δαβ of free photons of the SMS related with the same number of degrees of freedom in the tensor coefficients (kFαβμν, which are independent from each other in the minimal SME but are interrelated in the intersection of the SMS and the minimal SME. With the related degrees of freedom, we obtain the conservative constraints (2σ on the elements of the photon Lorentz violation matrix. The detailed structure of the photon Lorentz violation matrix suggests some applications to the Lorentz violation experiments for photons.
A theoretical model for the Lorentz force particle analyzer
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
Attitude dynamics and control of spacecraft using geomagnetic Lorentz force
Abdel-Aziz, Yehia A.; Shoaib, Muhammad
2015-01-01
Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth's magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio (α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α* and the difference between the components of the moment of inertia for the spacecraft.
A completely invariant SUSY transform of supersymmetric QED
Energy Technology Data Exchange (ETDEWEB)
Walker, M L [College of Natural Sciences and Department of Applied Physics, Kyung Hee University, Yong-In, KyongGi, 449-701 (Korea, Republic of)
2004-09-01
We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.
A completely invariant SUSY transform of supersymmetric QED
Walker, M. L.
2004-09-01
We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.
The superluminous supernova PS1-11ap: bridging the gap between low and high redshift
McCrum, M; Kotak, R; Rest, A; Jerkstrand, A; Inserra, C; Rodney, S A; Chen, T -W; Howell, D A; Huber, M E; Pastorello, A; Tonry, J L; Bresolin, F; Kudritzki, R -P; Chornock, R; Berger, E; Smith, K; Botticella, M T; Foley, R J; Fraser, M; Milisavljevic, D; Nicholl, M; Riess, A G; Stubbs, C W; Valenti, S; Wood-Vasey, W M; Wright, D; Young, D R; Drout, M; Czekala, I; Burgett, W S; Chambers, K C; Draper, P; Flewelling, H; Hodapp, K W; Kaiser, N; Magnier, E A; Metcalfe, N; Sweeney, W; Wainscoat, R J
2013-01-01
We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of M_u = -21.4 mag and bolometric luminosity of 8 x 10^43 ergs^-1 before settling onto a relatively shallow gradient of decline. The observed decline is significantly slower than those of the superluminous type Ic SNe which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay timescale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 days before peak to 230 days after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do no...
Propagation of Superluminous L-O Mode Waves During Geomagnetic Activities
Institute of Scientific and Technical Information of China (English)
XIAO Fuliang; CHEN Lunjin; ZHENG Huinan; ZHOU Qinghua; WANG Shui
2008-01-01
The effect of the azimuthal angle ψ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a three-dimensional (3D) ray-tracing method is investigated.This work is primarily an extension of our previous two-dimensional study in which the wave azimuthal angle was not considered.We present numerical simulations for this mode which is generated in the source cavity along a 70° night geomagnetic field line at the specific altitude of 1.5RE (where RE is the Earth's radius).It is found that,as in the two-dimensional case,the trajectory of L-O mode starting in the source meridian plane (or the wave azimuthal angle ψ=180°) can reach the lowest latitude;whereas it basically stays at relatively higher latitudes starting off the source meridian plane (or ψ≠180°).The results reveal that under appropriate conditions,the superluminous L-O mode waves may exist in the radiation belts of the Earth,but this remains to be supplemented by observational data.
Slowly fading super-luminous supernovae that are not pair-instability explosions
Nicholl, M; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T -W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C
2013-01-01
Super-luminous supernovae that radiate more than 10^44 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-30 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae...
The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system
Chen, T -W; Smartt, S J; Mazzali, P A; Yates, R M; Moriya, T J; Inserra, C; Langer, N; Kruehler, T; Pan, Y -C; Kotak, R; Galbany, L; Schady, P; Wiseman, P; Greiner, J; Schulze, S; Man, A W S; Jerkstrand, A; Smith, K W; Dennefeld, M; Baltay, C; Bolmer, J; Kankare, E; Knust, F; Maguire, K; Rabinowitz, D; Rostami, S; Sullivan, M; Young, D R
2016-01-01
We present and analyse an extensive dataset of the superluminous supernova LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor superluminous supernova. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially ...
Predictions for signatures of the quark-nova in superluminous supernovae
Ouyed, Rachid; Jaikumar, Prashanth
2009-01-01
[Abridged] Superluminous Supernovae (SN2006gy, SN2005gj, SN2005ap, SN2008fz, SN2003ma) have been a challenge to explain by standard models. We present an alternative scenario involving a quark-nova (QN), an explosive transition of the newly born neutron star to a quark star in which a second explosion (delayed) occurs inside the already expanding ejecta of a normal SN. The reheated SN ejecta can radiate at higher levels for longer periods of time primarily due to reduced adiabatic expansion losses, unlike the standard SN case. Our model is successfully applied to SN2006gy, SN2005gj, SN2005ap, SN2008fz, SN2003ma with encouraging fits to the lightcurves. There are four predictions in our model: (i) superluminous SNe optical lightcurves should show a double-hump with the SN hump at weaker magnitudes occurring days to weeks before the QN; (ii) Two shock breakouts should be observed vis-a-vis one for a normal SN. Depending on the time delay, this would manifest as two distinct spikes in the X-ray region or a broad...
Superluminal motion in a compact steep spectrum radio source 3C 138
Shen, Z Q; Kameno, S; Chen, Y J
2001-01-01
We present the results of 5 GHz VLBI observations of a compact steep spectrum source 3C 138. The data are consistent with the western end being the location of the central activity. The observed offset between different frequencies in the central region of 3C 138 can be accounted for by a frequency dependent shift of the synchrotron self-absorbed core. Our new measurements confirm the existence of a superluminal motion, but its apparent velocity of 3.3c is three times slower than the reported one. This value is consistent with the absence of parsec-scale counter-jet emission in the inner region, but seems still too high to allow the overall counter-jet to be seen in terms of Doppler boosting of an intrinsically identical jet. Either an interaction of jet with central dense medium, or an intrinsically asymmetrical jet must be invoked to reconcile the detected superluminal speed with the observed large scale asymmetry in 3C 138.
ASASSN-15lh: A Superluminous Ultraviolet Rebrightening Observed by Swift and Hubble
Brown, Peter J; Cooke, Jeff; Olaes, Melanie; Quimby, Robert M; Baade, Dietrich; Gehrels, Neil; Hoeflich, Peter; Maund, Justyn; Mould, Jeremy; Patat, Ferdinando; Wang, Lifan; Wheeler, J Craig
2016-01-01
We present and discuss ultraviolet (UV) and optical photometry from the Ultraviolet/Optical Telescope (UVOT) and X-ray limits from the X-Ray Telescope on Swift and imaging polarimetry and UV/optical spectroscopy with the Hubble Space Telescope (HST) of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I) more luminous than any other supernova observed. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the UV, with a UV luminosity a hundred times greater than the hydrogen-rich, UV-bright SLSN II SN~2008es. A late rebrightening -- most prominent at shorter wavelengths -- is seen about two months after the peak brightness, which by itself is as bright as a superluminous supernova. ASASSN-15lh is not detected in the X-rays in individual observations or when the data are summed into two separate bins for the early phase and the rebrightening. The HST UV spectrum during the rebrightening is do...
Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey
Howell, D A; Lidman, C; Sullivan, M; Conley, A; Astier, P; Carlberg, C Balland R G; Fouchez, D; Guy, J; Hardin, D; Pain, R; Palanque-Delabrouille, N; Perrett, K; Pritchet, C J; Regnault, N; Rich, J; Ruhlmann-Kleider, V
2013-01-01
We present spectra and lightcurves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M_U = -22.7 is one of the most luminous SNe ever observed, and gives a rare glimpse into the restframe ultraviolet where these supernovae put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but based on the supernova spectrum, we estimate it to be at z ~ 1.5. Both supernovae have similar observer-frame griz lightcurves, which map to restframe lightcurves in the U-band and UV, rising in ~ 20 restframe days or longer, and declining over a similar timescale. The lightcurves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra to theoretical models, and identify lines of C II, C III, Fe III, and Mg II in the spectrum of SNLS 06D4eu and SCP 06F6...
Special relativity and superluminal motions: a discussion of some recent experiments
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione
2000-03-01
Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.
Helou, Bassam; Chen, Yanbei
2017-08-01
Nonlinear modifications of quantum mechanics have a troubled history. They were initially studied for many promising reasons: resolving the measurement problem, formulating a theory of quantum mechanics and gravity, and understanding the limits of standard quantum mechanics. However, certain non-linear theories have been experimentally tested and failed. More significantly, it has been shown that, in general, deterministic non-linear theories can be used for superluminal communication. We highlight another serious issue: the distribution of measurement results predicted by non-linear quantum mechanics depends on the formulation of quantum mechanics. In other words, Born’s rule cannot be uniquely extended to non-linear quantum mechanics. We present these generalizations of Born’s rule, and then examine whether some exclude superluminal communication. We determine that a large class do not allow for superluminal communication, but many lack a consistent definition. Nonetheless, we find a single extension of Born’s rule with a sound operational definition, and that does not exhibit superluminal communication. The non-linear time-evolution leading to a certain measurement event is driven by the state conditioned on measurements that lie within the past light cone of that event.
Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-ray Emission
Cheung, C C; Stawarz, L
2007-01-01
Superluminal motion is a common feature of radio jets in powerful gamma-ray emitting active galactic nuclei. Conventionally, the variable emission is assumed to originate near the central supermassive black-hole where the jet is launched on parsec scales or smaller. Here, we report the discovery of superluminal radio features within a distinct flaring X-ray emitting region in the jet of the nearby radio galaxy M87 with the Very Long Baseline Array. This shows that these two phenomenological hallmarks -- superluminal motion and high-energy variability -- are associated, and we place this activity much further (>=120 pc) from the ``central engine'' in M87 than previously thought in relativistic jet sources. We argue that the recent excess very high-energy TeV emission from M87 reported by the H.E.S.S. experiment originates from this variable superluminal structure, thus providing crucial insight into the production region of gamma-ray emission in more distant blazars.
What Governs Lorentz Factors of Jet Components in Blazars?
Indian Academy of Sciences (India)
Xinwu Cao; Bo Chai; Ming Zhou; Minfeng Gu
2014-09-01
We use a sample of radio-loud Active Galactic Nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. Recent investigations suggested that the most super-massive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies. The correlation between black hole mass and bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. The faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes.
On the origin of neutrino oscillations through Lorentz violation
Leite, Julio
2015-07-01
The possibility of generating neutrino masses and oscillations through Lorentz- violating models is investigated. In the first model, an interaction between a fermion doublet and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually, decouples from the fermions, is considered. In this case, by solving the (non-perturbative) Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically. In the second model, fermions with LV kinematics interact via a four-fermion interaction and masses are shown to be generated dynamically when using another non-perturbative method. In both models, the recovery of Lorentz invariance is discussed and it is shown that the only physical observables are the dynamical masses that lead to neutrino oscillations.
Spontaneous breaking of Lorentz symmetry for canonical gravity
Gielen, Steffen
2012-01-01
In the Ashtekar-Barbero formulation of canonical general relativity based on an SU(2) connection, Lorentz covariance is a subtle issue which has been the focus of some debate. Here we present a Lorentz covariant formulation generalising the notion of a foliation of spacetime to a field of local observers which specify a time direction only locally. This field spontaneously breaks the local SO(3,1) symmetry down to a subgroup SO(3); we show that the apparent symmetry breaking to SO(3) is not in conflict with Lorentz covariance. We give a geometric picture of our construction as Cartan geometrodynamics and outline further applications of the formalism of local observers, motivating the idea that observer space, instead of spacetime, should serve as the fundamental arena for gravitational physics.
Restrictions from Lorentz invariance violation on cosmic ray propagation
Martínez-Huerta, H.; Pérez-Lorenzana, A.
2017-03-01
Lorentz invariance violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in some particular models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well-defined secondary threshold.
Spontaneous Breaking of Lorentz Symmetry with an antisymmetric tensor
Hernaski, Carlos A
2016-01-01
Spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric $2$-tensor is considered. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model Extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz non-invariant scenarios. Besides the two photon polarizations, just one Goldstone mode must be dynamical to set a sensible low-energy effective model, and the enhancement of the stability by accounting interaction terms points to a protection against observational Lorentz violation.
Constraints on Lorentz violation from gravitational Čerenkov radiation
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2015-10-01
Full Text Available Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.
Constraints on Lorentz violation from gravitational Cherenkov radiation
Kostelecky, Alan
2015-01-01
Limits on gravitational Cherenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cherenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cherenkov radiation by gravitons.
Dynamical ambiguities in models with spontaneous Lorentz violation
Bonder, Yuri
2016-01-01
Spontaneous Lorentz violation is a viable mechanism to look for Planck scale physics. In this work, we study spontaneous Lorentz violation models, in flat spacetime, where a vector field produces such a violation and matter is modeled by a complex scalar field. We show that it is possible to construct a Hamilton density for which the evolution respects the dynamical constraints. However, we also find that the initial data, as required by standard field theory, does not determine the fields evolution in a unique way. In addition, we present some examples where the physical effects of such ambiguities can be recognized. As a consequence, the proposals in which the electromagnetic and gravitational interactions emerge from spontaneous Lorentz violation are challenged.
Lorentz symmetry breaking as a quantum field theory regulator
Visser, Matt
2009-01-01
Perturbative expansions of relativistic quantum field theories typically contain ultraviolet divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. We shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory, and discuss its implications. We shall quantify just "how much" Lorentz symmetry breaking is required to fully regulate the theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [arXiv:0901.3775 [hep-th
Testing Lorentz Symmetry with the Double Chooz Eexperiment
Katori, Teppei
2013-01-01
The Double Chooz reactor-based oscillation experiment searches for an electron antineutrino disappearance signal to investigate the neutrino mass matrix mixing angle theta 13. Double Chooz's reported evidence for this disappearance is generally interpreted as mass-driven mixing through this parameter. However, the electron antineutrino candidates collected by the experiment can also be used to search for a signature of the violation of Lorentz invariance. We study the sidereal time dependence of the antineutrino signal rate and probe Lorentz violation within the Standard-Model Extension (SME) framework. We find that the data prefer the sidereal time independent solution, and a number of limits are applied to the relevant SME coefficients, including the first constraints on those associated with Lorentz violation in the e-tau mixing sector.
Concurrent tests of Lorentz invariance in $\\beta$-decay experiments
Vos, K K; Timmermans, R G E
2015-01-01
Modern experiments on neutron and allowed nuclear $\\beta$ decay search for new semileptonic interactions, beyond the ``left-handed'' electroweak force. We show that ongoing and planned $\\beta$-decay experiments, with isotopes at rest and in flight, can be exploited as sensitive tests of Lorentz invariance. The variety of correlations that involve the nuclear spin, the direction of the emitted $\\beta$ particle, and the recoil direction of the daughter nucleus allow for relatively simple experiments that give direct bounds on Lorentz violation. The pertinent observables are decay-rate asymmetries and their dependence on sidereal time. We discuss the potential of several asymmetries that together cover a large part of the parameter space for Lorentz violation in the gauge sector. High counting statistics is required.
Lorentz Violation in Deep Inelastic Electron-Proton Scattering
Lunghi, Enrico
2016-01-01
Lorentz violation in the quark sector induces a sidereal time dependence in electron-proton, proton-antiproton and proton-proton cross sections. At high energies nonperturbative effects are buried in universal nucleon parton distribution functions and Lorentz violating effects are calculable in perturbation theory. We focus on deep inelastic electron-proton scattering data collected from ZEUS and H1 at HERA and show that a sideral time analysis of these events is able to set strong constraints on most of the coefficients we consider.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
The notion of uniform and/or constant tensor fields of rank $>0$ is incompatible with general curved spacetimes. This work considers the consequences of certain tensor-valued coefficients for Lorentz violation in the Standard-Model Extension varying with spacetime position. We focus on two of the coefficients, $a_\\mu$ and $b_\\mu$, that characterize Lorentz violation in massive fermions, particularly in those fermions that constitute ordinary matter. We calculate the nonrelativistic hamiltonian describing these effects, and use it to extract the sensitivity of several precision experiments to coefficient variation.
Search for Lorentz Violation in km$^3$-Scale Neutrino Telescopes
Argüelles, C A; Conrad, J M; Katori, T; Kheirandish, A
2016-01-01
Kilometer$^3$-scale neutrino detectors such as IceCube, ANTARES, and the proposed Km3Net neutrino observatory in the Mediterranean have measured, and will continue to characterize, the atmospheric neutrino spectrum above 1 TeV. Such precise measurements enable us to probe new neutrino physics, in particular, those that arise from Lorentz violation. In this paper, we first relate the effective new physics hamiltonian terms with the Lorentz violating literature. Second, we calculate the oscillation probability formulas for the two-level $\
Lorentz violation in brane cosmology, accelerated expansion and fundamental constants
Ahmadi, F; Sepangi, H R
2006-01-01
The notion of Lorentz violation in four dimensions is extended to a 5-dimensional brane-world scenario by utilizing a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane. The cosmological consequences of this theory consisting of the time variation in the gravitational coupling $G$ and cosmological term $\\Lambda_4$ are explored. The brane evolution is addressed by studying the generalized Friedmann and Raychaudhuri equations. The behavior of the expansion scale factor is then considered for different possible scenarios where the bulk cosmological constant is zero, positive or negative.
Lorentz and CPT violation in the Standard-Model Extension
Lehnert, Ralf
2016-01-01
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantized versions of gravity. Regardless of the underlying mechanism, the low-energy effects of such violations are expected to be governed by effective field theory. This talk provides a survey of this idea and includes an overview of experimental efforts in the field.
How is Lorentz invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-07-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
How is Lorentz Invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-01-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson Brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
Limits on violations of Lorentz Symmetry from Gravity Probe B
Bailey, Quentin G; Overduin, James M
2013-01-01
Generic violations of Lorentz symmetry can be described by an effective field theory framework that contains both general relativity and the standard model of particle physics called the Standard-Model Extension (SME). We obtain new constraints on the gravitational sector of the SME using recently published final results from Gravity Probe B. These include for the first time an upper limit at the 10^(-3) level on the time-time component of the new tensor field responsible for inducing local Lorentz violation in the theory, and an independent limit at the 10^(-7) level on a combination of components of this tensor field.
Lorentz-to-Gauss multiplication (LGM) in FT NMR
Energy Technology Data Exchange (ETDEWEB)
Makhiyanov, N. [Production Association ``Nizhnekamskneftekhym``, Nizhnekamsk, Tatarstan (Russian Federation); Kupka, T. [Uniwersytet Slaski, Katowice (Poland)]|[Zaklad Fizyki Ciala Stalego, Polska Akademia Nauk, Zabrze (Poland); Pasterna, G. [Institute of Nuclear Physics, Cracow (Poland); Dziegielewski, J.O. [Uniwersytet Slaski, Katowice (Poland)
1994-12-31
High resolution proton and carbon NMR spectra of macromolecules and biomolecules are often overcrowded and with many partly overlapped signals. Several data processing methods to resolve partly overlapped NMR peaks have been reported. Among the Lorentz-to-Gauss and CDRE (Convulsion Difference Resolution Enhancement) methods are wide used. In this work calculation of the best set of parameters were carried out from a raw spectral data (initial FID and the corresponding untreated spectrum) and a method of prediction of optimal Lorentz-to-Gauss method parameters are suggested. The feasibility of this approach to improve the quality of NMR spectra from various resonating nuclei was shown too. 8 refs, 1 fig.
Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)
2013-08-15
In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)
Signals for Lorentz and CPT Violation in Atomic Spectroscopy Experiments and Other Systems
Vargas, Arnaldo J
2016-01-01
The prospects of studying nonminimal operators for Lorentz violation using spectroscopy experiments with light atoms and muon spin-precession experiments are presented. Possible improvements on bounds on minimal and nonminimal operators for Lorentz violation are discussed.
Covariant and locally Lorentz-invariant varying speed of light theories
Magueijo, J
2000-01-01
We propose definitions for covariance and local Lorentz invariance applicable when the speed of light $c$ is allowed to vary. They have the merit of retaining only those aspects of the usual definitions which are invariant under unit transformations, and which can therefore legitimately represent the outcome of an experiment. We then discuss some possibilities for invariant actions governing the dynamics of such theories. We consider first the classical action for matter fields and the effects of a changing $c$ upon quantization. We discover a peculiar form of quantum particle creation due to a varying $c$. We then study actions governing the dynamics of gravitation and the speed of light. We find the free, empty-space, no-gravity solution, to be interpreted as the counterpart of Minkowksi space-time, and highlight its similarities with Fock-Lorentz space-time. We also find flat-space string-type solutions, in which near the string core $c$ is much higher. We label them fast-tracks and compare them with gravi...
BPS Maxwell-Chern-Simons-like vortices in a Lorentz-violating framework
Casana, R; Da Hora, E; Neves, A B F
2013-01-01
We have analyzed Maxwell-Chern-Simons-Higgs BPS vortices in a Lorentz-violating CPT-odd context. The Lorentz violation induces profiles with a conical behavior at the origin. For some combination of the coefficients for Lorentz violation there always exists a sufficiently large winding number for which the magnetic field flips its sign.
BPS Maxwell-Chern Vortices in a Lorentz-Violating Framework
Casana, R.; Ferreira, M. M.; Hora, E. Da; Neves, A. B. F.
2014-01-01
We have analyzed Maxwell-Chern-Simons-Higgs BPS vortices in a Lorentz-violating CPT-odd context. The Lorentz violation induces profiles with a conical behavior at the origin. For some combination of the coefficients for Lorentz violation there always exists a sufficiently large winding number for which the magnetic field flips its sign.
Lorentz covariant field theory on noncommutative spacetime based on DFR algebra
Okumura, Y
2003-01-01
Lorentz covariance is the fundamental principle of every relativistic field theory which insures consistent physical descriptions. Even if the space-time is noncommutative, field theories on it should keep Lorentz covariance. In this letter, it is shown that the field theory on noncommutative spacetime is Lorentz covariant if the noncommutativity emerges from the algebra of spacetime operators described by Doplicher, Fredenhagen and Roberts.
Lorentz space estimates for the Coulombian renormalized energy
Serfaty, Sylvia
2011-01-01
In this paper we obtain optimal estimates for the "currents" associated to point masses in the plane, in terms of the Coulombian renormalized energy of Sandier-Serfaty \\cite{ss1,ss3}. To derive the estimates, we use a technique that we introduced in \\cite{st}, which couples the "ball construction method" to estimates in the Lorentz space $L^{2,\\infty}$.
Prospects for Lorentz and CPT tests with hydrogen and antihydrogen
Becker, Tobias Frederic
2017-01-01
As a summer student for 13 weeks in the ASACUSA-CUSP collaboration, under the supervision of Chloé Malbrunot, my project consisted in a first part on the theoretical treatment of Lorentz and CPT violation in hydrogen & antihydrogen in the framework of the Standard Model Extension SME and in second part on experimental measurements on a hydrogen beam.
The scientific correspondence of H. A. Lorentz: Volume I
Kox, A.J.
2008-01-01
This book presents a selection of 434 carefully annotated letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. Most of these letters are of a scientific nature, with the
Lorentz invariance and the semiclassical approximation of loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Kozameh, Carlos N; Parisi, Florencia [Facultad de Matematica, AstronomIa y FIsica, Universidad Nacional de Cordoba, Ciudad Universitaria (5000) Cordoba (Argentina)
2004-06-07
It is shown that the field equations derived from an effective interaction Hamiltonian for Maxwell and gravitational fields in the semiclassical approximation of loop quantum gravity using rotational invariant states (such as weave states) are Lorentz invariant. To derive this result, which is in agreement with the observational evidence, we use the geometrical properties of the electromagnetic field.
Time correlation functions for the one-dimensional Lorentz gas
Mazo, R.M.; Beijeren, H. van
1983-01-01
The velocity autocorrelation function and related quantities are investigated for the one-dimensional deterministic Lorentz gas, consisting of randomly distributed fixed scatterers and light particles moving back and forth between two of these at a constant given speed. An expansion for the velocity
Spontaneous Lorentz violation: the case of infrared QED
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A. P., E-mail: bal@phy.syr.edu [Physics Department, Syracuse University, 13244-1130, Syracuse, NY (United States); Kürkçüoǧlu, S., E-mail: kseckin@metu.edu.tr [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Queiroz, A. R. de, E-mail: amilcarq@unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970, Brasília, DF (Brazil); Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza (Spain); Vaidya, S., E-mail: vaidya@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, 560012, Bangalore (India)
2015-02-24
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the “Sky” group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the “Sky” group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.
Spontaneous Lorentz violation: the case of infrared QED
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A.P. [Syracuse University, Physics Department, Syracuse, NY (United States); Kuerkcueoglu, S. [Middle East Technical University, Department of Physics, Ankara (Turkey); Queiroz, A.R. de [Universidade de Brasilia, Instituto de Fisica, Brasilia (Brazil); Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Vaidya, S. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India)
2015-02-01
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ''Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ''Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections. (orig.)
Kink shape solutions of the Maxwell-Lorentz system
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Webb, G.M.; Brio, M.
2005-01-01
In the limit of high amplitude oscillating electromagnetic fields, a sequence of kink antikink shaped optical waves has been found in the Maxwell's equations coupled to a single Lorentz oscillator and with Kerr nonlinearity. The individual kinks and antikinks result from a traveling wave assumpti...
Constraints on torsion from bounds on lorentz violation.
Kostelecký, V Alan; Russell, Neil; Tasson, Jay D
2008-03-21
Exceptional sensitivity to space-time torsion can be achieved by searching for its couplings to fermions. Recent experimental searches for Lorentz violation are exploited to extract new constraints involving 19 of the 24 independent torsion components down to levels of order 10(-31) GeV.
Constraints on nonmetricity from bounds on Lorentz violation
Foster, Joshua; Kostelecký, V. Alan; Xu, Rui
2017-04-01
Spacetime nonmetricity can be studied experimentally through its couplings to fermions and photons. We use recent high-precision searches for Lorentz violation to deduce first constraints involving the 40 independent nonmetricity components down to levels of order 10-43 GeV .
Limits on Lorentz violation in neutral-Kaon decay
Vos, K.K.; Wilschut, H. W.; Timmermans, R. G. E.
2013-01-01
The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic microwave background dipole anisotropy. We interpret their results in a general framework developed to probe Lorentz violation in the weak
Lorentz- and CPT-symmetry studies in subatomic physics
Energy Technology Data Exchange (ETDEWEB)
Lehnert, Ralf, E-mail: ralehner@indiana.edu [Leibniz Universität Hannover (Germany)
2016-12-15
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators
Directory of Open Access Journals (Sweden)
Anthony Lo
2016-02-01
Full Text Available We propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids, giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4×10^{−15} and a limit of c[over ˜]_{Q}^{n}=(−1.8±2.2×10^{−14} GeV on the most weakly constrained neutron-sector c coefficient of the standard model extension. Future experiments with cryogenic oscillators promise significant improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton, electron, and photon sector.
Lorentz-violating effects in three-dimensional QED
Bufalo, R.
2014-08-01
Inspired in discussions presented lately regarding Lorentz-violating interaction terms in B. Charneski, M. Gomes, R. V. Maluf and A. J. da Silva, Phys. Rev. D86, 045003 (2012); R. Casana, M. M. Ferreira Jr., R. V. Maluf and F. E. P. dos Santos, Phys. Lett. B726, 815 (2013); R. Casana, M. M. Ferreira Jr., E. Passos, F. E. P. dos Santos and E. O. Silva, Phys. Rev. D87, 047701 (2013), we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a (2+1)-dimensional space-time. We define the Lagrangian density with a Lorentz-violating interaction, where the space-time dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the space-time dimensionality. With that in mind, we expect that the space-time dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.
Path Integrals and Lorentz Violation in Polymer Quantized Scalar Fields
Kajuri, Nirmalya
2014-01-01
We obtain a path integral formulation of polymer quantized scalar field theory, starting from the Hilbert Space framework. This brings the polymer quantized scalar field theory under the ambit of Feynman diagrammatic techniques. The path integral formulation also shows that Lorentz invariance is lost for the Klein-Gordon field.
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
Huggins, Elisha
2011-01-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course. With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie…
Generalization of the Lorentz-Dirac equation to include spin
Barut, A. O.; Unal, Nuri
1989-11-01
For the classical point electron with Zitterbewegung (hence spin) we derive, after regularization, the radiation reaction force and covariant equations for the dynamical variables (xμ, πμ, vμ, and Sμν), which reduce to the Lorentz-Dirac equation in the spinless limit.
Special Relativity in Week One: 3) Introducing the Lorentz Contraction
Huggins, Elisha
2011-01-01
This is the third of four articles on teaching special relativity in the first week of an introductory physics course. With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie…
On the conformal geometry of transverse Riemann Lorentz manifolds
Aguirre, E.; Fernández, V.; Lafuente, J.
2007-06-01
Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Riemann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
Intrinsic Geometry of Curves and the Lorentz Equation
Caltenco, J. H.; Linares, R. M. Y.; López-Bonilla, J. L.
2002-07-01
We show that the trajectory of a point charge in a uniform electromagnetic field is a helix if the Lorentz equation governs its motion. Our approach is totally relativistic, and it is based on the use of the Frenet-Serret formulae which describe the intrinsic geometry of world lines in Minkowski spacetime.
High-Energy Nuclear Physics with Lorentz Symmetry Violation
González-Mestres, L
1997-01-01
If textbook Lorentz invariance is actually a property of the equations describing a sector of the excitations of vacuum above some critical distance scale, several sectors of matter with different critical speeds in vacuum can coexist and an absolute rest frame (the vacuum rest frame) may exist without contradicting the apparent Lorentz invariance felt by "ordinary" particles (particles with critical speed in vacuum equal to $c$ , the speed of light). Sectorial Lorentz invariance, reflected by the fact that all particles of a given dynamical sector have the same critical speed in vacuum, will then be an expression of a fundamental sectorial symmetry (e.g. preonic grand unification or extended supersymmetry) protecting a parameter of the equations of motion. Furthermore, the sectorial Lorentz symmetry may be only a low-energy limit, in the same way as the relation $\\omega $ (frequency) = $c_s$ (speed of sound) $k$ (wave vector) holds for low-energy phonons in a crystal. In this context, phenomena such as the a...
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
When the Standard-Model Extension (SME) is applied in curved spacetime, the Lorentz-violation coefficients must depend on spacetime position. This work describes some of the consequences of this spacetime variation. We focus on effects that appear at a nonrelativistic scale and extract sensitivity of completed experiments to derivatives of SME coefficient fields.
The scientific correspondence of H. A. Lorentz: Volume I
Kox, A.J.
2008-01-01
This book presents a selection of 434 carefully annotated letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. Most of these letters are of a scientific nature, with the
Lorentz force sigmometry: A contactless method for electrical conductivity measurements
Uhlig, Robert P.; Zec, Mladen; Ziolkowski, Marek; Brauer, Hartmut; Thess, André
2012-05-01
The present communication reports a new technique for the contactless measurement of the specific electrical conductivity of a solid body or an electrically conducting fluid. We term the technique "Lorentz force sigmometry" where the neologism "sigmometry" is derived from the Greek letter sigma, often used to denote the electrical conductivity. Lorentz force sigmometry (LoFoS) is based on similar principles as the traditional eddy current testing but allows a larger penetration depth and is less sensitive to variations in the distance between the sensor and the sample. We formulate the theory of LoFoS and compute the calibration function which is necessary for determining the unknown electrical conductivity from measurements of the Lorentz force. We conduct a series of experiments which demonstrate that the measured Lorentz forces are in excellent agreement with the numerical predictions. Applying this technique to an aluminum sample with a known electrical conductivity of σAl=20.4MS/m and to a copper sample with σCu=57.92MS/m we obtain σAl=21.59MS/m and σCu=60.08MS/m, respectively. This demonstrates that LoFoS is a convenient and accurate technique that may find application in process control and thermo-physical property measurements for solid and liquid conductors.
Oliver, Luis
2014-01-01
In the heavy quark limit of QCD, using the Operator Product Expansion and the non-forward amplitude, as proposed by Nikolai Uraltsev, we formulate sum rules that generalize Bjorken and Uraltsev sum rules. We recover the Uraltsev lower bound for the slope of the Isgur-Wise (IW) function, that we generalize to higher derivatives. We show that these results have a clear interpretation in terms of the Lorentz group, since the IW function is given by an overlap between the initial and final light clouds, related by Lorentz transformations. Both the Lorentz group and the Sum Rules approach are equivalent. Moreover, we formulate an integral representation of the IW function with a positive measure. Inverting this integral formula, we obtain the measure in terms of the IW function, allowing to formulate criteria to decide if a given ansatz for the IW function is compatible or not with the sum rule constraints. We compare these theoretical constraints to some forms proposed in the literature.
3D Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources
Aloy, M A; Gómez, J L; Agudo, I; Müller, E; Ibanyez, J M; Aloy, Miguel Angel; Marti, Jose Maria; Gomez, Jose Luis; Agudo, Ivan; Mueller, Ewald; Ibanyez, Jose Maria
2003-01-01
We present the results of a three-dimensional, relativistic, hydrodynamic simulation of a precessing jet into which a compact blob of matter is injected. A comparison of synthetic radio maps computed from the hydrodynamic model, taking into account the appropriate light travel time delays, with those obtained from observations of actual superluminal sources shows that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or the external medium. These results question the hydrodynamic properties inferred from observed apparent motions and radio structures, and reveal that shock-in-jet models may be overly simplistic.
Superluminal Propagation Caused by Radiative Corrections in a Uniform Electromagnetic Field
Shiba, Noburo
2012-01-01
We consider the effect of radiative corrections on the maximum velocity of propagation of neutral scalar fields in a uniform electromagnetic field. The propagator of neutral scalar fields interacting with charged fields depends on the electromagnetic field through charged particle loops. The kinetic terms of the scalar fields are corrected and the maximum velocity of the scalar particle becomes greater or less than unity. We show that the maximum velocity becomes greater than unity in a simple example, a neutral scalar field coupled with two charged Dirac fields by Yukawa interaction. The maximum velocity depends on the frame of reference and causality is not violated. We discuss the possibility of this superluminal propagation in the Standard Model.
Superluminal Neutrinos and a Curious Phenomenon in the Relativistic Quantum Hamilton-Jacobi Equation
Matone, Marco
2011-01-01
OPERA's results, if confirmed, pose the question of superluminal neutrinos. We investigate the kinematics defined by the quantum version of the relativistic Hamilton-Jacobi equation, i.e. E^2=p^2c^2+m^2c^4+2mQc^2, with Q the quantum potential of the free particle. The key point is that the quantum version of the Hamilton-Jacobi equation is a third-order differential equation, so that it has integration constants which are missing in the Schr\\"odinger and Klein-Gordon equations. In particular, a non-vanishing imaginary part of an integration constant leads to a quantum correction to the expression of the velocity which is curiously in agreement with OPERA's results.
`Superluminal' Photon Propagation in QED in Curved Spacetime is Dispersive and Causal
Hollowood, Timothy J
2010-01-01
It is now well-known that vacuum polarisation in QED can lead to superluminal low-frequency phase velocities for photons propagating in curved spacetimes. In a series of papers, we have shown that this quantum phenomenon is dispersive and have calculated the full frequency dependence of the refractive index, explaining in detail how causality is preserved and various familiar results from quantum field theory such as the Kramers-Kronig dispersion relation and the optical theorem are realised in curved spacetime. These results have been criticised in a recent paper by Akhoury and Dolgov arXiv:1003.6110 [hep-th], who assert that photon propagation is neither dispersive nor necessarily causal. In this note, we point out a series of errors in their work which have led to this false conclusion.
Stimulated generation of superluminal light pulses via four-wave mixing.
Glasser, Ryan T; Vogl, Ulrich; Lett, Paul D
2012-04-27
We report on the four-wave mixing of superluminal pulses, in which both the injected and generated pulses involved in the process propagate with negative group velocities. Generated pulses with negative group velocities of up to v(g)=-1/880c are demonstrated, corresponding to the generated pulse's peak exiting the 1.7 cm long medium ≈50 ns earlier than if it had propagated at the speed of light in vacuum, c. We also show that in some cases the seeded pulse may propagate with a group velocity larger than c, and that the generated conjugate pulse peak may exit the medium even earlier than the amplified seed pulse peak. We can control the group velocities of the two pulses by changing the seed detuning and the input seed power.
Can pair-instability supernova models match the observations of superluminous supernovae?
Kozyreva, Alexandra
2015-01-01
An increasing number of so-called superluminous supernovae (SLSNe) are discovered. It is believed that at least some of them with slowly fading light curves originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models naturally predict pair instability supernovae (PISNe) from very massive stars at wide range of metallicities (up to Z=0.006, Yusof et al. 2013). In the scope of this study we analyse whether PISN models can match the observational properties of SLSNe with various light curve shapes. Specifically, we explore the influence of different degrees of macroscopic chemical mixing in PISN explosive products on the resulting observational properties. We artificially apply mixing to the 250 Msun PISN evolutionary model from Kozyreva et al. (2014) and explore its supernova evolution with the one-dimensional radiation hydrodynamics code STELLA. The greatest success in matching SLSN observations is achieved in the case of an extreme macroscopic mixing, where all r...
Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons
Directory of Open Access Journals (Sweden)
Takaaki Musha
2012-08-01
Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.
Negative and Superluminal Group Velocity Propagation with Narrow Pulse in a Coaxial Photonic Crystal
Institute of Scientific and Technical Information of China (English)
OU Xiao-Juan; ZHOU Wei; LI Lin; TENG Li-Hu; FENG Bao-Ying; ZHENG Sheng-Feng; WANG Feng-Wei
2007-01-01
We investigate the propagation of electric signal along a spatially periodic impedance mismatched transmission line group. Anomalous dispersion is caused by the periodically mismatched impedance structure and a forbidden band appears near 8 MHz in transmission. The group velocity of the amplitude-modulated signal is augmented up to infinity, even -3.89c (c the speed of light in vacuum) in the forbidden region with the amplitude of the modulated signal increasing. When the carrier sinusoid signal is modulated in amplitude by the modulating sinusoid signal, of which the peak is superimposed with a narrow pulse at fivefold frequency, the superluminal group velocity also occurs. The experiment failed to show whether the propagation velocity of narrow pulse exceeds c or not.
SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS
Energy Technology Data Exchange (ETDEWEB)
Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others
2013-06-20
We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.
Extreme Supernova Models for the Super-luminous Transient ASASSN-15lh
Chatzopoulos, E.; Wheeler, J. C.; Vinko, J.; Nagy, A. P.; Wiggins, B. K.; Even, W. P.
2016-09-01
The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ˜40 M ⊙ star interacting with a hydrogen-poor shell of ˜20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1-2 ms and magnetic field of 0.1-1 × 1014 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.
A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data
Energy Technology Data Exchange (ETDEWEB)
Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Djorgovski, S. George; Mahabal, Ashish A. [California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States); Glikman, Eilat [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Koposov, Sergey, E-mail: zkostrzewa@astrouw.edu.pl, E-mail: simkoz@astrouw.edu.pl, E-mail: wyrzykow@astrouw.edu.pl [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)
2013-12-01
We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m {sub g} < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M{sub B} = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M {sub g} < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.
Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere.
Zhou, Guoquan; Chu, Xiuxiang
2010-01-18
The propagation of a Lorentz-Gauss beam in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and the Hermite-Gaussian expansion of a Lorentz function, analytical formulae for the average intensity and the effective beam size of a Lorentz-Gauss beam are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a Lorentz-Gauss beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a Lorentz-Gauss beam in turbulent atmosphere are also discussed in detail.
Sabegh, Z Amini; Maleki, M A; Mahmoudi, M
2015-01-01
We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.
Dai, De-Chang
2012-01-01
We study a retarded potential solution of a massless scalar field in curved space-time. In a special ansatz for a particle at rest whose magnitude of the (scalar) charge is changing with time, we found an exact analytic solution. The solution indicates that the phase velocity of the retarded potential of a non-moving scalar charge is position dependent, and may easily be greater than the speed of light at a given point. In the case of the Schwarzschild space-time, at the horizon, the phase velocity becomes infinitely faster than the coordinate speed of light at that point. Superluminal phase velocity is relatively common phenomenon, with the the phase velocity of the massive Klein-Gordon field as the best known example. We discuss why it is possible to have modes with superluminal phase velocity even for a massless field.
The conformal transformation of the night sky
Minguzzi, E.
2016-12-01
We give a simple differential geometric proof of the conformal transformation of the night sky under change of observer. The proof does not use the four dimensionality of spacetime or spinor methods. Furthermore, it really shows that the result does not depend on Lorentz transformations. This approach, by giving a transparent covariant expression to the conformal factor, shows that in most situations it is possible to define a thermal sky metric independent of the observer.