WorldWideScience

Sample records for superluminal dispersion relations

  1. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    Science.gov (United States)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  2. Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    International Nuclear Information System (INIS)

    Chang Zhe; Li Xin; Wang Sai

    2012-01-01

    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 107 (2011) 181803] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality ( (arXiv:1110.6673 [hep-ph])). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this Letter, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.

  3. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  4. Against dogma: On superluminal propagation in classical electromagnetism

    Science.gov (United States)

    Weatherall, James Owen

    2014-11-01

    It is deeply entrenched dogma that relativity theory prohibits superluminal propagation. It is also experimentally well-established that under some circumstances, classical electromagnetic fields propagate through a dielectric medium with superluminal group velocities and superluminal phase velocities. But it is usually claimed that these superluminal velocities do not violate the relativistic prohibition. Here I analyze electromagnetic fields in a dielectric medium within a framework for understanding superluminal propagation recently developed by Geroch (1996, 2011) and elaborated by Earman (2014). I will argue that for some parameter values, electromagnetic fields do propagate superluminally in the Geroch-Earman sense.

  5. Cloning and superluminal signaling£

    Indian Academy of Sciences (India)

    Cloning; cloning fidelity; superluminal signaling; state discrimination. PACS No. 03.65.Bz. 1. .... The possibility of superluminal signaling in quantum mechanics stems from the concept .... quantum mechanics and relativity [13]. .... [13] A Shimony, in Foundations of quantum mechanics in the light of new technology edited by.

  6. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    Science.gov (United States)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  7. Nonlinearity without superluminality

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schroedinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality

  8. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  9. k-Essence, superluminal propagation, causality and emergent geometry

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Mukhanov, Viatcheslav; Vikman, Alexander

    2008-01-01

    The k-essence theories admit in general the superluminal propagation of the perturbations on classical backgrounds. We show that in spite of the superluminal propagation the causal paradoxes do not arise in these theories and in this respect they are not less safe than General Relativity

  10. Interpreting OPERA results on superluminal neutrino

    CERN Document Server

    Giudice, Gian F; Strumia, Alessandro

    2012-01-01

    OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.

  11. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  12. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae

    Science.gov (United States)

    Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel

    2018-05-01

    We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.

  13. Special relativity and superluminal motions: a discussion of some recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.

  14. Special relativity and superluminal motions: a discussion of some recent experiments

    International Nuclear Information System (INIS)

    Recami, E.; Fontana, F.; Garavaglia, R.

    2000-03-01

    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even muonic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity

  15. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  16. Light propagation from subluminal to superluminal in a three-level Λ-type system

    International Nuclear Information System (INIS)

    Sun Hui; Guo Hong; Bai, Yanfeng; Han Dingan; Fan Shuangli; Chen Xuzong

    2005-01-01

    We show that the group velocity of a weak electromagnetic pulse can be manipulated by adjusting the relative phase of the probing and the pumping fields applied to a Λ-type three-level system, whose two lower states are coupled by an external control magnetic field. Such control field can, in principle, cause the light propagation to be changed from subluminal to superluminal by modulating the relative phase. The same effect can be obtained by varying the intensities of the pumping and the control magnetic fields, but it is different with Agarwal's [Phys. Rev. A 64 (2001) 053809]. The effect of Doppler broadening on the dispersion is also investigated

  17. Superluminality, black holes and EFT

    Energy Technology Data Exchange (ETDEWEB)

    Goon, Garrett [Department of Applied Mathematics and Theoretical Physics,Cambridge University, Cambridge, CB3 0WA (United Kingdom); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-27

    Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.

  18. Considerations about the apparent 'superluminal expansions' in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.

    1984-01-01

    The orthodox models devised to explain the apparent 'superluminal expansions' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much succesful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. The ground is prepared starting from a variational principle, introducing the elements of a tachyon mechanics within special relativity, and arguing about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest 'Superluminal models' are reviewed and developed, paying particular attention to the observations which they would give rise to. Itis concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones. (Author) [pt

  19. Considerations about the apparent superluminal expansions in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G. D.; Rodono, M.

    1985-01-01

    The ortodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics, and here briefly summarized and discussed together with th experimental data, do not seem to be to much successful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual superluminal motion take place. To prepare the ground one starts from a variational principle, introduces the elements of a tachyon mechanics within special relativity, and argues about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest ''superluminal models'', paying particular attention to the observations which they would give rise to are revie wed and developed. It is concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the ortodox ones

  20. A Blind Pilot: Who is a Super-Luminal Observer?

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2008-04-01

    Full Text Available This paper discusses the nature of a hypothetical super-luminal observer who, as well as a real (sub-light speed observer, perceives the world by light waves. This consideration is due to that fact that the theory of relativity permits different frames of reference, including light-like and super-luminal reference frames. In analogy with a blind pilot on board a supersonic jet aeroplane (or missile, perceived by blind people, it is concluded that the light barrier is observed in the framework of only the light signal exchange experiment.

  1. On the possibility of superluminal energy propagation in a hyperbolic metamaterial of metal-dielectric layers

    Directory of Open Access Journals (Sweden)

    Pi-Gang Luan

    2018-01-01

    Full Text Available The energy propagation of electromagnetic fields in the effective medium of a one-dimensional photonic crystal consisting of dielectric and metallic layers is investigated. We show that the medium behaves like Drude and Lorentz medium, respectively, when the electric field is parallel and perpendicular to the layers. For arbitrary time-varying electromagnetic fields in this medium, the energy density formula is derived. We prove rigorously that the group velocity of any propagating mode obeying the hyperbolic dispersion must be slower than the speed of light in vacuum, taking into account the frequency dependence of the permittivity tensor. That is, it is not possible to have superluminal propagation in this dispersive hyperbolic medium consisting of real dielectric and metallic material layers. The propagation velocity of a wave packet is also studied numerically. This packet velocity is very close to the velocity of the propagating mode having the central frequency and central wave vector of the wave packet. When the frequency spread of the wave packet is not narrow enough, small discrepancy between these two velocities manifests, which is caused by the non-penetration effect of the evanescent modes. This work reveals that no superluminal phenomenon can happen in a dispersive anisotropic metamaterial medium made of real materials.

  2. ''Superluminal'' phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perel'man, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities and conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A m u, whereas electric and magnetic fields remain unconnected in the near zone. (The proof or its preliminary version in: M.E.Perel'man: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 696 (2003) the pulse (389 THz) on the entrance of gas cell of L = 40 cm length is J(t, x = 0; w) = J o I(t)I(w). The measured group refraction index n g = -19 and the duration of formation tau = -27 as, therefore the free path length is of order l = 40 cm and the probability of single scattering p(w) = exp(-L/l) = 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = L;wω) Jω(w){pI(L/c-(t,x=0;wI(L/c - |tau| +(1-p)I(L/c), i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined

  3. Superluminal Kinematics in the Milne Universe Causality in the Cosmic Time Order

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    The causality of superluminal signal transfer in the galaxy background is scrutinized. The cosmic time of the comoving galaxy frame determines a distinguished time order for events connected by superluminal signals. Every observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. In this way all observers arrive at identical conclusions on the causality of events connected by superluminal signals. The energy of tachyons (superluminal particles) is defined in the comoving galaxy frame analogous to the energy of subluminal particles. It is positive in the galaxy frame and bounded from below in the rest frames of geodesically moving observers, so that particle-tachyon interactions can be based on energy-momentum conservation. We study tachyons in a Robertson-Walker cosmology with linear expansion factor and open, negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving obs...

  4. Superluminal censorship

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Matt; Bassett, B.A.; Liberati, S

    2000-06-01

    We argue that 'effective' superluminal travel, potentially caused by the tipping over of light cones in Einstein gravity, is always associated with violations of the null energy condition (NEC). This is most easily seen by working perturbatively around Minkowski spacetime, where we use linearized Einstein gravity to show that the NEC forces the light cones to contract (narrow). Given the NEC, the Shapiro time delay in any weak gravitational field is always a delay relative to the Minkowski background, and never an advance. Furthermore, any object travelling within the lightcones of the weak gravitational field is similarly delayed with respect to the minimum traversal time possible in the background Minkowski geometry.

  5. Pair Production Constraints on Superluminal Neutrinos Revisited

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2012-01-01

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p 2 can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  6. Superluminal warp drives are semiclassically unstable

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, S; Liberati, S [SISSA, via Beirut 2-4, Trieste 34151, Italy and INFN sezione di Trieste (Italy); Barcelo, C, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i, E-mail: carlos@iaa.e [Instituto de Astrofisica de AndalucIa, CSIC, Camino Bajo de Huetor 50, 18008 Granada (Spain)

    2010-04-01

    Warp drives are very interesting configurations of General Relativity: they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to build them. Even if one succeeded in providing the necessary exotic matter, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries created out of an initially flat spacetime have been analyzed in a previous work by the present authors in special locations, close to the wall of the bubble and in its center. Here, we present an exact numerical analysis of the renormalized stress-energy tensor (RSET) in the whole bubble. We find that the the RSET will exponentially grow in time close to the front wall of the superluminal bubble, after some transient terms have disappeared, hence strongly supporting our previous conclusion that the warp-drive geometries are unstable against semiclassical back-reaction. This result seems to implement the chronology protection conjecture, forbiddig the set up of a structure potentially dangerous for causality.

  7. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.

    2014-09-17

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  8. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.; Ruseckas, J.; Mekys, A.; Ekers, Aigars; Bezuglov, N.; Juzeliūnas, G.

    2014-01-01

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  9. Superluminal phenomena can be attributed to instantaneous tunneling of excitations in near field

    International Nuclear Information System (INIS)

    Perelman, M.

    2004-01-01

    Full Text:Recent new observations of superluminal transmission of photons afresh raised the discussions of problem of their reality and significance. The possibilities aitd conditions of such transferring are examined by the covariant theory of dispersion relations and are resulted into the THEOREM: Superluminal transfer of excitations (jumps) through the linear passive substance can been elected nothing but by the instantaneous tunneling of virtual particles on distances of order of half wavelength corresponding to energy, which is lacking to the nearest stable (resonance) state. The nonlocality of electromagnetic field must be describable via the 4-potential A μ , whereas electric and magnetic fields remain unconnected in the near zone. (The proof of its preliminary version in: M.E.Perefman: gen-physics/ 0309123.) The experimental data can be interpreted on this base as the sequential processes of scattering of single photons. Their temporal distributions are estimated with taking into account durations of scattering: in optically thin media the usual statistical description is invalid and interpretation via the theory of scattering is required. So in the most known experiments of M.D.Stenner, D.L.Gauthier, M.A.Neifeld. Nature, 425, 695 (2003) the pulse (389 THz) on the entrance of gas cell of l = 40 cm length is J(t,x = O;ω) = ,J o I(t)I(ω). .The measured group refraction index ng = -19 and the duration of formation τ = -27 as, therefore the free path length is of order l= 40 cm and the probability of single scattering p(?) =exp(-L/l) 0.37. Thereby for photons, which undergo not more than one scattering the intensity on the outlet J(t,x = Lω) = JtI(τ){pI(L/c - |τ|) + (1- p)I(L/c)], i.e. the outlet must be represented by the sum of two Gaussians, initial and advanced. As the non-shifted peak must be twice bigger than advanced, the center of their envelope will be displaced into the side of speed c or even to c/n. And it possibly predefined the conclusions

  10. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    International Nuclear Information System (INIS)

    Bacha, Bakht Amin; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-01-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of −37.50 m s −1 with a negative time delay of −8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups. (paper)

  11. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  12. Invisibility cloaking without superluminal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Perczel, Janos; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Tyc, Tomas, E-mail: jp394@st-andrews.ac.uk, E-mail: tomtyc@physics.muni.cz, E-mail: ulf@st-andrews.ac.uk [Faculty of Science, Kotlarska 2 and Faculty of Informatics, Botanicka 68a, Masaryk University, 61137 Brno (Czech Republic)

    2011-08-15

    Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needs media with superluminal propagation. Here we show by giving an example that this is no longer necessary.

  13. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    International Nuclear Information System (INIS)

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  14. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neelamkavil, Raphael

    2014-07-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  15. The superluminal radio source 4c 39. 25 as relativistic jet prototype. El cuasar superluminal 4C 93. 25 como prototipo de jet relativistia

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.

  16. Subluminal and superluminal pulse propagation in inhomogeneous media of nonspherical particles

    International Nuclear Information System (INIS)

    Ma Yu; Gao Lei

    2006-01-01

    We study the pulse propagation through a metal/dielectric composites of nonspherical particles enclosed by two gold mirrors. To account for the shape effect, we first adopt Maxwell-Garnett type approximation to obtain the effective dielectric function of composites. Based on the group index, phase time and pulse shape calculations, we find that the particles' shape (characterized by the depolarization factor) plays an important role in determining the subluminal and superluminal pulse propagations through the system. When the inclusions' shape is not spherical, it is possible to observe significant superluminal behavior of the pulse propagation, although the volume fraction is the same. The shape-dependent critical volume fraction is predicted, above which superluminal propagation appears. Furthermore, the Hartman effect in such a system is also investigated

  17. Superluminal velocities. Illusion or reality?

    International Nuclear Information System (INIS)

    Pereyra, P.; Simanjuntak, H.P.

    2005-10-01

    We study the time-evolution of electromagnetic wave packets through optical superlattices. We follow the time evolution (described by Maxwell equations) of Gaussian packets with centroid in different energy regions. The time spent by the wave packet inside an optical structure agrees extremely well with the superluminal experimental results and the phase time predictions. (author)

  18. Statistical separability and the impossibility of the superluminal quantum communication

    International Nuclear Information System (INIS)

    Zhang Qiren

    2004-01-01

    The authors analyse the relation and the difference between the quantum correlation of two points in space and the communication between them. The statistical separability of two points in the space is defined and proven. From this statistical separability, authors prove that the superluminal quantum communication between different points is impossible. To emphasis the compatibility between the quantum theory and the relativity, authors write the von Neumann equation of density operator evolution in the multi-time form. (author)

  19. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    DEFF Research Database (Denmark)

    Leloudas, Giorgos; Maund, Justyn R.; Gal-Yam, Avishay

    2017-01-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropol......We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs...... of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us...

  20. Superluminal Velocities in the Synchronized Space-Time

    Directory of Open Access Journals (Sweden)

    Medvedev S. Yu.

    2014-07-01

    Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.

  1. Generalised Einstein mass-variation formulae: II Superluminal relative frame velocities

    Directory of Open Access Journals (Sweden)

    James M. Hill

    Full Text Available In part I of this paper we have deduced generalised Einstein mass variation formulae assuming relative frame velocities vc. We again use the notion of the residual mass m0(v which for v>c is defined by the equation m(v=m0(v[(v/c2-1]-1/2 for the actual mass m(v. The residual mass is essentially the actual mass with the Einstein factor removed, and we emphasise that we make no restrictions on m0(v. Using this formal device we deduce corresponding new mass variation formulae applicable to superluminal relative frame velocities, assuming only the extended Lorentz transformations and their consequences, and two invariants that are known to apply in special relativity. The present authors have previously speculated a dual framework such that both the rest mass m0∗ and the residual mass at infinite velocity m∞∗ (by which we mean p∞∗/c, assuming finite momentum at infinity are equally important parameters in the specification of mass as a function of its velocity, and the two arbitrary constants can be so determined. The new formulae involving two arbitrary constants may also be exploited so that the mass remains finite at the speed of light, and two distinct mass profiles are determined as functions of their velocity with the rest mass assumed to be alternatively prescribed at the origin of either frame. The two profiles so obtained (M(U,m(u and (M∗(U,m∗(u although distinct have a common ratio M(U/M∗(U=m(u/m∗(u that is a function of v>c, indicating that observable mass depends upon the frame in which the rest mass is prescribed. Keywords: Special relativity, Einstein mass variation, New formulae

  2. Subluminal and superluminal propagation of light in an N-type medium

    International Nuclear Information System (INIS)

    Han Dingan; Guo Hong; Bai Yanfeng; Sun Hui

    2005-01-01

    For a three-level electromagnetically induced transparency (EIT) atomic system, we show that, adding a third driving field coupled to a fourth state, the properties of the weak probe light propagation are greatly changed. Due to the increase of the driving field, when the driving and the coupling detunings are zero, the light propagation can be changed from subluminal to superluminal. Also, the analytical solution exhibiting superluminal group velocity is given at the zero probe detuning

  3. Conditions for Lorentz-invariant superluminal information transfer without signaling

    Science.gov (United States)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2016-03-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.

  4. Conditions for Lorentz-invariant superluminal information transfer without signaling

    International Nuclear Information System (INIS)

    Grössing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2016-01-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively. (paper)

  5. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  6. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  7. Superluminous Devices Versus Low-Level Laser for Temporomandibular Disorders

    Directory of Open Access Journals (Sweden)

    Sveshtarov Vasil

    2018-03-01

    Full Text Available The aim of this study is to compare the pain intensity reduction between the mean radiation doses per session of gallium-aluminum-arsenide (GaAIAs laser with superluminous diodes (SLD in four of the most common pain-related chronic temporomandibular disorders (TMD - local myalgia, myofascial pain, myofascial pain with a referral, and arthralgia. This study was implemented on 124 patients with pain-related temporomandibular disorders according to the DC/TMD criteria. We applied trigger point oriented near-infrared laser (785 nm, 100 s, 8 J/cm2 and SLD cluster sessions (the cluster is composed of 49 SLDs with a combination of visible red (633 nm and infrared (880 nm diodes, 200 mW, 300 s, 8 J/cm2 for the temporomandibular joints and the affected muscles. Patients were evaluated at the start of the treatment, and after the 6th session of combined phototherapy. The pain intensity scores were measured according to the Visual Analogue Scale (VAS. Our results show that the most statistically manifested pain reduction is found for the SLD dose, р = 0,000118, followed by the overall dose (laser plus SLD; р = 0,001031, and the laser dose; р = 0,030942 (ANOVA dispersion analyses. Consequently, it can be concluded that myalgia is better treated through lower doses of red light compared to infrared laser doses because SLDs combine the prooxidative effect of photons with 633 nm wavelength, a large area of exposure, sufficient tissue penetration, and some positive warming thermal impact of the SLD clusters.

  8. On a proposal of superluminal communication

    International Nuclear Information System (INIS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2012-01-01

    Recently, various new proposals of superluminal transmission of information have been suggested in the literature. Since the proposals make systematic use of recent formal and practical improvements in quantum mechanics, the old theorems proving the impossibility of such a performance must be adapted to the new scenario. In this communication, we consider some of the most challenging proposals of this kind and we show why they cannot work. (fast track communication)

  9. A Non-Mainstream Viewpoint on Apparent Superluminal ...

    Indian Academy of Sciences (India)

    Abstract. The group velocity of light in material around the AGN jet is acquiescently one (c as a unit), but this is only a hypothesis. Here, we re-derive apparent superluminal and Doppler formulas for the general case (it is assumed that the group velocity of light in the uniform and isotropic medium around a jet (a beaming ...

  10. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    Directory of Open Access Journals (Sweden)

    Nanni Luca

    2017-11-01

    Full Text Available This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study’s results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  11. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  12. Geometry of physical dispersion relations

    International Nuclear Information System (INIS)

    Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.

    2011-01-01

    To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.

  13. Investigation on dispersion in the active optical waveguide resonator

    Science.gov (United States)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  14. Causality and superluminal behavior in classical field theories: Applications to k-essence theories and modified-Newtonian-dynamics-like theories of gravity

    International Nuclear Information System (INIS)

    Bruneton, Jean-Philippe

    2007-01-01

    Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories

  15. Testing the magnetar scenario for superluminous supernovae with circular polarimetry

    Science.gov (United States)

    Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.

    2018-05-01

    Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.

  16. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Leloudas, Giorgos; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Maund, Justyn R. [The Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Hsiao, Eric [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Malesani, Daniele; De Ugarte Postigo, Antonio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Patat, Ferdinando [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-03-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in time with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.

  17. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    International Nuclear Information System (INIS)

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-01-01

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10 6 . We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor

  18. Causal ubiquity in quantum physics a superluminal and local-causal physical ontology

    CERN Document Server

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That

  19. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  20. Black/white hole radiation from dispersive theories

    International Nuclear Information System (INIS)

    Macher, Jean; Parentani, Renaud

    2009-01-01

    We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one-dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low-frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Applications to four-dimensional black holes and Bose-Einstein condensates are in preparation.

  1. Generalization of the dispersion relations demonstration; Generalisation de la demonstration des relations de dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Omnes, Roland [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    A modification of the dispersion relations demonstration for two-particle collisions in field theory is indicated. The direct study of the holomorphy domain of the reaction amplitude, without any reference to a particular coordinate system, allows to demonstrate the dispersion relations with fixed pulse transfer for any input and output particle mass. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1203-1205, sitting of 15 February 1960 [French] On indique une modification de la demonstration des relations de dispersion pour les collisions a deux particules en theorie des champs. En etudiant directement le domaine d'holomorphie de l'amplitude de reaction sans se referer a un systeme de coordonnees particulier, on demontre les relations de dispersion a transfert d'impulsion fixe dans le cas ou les masses des particules entrantes et sortantes sont quelconques. Reproduction d'un article publie dans les Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1203-1205, seance du 15 fevrier 1960.

  2. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  3. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  4. Enhanced index and negative dispersion without absorption in driven cascade media

    International Nuclear Information System (INIS)

    Hu Xiangming; Xu Jun

    2004-01-01

    In this paper we investigate the dispersive and absorptive properties of a system of three-level cascade atoms driven by a strong coherent field. Three characteristic features are found. First, for the same set of atom-light interaction parameters, the indices of refraction are large at three different frequencies where the absorption vanishes. These three frequencies are determined by the resonance transition frequencies between dressed states produced by the strong driving field. Second, negative dispersion without absorption, which leads to superluminal light propagation, is achievable in the central resonance structure of the dispersion spectrum. Third, the whole absorption spectrum displays, in general, three pairs of absorption peaks and three pairs of gain (negative absorption) peaks. The minimal spacing between dressed states determines whether the outer adjacent gain peaks are separated from each other

  5. Time moments of the energy flow of optical pulses in highly dispersive media

    International Nuclear Information System (INIS)

    Nanda, Lipsa; Wanare, Harshawardhan; Ramakrishna, S Anantha

    2010-01-01

    We use the time moments of the Poynting vector associated with an electromagnetic pulse to characterize the traversal times and temporal pulse widths as the pulse propagates in highly dispersive media. The behaviour of these quantities with the propagation distance is analysed in three canonical cases: Lorentz absorptive medium, a Raman gain doublet amplifying medium and a medium exhibiting electromagnetically induced transparency. We find that superluminal pulse propagation in the first two cases with anomalous dispersion is usually accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation. In a medium with electromagnetically induced transparency with large normal dispersion, we identify a range of frequencies for which the pulse undergoes minimal temporal expansion while propagating with ultra-slow speed.

  6. Super-luminous Type II supernovae powered by magnetars

    Science.gov (United States)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  7. Dispersion relation and relative intensity for double-plasmon satellites

    International Nuclear Information System (INIS)

    Srivastava, K.S.; Shiv Singh; Harsh, O.K.

    1981-01-01

    An expression for the dispersion relation and the relative intensity of double-plasmon oscillations and satellites has been derived by extending the dispersion relation and the extended Bohm and Pines Hamiltonian to second order. The calculated value of the relative intensity of the double-plasmon satellite for Be agrees fairly well with the value observed experimentally by other workers. (orig.)

  8. In search of superluminal quantum communications: recent experiments and possible improvements

    International Nuclear Information System (INIS)

    Cocciaro, B; Faetti, S; Fronzoni, L

    2013-01-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity v t > c in a preferred reference frame. For finite values of v t , Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities v t . Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities V t for any possible direction of velocity V-vector of the tachyons preferred frame.

  9. In search of superluminal quantum communications: recent experiments and possible improvements

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  10. Superluminal plasmons with resonant gain in population inverted bilayer graphene

    KAUST Repository

    Low, Tony

    2017-12-28

    AB-stacked bilayer graphene with a tunable electronic bandgap in excess of the optical phonon energy presents an interesting active medium, and we consider such theoretical possibility in this work. We argue the possibility of a highly resonant optical gain in the vicinity of the asymmetry gap. Associated with this resonant gain are strongly amplified plasmons, plasmons with negative group velocity and superluminal effects, as well as directional leaky modes.

  11. Superluminal plasmons with resonant gain in population inverted bilayer graphene

    KAUST Repository

    Low, Tony; Chen, Pai-Yen; Basov, D. N.

    2017-01-01

    AB-stacked bilayer graphene with a tunable electronic bandgap in excess of the optical phonon energy presents an interesting active medium, and we consider such theoretical possibility in this work. We argue the possibility of a highly resonant optical gain in the vicinity of the asymmetry gap. Associated with this resonant gain are strongly amplified plasmons, plasmons with negative group velocity and superluminal effects, as well as directional leaky modes.

  12. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    Science.gov (United States)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  13. On the Superluminal Motion of Radio-Loud AGNs Zhi-Bin Zhang1,2 ...

    Indian Academy of Sciences (India)

    xies—radiation mechanisms: non-thermal—quasars: general. 1. Introduction. Rees (1966) predicted that the transverse velocity of an object moving relativistically in some special directions may appear to exceed the speed of light. The apparent superluminal motion (SM) is essentially a geometric effect or a light travel-time.

  14. Getting super-excited with modified dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Ashoorioon, Amjad; Casadio, Roberto [INFN—Sezione di Bologna, viale B. Pichat 6/2, I-40127 Bologna (Italy); Geshnizjani, Ghazal; Kim, Hyung J., E-mail: amjad.ashoorioon@bo.infn.it, E-mail: roberto.casadio@bo.infn.it, E-mail: ggeshniz@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo Waterloo, Ontario, N2L 3G1 (Canada)

    2017-09-01

    We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.

  15. Dispersion relations in loop calculations

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1996-01-01

    These lecture notes give a pedagogical introduction to the use of dispersion relations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be constructed by means of Cutkosky's rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γf anti-f vertex form factor generated by the exchange of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted from the total cross section of hadron production in e + e - annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. (author)

  16. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    International Nuclear Information System (INIS)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz; Djorgovski, S. George; Mahabal, Ashish A.; Glikman, Eilat; Koposov, Sergey

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m g < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M B = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M g < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  17. On some recent suggestions of superluminal communication through the collapse of the wave function

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1979-01-01

    With reference to some recent suggestions of superluminal communication through the collapse of the wave function, it is proved that the suggested effects are derived using contradictory assumptions. Since the proof is based only on non-relativistic arguments, it is concluded that the difficulties connected with quantum measurement theory are only of conceptual nature. (author)

  18. Diffraction effects in microwave propagation at the origin of superluminal behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Firenze (Italy)

    2008-10-27

    Superluminal behaviors, as evidenced by the presence of forerunners, in advanced position with respect to the main luminal peak, have been revealed in microwave propagation experiments by using a radar technique. The results are interpreted on the basis of (fast) complex waves, usually considered only in the near-field region, but still surviving beyond this limit. Consideration of further diffraction effects, as due to geometrical limitations of the experimental set-up, allows for the obtainment of a plausible description of the results.

  19. Dispersion relations for 1D high-gain FELs

    International Nuclear Information System (INIS)

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  20. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  1. Dispersion relations and sum rules for natural optical activity

    International Nuclear Information System (INIS)

    Thomaz, M.T.; Nussenzveig, H.M.

    1981-06-01

    Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author) [pt

  2. Planck-scale-modified dispersion relations in FRW spacetime

    Science.gov (United States)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  3. Dispersal patterns of red foxes relative to population density

    Science.gov (United States)

    Allen, Stephen H.; Sargeant, Alan B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  4. Tachyons, Lamb Shifts and Superluminal Chaos

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 ke...

  5. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  6. Dispersion relations in real and virtual Compton scattering

    International Nuclear Information System (INIS)

    Drechsel, D.; Pasquini, B.; Vanderhaeghen, M.

    2003-01-01

    A unified presentation is given on the use of dispersion relations in the real and virtual Compton scattering processes off the nucleon. The way in which dispersion relations for Compton scattering amplitudes establish connections between low energy nucleon structure quantities, such as polarizabilities or anomalous magnetic moments, and the nucleon excitation spectrum is reviewed. We discuss various sum rules for forward real and virtual Compton scattering, such as the Gerasimov-Drell-Hearn sum rule and its generalizations, the Burkhardt-Cottingham sum rule, as well as sum rules for forward nucleon polarizabilities, and review their experimental status. Subsequently, we address the general case of real Compton scattering (RCS). Various types of dispersion relations for RCS are presented as tools for extracting nucleon polarizabilities from the RCS data. The information on nucleon polarizabilities gained in this way is reviewed and the nucleon structure information encoded in these quantities is discussed. The dispersion relation formalism is then extended to virtual Compton scattering (VCS). The information on generalized nucleon polarizabilities extracted from recent VCS experiments is described, along with its interpretation in nucleon structure models. As a summary, the physics content of the existing data is discussed and some perspectives for future theoretical and experimental activities in this field are presented

  7. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  8. Trajectory and Relative Dispersion Case Studies and Statistics from the Green River Mesoscale Deformation, Dispersion, and Dissipation Program

    Science.gov (United States)

    Niemann, Brand Lee

    A major field program to study beta-mesoscale transport and dispersion over complex mountainous terrain was conducted during 1969 with the cooperation of three government agencies at the White Sands Missile Range in central Utah. The purpose of the program was to measure simultaneously on a large number of days the synoptic and mesoscale wind fields, the relative dispersion between pairs of particle trajectories and the rate of small scale turbulence dissipation. The field program included measurements during more than 60 days in the months of March, June, and November. The large quantity of data generated from this program has been processed and analyzed to provide case studies and statistics to evaluate and refine Lagrangian variable trajectory models. The case studies selected to illustrate the complexities of mesoscale transport and dispersion over complex terrain include those with terrain blocking, lee waves, and stagnation, as well as those with large vertical wind shears and horizontal wind field deformation. The statistics of relative particle dispersion were computed and compared to the classical theories of Richardson and Batchelor and the more recent theories of Lin and Kao among others. The relative particle dispersion was generally found to increase with travel time in the alongwind and crosswind directions, but in a more oscillatory than sustained or even accelerated manner as predicted by most theories, unless substantial wind shears or finite vertical separations between particles were present. The relative particle dispersion in the vertical was generally found to be small and bounded even when substantial vertical motions due to lee waves were present because of the limiting effect of stable temperature stratification. The data show that velocity shears have a more significant effect than turbulence on relative particle dispersion and that sufficient turbulence may not always be present above the planetary boundary layer for "wind direction shear

  9. Superluminal Emission Processes as a Key to Understanding Pulsar Radiation

    Science.gov (United States)

    Schmidt, Andrea; Ardavan, H.; Fasel, J., III; Perez, M.; Singleton, J.

    2007-12-01

    Theoretical and experimental work has established that polarization currents can be animated to travel faster than the speed of light in vacuo and that these superluminal distribution patterns emit tightly focused packets of electromagnetic radiation that differ fundamentally from the emission generated by any other known radiation source. Since 2004, a small team at Los Alamos National Laboratory has, in collaboration with UK universities, conducted analytical, computational and practical studies of radiation sources that exceed the speed of light. Numerical evaluations of the Liénard-Wiechert field generated by such sources show that superluminal emission has the following intrinsic characteristics: (i) It is sharply focused along a rigidly rotating spiral-shaped beam that embodies the cusp of the envelope of the emitted wave fronts. (ii) It consists of either one or three concurrent polarization modes that constitute contributions to the field from differing retarded times. (iii) Two of the modes are comparable in strength at both edges of the signal and dominate over the third everywhere except in the middle of the pulse. (iv) The position angles of each of its dominant modes, as well as that of the total field, swing across the beam by as much as 180 degrees and remain approximately orthogonal throughout their excursion across the beam. (v) One of the three modes is highly circularly polarized and differs in its sense of polarization from the other two. (vi) Two of the modes have a very high degree of linear polarization across the entire pulse. Given the fundamental nature of the Liénard-Wiechert field, the coincidence of these characteristics with those of the radio emission received from pulsars is striking, especially coupled with the experimentally demonstrated fact that the radiation intensity on the cusp decays as 1/R instead of 1/R^2 and is therefore intrinsically bright.

  10. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox

    International Nuclear Information System (INIS)

    Winful, Herbert G.

    2006-01-01

    The issue of tunneling time is replete with controversy and paradoxes. The controversy stems from the fact that many tunneling time definitions seem to predict superluminal tunneling velocities. One prediction, termed the Hartman effect, states that the tunneling time becomes independent of barrier length for thick enough barriers, ultimately resulting in unbounded tunneling velocities. Experiments done with 'single photons', classical light waves, and microwaves all show this apparent superluminality. The origin of these paradoxical effects has been a mystery for decades. In this article, we review the history of tunneling times starting with the early work of MacColl, Hartman, and Wigner. We discuss some of the tunneling time definitions, with particular emphasis on the phase time (also known as the group delay or Wigner time) and the dwell time. The key experiments are reviewed. We then discuss our recent work, which suggests that the group delay in tunneling is not a transit time as has been assumed for decades. It is, in reality, a lifetime and hence should not be used to assign a speed of barrier traversal. We show how this new understanding along with the concept of energy storage and release resolves all the outstanding tunneling time paradoxes

  11. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    Science.gov (United States)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  12. Relativistic energy-dispersion relations of 2D rectangular lattices

    Science.gov (United States)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  13. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  14. Quantum effects in warp drives

    Directory of Open Access Journals (Sweden)

    Finazzi Stefano

    2013-09-01

    Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  15. Superluminous Transients at AGN Centers from Interaction between Black Hole Disk Winds and Broad-line Region Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J.; Tanaka, Masaomi; Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki, E-mail: takashi.moriya@nao.ac.jp [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-07-10

    We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit–cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kinetic energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1 c , where c is the speed of light, the ejecta kinetic energy is expected to be ≃10{sup 52} erg when ≃1 M {sub ⊙} is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (∼10{sup 44} erg s{sup −1}) and timescales (∼100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit–cycle oscillations, they become bright again in coming years or decades.

  16. An exact linear dispersion relation for CRM instability

    International Nuclear Information System (INIS)

    Choyal, Y; Minami, K

    2011-01-01

    An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.

  17. Langmuir wave dispersion relation in non-Maxwellian plasmas

    International Nuclear Information System (INIS)

    Ouazene, M.; Annou, R.

    2010-01-01

    The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.

  18. Factoring the dispersion relation in the presence of Lorentz violation

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Mullins, David

    2010-01-01

    We produce an explicit formula for the dispersion relation for the Dirac equation in the standard model extension in the presence of Lorentz violation. Our expression is obtained using novel techniques which exploit the algebra of quaternions. The dispersion relation is found to conveniently factor in two special cases that each involve a mutually exclusive set of nonvanishing Lorentz-violating parameters. This suggests that a useful approach to studies of Lorentz-violating models is to split the parameter space into two separate pieces, each of which yields a simple, tractable dispersion relation that can be used for analysis.

  19. Chaotic Lagrangian models for turbulent relative dispersion.

    Science.gov (United States)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  20. Dispersion relations for η '→ η π π

    Science.gov (United States)

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.; Stoffer, Peter

    2017-07-01

    We present a dispersive analysis of the decay amplitude for η '→ η π π that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the {π π } and {π }η scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.

  1. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  2. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei; Alkhalifah, Tariq Ali

    2012-01-01

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  3. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  4. Higher Dimensional Spacetimes for Visualizing and Modeling Subluminal, Luminal and Superluminal Flight

    International Nuclear Information System (INIS)

    Froning, H. David; Meholic, Gregory V.

    2010-01-01

    This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.

  5. Compact dispersion relations for parametric instabilities of electromagnetic waves in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    The existence of compact dispersion relations for parametric instabilities of coherent electromagnetic waves in magnetized plasmas is addressed here. In general, comprehensive dispersion relations for parametric instabilities in unmagnetized plasmas become more complicated in the presence of an applied time-independent magnetic field. This is demonstrated with a fluid perturbation theory. A compact dispersion relation for parametric instabilities in unmagnetized plasma is heuristically extended here to the case of a magnetized plasma. This dispersion relation gives the correct results in a variety of circumstances of interest in considering electron cyclotron heating applications

  6. QPO detection in superluminal black hole GRS 1915+105

    Science.gov (United States)

    Bhulla, Yashpal; Jaaffrey, S. N. A.

    2018-05-01

    We report on the first superluminal Black Hole GRS 1915+105 observed by the Rossi X-ray Timing Explorer - Proportion Counter Array (RXTE/PCA). We detect the Quasi Periodic Oscillations (QPOs) in the Power Density Spectrum (PDS) of source which have luminosity very near to Eddington limit and long variability in X-ray light curve. In power density spectrum, we deal with the study of highly variability amplitude, time evolution of the characteristic timescale, Quality Factor and Full Width at Half Maximum (FWHM). We find significant QPOs in 15 different observation IDs with frequency around 67 Hz although quality factor nearly 20 but in two IDs frequency is found just double. Typical fractional rms for GRS 1915+105 is dominating the hard band increasing steeply with energy more than 13% at 20-40 keV band.

  7. Wave dispersion relations in two-dimensional Yukawa systems

    International Nuclear Information System (INIS)

    Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang

    2003-01-01

    Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ

  8. Dispersion relations in three-particle systems

    International Nuclear Information System (INIS)

    Grach, I.L.; Harodetskij, I.M.; Shmatikov, M.Zh.

    1979-01-01

    Positions of all dynamical singularities of the triangular nonrelativistic diagram are calculated including the form factors. The jumps of the amplitude are written in an analitical form. The dispersion method predictions for bound states in the three-particle system are compared with the results of the Amado exactly solvable model. It is shown that the one-channel N/D method is equivalent to the pole approximation in the Amado model, and that the three-particle s channel unitarity should be taken into account calculating (in the dispersion method) the ground and excited states of the three-particle system. The relation of the three-particle unitary contribution to the Thomas theorem and Efimov effect is briefly discussed

  9. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Mase, Atsushi

    2004-01-01

    The dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals is studied. The plasma photonic crystal is a periodic array composed of alternating thin plasma and dielectric material. The dispersion relation is obtained by solving a Maxwell wave equation using a method analogous to Kronig-Penny's problem in quantum mechanics, and it is found that the frequency gap and cut-off appear in the dispersion relation. The frequency gap is shown to become larger with the increase of the plasma density as well as plasma width. (author)

  10. General characteristics of relative dispersion in the ocean

    Science.gov (United States)

    Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico

    2017-04-01

    The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.

  11. Long wave dispersion relations for surface waves in a magnetically structured atmosphere

    International Nuclear Information System (INIS)

    Rae, I.C.; Roberts, B.

    1983-01-01

    A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism

  12. Radio emission from embryonic superluminous supernova remnants

    Science.gov (United States)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  13. The use of dispersion relations to construct unified nucleon optical potentials

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1991-01-01

    The dispersion relations provide a simple and accurate way of parametrizing the optical potential for a particular nucleus over a range of energies. A method is proposed for obtaining a global nucleon optical potential incorporating the dispersion relations. (author). 9 refs, 3 figs

  14. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  15. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi; Blinnikov, Sergei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow (Russian Federation); Kozyreva, Alexandra, E-mail: alexey.tolstov@ipmu.jp [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  16. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  17. The control of superluminal group velocity in a system equivalent to the Y-type four-level atomic system

    International Nuclear Information System (INIS)

    Li Luming; Guo Hong; Xiao Feng; Peng Xiang; Chen Xuzong

    2005-01-01

    We study a new way to control the superluminal group velocity of light pulse in hot atomic gases with the five-level atomic configuration. The model of an equivalent Y-type four-level is applied and shows that the light goes faster by using an additional incoherent pumping field. The experiment is performed and shows in good agreement with our theoretical predictions

  18. Astronomy. ASASSN-15lh: A highly super-luminous supernova.

    Science.gov (United States)

    Dong, Subo; Shappee, B J; Prieto, J L; Jha, S W; Stanek, K Z; Holoien, T W-S; Kochanek, C S; Thompson, T A; Morrell, N; Thompson, I B; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Brown, J S; Bufano, F; Chen, Ping; Conseil, E; Danilet, A B; Falco, E; Grupe, D; Kiyota, S; Masi, G; Nicholls, B; Olivares E, F; Pignata, G; Pojmanski, G; Simonian, G V; Szczygiel, D M; Woźniak, P R

    2016-01-15

    We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu ,AB = -23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 10(45) ergs s(-1), which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 10(52) ergs, challenging the magnetar model for its engine. Copyright © 2016, American Association for the Advancement of Science.

  19. A cannonball model of gamma-ray bursts superluminal signatures

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rujula, Alvaro De

    2000-01-01

    Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...

  20. Quasi-pions with temperature dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    We construct the procedure to calculate thermodynamical functions for a system of quasi-particles with temperature dependent dispersion relation. Two models for the hot quasi-pion system are considered to illustrate the importance of thermodynamical self consistency requirements. 8 refs., 9 figs

  1. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    Science.gov (United States)

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  2. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  3. Relativistic invariance of dispersion-relations and their associated wave-operators and Green-functions

    International Nuclear Information System (INIS)

    Censor, Dan

    2010-01-01

    Identifying invariance properties helps in simplifying calculations and consolidating concepts. Presently the Special Relativistic invariance of dispersion relations and their associated scalar wave operators is investigated for general dispersive homogeneous linear media. Invariance properties of the four-dimensional Fourier-transform integrals is demonstrated, from which the invariance of the scalar Green-function is inferred. Dispersion relations and the associated group velocities feature in Hamiltonian ray tracing theory. The derivation of group velocities for moving media from the dispersion relation for these media at rest is discussed. It is verified that the group velocity concept satisfies the relativistic velocity-addition formula. In this respect it is considered to be 'real', i.e., substantial, physically measurable, and not merely a mathematical artifact. Conversely, if we assume the group velocity to be substantial, it follows that the dispersion relation must be a relativistic invariant. (orig.)

  4. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  5. Dispersion relation for the 3. -->. 3 forward scattering amplitude and the generalized optical theorem. [Crossing properties, dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Logunov, A A; Medvedev, B V; Mestvirishvili, M A; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1977-11-01

    Investigation of analytical structure of the three-particle forward scattering amplitude with respect to energy variable of one of particles is performed. The results obtained make it possible to draw the conclusions on crossing properties of the amplitude and to derive the generalized optical theorem relating the discontinuity of the amplitude to the distribution function of an inclusive process. For a special case when two of three particles are of zero mass, a dispersion relation is proved.

  6. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  7. From field theory to phenomenology: the history of dispersion relations

    International Nuclear Information System (INIS)

    Pickering, A.

    1989-01-01

    The authors chart the history of quantum field theory (QFT) in the 1950s with reference to the ideas of dispersion relations. QFT failed to explain strong interaction physics and so was discarded. Connections are drawn between a central group of particle theorists working on applying Kramers-Kronig light scattering relations to high energy particle scattering and the way physics developed. The concepts of single and double dispersion relations and Regge poles, when connected with the large quantity of empirical data from the large particle accelerators of the 1950s, could not be embodied within QFT, which then fell into decline. (UK)

  8. Age--velocity-dispersion relation in the solar neighborhood

    International Nuclear Information System (INIS)

    Carlberg, R.G.; Dawson, P.C.; Hsu, T.; VandenBerg, D.A.

    1985-01-01

    The age--velocity-dispersion relation for stars in the solar neighborhood is examined as an indicator of the dominant acceleration mechanism of the stars and the formation history of the local disk. Twarog's sample of F stars, for which ages and photometric distances can be determined, is combined with astrometric data to obtain tangential velocities of a set of stars with a large age range. The resulting age--velocity-dispersion relation rises fairly steeply for stars less than 6 Gyr old, thereafter becoming nearly constant with age. These data are consistent with a simple model in which no local disk is initially present, following which stars are born at a constant rate in time and heated by transient spiral waves. The corresponding age-metallicity relation complements this dynamical measure of the formation history of the disk. The use of new stellar models and a revised metallicity calibration leads to quantitative differences from previous work

  9. On excitation and radiation of detector moving in vacuum with acceleration or moving rectilinearly with superluminal velocity in a medium

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Frolov, V.P.

    1986-01-01

    The problem of excitation of a detector moving in vacuum with constant acceleration is being discussed in recent years. It is noted in the paper that this excitation and radiation associated with it are similar to those taking place in the range of anomalous Doppler effect occurring during motion of the detector with constant superluminal velocity in medium

  10. Dispersion relations for η{sup '} → ηππ

    Energy Technology Data Exchange (ETDEWEB)

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Stoffer, Peter [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); University of California at San Diego, Department of Physics, La Jolla, CA (United States)

    2017-07-15

    We present a dispersive analysis of the decay amplitude for η{sup '} → ηππ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the ππ and πη scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory. (orig.)

  11. Thought experiments at superluminal relative velocities

    International Nuclear Information System (INIS)

    Corben, H.C.

    1976-01-01

    It is imagined that our World is being examined from a similar world which is moving relative to us with a velocity greater than that of light. The two worlds are supposed to be similar in that the particles in each appear to any observer in that world to have real measurable properties. However, the enormous relative velocity so distorts the observations that each world makes on the other that the squares of certain real quantities appear to the other observer to be negative. Neglect of this fact has led to the erroneous belief that a free charged tachyon would emit Cherenkov radiation and that the existence of tachyons would lead to logical paradoxes. (author)

  12. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan; Hsiao, Eric Y.; Fesen, Robert A.; Parrent, Jerod T.; Levesque, Emily M.

    2013-01-01

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching ≈2 × 10 4 km s –1 in its early spectra, and a broad light curve that peaked at M B = –18.1 mag. Models of these data indicate a large explosion kinetic energy of ∼10 52 erg and 56 Ni mass ejection of M Ni ≈ 0.3 M ☉ on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities ∼> 4500 km s –1 , as well as O I and Mg I lines at noticeably smaller velocities ∼ –1 . Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span –21 ∼ B ∼< –17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  13. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  14. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    International Nuclear Information System (INIS)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M.; Sundberg, T.

    2016-01-01

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10 4 km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  15. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick (United Kingdom); Sundberg, T., E-mail: B.Hnat@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)

    2016-08-20

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10{sup 4} km. Results show multiple branches of dispersion relations, associated with different powers of magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.

  16. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  17. Superluminous supernovae as standardizable candles and high-redshift distance probes

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = –21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM {sub 20} decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  18. Spin-wave dispersion relations in disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Nakai, Y.; Schibuya, N.; Kunitomi, N.; Wakabayashi, N.; Cooke, J.F.

    1982-01-01

    The spin-wave dispersion relations of the ferromagnetic disordered alloys Fe/sub 1-x/V/sub x/(x = 0.076, 0.135, 0.160, and 0.187) were studied by means of the inelastic scattering of neutrons. The observed dispersion relations are adequately represented by the power law, E = Dq 2 (1-βq 2 ), in a wide energy range up to 80 meV. The concentration dependence of the exchange stiffness constant D shows good agreement with previous results obtained by means of the small-angle scattering of neutrons and by the analysis of the temperature dependence of the bulk magnetization. The observed results can be explained by the Heisenberg model and, to some extent, by the itinerant-electron model

  19. Comparison of Forward Dispersion Relations with Experiments around 10 GeV

    DEFF Research Database (Denmark)

    Lautrup, B.; Møller-Nielsen, Peter; Olesen, P.

    1965-01-01

    no assumptions whatsoever about the unknown cross sections above 20 GeV. On account of the large systematic errors in the measured real parts, no definite conclusion can be drawn as to the validity of forward dispersion relations. In estimating the standard deviations in the dispersion integrals, a Monte Carlo...

  20. On the relativistic theory of electromagnetic dispersion relations and Poynting's theorem

    International Nuclear Information System (INIS)

    Lerche, I.

    1975-01-01

    Constitutive relations, and general dispersion relations, are derived for an arbitrary, anisotropic, dispersive and dissipative medium which is moving relative to an inertial observer. The constitutive relations are expressed in terms of the ''local'' dielectric tensor, magnetic permeability, etc., where ''local'' refers to the instantaneous rest frame of the medium. We also give the generalization of Poynting's theorem for power flow including the expression for the rate at which the moving medium does work on the radiation. In view of the current interest in radiation generated in, and passing through, pulsar magnetospheres, we believe that the general results presented here are, perhaps, not without some astrophysical import

  1. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Soderberg, Alicia M.; Margutti, Raffaella; Drout, Maria R.; Marion, G. Howie; Sanders, Nathan E.; Lunnan, Ragnhild; Chornock, Ryan; Berger, Edo; Foley, Ryan J.; Challis, Pete; Kirshner, Robert P.; Dittmann, Jason; Bieryla, Allyson; Kamble, Atish; Chakraborti, Sayan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Fesen, Robert A.; Parrent, Jerod T. [6127 Wilder Lab, Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Levesque, Emily M., E-mail: dmilisav@cfa.harvard.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); and others

    2013-06-20

    We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous Type-Ib-like He I lines and other absorption features at velocities reaching Almost-Equal-To 2 Multiplication-Sign 10{sup 4} km s{sup -1} in its early spectra, and a broad light curve that peaked at M{sub B} = -18.1 mag. Models of these data indicate a large explosion kinetic energy of {approx}10{sup 52} erg and {sup 56}Ni mass ejection of M{sub Ni} Almost-Equal-To 0.3 M{sub Sun} on par with SN 1998bw. SN 2012au's spectra almost one year after explosion show a blend of persistent Fe II P-Cyg absorptions and nebular emissions originating from two distinct velocity regions. These late-time emissions include strong [Fe II], [Ca II], [O I], Mg I], and Na I lines at velocities {approx}> 4500 km s{sup -1}, as well as O I and Mg I lines at noticeably smaller velocities {approx}< 2000 km s{sup -1}. Many of the late-time properties of SN 2012au are similar to the slow-evolving hypernovae SN 1997dq and SN 1997ef, and the superluminous SN 2007bi. Our observations suggest that a single explosion mechanism may unify all of these events that span -21 {approx}< M{sub B} {approx}< -17 mag. The aspherical and possibly jetted explosion was most likely initiated by the core collapse of a massive progenitor star and created substantial high-density, low-velocity Ni-rich material.

  2. Fast Preparation of Critical Ground States Using Superluminal Fronts

    Science.gov (United States)

    Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.

    2018-05-01

    We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.

  3. VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)

    Science.gov (United States)

    Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.

    2018-04-01

    We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).

  4. Dispersion relations for the self-energy in noncommutative field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Das, Ashok; Frenkel, J.

    2002-01-01

    We study the IR-UV connection in noncommutative φ 3 theory as well as in noncommutative QED from the point of view of the dispersion relation for self-energy. We show that, although the imaginary part of the self-energy is well behaved as the parameter of noncommutativity vanishes, the real part becomes divergent as a consequence of the high energy behavior of the dispersion integral. Some other interesting features that arise from this analysis are also briefly discussed

  5. Generalized dispersion relation for electron Bernstein waves in a non-Maxwellian magnetized anisotropic plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2010-01-01

    A generalized dielectric constant for the electron Bernstein waves using non-Maxwellian distribution functions is derived in a collisionless, uniform magnetized plasma. Using the Neumann series expansion for the products of Bessel functions, we can derive the dispersion relations for both kappa and the generalized (r,q) distributions in a straightforward manner. The dispersion relations now become dependent upon the spectral indices κ and (r,q) for the kappa and the generalized (r,q) distribution, respectively. Our results show how the non-Maxwellian dispersion curves deviate from the Maxwellian depending upon the values of the spectral indices chosen. It may be noted that the (r,q) dispersion relation is reduced to the kappa distribution for r=0 and q=κ+1, which, in turn, is further reducible to the Maxwellian distribution for κ→∞.

  6. The dispersion relation of a gravitating spiral system

    International Nuclear Information System (INIS)

    Evangelidis, E.

    1977-01-01

    The dispersion relation has been found for a galaxy, without the assumption that the centrifugal force is balanced by the gravitational force. It has been shown that such a system (1) can be gravitationally unstable under appropriate conditions, and (2) that there is no resonance at ω=2Ω (Ω=angular velocity of the Galaxy). (Auth.)

  7. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  8. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    2017-01-01

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  9. Photon gas with hyperbolic dispersion relations

    International Nuclear Information System (INIS)

    Mohseni, Morteza

    2013-01-01

    We investigate the density of states for a photon gas confined in a nonmagnetic metamaterial medium in which some components of the permittivity tensor are negative. We study the effect of the resulting hyperbolic dispersion relations on the black body spectral density. We show that for both of the possible wavevector space topologies, the spectral density vanishes at a certain frequency. We obtain the partition function and derive some thermodynamical quantities of the system. To leading order, the results resemble those of a one- or two-dimensional photon gas with an enhanced density of states. (paper)

  10. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Bulla, M.; Sim, S. A.; Smartt, S. J., E-mail: c.inserra@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-11-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q – U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch. We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.

  11. A Neutron Study for Phonon Dispersion Relations in HgTe

    DEFF Research Database (Denmark)

    Kepa, H.; Gebicki, W.; Giebultowicz, T.

    1980-01-01

    Dispersion relations for acoustic phonons in mercury telluride in three high symmetry directions [111], [110] and [001] are presented. The eleven-parameter rigid-ion model is fitted to the experimental data....

  12. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  13. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  14. Experimentally generated randomness certified by the impossibility of superluminal signals.

    Science.gov (United States)

    Bierhorst, Peter; Knill, Emanuel; Glancy, Scott; Zhang, Yanbao; Mink, Alan; Jordan, Stephen; Rommal, Andrea; Liu, Yi-Kai; Christensen, Bradley; Nam, Sae Woo; Stevens, Martin J; Shalm, Lynden K

    2018-04-01

    From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable 1-3 . For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity 1-11 . With recent technological developments, it is now possible to carry out such a loophole-free Bell test 12-14,22 . Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10 -12 . These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.

  15. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  16. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  17. Wave dispersion relation of two-dimensional plasma crystals in a magnetic field

    International Nuclear Information System (INIS)

    Uchida, G.; Konopka, U.; Morfill, G.

    2004-01-01

    The wave dispersion relation in a two-dimensional strongly coupled plasma crystal is studied by theoretical analysis and molecular dynamics simulation taking into account a constant magnetic field parallel to the crystal normal. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz force acting on the dust particles. The high-frequency and the low-frequency branches are found to belong to right-hand and left-hand polarized waves, respectively

  18. Determination of the Flux-distance Relationship for Pulsars in the Parkes Multibeam Survey: Violation of the Inverse Square Law Gives Support for a New Model of Pulsar Emission

    Science.gov (United States)

    Singleton, John; Sengupta, P.; Middleditch, J.; Graves, T.; Schmidt, A.; Perez, M.; Ardavan, H.; Ardavan, A.; Fasel, J.

    2010-01-01

    Soon after the discovery of pulsars, it was realized that their unique periodic emissions must be associated with a source that rotates. Despite this insight and forty one years of subsequent effort, a detailed understanding of the pulsar emission mechanism has proved elusive. Here, using data for 983 pulsars taken from the Parkes Multibeam Survey, we show that their fluxes at 1400 MHz (S(1400)) decay with distance d according to a non-standard power-law; we suggest that S(1400) is proportional to 1/d. This distance dependence is revealed by two independent statistical techniques, (i) the Maximum Likelihood Method and (ii) analysis of the distance evolution of the cumulative distribution functions of pulsar flux. Moreover, the derived power law is valid for both millisecond and longer-period pulsars, and is robust against possible errors in the NE2001 method for obtaining pulsar distances from dispersion measure. This observation provides strong support for a mechanism of pulsar emission due to superluminal (faster than light in vacuo) polarization currents. Such superluminal polarization currents have been extensively studied by Bolotovskii, Ginzburg and others, who showed both that they do not violate Special Relativity (since the oppositely-charged particles that make them move relatively slowly) and that they form a bona-fide source term in Maxwell's equations. Subsequently, emission of radiation by superluminal polarization currents was demonstrated in laboratory experiments. By extending these ideas to a superluminal polarization current whose distribution pattern follows a circular orbit, we can explain the 1/d dependence of the flux suggested by our analyses of the observational data. In addition, we show that a model of pulsar emission due to such a rotating superluminal polarization current can predict the the frequency spectrum of nine pulsars over 16 orders of magnitude of frequency quantitatively. This work is supported by the DoE LDRD program at Los

  19. DES13S2cmm: the first superluminous supernova from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A.; D' Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-20

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (Type I). Using this redshift, we find M-U(peak) = -21.05(-0.09)(+0.10) for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (subsolar), low stellar-mass host galaxy (log (M/M-circle dot) = 9.3 +/- 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to 14 similarly well-observed SLSNe-I in the literature and find that it possesses one of the slowest declining tails (beyond +30 d rest-frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 mag between +25 and +30 d after peak (rest frame) depending on redshift range studied; this could be important for 'standardizing' such supernovae, as is done with the more common Type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I-the radioactive decay of Ni-56, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 d in the rest frame of the supernova.

  20. Dispersion Models to Forecast Traffic-related Emissions in Urban Areas

    Directory of Open Access Journals (Sweden)

    Davide Scannapieco

    2011-11-01

    Full Text Available Down the centuries, a direct link had been developed between increase in mobility and increase in wealth. On the other hand, air emission of greenhouse gases (GHG due to vehicles equipped with internal combustion engines can be regarded as a negative pressure over the environment. In the coming decades, road transport is likely to remain a significant contributor to air pollution in cities. Many urban trips cover distances of less than 6 km. Since the effectiveness of catalytic converters in the initial minutes of engine operation is small, the average emission per distance driven is very high in urban areas. Also, poorly maintained vehicles that lack exhaust aftertreatment systems are responsible for a major part of pollutant emissions. Therefore in urban areas, where higher concentrations of vehicles can be easily found, air pollution represents a critical issue, being it related with both environment and human health protection: in truth, research in recent decades consistently indicates the adverse effects of outdoor air pollution on human health, and the evidence points to air pollution stemming from transport as an important contributor to these effects. Several institutions (EEA, USEPA, etc. focused their interest in dispersion models because of their potential effectiveness to forecast atmospheric pollution. Furthermore, air micropollutants such as Polycyclic Aromatic Compounds (PAH and Metallic Trace Elements (MTE are traffic-related and although very low concentrations their dispersion is a serious issue. However, dispersion models are usefully implemented to better manage this estimation problem. Nonetheless, policy makers and land managers have to deal with model selection, taking into account that several dispersion models are available, each one of them focused on specific goals (e.g., wind transport of pollutants, land morphology implementation, evaluation of micropollutants transport, etc.; a further aspect to be considered is

  1. Pierce-type dispersion relation for an intense relativistic electron beam interacting with a slow-wave structure

    International Nuclear Information System (INIS)

    Chen, C.

    1994-01-01

    A Pierce-type dispersion relation is derived for the interaction of an intense relativistic electron beam with a cylindrical slow-wave structure of arbitrary corrugation depth. It is shown that near a resonance, the Pierce parameter can be expressed in terms of the vacuum dispersion function and the beam current. The dispersion relation is valid in both the low-current (Compton) regime and the high-current (Raman) regime. The dispersion characteristics of the interaction, such as the linear instability growth rate and bandwidth, are analyzed for both regimes

  2. Low threshold optical bistability and superluminal light propagation using a dielectric slab via inter-dot tunneling

    International Nuclear Information System (INIS)

    Taherzadeh, S; Nasehi, R; Mahmoudi, Mohammad

    2015-01-01

    The optical bistability (OB) behavior of a dielectric slab doped with quantum dot (QD) molecules is investigated in the presence of the inter-dot tunneling effect. It is shown that the threshold point of OB reduces by increasing inter-dot tunneling as well as by reducing the slab thickness. It is worth noting that the threshold of OB in a slab doped with QD molecules is smaller, by at least one order of magnitude, in respect to free QD molecules. We find that the inter-dot tunneling induces a negative group delay to the reflected pulse and it propagates in the superluminal region. Such simple control can be used in all optical switching. (paper)

  3. Dispersion Relation for Skeletal Vibrations in Deuterated Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, L. A.; Venkataraman, G.; King, J. S. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States)

    1968-09-15

    The low frequency vibrations in polyethylene have been studied previously, utilizing the incoherent scattering technique which yields an amplitude-weighted density of states. In the present work the dispersion relations have been obtained directly by observing the coherent scattering from a deuterated sample. This represents the first such measurement on a crystalline polymer. A target in which the molecular chain axes were approximately parallel was prepared by stretching polycrystalline material. The FWHM of the rocking curve for the (002) reflection was measured to be 9 Degree-Sign . Constant-Q and constant-E scans were made on the University of Michigan triple-axis spectrometer at room temperature to observe phonons propagating along the chain direction. The resulting dispersion curve for the v{sub 5} mode follows generally the calculated curve of Tasumi and Krimm with systematically lower frequencies. The maximum frequency of 1.36 x 10{sup 13} Hz agrees with the cut-off frequency determined previously from the incoherent scattering spectrum. (author)

  4. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  5. Numerical study on general dispersion relation of anisotropic and weakly relativistic plasma

    International Nuclear Information System (INIS)

    Ke Fujiu; Chen Yanping

    1987-01-01

    The key problem in heating and instability studies in plasma physics is to obtain dispersive equation and its solution. This paper presents the general dispersive equation and corresponding procedure for electromagnetic wave which nearly poloidally impinges on anisotropic, weakly relativistic Maxwellian plasma with inhomogeneous density in nonuniform magnetic field (such as plasma in TOKAMAK). The double index function F ij , significant in plasma physics, was expanded as single index function F 1 , and then the values were calculated by means of dispersive function. It was also pointed out that the severe error would be involved in the calculation of F ij from recurrence relation of F 11

  6. A new approximation of the dispersion relations occurring in the sound-attenuation problem of turbofan aircraft engines

    Directory of Open Access Journals (Sweden)

    Robert SZABO

    2011-12-01

    Full Text Available The dispersion relations, appearing in the analysis of the stability of a gas flow in a straight acoustically-lined duct with respect to perturbations produced by a time harmonic source, beside the wave number and complex frequency contain the solution of a boundary value problem of the Pridmore-Brown equation depending on the wave number and frequency. For this reason, in practice the dispersion relations are rarely simple enough for carried out the zeros. The determination of zeros of these dispersion relations is crucial for the prediction of the perturbation attenuation or amplification. In this paper an approximation of the dispersion relations is given. Our approach preserves the general character of the mean flow, the general Pridmore-Brown equation and it’s only in the shear flow that we replace the exact solution of the boundary value problem with its Taylor polynomial approximate. In this way new approximate dispersion relations are obtained which zero’s can be found by computer.

  7. Mord studies in IR region by new dispersion relation

    International Nuclear Information System (INIS)

    Murthy, V.R.; Kumar, R. Jeevan

    1994-01-01

    This is the continuation of the series reporting MORD studies to typical problem in Chemistry and Polymer Science. In our earlier papers the MORDsup1.2 studied only in visible region. In this present investigation we extended the application of the New Dispersion Relation in IR region to determine the MORD and tested to some simple systems

  8. Rainbows without unicorns: metric structures in theories with modified dispersion relations

    International Nuclear Information System (INIS)

    Lobo, Iarley P.; Loret, Niccolo; Nettel, Francisco

    2017-01-01

    Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations. (orig.)

  9. Rainbows without unicorns: metric structures in theories with modified dispersion relations

    Science.gov (United States)

    Lobo, Iarley P.; Loret, Niccoló; Nettel, Francisco

    2017-07-01

    Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations.

  10. Rainbows without unicorns: metric structures in theories with modified dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Iarley P. [Universita ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Pescara (Italy); CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); INFN Sezione Roma 1 (Italy); Loret, Niccolo [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia); Nettel, Francisco [Universita ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); INFN Sezione Roma 1 (Italy)

    2017-07-15

    Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations. (orig.)

  11. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses.

    Science.gov (United States)

    Guo, Xiao; Wei, Peijun

    2016-03-01

    The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  13. Wandering stars: age-related habitat use and dispersal of Javan Hawk-eagles (Spizaetus bartelsi)

    NARCIS (Netherlands)

    Nijman, V.; Balen, van S.

    2003-01-01

    Natal dispersal and philopatry have rarely been studied in tropical forest raptors. Especially with respect to endangered species with fragmented distributions more knowledge of dispersal and age-related habitat preferences is needed for proper management. We conducted an island-wide study on

  14. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2017-09-01

    Full Text Available To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton–Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O(mp−2 and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  15. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  16. Improved pion pion scattering amplitude from dispersion relation formalism

    International Nuclear Information System (INIS)

    Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa

    2005-01-01

    Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)

  17. Observables and dispersion relations in κ-Minkowski spacetime

    Science.gov (United States)

    Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna

    2017-10-01

    We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.

  18. Pion-pair formation and the pion dispersion relation in a hot pion gas

    Energy Technology Data Exchange (ETDEWEB)

    Chanfay, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Alm, T. [Rostock Univ. (Germany); Schuck, P. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Welke, G. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy

    1996-09-01

    The possibility of pion-pair formation in a hot pion gas, based on the bosonic gap equation, is pointed out and discussed in detail. The critical temperature for condensation of pion pairs (Evans-Rashind transition) is determined as a function of the pion density. As for fermions, this phase transition is signaled by the appearance of a pole in the two-particle propagator. In Bose systems there exists a second, lower critical temperature, associated with the appearance of the single-particle condensate. Between the two critical temperatures the pion dispersion relation changes from the usual quasiparticle dispersion to a Bogoliubov-like dispersion relation at low momenta. This generalizes the non-relativistic results for an attractive Bose gas by Evans et al. Possible consequences for the inclusive pion spectra measured in heavy-ion collisions at ultra-relativistic energies are discussed. 21 refs.

  19. Multifrequency radio VLBI observations of the superluminal low-frequency variable quasar NRAO 140

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.

    1985-01-01

    VLBI maps of the quasar NRAO 140 at three wavelengths: 18, 6, and 2.8 cm are presented. The source consists of a jetlike structure delineated by a nearly colinear series of components which are progressively more compact toward the northwestern end of the source. The multifrequency observations make it possible to dissect accurately the spectrum of the source, which leads to an affirmation of the previously reported Compton problem and superluminal motion. The Compton problem requires relativistic motion with Doppler factor delta greater than 3.7. One of the components is separating from the core at a rate of 0.15 milliarcsec/yr, which translates to an apparent velocity between 4c and 13c, depending on the values of H(0) and q(0). The energy in relativistic electrons in one of the components far exceeds the energy in magnetic field, but the total energy requirement need not exceed approximately 10 to the 54th ergs. 27 references

  20. Centre-of-mass frames in six-dimensional special relativity

    International Nuclear Information System (INIS)

    Cole, E.A.B.

    1980-01-01

    Centre-of-mass frames are defined in six-dimensional special relativity. In particular, these frames are studied for various pairs of particles which can be any combination of bradyons, luxons and tachyons. These frames can be subluminal, superluminal or non-existent, depending on the angle between the particle time vectors. (author)

  1. On the Sensitivity of Neutrino Telescopes to a Modified Dispersion Relation

    International Nuclear Information System (INIS)

    Bustamante, M.; Gago, A. M.; Bazo, J. L.; Miranda, O. G.

    2008-01-01

    We consider a modified dispersion relation and its effect on the flavour ratios of high-energy neutrinos originated at distant astrophysical sources such as active galactic nuclei. This dispersion relation arise naturally in different new physics (NP) effects such as violation of CPT invariance, of the equivalence principle and of Lorentz invariance. It is a common notion in the literature that by using the flux of high-energy neutrinos expected from distant astrophysical sources, the sensitivity to possible NP effects may be improved beyond the current bounds. However, performing a realistic analysis that takes into account the expected number of events in future neutrino telescopes, we find that the average detected flavour ratios with and without the inclusion of new physics have essentially the same value, making difficult to obtain an improved bound for this type of new physics

  2. Improvements in or relating to dispersions

    International Nuclear Information System (INIS)

    Woodhead, J.L.

    1981-01-01

    A process is described for the preparation of an aqueous dispersion of ceria which comprises forming a slurry of cerium IV hydroxide with water and an acid, the acid being capable of causing deaggregation of aggregated crystallites in the cerium IV hydroxide, heating the slurry for such a time and at such a temperature that the pH reaches a steady value, the quantity of acid in the slurry being such that the steady value of pH is below 5.4, thereby to produce a conditioned slurry, and admixing water with the conditioned slurry to produce an aqueous dispersion of ceria. (author)

  3. Dispersion relation for elastic electron-hydrogen atom forward scattering amplitude

    International Nuclear Information System (INIS)

    Kuchiev, M.Yu.; Amusia, M.Ya.

    1978-01-01

    The elastic e+H forward scattering amplitude is an analytical function in the complex energy E plane and has two cuts on the real axis: 0 < E < infinity and -infinity < E < -B, B being the hydrogen ionization potential. The e+H dispersion relation contains two integrals over the right and left cuts. (Auth.)

  4. MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Lister, M. L.; Richards, J. L. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Aller, M. F.; Aller, H. D. [Department of Astronomy, University of Michigan, 817 Dennison Building, Ann Arbor, MI 48109 (United States); Homan, D. C. [Department of Physics, Denison University, Granville, OH 43023 (United States); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Kovalev, Y. Y. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Pushkarev, A. B.; Ros, E.; Savolainen, T., E-mail: mlister@purdue.edu [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2013-11-01

    We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15 GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2 cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16 yr interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ∼0.°5 to ∼2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12 yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas yr{sup –1}), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the

  5. Dispersion relation for long-wave neutrons and the possibility of its precise experimental verification

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1995-01-01

    Modern theoretical concepts concerning the dispersion relation for slow neutrons in matter are considered. The generally accepted optical-potential model is apparently not quite accurate and should be supplemented with some small corrections in the energy range attainable in experiments. For ultracold neutrons, these corrections are related to the proximity of the applicability boundary of the theory; for cold neutrons, these corrections are due to correlations in the positions of scatters. The accuracy of existing experiments is insufficient for confirmation or refutation these conclusions. A precision experiment is proposed to verify the dispersion relation for long-wave neutrons. 30 refs., 3 figs

  6. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  7. Study of Phonon Dispersion Relations in Cuprous Oxide by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Beg, M. M.; Shapiro, S. M.

    1976-01-01

    Phonon dispersion relations in Cu2O have been studied at 20°C using inelastic neutron scattering. Seven acoustic branches and twelve optical branches have been studied in detail in the three symmetry directions [00ζ], [ζζ0], and [ζζζ] of the cubic lattice. Four of the six zone-center phonons have...... been observed and the assignments and energies are confirmed as Γ25=87±2 cm-1, Γ12′=105±3 cm-1, Γ15=146±1 cm-1, and Γ2′≈347 cm-1. The dispersion relations agree only qualitatively with the rigid-ion-model calculations. It is suggested that more detailed calculations may be performed in the light...

  8. Phonon dispersion relation in zircon, ZrSiO4 using inelastic neutron scattering at a pulsed neutron source

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Parthasarathy, R.; Bull, M.J.; Harris, M.J.

    2000-01-01

    The coherent inelastic neutron scattering technique is used for the measurements of phonon dispersion relation in a geophysically important mineral zircon using PRISMA spectrometer as ISIS, UK. Lattice dynamical calculations of the phonon dispersion relation are carried out using a shell model. The one-phonon structure factors are calculated for selecting the Bragg points for the measurements and assignment of phonons to different branches. The calculations are in good agreement with the measured phonon dispersion relation. (author)

  9. ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Waldman, Roni; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Valenti, Stefano [Department of Physics, University of California, Davis, CA 95616 (United States); Arcavi, Iair; Howell, D. Andrew [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2017-01-20

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2–3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of {sup 56}Ni and {sup 56}Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  10. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    Directory of Open Access Journals (Sweden)

    Hikari Shirakata

    2017-09-01

    Full Text Available We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016. We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  11. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    International Nuclear Information System (INIS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-01-01

    We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  12. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Hikari [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Kawaguchi, Toshihiro [Department of Economics, Management and Information Science, Onomichi City University, Onomichi, Hiroshima (Japan); Okamoto, Takashi [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Ishiyama, Tomoaki, E-mail: shirakata@astro1.sci.hokudai.ac.jp [Institute of Management and Information Technologies, Chiba University, Chiba (Japan)

    2017-09-12

    We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  13. ICRH programmes for antennas and for plasma dispersion relation

    International Nuclear Information System (INIS)

    Soell, M.; Springmann, E.

    1984-02-01

    This report describes the computer programmes used for designing the ICRH antennas at IPP. In the first part of the report the underlying physical principles are discussed on which the programmes are based. 2-D (two-dimensional) and 3-D (three-dimensional) models are used. In the second part the input and output of the programmes is described, and in the third part some results on ICRH antennas built for existing machines at IPP and antennas for machines which are in the design and construction phase are presented. In Appendix I the formulae for the 2-D model including plasma density profiles are described and an investigation of this 2-D model on folded dipol antennae is given. In Appendix II the main formulae for a computer program for the complete hot dispersion relation is given; the application of the program for an ASDEX plasma (dispersion for the fast wave and Bernstein wave) is shown. (orig.)

  14. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in dete...... rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  15. The Trails of Superluminal Jet Components in 3C 111

    Science.gov (United States)

    Kadler, M.; Ros, E.; Perucho, M.; Kovalev, Y. Y.; Homan, D. C.; Agudo, I.; Kellermann, K. I.; Aller, M. F.; Aller, H. D.; Lister, M. L.; hide

    2007-01-01

    The parsec-scale radio jet of the broad-line radio galaxy 3C 111 has been monitored since 1995 as part of the 2cm Survey and MOJAVE monitoring observations conducted with the VLBA. Here, we present results from 18 epochs of VLBA observations of 3C 111 and from 18 years of radio flux density monitoring observations conducted at the University of Michigan. A major radio flux-density outburst of 3C 111 occurred in 1996 and was followed by a particularly bright plasma ejection associated with a superluminal jet component. This major event allows us to study a variety of processes associated with outbursts of radio-loud AGN in much greater detail than possible in other cases: the primary perturbation gives rise to the formation of a forward and a backward-shock, which both evolve in characteristically different ways and allow us to draw conclusions about the workflow of jet-production events; the expansion, acceleration and recollimation of the ejected jet plasma in an environment with steep pressure and density gradients are revealed; trailing components are formed in the wake of the primary perturbation as a result of Kelvin- Helmholtz instabilities from the interaction of the jet with the external medium. The jet-medium interaction is further scrutinized by the linear-polarization signature of jet components traveling along the jet and passing a region of steep pressure/density gradients.

  16. Dispersion relations in the noncommutative φ3 and Wess-Zumino model in the Yang-Feldman formalism

    International Nuclear Information System (INIS)

    Doescher, C.; Zahn, J.

    2006-05-01

    We study dispersion relations in the noncommutative φ 3 and Wess-Zumino model in the Yang-Feldman formalism at one-loop order. Non-planar graphs lead to a distortion of the dispersion relation. We find that this effect is small if the scale of noncommutativity is identified with the Planck scale and parameters typical for a Higgs field are employed. (Orig.)

  17. Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Pfirsch, D.

    1988-01-01

    The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed

  18. Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.

    Science.gov (United States)

    de Waal, C; Rodger, J G; Anderson, B; Ellis, A G

    2014-05-01

    Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  19. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    International Nuclear Information System (INIS)

    Deeba, F.; Ahmad, Zahoor; Murtaza, G.

    2011-01-01

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n d0 /n i0 )) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa (κ), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  20. Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deeba, F. [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Department of Physics, G.C. University, Lahore 54000 (Pakistan); Ahmad, Zahoor [National Tokamak Fusion Program, PAEC, P.O. Box 3329, Islamabad 44000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G.C. University, Lahore 54000 (Pakistan)

    2011-07-15

    Pure dust Bernstein waves are investigated using non-Maxwellian kappa and (r,q) distribution functions in a collisionless, uniform magnetized dusty plasma. Dispersion relations for both the distributions are derived by considering waves whose frequency is of the order of dust cyclotron frequency, and dispersion curves are plotted. It is observed that the propagation band for dust Bernstein waves is rather narrow as compared with that of the electron Bernstein waves. However, the band width increases for higher harmonics, for both kappa and (r,q) distributions. Effect of dust charge on dispersion curves is also studied, and one observes that with increasing dust charge, the dispersion curves shift toward the lower frequencies. Increasing the dust to ion density ratio ((n{sub d0}/n{sub i0})) causes the dispersion curve to shift toward the higher frequencies. It is also found that for large values of spectral index kappa ({kappa}), the dispersion curves approach to the Maxwellian curves. The (r,q) distribution approaches the kappa distribution for r = 0, whereas for r > 0, the dispersion curves show deviation from the Maxwellian curves as expected. Relevance of this work can be found in astrophysical plasmas, where non-Maxwellian velocity distributions as well as dust particles are commonly observed.

  1. An introduction to ''extended'', ''projective'', and ''conformal'' relativities

    International Nuclear Information System (INIS)

    Recami, E.

    1978-01-01

    The theory of special relativity is reformulated by adding to the usual two postulates the postulate of retarded causality. Such treatment will lead to predict existence of antimatter in a pure relativistic context. The extension of SR to faster-than-light inertial frames and to superluminal objects is then studied thus introducing the theory of extended relativity. Other possible extensions of relativistic theories are briefly mentioned from a mainly intuitive point of view. (author)

  2. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    Science.gov (United States)

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  3. Numerical method for the dispersion relation of a hot and inhomogeneous plasma with an electron beam

    International Nuclear Information System (INIS)

    Devia, A.; Orrego, C.E.; Buitrago, G.

    1990-01-01

    A numerical method that is based in kinetic theory (Vlasov-Poison equations) was developed in order to calculate the dispersion relation for the interaction between a hot cylindrical and electron beam in any temperature and density. The plasma-beam system is located in a strong magnetic field. Many examples showing the effect of the temperatures and densities on the dispersion relation are given. (Author)

  4. Relation between the behaviors of P-wave and QT dispersions in elderly patients with heart failure

    Directory of Open Access Journals (Sweden)

    Szlejf Cláudia

    2002-01-01

    Full Text Available OBJECTIVE: To assess the relation between P-wave and QT dispersions in elderly patients with heart failure. METHODS: Forty-seven elderly patients (75.6±6 years with stable heart failure in NYHA functional classes II or III and with ejection fractions of 37±6% underwent body surface mapping to analyze P-wave and QT dispersions. The degree of correlation between P-wave and QT dispersions was assessed, and P-wave dispersion values in patients with QT dispersion greater than and smaller than 100 ms were compared. RESULTS: The mean values of P-wave and QT dispersions were 54±14 ms and 68±27 ms, respectively. The correlation between the 2 variables was R=0.41 (p=0.04. In patients with QT dispersion values > 100 ms, P-wave dispersion was significantly greater than in those with QT dispersion values < 100 ms (58±16 vs 53±12 ms, p=0.04 . CONCLUSION: Our results suggest that, in elderly patients with heart failure, a correlation between the values of P-wave and QT dispersions exists. These findings may have etiopathogenic, pathophysiologic, prognostic, and therapeutic implications, which should be investigated in other studies.

  5. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  6. New photon-nucleon dispersion relation for evaluating the Thomson limit using rising total cross sections

    International Nuclear Information System (INIS)

    Dean, N.W.

    1978-01-01

    New data showing that the photon-nucleon total cross section increases with energy for ν > or = 50 GeV invalidate earlier comparisons with dispersion relations. Parametrization of the data are presented and used in a new formulation of the dispersion relations, in which an assumed asymptotic behavior avoids the need for subtraction. With this form the fitted amplitude can be compared directly with the Thomson limit. The experimental uncertainties are shown to have a significant effect upon such a comparison

  7. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  8. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    International Nuclear Information System (INIS)

    Xu, Bruce S.; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E.

    2016-01-01

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C_0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D_m_e_c_h/D_e_f_f). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C_0/MDL ratios of 50 or higher. Much larger C_0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D_m_e_c_h/D_e_f_f is larger than 10, DRIF

  9. A new numerical method to solve the dispersion relation in multispecies plasma

    International Nuclear Information System (INIS)

    Cereceda, C.; Puerta, J.

    2000-01-01

    In this paper a new accurate and fast method for solving the linear dispersion relation for multispecies plasma is introduced. The method uses a four poles fractional approximation for the Z dispersion function, transforming the dispersion relation into a polynomial form. Time and space growth rates are then calculated. Calculations for a single beam - plasma are carried out being in good agreement with several authors. This method is very effective to simplify the calculation of growth rates in multi-ion plasmas. For multispecies plasmas several new modes of propagation arise. For two ion beam - plasma system, two slow modes can propagate, both which are unstable. Two maxima in the growth rates corresponding to each of these modes can be excited. The instability of one of the slow modes is fed by the energy of the light ion beam and the other one is fed by heavy beam ions. Each one of these two maxima is increased when the concentration of the corresponding species increases. But even for a small concentration of the light beam, the growth rate of the mode fed by it is the largest one, because in the single ion beam-plasma system the lighter ion yields the largest growth rate. (orig.)

  10. EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-09-20

    The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  11. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  12. Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation

    Energy Technology Data Exchange (ETDEWEB)

    Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.

    2017-05-15

    Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the black hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.

  13. Dispersion relation approach to sub-barrier heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Franzin, V.L.M.; Hussein, M.S.

    1986-07-01

    With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential (IPP) in terms of the principal part integral involving the real part of the IPP, the sub-barrier fusion of heavy ions is discussed. The system 16 O+ A Sm is taken as an example. The reactive content of the extracted IPP is analysed within the coupled channels theory. (Author) [pt

  14. Dispersion relation and self-collimation frequency of spoof surface plasmon using tight binding model

    International Nuclear Information System (INIS)

    Bhattacharya, Sayak; Shah, Kushal

    2015-01-01

    The analytical dispersion relation of spoof surface plasmon (SSP) is known only in the low-frequency limit and thus cannot be used to describe various practically important characteristics of SSP in the high-frequency limit (such as multimodal nature, anisotropic propagation, self-collimation). In this article, we consider a square lattice of holes made on a perfect electric conductor and derive a closed form expression of the SSP dispersion relation in the high-frequency limit using a tight binding model. Instead of using prior knowledge of the band diagram along the entire first Brillouin zone (BZ) edge, we analytically determine the hopping parameters by using the eigenfrequencies only at the three high-symmetry points of the square lattice. Using this dispersion relation, we derive an expression for the self-collimation frequency of SSP. We show that this analytical formulation is also applicable to dielectric photonic crystals and can be used to predict the frequencies corresponding to centimetre-scale supercollimation and second band self-collimation in these structures. Finally, we show that our analytical results are in agreement with the simulation results for both SSP and photonic crystals. (paper)

  15. Dispersion relation analysis of the neutral kaon regeneration amplitude in carbon

    CERN Document Server

    Angelopoulos, Angelos; Locher, M P; Markushin, V E; Aslanides, Elie; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Faravel, L; Festcher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D

    1999-01-01

    We apply a forward dispersion relation to the regeneration amplitude for kaon scattering on /sup 12/C using all available data. The CPLEAR data at low energies allow the determination of the net contribution from the subthreshold $9 region which turns out to be much smaller than earlier evaluations, solving a long standing puzzle. (29 refs).

  16. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  17. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    Zahn, J.W.

    2006-12-01

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  18. Magnon dispersion relation and exchange interactions in MnF2

    DEFF Research Database (Denmark)

    Nikotin, O.; Lindgård, Per-Anker; Dietrich, O. W.

    1969-01-01

    The magnon dispersion relation for MnF2 at 4·2 °K has been measured by means of the triple-axis neutron scattering technique along the symmetry lines in the (010) plane of the Brillouin zone. Using an exact dipole model, the three nearest-neighbour exchange constants were found to be J1 = 0·028 ± 0......·001 mev, J2 = -0·152 ± 0·001 mev and J3 = -0·004 ± 0·001 mev. The second moment was also calculated with this model. The density of magnon states was evaluated by applying a six-parameter simulation of the dispersion surface. The critical points in the density of states agree well with those obtained...... by optical double-magnon experiments, whereas the detailed shape of the density of states differs significantly, indicating that the effect of magnon-magnon interactions rather than that of distant-neighbour exchange is of primary importance in the optical measurements....

  19. Efficient approximations of dispersion relations in optical waveguides with varying refractive-index profiles.

    Science.gov (United States)

    Li, Yutian; Zhu, Jianxin

    2015-05-04

    In this paper we consider the problem of computing the eigen-modes for the varying refractive-index profile in an open waveguide. We first approximate the refractive-index by a piecewise polynomial of degree two, and the corresponding Sturm-Liouville problem (eigenvalue problem) of the Helmholtz operator in each layer can be solved analytically by the Kummer functions. Then, analytical approximate dispersion equations are established for both TE and TM cases. Furthermore, the approximate dispersion equations converge fast to the exact ones for the continuous refractive-index function as the maximum value of the subinterval sizes tends to zero. Suitable numerical methods, such as Müller's method or the chord secant method, may be applied to the dispersion relations to compute the eigenmodes. Numerical simulations show that our method is very practical and efficient for computing eigenmodes.

  20. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  1. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Baklanov, Petr, E-mail: alexey.tolstov@ipmu.jp [Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow (Russian Federation)

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {sub ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  2. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  3. Subtracted Dispersion Relations for In-medium Meson Correlators in QCD Sum Rules

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W; Broniowski, W [The H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1999-01-01

    We analyze subtracted dispersion relations for meson correlators at finite baryon density and temperature. Such relations are needed for QCD sum rules. We point out that importance of scattering terms, as well as finite, well-defined subtraction constants. Both are necessary for consistency, in particular for the equality of the longitudinal and transverse correlators in the limit of the vanishing three-momentum of mesons relative to the medium. We present detailed calculations in various mesonic channels of the Fermi gas of nucleons. (author)

  4. Three-particle physics and dispersion relation theory

    CERN Document Server

    Anisovich, A V; Matveev, M A; Nikonov, V A; Nyiri, J; Sarantsev, A V

    2013-01-01

    The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.

  5. Relative dispersion of clustered drifters in a small micro-tidal estuary

    Science.gov (United States)

    Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.

    2017-07-01

    Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.

  6. Dispersion relation of Raman FEL with helical Wiggler and ion channel

    International Nuclear Information System (INIS)

    Hosseinalinezhad, M.; Bahmani, M.; Hasanbeigi, A.; Salehkoutahi, M.

    2012-01-01

    In this paper the theory of free electron laser with helical wiggler and ion channel guiding has been presented. The equations of motion for an electron have been analyzed. A formula for the dispersion relation is then derived in the low-gain-per-pass limit. The results of a numerical study of the growth rate enhancement due to the ion channel are presented and discussed.

  7. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  8. On the relative contributions of wind vs. animals to seed dispersal of four Sierra Nevada pines.

    Science.gov (United States)

    Vander Wall, Stephen B

    2008-07-01

    Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.

  9. Inelastic Neutron Scattering Measurements of Phonon Dispersion Relations in Andalusite and Sillimanite, Al2SiO5

    International Nuclear Information System (INIS)

    Goel, P.

    2001-01-01

    This paper reports inelastic neutron scattering (INS) measurements of the phonon dispersion relations of the aluminum silicate minerals andalusite and sillimanite, Al 2 SiO 5 . The single crystal INS measurements were undertaken using the Triple-axis-spectrometer at the Dhruva reactor, Trombay for andalusite and at the Oak Ridge National Laboratory, USA for sillimanite. The phonon dispersion relations (upto 50 mev) along various high symmetry directions have been measured and have been analyzed on the basis of lattice dynamics shell model calculations. The calculated structure factors based on the model calculations were used as guides for planning these single crystal measurements and were used to identify regions in reciprocal space with large cross-sections. The calculated structure factors have been very useful in the planning, execution and analysis of the experimental data. The calculated phonon dispersion relations are found to be in good agreement with the measured data

  10. Calculation of the Green functions by the coupling constant dispersion relations

    International Nuclear Information System (INIS)

    Bogomalny, E.B.

    1977-01-01

    The discontinuities of the Green functions on the cut in the complex plane of the coupling constant are calculated by the steepest descent method. The saddle points are given by the solutions of the classical field equations at those values of the coupling constant for which the classical theory has no ground state. The Green functions at the physical values of the coupling constant are determined by dispersion relations. (Auth.)

  11. Time-Shift in the OPERA set-up: proof against superluminal neutrinos without the need of knowing the CERN-LNGS distance and Reminiscences on the origin of the Gran Sasso Lab, of the 3rd neutrino and of the "Teramo Anomaly"

    CERN Document Server

    Zichichi, Antonino

    2012-01-01

    The LVD time stability allows to establish a time-shift in the OPERA experiment, thus providing the first proof against Superluminal neutrinos, using the horizontal muons of the "Teramo Anomaly". This proof is particularly interesting since does not need the knowledge of the distance between the place where the neutrinos are produced (CERN) and the place where they are detected (LNGS). Since the Superluminal neutrinos generated in the physics community a vivid interest in good and bad behaviour in physics research, the author thought it was appropriate to recall the origin of the Gran Sasso Lab, of the 3rd neutrino, of the horizontal muons due to the "Teramo Anomaly" and of the oscillation between leptonic flavours, when the CERN-Gran Sasso neutrino beam was included in the project for the most powerful underground Laboratory in the world.

  12. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  13. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  14. Quasiparticles of widely tuneable inertial mass: The dispersion relation of atomic Josephson vortices and related solitary waves

    Directory of Open Access Journals (Sweden)

    Sophie S. Shamailov, Joachim Brand

    2018-03-01

    Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.

  15. $K^{\\pm}n$ forward dispersion relations and the KN$\\Sigma$ coupling constant

    CERN Document Server

    Baillon, Paul; Ferro-Luzzi, M; Jenni, Peter; Perreau, J M; Tripp, R D; Ypsilantis, Thomas; Déclais, Y; Séguinot, Jacques

    1976-01-01

    Recent measurements of the K/sup -/n forward scattering amplitude at 1.2, 1.4, 2.6 GeV/c are used in a once-subtracted dispersion relation to determine the value of the KN Sigma coupling constant. The result is g/sub Sigma //sup 2/=1.9+or-3.2, in agreement with the prediction of the SU(3) theory.

  16. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  17. Chiral symmetry and dispersion relations: from $\\pi \\pi$ scattering to hadronic light-by-light.

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Chiral symmetry provides strong constraints on hadronic matrix elements at low energy, which are most efficiently derived with chiral perturbation theory. As an effective quantum field theory the latter also accounts for rescattering or unitarity effects, albeit only perturbatively, via the loop expansion. In cases where rescattering effects are important it becomes necessary to go beyond the perturbative expansion, e.g. by using dispersion relations. A matching between the chiral and the dispersive representation provides in several cases results of high precision. I will discuss this approach with the help of a few examples, like $\\pi \\pi$ scattering (which has been tested successfully by CERN experiments like NA48/2 and DIRAC), $\\eta \\to 3 \\pi$ and the hadronic light-by-light contribution to $(g-2)_\\mu$. For the latter quantity the implementation of the dispersive approach has opened up the way to a model-independent calculation and the concrete possibility to significantly reduce the theoretical uncertain...

  18. Seed dispersal in fens

    Science.gov (United States)

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  19. [Pharmacokinetics and relative bioavailability of THC and THC-solid dispersion orally to mice at single dose].

    Science.gov (United States)

    Liao, Li; Hua, Hua; Zhao, Jun-Ning; Luo, Heng; Yang, An-Dong

    2014-03-01

    To establish a fast sensitive, reproducible LC-MS/MS method to study pharmacokinetic properties of THC, and compare relative bioavailability of THC and its solid dispersion in mice. 200 mice were divided randomly into two groups, and administered orally with THC and THC-solid dispersion after fasting (calculate on THC:400 mg x kg(-1)), used HPLC-MS/MS method to determine the THC concentration of each period at the following times: baseline ( predose ), 15, 30, 45 min, 1, 1.5, 2, 3, 4, 6, 24 h after dosing. Calculating the pharmacokinetic parameters according to the C-t curv, and then use the Phoenix WinNonlin software for data analysis. The calibration curves were linear over the range 9.06-972 microg x L(-1) for THC (R2 = 0.999). The limit of detection (LOD) was 0.7 microg x L(-1), respectively. The average extraction recoveries for THC was above 75%, The methodology recoveries were between 79% and 108%. The intra-day and inter-day RSD were less than 13%, the stability test showed that the plasma samples was stable under different conditions (RSD THC and THC-solid dispersion orally to mice shows as fllows: T(max), were 60 and 15 min, AUC(0-t) were 44 500.43 and 57 497.81 mg x L(-1) x min, AUC(0-infinity) were 51 226.00 and 68 031.48 mg x L(-1) x min, MRT(0-infinity) were 596.915 6, 661.747 7 min, CL(z)/F were 0.007 809 and 0.005 88 L x min(-1) x kg(-1). Compared with THC, the MRT and t1/2 of the THC-solid dispersion were all slightly extended, the t(max) was significantly reduced, AUC(0-24 h), AUC(0-infinity) and C(max) were all significantly higher, the relative bioavailability of THC-solid dispersion is 1.34 times of THC. The results of the experiment shows that the precision, accuracy, recovery and applicability were found to be adequate for the pharmacokinetic studies. After oral administration to mice, the relative bioavailability of THC-solid dispersion show significant improvement compared to THC.

  20. Bounds on Cubic Lorentz-Violating Terms in the Fermionic Dispersion Relation

    OpenAIRE

    Bertolami, O.; Rosa, J. G.

    2004-01-01

    We study the recently proposed Lorentz-violating dispersion relation for fermions and show that it leads to two distinct cubic operators in the momentum. We compute the leading order terms that modify the non-relativistic equations of motion and use experimental results for the hyperfine transition in the ground state of the ${}^9\\textrm Be^+$ ion to bound the values of the Lorentz-violating parameters $\\eta_1$ and $\\eta_2$ for neutrons. The resulting bounds depend on the value of the Lorenz-...

  1. Dispersion relation of test waves in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.

    1994-01-01

    Test waves are propagated in an electron beam plasma system and the dispersion relation is measured. At the center of the experimental region a beam mode is excited. Near the chamber wall an electron plasma wave is excited and propagates from the chamber wall to the center of the experimental region. It is also found that observed unstable waves are standing wave which is formed by superposing the beam modes propagating in the opposite directions each other. (author). 6 refs, 6 figs

  2. The dispersion relation for the forward elastic electron-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1978-01-01

    The analytical properties of forward elastic electron-atom scattering amplitude are discussed. It is noted that the occurrence of exchange between the incoming and atomic electrons leads to the appearance of a number of singularities on the negative real axis in the complex energy plane. The conclusion is drawn that the dispersion relation for the forward electron-atom scattering amplitude should also include an integration over the negative energy from - I to - infinity, where I is the ionization potential. (author)

  3. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  4. Dispersion relation for hadronic light-by-light scattering: two-pion contributions

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, Gilberto [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Hoferichter, Martin [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Procura, Massimiliano [Theoretical Physics Department, CERN, Geneva (Switzerland); Stoffer, Peter [Helmholtz-Institut für Strahlen- und Kernphysik (Theory)and Bethe Center for Theoretical Physics, University of Bonn, 53115 Bonn (Germany); Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States)

    2017-04-27

    In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g−2){sub μ}, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ{sup ∗}γ{sup ∗}→ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, a{sub μ}{sup π-box}=−15.9(2)×10{sup −11}. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ{sup ∗}γ{sup ∗}→ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f{sub 0}(500) to HLbL scattering in (g−2){sub μ}. We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a{sub μ}{sup π-box}+a{sub μ,J=0}{sup ππ,π-pole} {sup LHC}=−24(1)×10{sup −11}.

  5. Dispersion relation for Bernstein waves using a new transformation for the modified Bessel function

    International Nuclear Information System (INIS)

    Sato, Masumi

    1985-01-01

    Aitken's or Shanks' transformation of the exponent-modified Bessel function produces better approximations. Dispersion relations for the hybrid and Bernstein waves using these provide better thermal and parallel wavenumber corrections. They also predict more closely the evolution and mode-conversion of these waves. (author)

  6. Giant magnon solution and dispersion relation in string theory in AdS3×S3×T4 with mixed flux

    International Nuclear Information System (INIS)

    Hoare, B.; Stepanchuk, A.; Tseytlin, A.A.

    2014-01-01

    We address the question of the exact form of the dispersion relation for light-cone string excitations in string theory in AdS 3 ×S 3 ×T 4 with mixed R–R and NS–NS 3-form fluxes. The analogy with string theory in AdS 5 ×S 5 suggests that in addition to the data provided by the perturbative near-BMN expansion and symmetry algebra considerations there is another source of information for the dispersion relation – the semiclassical giant magnon solution. In earlier work in (arXiv:1303.1037) and (arXiv:1304.4099) we found that the symmetry algebra constraints, which are consistent with a perturbative expansion, do not completely determine the form of the dispersion relation. The aim of the present paper is to fix the dispersion relation by constructing a generalisation of the known dyonic giant magnon soliton on S 3 to the presence of a non-zero NS–NS flux described by a WZ term in the string action (with coefficient q). We find that the angular momentum of this soliton gets shifted by a term linear in world-sheet momentum p. We also discuss the symmetry algebra of the string light-cone S-matrix and show that the exact dispersion relation, which should have the correct perturbative BMN and semiclassical giant magnon limits, should also contain such a linear momentum term. The simplicity of the resulting bound-state picture provides a strong argument in favour of this dispersion relation

  7. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  8. Unified description of the neutron-/sup 208/Pb mean field between -20 and +165 MeV from the dispersion relation constraint

    International Nuclear Information System (INIS)

    Johnson, C.H.; Horen, D.J.; Mahaux, C.

    1987-01-01

    The real part of the central neutron-/sup 208/Pb mean field is the sum of a Hartree-Fock component plus a dispersive component. In keeping with theoretical expectations, the Hartree-Fock field is assumed to have a Woods-Saxon shape whose depth decreases exponentially with increasing energy and whose radius and diffuseness are independent of energy. The dispersive component is determined from the imaginary part of the optical-model potential by making use of the dispersion relation which connects these two quantities. The imaginary part is written as the sum of a volume and a surface-peaked contribution. The dispersion relation then implies that the real dispersive contribution is also the sum of volume and surface-peaked components. The parameters of the complex mean field are determined by fitting the available differential and polarization cross sections in the energy domain [4, 40 MeV] and the total cross sections in the domain [1,120 MeV]; these data are contained in previous published or unpublished reports, but new measurements of the total cross sections are presented from 1 to 25 MeV. Good fits to these cross sections, and also to unpublished total cross sections for energies up to 165 MeV, are obtained despite the fact that the number of adjusted parameters is quite small because of our use of the constraint implied by the dispersion relation

  9. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  10. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Milisavljevic, D.; Challis, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Margutti, R. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Metzger, B. D. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Chornock, R., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States)

    2017-01-20

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.

  11. Relative toxicity of oil dispersants to Mytilus viridis and Macrobrachium idella

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, C.; Row, A.

    ) was almost identical for both the species tested, although there was a significant shift in the range of LC sub(50) values, indicating that one species is less sensitive than the other. Oil dispersant mixtures were less toxic than the dispersants alone...

  12. Superluminal paradox’ in wave packet propagation and its quantum mechanical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovski, D., E-mail: dgsokol15@gmail.com [Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Akhmatskaya, E. [Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia (Spain)

    2013-12-15

    We analyse in detail the reshaping mechanism leading to apparently ‘superluminal’ advancement of a wave packet traversing a classically forbidden region. In the coordinate representation, a barrier is shown to act as an effective beamsplitter, recombining envelopes of the freely propagating pulse with various spacial shifts. Causality ensures that none of the constituent envelopes are advanced with respect to free propagation, yet the resulting pulse is advanced due to a peculiar interference effect, similar to the one responsible for ‘anomalous’ values which occur in Aharonov’s ‘weak measurements’. In the momentum space, the effect is understood as a bandwidth phenomenon, where the incident pulse probes local, rather than global, analytical properties of the transmission amplitude T(p). The advancement is achieved when T(p) mimics locally an exponential behaviour, similar to the one occurring in Berry’s ‘superoscillations’. Seen in a broader quantum mechanical context, the ‘paradox’ is but a consequence of an attempt to obtain ‘which way?’ information without destroying the interference between the pathways of interest. This explains, to a large extent, the failure to adequately describe tunnelling in terms of a single ‘tunnelling time’. -- Highlights: •Apparent superluminality is described in the language of quantum measurements. •A barrier acts as a beamsplitter delaying copies of the initial pulse. •In the coordinate space the effect is similar to what occurs in ‘weak measurements’. •In the momentum space it relies on superoscillations in the transmission amplitude. •It is an interference effect, unlikely to be explained in simpler physical terms.

  13. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    Science.gov (United States)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our

  14. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M.R.; McKay, T.A.; /Michigan U.; Koester, B.; /Chicago U., Astron. Astrophys. Ctr.; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.; Rozo, E.; /Ohio State U.; Evrard, A.; /Michigan U. /Michigan U., MCTP; Johnston, D.; /Caltech, JPL; Sheldon, E.; /New York U.; Annis, J.; /Fermilab; Lau, E.; /Chicago U., Astron. Astrophys. Ctr.; Nichol, R.; /Portsmouth U., ICG; Miller, C.; /Michigan U.

    2007-06-05

    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.

  15. Preserving the Helmholtz dispersion relation: One-way acoustic wave propagation using matrix square roots

    Science.gov (United States)

    Keefe, Laurence

    2016-11-01

    Parabolized acoustic propagation in transversely inhomogeneous media is described by the operator update equation U (x , y , z + Δz) =eik0 (- 1 +√{ 1 + Z }) U (x , y , z) for evolution of the envelope of a wavetrain solution to the original Helmholtz equation. Here the operator, Z =∇T2 + (n2 - 1) , involves the transverse Laplacian and the refractive index distribution. Standard expansion techniques (on the assumption Z << 1)) produce pdes that approximate, to greater or lesser extent, the full dispersion relation of the original Helmholtz equation, except that none of them describe evanescent/damped waves without special modifications to the expansion coefficients. Alternatively, a discretization of both the envelope and the operator converts the operator update equation into a matrix multiply, and existing theorems on matrix functions demonstrate that the complete (discrete) Helmholtz dispersion relation, including evanescent/damped waves, is preserved by this discretization. Propagation-constant/damping-rates contour comparisons for the operator equation and various approximations demonstrate this point, and how poorly the lowest-order, textbook, parabolized equation describes propagation in lined ducts.

  16. One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ru [Quantitative Light Imaging Laboratory, Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Wang Zhuo; Leigh, Joe; Popescu, Gabriel [Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sobh, Nahil [Beckman Institute for Advanced Science and Technology, Department of Civil and Environmental Engineering, and Department of Mechanical Engineering and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Millet, Larry; Gillette, Martha U [Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Levine, Alex J, E-mail: alevine@chem.ucla.edu, E-mail: gpopescu@illinois.edu [Department of Chemistry and Biochemistry and Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2011-09-21

    We studied the active transport of intracellular components along neuron processes using a new method developed in our laboratory: dispersion-relation phase spectroscopy. This method is able to quantitatively map spatially the heterogeneous dynamics of the concentration field of the cargos at submicron resolution without the need for tracking individual components. The results in terms of density correlation function reveal that the decay rate is linear in wavenumber, which is consistent with a narrow Lorentzian distribution of cargo velocity. (paper)

  17. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  18. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    International Nuclear Information System (INIS)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-01

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required

  19. Low-energy theorems for Compton scattering up to order e/sup 4/. [Scattering amplitudes dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Pippig, G

    1975-01-01

    Taking the Compton scattering of pions and deuterons as an example it is shown that low-energy theorems which are valid for the order e/sup 2/ are also valid for the next higher order of electromagnetic interactions. The imaginary component of the scattering amplitude was exactly calculated for the energy of incident photons in the order e/sup 4/ up to the desired one, whereas the real component was obtained from dispersion relations. It is proved that the results derived from the dispersion theory of strong interactions are equivalent to those obtained from quantum electrodynamics for spin 0 and spin 1, respectively.

  20. Special relativity with a discrete spectrum of singular velocities

    International Nuclear Information System (INIS)

    Gonzales Gascon, F.

    1977-01-01

    The introduction of real transformation formulae containing a whole discrete spectrum of singularities is suggested. Some phenomenological hypotheses are introduced and the group property is substituted by weaker conditions. The first singular speed (c 1 =c) is invariant with respect to the measures of it from subluminal frames, but the remaining speeds are not invariant. The proposed transformations do not form a closed set (for the superluminal speeds) and, therefore, the problem of having (within this framework) a principle of relativity valid for any velocity remains open

  1. Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Yang, Haitang; Ying, Shuxuan [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)

    2016-01-15

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass m{sub p}. The corrections to the Hawking temperature are calculated for massive and charged particles to O(m{sub p}{sup -2}) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)

  2. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  3. Effect of initial stresses on dispersion relation of transverse waves in a piezoelectric layered cylinder

    International Nuclear Information System (INIS)

    Abd-alla, Abo-el-nour N.; Al-sheikh, Fatimah; Al-Hossain, Abdullah Y.

    2009-01-01

    Effect of initial stresses on dispersion relation for transverse surface waves circulating around a piezoelectric cylinder covered with perfectly conducting layers is investigated. Two overlay materials are considered: Gold and Aluminum. The piezoelectric substrate is considered to have the symmetry of a hexagonal crystal, and the layer is perfectly conducting. The dispersion equation has been given in the form of determinant involving Bessel functions. The roots of the dispersion equation give the values of the characteristic circular frequency parameters of the first three modes for various geometries. These roots are numerically calculated by 'Bisection method iterations technique' and presented graphically for various thickness of the overlayer and for different values of the initial stress. The effects of the initial stress on the natural frequencies are illustrated on the figures. It is found that both the thickness of the overlayer and the initial stress have a substantial effect on the dispersion behavior. The results obtained in this paper may not only help us get insight into the electro-mechanical coupling behavior of the piezoelectric composites cylinders, but can also offer theoretical basis and meaningful suggestions for the design of piezoelectric probes and electro-acoustic devices in the nondestructive evaluation technology. Finally, the results are compared graphically when the overlay is Gold or Aluminum with some special cases which do not have initial stresses and electric field.

  4. From dispersion relations to spectral dimension - and back again

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P.; Visser, Matt; Weinfurtner, Silke

    2011-01-01

    The so-called spectral dimension is a scale-dependent number associated with both geometries and field theories that has recently attracted much attention, driven largely, though not exclusively, by investigations of causal dynamical triangulations and Horava gravity as possible candidates for quantum gravity. We advocate the use of the spectral dimension as a probe for the kinematics of these (and other) systems in the region where spacetime curvature is small, and the manifold is flat to a good approximation. In particular, we show how to assign a spectral dimension (as a function of so-called diffusion time) to any arbitrarily specified dispersion relation. We also analyze the fundamental properties of spectral dimension using extensions of the usual Seeley-DeWitt and Feynman expansions and by using saddle point techniques. The spectral dimension turns out to be a useful, robust, and powerful probe, not only of geometry, but also of kinematics.

  5. Left-cut contribution to the dispersion relation for the elastic electron - atomic-hydrogen scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Kuchiev, M.Yu.

    1979-01-01

    The jump in the electron - atomic-hydrogen forward scattering amplitude at the cut extending to the left from E = -0.5 au is calculated as a function of the incident electron energy, E, by using the second Born approximation. The contribution from this singularity to the dispersion relation is determined. (Auth.)

  6. Analytic properties of the whistler dispersion function

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1986-01-01

    The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed. (author)

  7. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    Science.gov (United States)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  8. Further study of a new dispersion relation for electron-atom scattering

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.

    1988-01-01

    A new recently proposed dispersion relation (DR) [Temkin, Bhatia, and Kim, J. Phys. B 19, L707 (1986)] is tested for e-He scattering; the results show that the new DR is not satisfied. Therefore we start to investigate the analytic structure of the difference amplitude, previously assumed to be nonsingular, on the negative scattering energy axis. Even under severe approximations we find that the difference amplitude contains both poles and branch points. This suggests, however, a useful approximation of these contributions to the DR which gives very satisfactory agreement in both e-H and e-He scattering. We conclude with some brief general remarks on this problem

  9. Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates

    International Nuclear Information System (INIS)

    Gruner, T.; Welsch, D.

    1996-01-01

    Using the Green-function approach to the problem of quantization of the phenomenological Maxwell theory, the propagation of quantized radiation through dispersive and absorptive multilayer dielectric plates is studied. Input-output relations are derived, with special emphasis on the determination of the quantum noise generators associated with the absorption of radiation inside the dielectric matter. The input-output relations are used to express arbitrary correlation functions of the outgoing field in terms of correlation functions of the incoming field and those of the noise generators. To illustrate the theory, photons at dielectric tunneling barriers are considered. It is shown that inclusion in the calculations of losses in the photonic band gaps may substantially change the barrier traversal times. copyright 1996 The American Physical Society

  10. Neutron optical potential of 28Si derived from the dispersion relation

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igarasi, S.; Katsuragi, D.; Harima, Y.

    1992-01-01

    Based upon the dispersion theory, an optical potential of 28 Si was determined at the neutron energies from the Fermi energy to 20 MeV. In particular, discussion was given on a characteristic behavior of the optical potential for low-energy neutrons. Moreover, the validity of the dispersion theory was investigated for neutron single-particle bound states in 29 Si. (orig.)

  11. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  12. Canine goniodysgenesis-related glaucoma: a morphologic review of 100 cases looking at inflammation and pigment dispersion.

    Science.gov (United States)

    Reilly, Christopher M; Morris, Rebecca; Dubielzig, Richard R

    2005-01-01

    To investigate the role of pigment dispersion and inflammation in the pathogenesis of goniodysgenesis-related glaucoma (GDRG). Cases of GDRG were selected when the duration of the disease was specified and there was not any confounding pathology. Cases were grouped into 7-day (chronic) durations, based on the time required to effect end-stage retinal damage. Acute cases were further divided into pigment dispersion: segmental loss of posterior iris pigment epithelium, clumping of posterior iris pigment epithelium, pigmented cells in the trabecular meshwork or anterior chamber and preferential settling of pigmented cells in the ventral aspect of the iridocorneal angle. Slides were also evaluated for the presence of neutrophils and/or lymphoplasmacytic cells in the trabecular meshwork (TM). Differences between groups were analyzed statistically. Of 100 cases evaluated, 34 were 7-days (chronic) in duration. Of all globes examined, 96% had at least one sign of pigment dispersion, with no significant difference between groups. Two or more signs of pigment dispersion were present in 76% of all globes. The 4-7-day group was significantly more likely than the 7-day groups. Neutrophils were present in the TM of 86% of 7-day cases to have neutrophils in the TM, with 65% and 17% [corrected] positive cases, respectively. Lymphoplasmacytic inflammation was present in 53% of all cases, with no significant difference between groups. Cases in the 7-day cases to have both types of inflammation. Our results indicate that both acute inflammation and pigment dispersion may be key factors in the pathogenesis of GDRG. Pigment dispersion is prevalent at all time points and increases during the first 7 days. The finding of iris pigment epithelial loss supports the theory that pupillary block associated with iris-lens touching may be important in the pathogenesis of GDRG.

  13. THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT z = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS-SIZE AND MASS-DISPERSION RELATIONS ,

    International Nuclear Information System (INIS)

    Van de Sande, Jesse; Franx, Marijn; Labbe, Ivo; Kriek, Mariska; Van Dokkum, Pieter G.; Bezanson, Rachel; Whitaker, Katherine E.; Brammer, Gabriel; Groot, Paul J.; Kaper, Lex

    2011-01-01

    Recent photometric studies have shown that early-type galaxies at fixed stellar mass were smaller and denser at earlier times. In this Letter, we assess that finding by deriving the dynamical mass of such a compact quiescent galaxy at z = 1.8. We have obtained a high-quality spectrum with full UV-NIR wavelength coverage of galaxy NMBS-C7447 using X-Shooter on the Very Large Telescope. We determined a velocity dispersion of 294 ± 51 km s -1 . Given this velocity dispersion and the effective radius of 1.64 ± 0.15 kpc (as determined from Hubble Space Telescope Wide Field Camera 3 F160W observations) we derive a dynamical mass of (1.7 ± 0.5) x 10 11 M sun . Comparison of the full spectrum with stellar population synthesis models indicates that NMBS-C774 has a relatively young stellar population (0.40 Gyr) with little or no star formation and a stellar mass of M * ∼ 1.5 x 10 11 M sun . The dynamical and photometric stellar masses are in good agreement. Thus, our study supports the conclusion that the mass densities of quiescent galaxies were indeed higher at earlier times, and this earlier result is not caused by systematic measurement errors. By combining available spectroscopic measurements at different redshifts, we find that the velocity dispersion at fixed dynamical mass was a factor of ∼1.8 higher at z = 1.8 compared with z = 0. Finally, we show that the apparent discrepancies between the few available velocity dispersion measurements at z > 1.5 are consistent with the intrinsic scatter of the mass-size relation.

  14. An Analysis of the New LHC Data through the Dispersion Relations

    CERN Document Server

    Selyugin, O.V.

    2017-01-01

    We analyse the tension between the (indirect) measurements of the total cross section, and show the impact of various assumptions on the extraction of the parameters from the elastic scattering amplitude, with a special attention to the total cross section. In particular, the determination of the phase of the elastic scattering amplitude will play an important role, and we shall study it via dispersion relations. We shall also examine the origin of the dependence on momentum transfer of the slopes of the different parts of the scattering amplitude in different models. We shall also give the results of another similar analysis based on a Regge-trajectory approach for the hadron scattering amplitude.

  15. Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant

    Science.gov (United States)

    Garattini, Remo

    2012-07-01

    Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.

  16. Evaluation of the real parts of fermion and boson propagators using dispersion relations

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Davies, R.W.

    1991-01-01

    General methods are developed for efficiently evaluating principal-value integrals containing fermion and boson causal propagators. These methods are particularly applicable to integrals containing step functions which appear in the zero temperature limit of infinite nuclear matter. Examples are given for the Green functions that occur in the solution of Dyson's equations, with the inclusion of nucleon-delta-mesonic interactions. It is shown how to discretize in order to evaluate numerically the real parts of the propagators. If the real and purely imaginary self-energies of a propagator obey a dispersion relation, then the propagator itself satisfies such a relation. Finally, we discuss the two types of resonances occurring in the pion Green function. (orig.)

  17. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  18. Chemical countermeasures: Dispersants overview of dispersant use (including application) and research issues

    International Nuclear Information System (INIS)

    Butler, J.N.

    1992-01-01

    I will attempt in twenty minutes to summarize the state of research on oil spill dispersants as I perceive it. The expertise I bring to this task includes 20 years of experience with the fate and effects of petroleum in the marine environment, including participation in the 1973 and 1981 NRC studies and three years as chairman of the NRC committee on oil spill dispersants. I More recently I served on a committee of the International Maritime Organization which reviewed the open-quotes Impact of oil and related chemicals and wastes on the marine environment.close quotes That report will be published this year. However, my statements in this paper are not made as a representative of either NRC or IMO. They are my own interpretation of scientific literature cited in the above reviews. Dispersants are chemical formulations, which include surface active agents, designed to decrease the interfacial tension between oil and water. Because the first attempts to disperse oil on a large scale, at the Torrey Canyon spill of 1967, used highly toxic degreasing agents, dispersants have an undeserved reputation for toxicity. In fact, for twenty years dispersant formulations have been developed with an emphasis on reducing their toxicity to marine life. The dispersal of oil in water has been documented in the laboratory by dozens of papers (see references in NRC 1989, pp 70-79), and in the field by dozens of studies (NRC 1989, pp 165- 193). The toxicity of commercial dispersant formulations (NRC 1989, pp 81-123) and dispersed oil (NRC 1989, pp 123-147) has been tested on a wide variety of marine organisms ranging from algae to salmonid fishes. The NRC review has been updated by the IMO/GESAMP (1992) study, but the conclusions remain unchanged

  19. Modeling the dispersal of spiny lobster (

    NARCIS (Netherlands)

    Whomersley, P.; van der Molen, J.; Holt, D.; Trundle, C.; Clark, S.; Fletcher, D.

    2018-01-01

    Knowledge of larval dispersal, population dynamics and connectivity in relation to the management and conservation of commercially important species is vital if existing fisheries are to remain sustainable into the future. Larval dispersal of the commercially exploited spiny lobster, Palinurus

  20. Drift wave dispersion relation for arbitrarily collisional plasma

    International Nuclear Information System (INIS)

    Angus, Justin R.; Krasheninnikov, Sergei I.

    2012-01-01

    The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.

  1. Drift wave dispersion relation for arbitrarily collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Justin R.; Krasheninnikov, Sergei I. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093-0417 (United States)

    2012-05-15

    The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.

  2. Dispersal behavior correlates with personality of a North American fish

    Institute of Scientific and Technical Information of China (English)

    Josh E.RASMUSSEN; Mark C.BELK

    2012-01-01

    The process of dispersal is determined by the interaction of individual (intrinsic) traits and environmental (extrinsic) factors.Although many studies address and quantify dispersal,few evaluate both intrinsic and extrinsic factors jointly.We test the relative importance of intrinsic traits (exploration tendency and size) and extrinsic factors (population density and habitat quality) on dispersal of a medium-sized western United States minnow,southern lcatherside chub Lepidomeda aliciae.A generalized linear model with a binomial response was used to determine the probability of individuals dispersing one year after tagging.Medium-sized individuals that were more prone to explore novel environments were 10.7 times more likely to be recaptured outside of their original capture area after a year (dispersal) compared to non-explorer individuals of the same size class.Differences between explorer classifications within the small and large size classes were negligible.Open habitat within 50 m upstream also increased the probability of dispersal relative to controls.Relative location within the study reach,and population density were not significantly related to dispersal probabilities of individuals.Our results indicate that understanding ofpersonality may illuminate patterns of dispersal within and among populations [Current Zoology 58 (2):260-270,2012].

  3. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data

    Science.gov (United States)

    Yu, Jincheng; Liu, Chao

    2018-03-01

    We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.

  4. Dispersion-induced nonlinearities in semiconductors

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.

    2002-01-01

    A dispersive and saturable medium is shown, under very general conditions, to possess ultrafast dynamic behaviour due to non-adiabatic polarisation dynamics. Simple analytical expressions relating the effect to the refractive index dispersion of a semiconductor ire derived and the magnitude...... of the equivalent Kerr coefficient is shown to be in qualitative agreement with measurements on active semiconductor waveguides....

  5. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner–Nordström–de Sitter Black Hole

    International Nuclear Information System (INIS)

    Hasan, M. Khayrul; Ali, M. Hossain

    2009-01-01

    We formulate the general relativistic magnetohydrodynamic equations for isothermal plasma in spatially flat Reissner–Nordström–de Sitter metric by using 3+1 split of spacetime. Respective perturbed equations are linearized for rotating magnetized surroundings. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed both analytically and numerically in order to investigate the nature of waves with positive angular frequency around the horizon

  6. SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Blanchard, P. K.; Challis, P.; Cowperthwaite, P. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Margutti, R. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Jerkstrand, A.; Smartt, S. J.; Inserra, C.; Kankare, E.; Maguire, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Arcavi, I.; Hosseinzadeh, G.; Howell, D. A. [Las Cumbres Observatory Global Telescope, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Chambers, K. C.; Magnier, E. A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chen, T.-W. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching (Germany); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. A., E-mail: matt.nicholl@cfa.harvard.edu [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); and others

    2016-09-10

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250–400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days){sup −1} to 1.7 mag (100 days){sup −1}, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large {sup 56}Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of −22 < M {sub B} < −17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7–30 M {sub ⊙} of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ 7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  7. The trajectory of dispersal research in conservation biology. Systematic review.

    Directory of Open Access Journals (Sweden)

    Don A Driscoll

    Full Text Available Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning and invasive species. We analysed temporal changes in the: (i questions asked by dispersal-related research; (ii methods used to study dispersal; (iii the quality of dispersal data; (iv extent that dispersal knowledge is lacking, and; (v likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i improve the quality of available data using new approaches; (ii understand the complementarities of different methods and; (iii define the value of different kinds of dispersal information for supporting

  8. The trajectory of dispersal research in conservation biology. Systematic review.

    Science.gov (United States)

    Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management

  9. Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach

    NARCIS (Netherlands)

    Ozinga, W.A.; Hennekens, S.M.; Schaminée, J.H.J.; Bekker, R.M.; Prinzing, A.; Bonn, S.; Poschlod, P.; Tackenberg, O.; Thompson, K.; Bakker, J.P.; Groenendael, van J.M.

    2005-01-01

    Increased insight into the factors that determine the importance of dispersal limitation on species richness and species composition is of paramount importance for conservation and restoration ecology. One way to explore the importance of dispersal limitation is to use seed-sowing experiments, but

  10. Dynamics of Dispersive Wave Generation in Gas-Filled Photonic Crystal Fiber with the Normal Dispersion

    Directory of Open Access Journals (Sweden)

    Zhixiang Deng

    2017-01-01

    Full Text Available The absence of Raman and unique pressure-tunable dispersion is the characteristic feature of gas-filled photonic crystal fiber (PCF, and its zero dispersion points can be extended to the near-infrared by increasing gas pressure. The generation of dispersive wave (DW in the normal group velocity dispersion (GVD region of PCF is investigated. It is demonstrated that considering the self-steepening (SS and introducing the chirp of the initial input pulse are two suitable means to control the DW generation. The SS enhances the relative average intensity of blue-shift DW while weakening that of red-shift DW. The required propagation distance of DW emission is markedly varied by introducing the frequency chirp. Manipulating DW generation in gas-filled PCF by the combined effects of either SS or chirp and three-order dispersion (TOD provides a method for a concentrated transfer of energy into the targeted wavelengths.

  11. Theory of pairwise coupling embedded in more general local dispersion relations

    International Nuclear Information System (INIS)

    Fuchs, V.; Bers, A.; Harten, L.

    1985-01-01

    Earlier work on the mode conversion theory by Fuchs, Ko, and Bers is detailed and expanded upon, and its relation to energy conservation is discussed. Given a local dispersion relation, D(ω; k, z) = 0, describing stable waves excited at an externally imposed frequency ω, a pairwise mode-coupling event embedded therein is extracted by expanding D(k, z) around a contour k = k/sub c/(z) given by partialD/partialk = 0. The branch points of D(k, z) = 0 are the turning points of a second-order differential-equation representation. In obtaining the fraction of mode-converted energy, the connection formula and conservation of energy must be used together. Also, proper attention must be given to distinguish cases for which the coupling disappears or persists upon confluence of the branches, a property which is shown to depend on the forward (v/sub g/v/sub ph/>0) or backward (v/sub g/v/sub ph/<0) nature of the waves. Examples occurring in ion-cyclotron and lower-hybrid heating are presented, illustrating the use of the theory

  12. Dual-role plasticizer and dispersant for ceramic layers

    DEFF Research Database (Denmark)

    2016-01-01

    Thus, one aspect of the invention relates to a green ceramic layer comprising a ceramic material, a binder, and a dual-role dispersant and plasticizer, wherein said dual-role dispersant and plasticizer is an organic di- or tri-ester selected from compounds of formula (I), (II), (III) and (IV......). Another aspect of the present invention relates to a slurry for use in the manufacturing of a green ceramic layer comprising a ceramic material, a solvent, a binder, and a dual-role dispersant and plasticizer, wherein said dual role dispersant and plasticizer is an organic di- or tri- ester. Further...... aspects include uses of and methods of manufacturing said green ceramic layers....

  13. Ocean current observations near McMurdo Station, Antarctica from 1991 to 1993: Relation to wastewater discharge dispersal

    International Nuclear Information System (INIS)

    Barry, J.P.

    1994-08-01

    Analyses of ocean currents in the vicinity of McMurdo Station, Antarctica, are relevant to the transport and dispersal of wastewater from the McMurdo Station sewage outfall pipe. Observations of ocean currents during the initial phases of this study have been presented by Howington and McFeters. These studies, using coliform bacterial counts as an indicator of dispersion of the wastewater plume and current meters to measure flow patterns, indicated that dispersal of the plume by local currents does not effectively remove the plume from the vicinity of McMurdo Sound, under the present outfall pipe location. Moreover, these studies suggest that, although the flow pattern is generally consistent with transport of the plume away from McMurdo Station, episodes of current reversal are sufficient to transport the wastewater plume along the shore toward the southeast, eventually overlapping the seawater intake area near the McMurdo jetty. Several concerns included (a) impacts of wastewater inputs to nearshore benthic and pelagic habitats adjacent to McMurdo Station, (b) effects of wastewater input to the McMurdo Station fresh water intake source, and (c) reduction in human impacts on the McMurdo Sound ecosystem. These concerns motivated studies to characterize nearshore currents more extensively in relation to dispersal of the wastewater plume. This report discusses analysis results of current observations from November 1992 to November 1993

  14. Lateral dispersion coefficients as functions of averaging time

    International Nuclear Information System (INIS)

    Sheih, C.M.

    1980-01-01

    Plume dispersion coefficients are discussed in terms of single-particle and relative diffusion, and are investigated as functions of averaging time. To demonstrate the effects of averaging time on the relative importance of various dispersion processes, and observed lateral wind velocity spectrum is used to compute the lateral dispersion coefficients of total, single-particle and relative diffusion for various averaging times and plume travel times. The results indicate that for a 1 h averaging time the dispersion coefficient of a plume can be approximated by single-particle diffusion alone for travel times <250 s and by relative diffusion for longer travel times. Furthermore, it is shown that the power-law formula suggested by Turner for relating pollutant concentrations for other averaging times to the corresponding 15 min average is applicable to the present example only when the averaging time is less than 200 s and the tral time smaller than about 300 s. Since the turbulence spectrum used in the analysis is an observed one, it is hoped that the results could represent many conditions encountered in the atmosphere. However, as the results depend on the form of turbulence spectrum, the calculations are not for deriving a set of specific criteria but for demonstrating the need in discriminating various processes in studies of plume dispersion

  15. Velocity Dispersions Across Bulge Types

    International Nuclear Information System (INIS)

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-01-01

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  16. On the rule of thumb for flipping the dispersion relation in BAW devices

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas

    2011-01-01

    High-performance solidly mounted bulk acoustic wave resonators (SMRs) can be obtained by employing frame region, if these exhibit type I dispersion. The commonly used piezoelectric material Aluminum Nitride is a type II material, for which type I dispersion can be enforced by increasing the top

  17. Phonon dispersion relations in PrBa2Cu3O6+x (x approximate to 0.2)

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa2Cu3O6+x (xapproximate to0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all...

  18. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  19. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  20. Dispersion modeling by kinematic simulation: Cloud dispersion model

    International Nuclear Information System (INIS)

    Fung, J C H; Perkins, R J

    2008-01-01

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  1. Dispersion relations of density fluctuations observed by heavy ion beam probe in the TEXT tokamak

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-09-01

    Wave numbers as functions of frequency for density fluctuations in the core of the TEXT tokamak are measured in Heavy Ion Beam Probe experiments by analyzing the relative phases of signals originating from nearby points in the plasma. The adjacent points are typically 2 cm apart, with their relative orientation (δr, δθ) depending on position (r,θ). for angular frequencies ω ≤ 10 6 /s the signals are quite coherent, leading to reasonably well-defined ''dispersion relations.'' These do not correspond to known modes of the drift wave type, i.e., ballooning or slab-like electron drift waves or ion temperature gradient modes. The effect of finite sample volume size does not significantly alter this conclusion. 25 refs., 6 figs., 3 tabs

  2. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Klanderud, K.; Totland, Oe. [Norwegian Univ. of Life Science, Dept. of Ecology and Natural Resource Management, Aas (Norway)

    2007-08-15

    Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. (au)

  3. The Extended Relativity Theory in Clifford Spaces

    CERN Document Server

    Castro, C

    2004-01-01

    A brief review of some of the most important features of the Extended Relativity theory in Clifford-spaces ( $C$-spaces) is presented whose " point" coordinates are noncommuting Clifford-valued quantities and which incoporate the lines, areas, volumes, .... degrees of freedom associated with the collective particle, string, membrane, ... dynamics of the $p$-loop histories (closed p-branes) living in target $D$-dimensional spacetime backgrounds. $C$-space Relativity naturally incoporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, superluminal propagation, higher derivative gravity with torsion and variable dimensions/signatures that allows to study the dynamics of all (closed ) p-branes, for all values of $ p $, in a unified footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows along with the study of the inva...

  4. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    Science.gov (United States)

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  5. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    Science.gov (United States)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  6. Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B., E-mail: YL1260@nyu.edu, E-mail: mmodjaz@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-08-10

    Super-luminous supernovae (SLSNe) are tremendously luminous explosions whose power sources and progenitors are highly debated. Broad-lined SNe Ic (SNe Ic-bl) are the only type of SNe that are connected with long-duration gamma-ray bursts (GRBs). Studying the spectral similarity and difference between the populations of hydrogen-poor SLSNe (SLSNe Ic) and of hydrogen-poor stripped-envelope core-collapse SNe, in particular SNe Ic and SNe Ic-bl, can provide crucial observations to test predictions of theories based on various power source models and progenitor models. In this paper, we collected all of the published optical spectra of 32 SLSNe Ic, 21 SNe Ic-bl, as well as 17 SNe Ic, quantified their spectral features, constructed average spectra, and compared them in a systematic way using new tools we have developed. We find that SLSNe Ic and SNe Ic-bl, including those connected with GRBs, have comparable widths for their spectral features and average absorption velocities at all phases. Thus, our findings strengthen the connection between SLSNe Ic and GRBs. In particular, SLSNe Ic have average Fe ii λ 5169 absorption velocities of −15,000 ± 2600 km s{sup −1} at 10 days after peak, which are higher than those of SNe Ic by ∼7000 km s{sup −1} on average. SLSNe Ic also have significantly broader Fe ii λ 5169 lines than SNe Ic. Moreover, we find that such high absorption and width velocities of SLSNe Ic may be hard to explain with the interaction model, and none of the 13 SLSNe Ic with measured absorption velocities spanning over 10 days has a convincing flat velocity evolution, which is inconsistent with the magnetar model in one dimension. Lastly, we compare SN 2011kl, the first SN connected with an ultra-long GRB, with the mean spectrum of SLSNe Ic and of SNe Ic-bl.

  7. The Logistics of Oil Spill Dispersant Application. Volume I. Logistics-Related Properties of Oil Spill Dispersants.

    Science.gov (United States)

    1982-11-01

    time of application. Such designs were probably influenced by the ready availabilit " 51 of fire-fighting hoses on ships and tugs; the water stream not...8217 I I1 ---- i . . .. . IIII . . . I I PREFACE The use of chemicals for the dispersal of oil spilled on water has been the subject of discussion (and of...20 Oil Type, Weathering and Emulsification.. 20 Slick Thickness .......................... 28 Water Temperature

  8. Hydrological dispersion of radioactive material in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-01-01

    This Guide discusses the dispersion of normal and accidental releases of radioactive materials from nuclear power plants into surface water, including the washout of airborne radionuclides, and gives recommendations on information to be collected during the various stages of the siting procedure, a minimum measurement programme and the selection and validation of appropriate mathematical models for predicting dispersion. Guidelines are also provided for the optimal use of models for a specific site situation and for defining the necessary input parameters. Results of existing validation studies are given

  9. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  10. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  11. Dispersion engineering in metamaterials and metasurfaces

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Ma, Xiaoliang; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2018-02-01

    Dispersion engineering is essential for spectral utilization in electromagnetic systems. However, it is difficult to manage the dispersions in both natural materials and traditional electromagnetic waveguides since they are tightly related to fine structures of atoms, molecules and causality. The emergence of metamaterials and metasurfaces, which are made of subwavelength inclusions offers tremendous freedom to manipulate the electromagnetic parameters of materials and modes. Here, we review the basic principles, practical applications and recent advancements of the dispersion engineering in metadevices. The contributions of dispersion management in metadevice-based super-resolution imaging/nanolithography systems, planar functional devices, as well as the broadband perfect absorbers/polarization converters are discussed in depth. The challenges faced by this field as well as future developing trends are also presented in the conclusions.

  12. Does Environmental Knowledge Inhibit Hominin Dispersal?

    Science.gov (United States)

    Wren, Colin D; Costopoulos, Andre

    2015-07-01

    We investigated the relationship between the dispersal potential of a hominin population, its local-scale foraging strategies, and the characteristics of the resource environment using an agent-based modeling approach. In previous work we demonstrated that natural selection can favor a relatively low capacity for assessing and predicting the quality of the resource environment, especially when the distribution of resources is highly clustered. That work also suggested that the more knowledge foraging populations had about their environment, the less likely they were to abandon the landscape they know and disperse into novel territory. The present study gives agents new individual and social strategies for learning about their environment. For both individual and social learning, natural selection favors decreased levels of environmental knowledge, particularly in low-heterogeneity environments. Social acquisition of detailed environmental knowledge results in crowding of agents, which reduces available reproductive space and relative fitness. Agents with less environmental knowledge move away from resource clusters and into areas with more space available for reproduction. These results suggest that, rather than being a requirement for successful dispersal, environmental knowledge strengthens the ties to particular locations and significantly reduces the dispersal potential as a result. The evolved level of environmental knowledge in a population depends on the characteristics of the resource environment and affects the dispersal capacity of the population.

  13. Conformal Tachyons

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...

  14. Juvenile dispersal in Calomys venustus (Muridae: Sigmodontinae)

    Science.gov (United States)

    Priotto, José; Steinmann, Andrea; Provensal, Cecilia; Polop, Jaime

    2004-05-01

    Both spacing behaviour and dispersal movement are viewed as hierarchical processes in which the effects may be expressed at spatial scale. This research was carried out to examine the hypothesis that the presence of parents promotes the dispersal of juveniles from their natal nest and their father or mother home-range, in Calomys venustus.The study was carried out in four 0.25 ha fences (two controls and two experimentals), in a natural pasture. This study had two periods: Father Removal (FR) (August and December 1997; year one) and Mother Removal (MR) (August 1998 and January 1999; year two). For the FR treatment fathers were removed after juveniles were born, but in the MR treatment mothers were removed after the juveniles were weaned. The effect of parents on the dispersal distance of juveniles was analysed with respect to their natal nest and their mother and father home-range. Dispersal distance from the nest of C. venustus was independent of either male or female parent. Juveniles were more dispersing in relation to the centre of activity of their mothers than to that of their fathers, and females were more dispersing than males. Female juveniles overlap their home-range with their parents less than male juveniles do. The differences observed between female and male juveniles would be related to their different sexual maturation times, as well as to the female territoriality.

  15. On the relative importance of vegetation terms in computational fluid dynamics on flow and Dispersion in the urban environment

    NARCIS (Netherlands)

    Gromke, C.B.; Blocken, B.J.E.

    2013-01-01

    The relative importance of vegetation terms was analysed for flow and dispersion in an urban street canyon with avenue-trees. To this end, simulations with three k-e turbulence models and different approaches to model vegetation were performed. The different approaches resulted in rather slight

  16. Effectiveness of dispersants on thick oil slicks

    International Nuclear Information System (INIS)

    Ross, S.; Belore, R.

    1993-01-01

    Experiments were conducted to determine the relationship between dispersant effectiveness and oil slick thickness, and thereby determine the optimum time for applying dispersant onto spilled oil at sea. Tests were completed at a lab-scale level by varying the three parameters of oil type, dispersant application, and oil thickness. The tests were intended to be comparative only. The primary oils used were Alberta sweet mix blend and Hibernia B-27 crude. The dispersant, Corexit 9527, was applied either premixed with the oil, dropwise in one application, or dropwise in multiple applications to simulate a multi-hit aircraft operation. The apparatus used in the experiment was an oscillating hoop tank, with oil-containing rings used to obtain and maintain uniform slick thickness. The results indicate that the effectiveness potential of a chemical dispersant does not decrease as slick thickness increases. In fact, results of the tests involving Hibernia oil suggest that oils that tend to herd easily would be treated more effectively if dispersant were applied when the oil was relatively thick (1 mm or greater) to avoid herding problems. The oil slicks premixed with dispersant did not disperse well in the thick oil tests, not because of dispersant-oil interaction problems but because of reduced mixing energy. 6 refs., 4 figs., 1 tab

  17. Relation between Radio Polarization and Spectral Index of Blazars ...

    Indian Academy of Sciences (India)

    Introduction. Blazars are a very special class of extragalactic objects showing some special proper- ties, including rapid variability, high and variability polarization, high luminosity and superluminal motion, etc. Their optical variability timescales can cover a range of hours to years from radio to γ-rays (Fan et al. 2004; Ulrich ...

  18. Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater

    Science.gov (United States)

    Brakstad, Odd G; Throne-Holst, Mimmi; Netzer, Roman; Stoeckel, Donald M; Atlas, Ronald M

    2015-01-01

    The Deepwater Horizon (DWH) accident in 2010 created a deepwater plume of small oil droplets from a deepwater well in the Mississippi Canyon lease block 252 (‘Macondo oil’). A novel laboratory system was used in the current study to investigate biodegradation of Macondo oil dispersions (10 μm or 30 μm median droplet sizes) at low oil concentrations (2 mg l−1) in coastal Norwegian seawater at a temperature of 4–5°C. Whole metagenome analyses showed that oil biodegradation was associated with the successive increased abundances of Gammaproteobacteria, while Alphaproteobacteria (Pelagibacter) became dominant at the end of the experiment. Colwellia and Oceanospirillales were related to n-alkane biodegradation, while particularly Cycloclasticus and Marinobacter were associated with degradation of aromatic hydrocarbons (HCs). The larger oil droplet dispersions resulted in delayed sequential changes of Oceanospirillales and Cycloclasticus, related with slower degradation of alkanes and aromatic HCs. The bacterial successions associated with oil biodegradation showed both similarities and differences when compared with the results from DWH field samples and laboratory studies performed with deepwater from the Gulf of Mexico. PMID:26485443

  19. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    Science.gov (United States)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  20. The shifting roles of dispersal and vicariance in biogeography.

    OpenAIRE

    Zink, R M; Blackwell-Rago, R C; Ronquist, F

    2000-01-01

    Dispersal and vicariance are often contrasted as competing processes primarily responsible for spatial and temporal patterns of biotic diversity. Recent methods of biogeographical reconstruction recognize the potential of both processes, and the emerging question is about discovering their relative frequencies. Relatively few empirical studies, especially those employing molecular phylogenies that allow a temporal perspective, have attempted to estimate the relative roles of dispersal and vic...

  1. Branch migration and the international dispersal of families.

    Science.gov (United States)

    Parr, N; Lucas, D; Mok, M

    2000-01-01

    This paper discusses the dispersal of facilities where family members migrate to different destination countries. Terminology for internationally dispersed families is proposed, and the term branch migration is suggested for the migration of related people from the same source country to different destination countries. Data from two 1993 surveys of senior secondary students show that 22% of Sydney students and 20% of Hong Kong students have relatives in two or more other countries. The data suggest that many Asian migrant families have branched between the US, Canada, Australia and other migrant-receiving nations. The causes and implications of the international dispersal of families are discussed.

  2. Melanocortin systems on pigment dispersion in fish chromatophores.

    Science.gov (United States)

    Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi

    2012-01-01

    α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.

  3. A laboratory dispersant effectiveness test which reflects dispersant efficiency in the field

    International Nuclear Information System (INIS)

    Lunel, T.; Wood, P.

    1996-01-01

    Oil dispersion efficiencies of surfactants, from laboratory dispersion tests and field data were compared and calibrated. Data from an oil spill, where dispersants were used as a major part of the response, was analysed. The data was accumulated through the monitoring of the dispersant operation of the Sea Empress spill incident, in which Forties Blend oil was spilled at sea. This detailed data set was used to calibrate existing laboratory dispersant tests, and to devise a new International Dispersant Effectiveness Test. The objective was to create a comprehensive guide to decision making on whether and when to start a dispersant spraying operation. The dispersion efficiencies obtained from the laboratory dispersant tests were compared with field data. Flume tests produced the highest percentage of dispersed oil for all the dispersal tests. However, it was emphasised that the total percentage of oil dispersed should not be the only measure of dispersant effectiveness, since it does not distinguish between the contribution of natural and chemically enhanced dispersion. 9 refs., 1 tab., 9 figs

  4. Evolution of predator dispersal in relation to spatio-temporal prey dynamics: how not to get stuck in the wrong place!

    Directory of Open Access Journals (Sweden)

    Justin M J Travis

    Full Text Available The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.

  5. Measurement of the {pi}{sup +} p and {pi}{sup -} p total cross-section from 700 to 1700 MeV, and applications to the dispersion relationships; Mesure des sections efficaces totales {pi}{sup +} p et {pi}{sup -} p entre 700 a 1700 MeV et applications aux relations de dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The {pi}{sup +} P and {pi}{sup -} P total cross sections have been measured between 500 and 1700 MeV to eliminate discrepancies in the experimental data. These new values have permitted a more precise calculation of the forward dispersion relation. These relations are well satisfied by the experimental data up to 18 GeV for charge exchange scattering. The dispersion relation for the spin-flip amplitude gives an efficient test for the phase-shift analysis solutions. (author) [French] Les sections efficaces totales {pi}{sup +} P et {pi}{sup -} P ont ete mesurees entre 500 et 1700 MeV pour eliminer les divergences qui existaient entre les resultats experimentaux anterieurs. Ces nouvelles valeurs ont permis de preciser le calcul des relations de dispersion vers l'avant. Dans le cas de la diffusion avec echange de charge ces relations sont en bon accord avec les resultats experimentaux entre 0 et 18 GeV. L'application des relations de dispersion vers l'avant a l'amplitude de spin-flip fournit une methode tres sensible pour comparer differentes series de dephasages en fonction de l'energie. (auteur)

  6. Dispersed-fringe-accumulation-based left-subtract-right method for fine co-phasing of a dispersed fringe sensor.

    Science.gov (United States)

    Li, Yang; Wang, Shengqian; Rao, Changhui

    2017-05-20

    In this paper, a dispersed-fringe-accumulation (DFA)-based left-subtract-right (LSR) piston estimation method (DFA-LSR), in which the dispersed fringe image is accumulated in the dispersed direction, and then the LSR method is used to estimate the piston error, is proposed for dispersed fringe sensors (DFS) in the fine co-phasing stage. The DFS is usually used to detect the piston errors (optical path difference) between different segmented mirrors or synthetic aperture telescopes. The DFA-LSR makes up for the shortcomings of the main peak position (MPP) method, which suffers from the constant offset in the pixel counts. The analysis and experiment results show that the proposed method can keep relatively better performance even at the condition of poor signal-to-noise ratio, compared with the MPP method in fine co-phasing stage.

  7. Quantifying the impact of relativity and of dispersion interactions on the activation of molecular oxygen promoted by noble metal nanoparticles

    KAUST Repository

    Kanoun, Mohammed; Cavallo, Luigi

    2014-01-01

    an energy barrier close to 20 kcal/mol on Ag38, which decreases to slightly more than 10 kcal/mol on Au38. This behavior is analyzed to quantify the impact of relativity and of dispersion interactions through a comparison of nonrelativistic, scalar

  8. Polypyrrole: FeOx·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions

    KAUST Repository

    Zong, Baoyu

    2014-01-01

    Organic hybrid solar cells with a large open-circuit voltage, up to above that of 1.5 V standard battery voltage, were demonstrated using blends of polypyrrole: Fe2O3·ZnO nanoparticles as active-layers. The cell active-layers were readily coated in open air from relatively stable liquid dark-color polypyrrole-based dispersions, which were synthesized using appropriate surfactants during the in situ polymerization of pyrrole with FeCl3 or both H2O2 and FeCl3 as the oxidizers. The performance of the cells depends largely on the synthesized blend phase, which is determined by the surfactants, oxidizers, as well as the reactant ratio. Only the solar cells fabricated from the stable dispersions can produce both a high open-circuit voltage (>1.0 V) and short-circuit current (up to 7.5 mA cm-2) due to the relatively uniform porous network nanomorphology and higher shunt to series resistance ratio of the active-layers. The cells also display a relatively high power-conversion efficiency of up to ∼3.8%. This journal is

  9. Melanocortin systems on pigment dispersion in fish chromatophores

    Directory of Open Access Journals (Sweden)

    Yuki eKobayashi

    2012-02-01

    Full Text Available Alpha-Melanocyte-stimulating hormone (alpha-MSH is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that alpha-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of alpha-MSH activity was related to the co-expression of different alpha-MSH receptor subtypes—termed melanocortin receptors (MCR—a member of G-protein-coupled receptors (GPCR—based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of alpha-MSH-related peptides, molecular forms of alpha-MSH-related peptides, and Mcr subtypes expressed in fish chromatophores.

  10. The QT dispersion and QTc dispersion in patients presenting with acute neurological events and its impact on early prognosis

    Directory of Open Access Journals (Sweden)

    Kailash Kumar Rahar

    2016-01-01

    Full Text Available Aims: To find out and investigate whether the QT dispersion and QTc dispersion is related to type and prognosis of the acute stroke in patients presenting within 24 h of the onset of stroke. Settings and Design: This was a observational study conducted at Mahatma Gandhi Hospital, Dr. SN. Medical College, Jodhpur, during January 2014 to January 2015. Subjects and Methods: The patients presented within 24 h of onset of acute stroke (hemorrhagic, infarction, or transient ischemic event were included in the study. The stroke was confirmed by computed tomography scan and magnetic resonance imaging. Patients with (i altered sensorium because of metabolic, infective, seizures, trauma, or tumor; (ii prior history of cardiovascular disease, electrocardiographic abnormalities' because of dyselectrolytemia; and (iii and patients who were on drugs (antiarrhythmic drugs, antipsychotic drugs, erythromycin, theophylline, etc., which known to cause electrocardiogram changes, were excluded from the study. National Institute of Health Stroke Score (NIHSS was calculated at the time of admission and Modified Rankin Scale (MRS at the time of discharge. Fifty age- and sex-matched healthy controls included. Statistical Analysis Used: Student's t-test, ANOVA, and area under curve for sensitivity and specificity for the test. Results: We included 52 patients (male/female: 27/25 and 50 controls (26/24. The mean age of patients was 63.17 ± 08.90 years. Of total patients, infarct was found in 32 (61.53%, hemorrhage in 18 (34.61%, transient ischemic attack (TIA in 1 (1.9%, and subarachnoid hemorrhage in 1 (1.9% patient. The QT dispersion and QTc dispersion were significantly higher in cases as compare to controls. (87.30 ± 24.42 vs. 49.60 ± 08.79 ms; P < 0.001 and (97.53 ± 27.36 vs. 56.28 ± 09.86 ms; P < 0.001. Among various types of stroke, the mean QT dispersion and QTc dispersion were maximum and significantly higher in hemorrhagic stroke as compared to infarct and

  11. Phonon dispersion relations in monoatomic superlattices: a transfer matrix theory

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de; Fulco, P.

    1986-01-01

    We present a lattice dynamical theory for monoatomic superlattices consisting of alternating layers of two different materials. Using a transfer matrix method we obtain explicit the equation for dispersion of the phonon's bulk modes, including the well known result in the long wave-length limit which can be obtained by elasticity theory. An illustation is shown and its features discussed. (Author) [pt

  12. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  13. Interspecific nematode signals regulate dispersal behavior.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs.Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers.Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  14. Polypyrrole: FeOx·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions

    KAUST Repository

    Zong, Baoyu; Ho, Pin; Zhang, Zhiguo; Ng, Gingmeng; Yao, Kui; Guo, Zaibing

    2014-01-01

    in open air from relatively stable liquid dark-color polypyrrole-based dispersions, which were synthesized using appropriate surfactants during the in situ polymerization of pyrrole with FeCl3 or both H2O2 and FeCl3 as the oxidizers. The performance

  15. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  16. Dispersal behavior of yellowjacket (Vespula germanica) queens.

    Science.gov (United States)

    Masciocchi, Maité; Martinez, Andrés S; Pereira, Ana J; Villacide, José M; Corley, Juan C

    2018-02-01

    Understanding the factors that affect animal dispersal behavior is important from both fundamental and applied perspectives. Dispersal can have clear evolutionary and ecological consequences, but for nonnative insect pests, dispersal capacity can also help to explain invasion success. Vespula germanica is a social wasp that, in the last century, has successfully invaded several regions of the world, showing one of the highest spread rates reported for a nonnative insect. In contrast with nonsocial wasps, in social species, queens are responsible for population redistribution and spread, as workers are sterile. For V. germanica, it has been observed that queen flight is limited to 2 distinct periods: early autumn, when new queens leave the nest to mate and find sheltered places in which to hibernate, and spring when new colonies are founded. Our aim was to study the flight behavior of V. germanica queens by focusing on the different periods in which dispersal occurs, characterizing as well the potential contribution of queen flight (i.e., distance) to the observed geographical spread. Our results suggest that the distances flown by nonoverwintered queens is greater than that flown by overwintered individuals, suggesting that the main queen dispersal events would occur before queens enter hibernation. This could relate to a behavioral trait of the queens to avoid the inbreeding with related drones. Additionally, given the short distances flown and remarkable geographical spread observed, we provide evidence showing that queen dispersal by flight is likely to contribute proportionately less to population spread than human-aided factors. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Covariant kinetic dispersion theory of linear transverse waves parallel propagating in magnetized plasmas with thermal anisotropy

    International Nuclear Information System (INIS)

    Lazar, M.; Schlickeiser, R.

    2006-01-01

    The properties of transverse waves parallel propagating in magnetized plasmas with arbitrary composition and thermally anisotropic, are investigated on the basis of relativistic Vlasov-Maxwell equations. The transverse dispersion relations for plasmas with arbitrary distribution functions are derived. These dispersion relations describe the linear response of the system to the initial perturbations and thus define all existing linear (transverse) plasma modes in the system. By analytic continuation the dispersion relations in the whole complex frequency plane are constructed. Further analysis is restricted to the important case of anisotropic bi-Maxwellian equilibrium plasma distribution functions. Explicit forms of the relativistically correct transverse dispersion relations are derived that hold for any values of the plasma temperatures and the temperature anisotropy. In the limit of nonrelativistic plasma temperatures the dispersion relations are expressed in terms of plasma dispersion function, however, the dependence on frequency and wave numbers is markedly different from the standard noncovariant nonrelativistic analysis. Only in the strictly unphysical formal limit of an infinitely large speed of light, c→∞, does the nonrelativistic dispersion relations reduce to the standard noncovariant dispersion relations

  18. Better Resolved Low Frequency Dispersions by the Apt Use of Kramers-Kronig Relations, Differential Operators, and All-In-1 Modeling

    NARCIS (Netherlands)

    van Turnhout, J.

    2016-01-01

    The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in

  19. The Riemann Surface of Static Limit Dispersion Relation and Projective Spaces

    CERN Document Server

    Majewski, M; Meshcheryakov, D V; Tran Quang Tuyet

    2004-01-01

    The rigorous Bogoliubov's prove of the dispersion relations (DR) for pion-nucleon scattering is a good foundation for the static models. DR contain the small parameter (ratio of the pion-nucleon masses). The static models arise when this parameter goes to zero. The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite order N\\times N and is a matrix of meromorphic functions of the light particle energy \\omega in the complex plane with cuts (-\\inf,-1], [+1, +\\inf). In the elastic case, it reduces to N functions S_{i}(\\omega) connected by N\\times N the crossing-symmetry matrix A. The unitarity and the crossing symmetry are the base for the system of nonlinear boundary value problems. It defines the analytical continuation of S_{i}(\\omega) from the physical sheet to the unphysical ones and can be treated as a system of nonlinear difference equations. The problem is solvable for any 2\\times 2 crossing-symmetry matrix A that permits one to calculate the Regge trajectories for...

  20. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  1. Relations de Dispersion et Diffusion des Glueballs et des Mesons dans la Theorie de Jauge U(1)(2+1) Compacte

    Science.gov (United States)

    Ahmed, Chaara El Mouez

    Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.

  2. Interface, a dispersed architecture

    NARCIS (Netherlands)

    Vissers, C.A.

    1976-01-01

    Past and current specification techniques use timing diagrams and written text to describe the phenomenology of an interface. This paper treats an interface as the architecture of a number of processes, which are dispersed over the related system parts and the message path. This approach yields a

  3. Use of the crumb test as a preliminary indicator of dispersive soils

    CSIR Research Space (South Africa)

    Maharaj, A

    2011-07-01

    Full Text Available to overcome them. Keywords: Dispersive soils, dispersion, failure, identification, crumb test, shortcomings Introduction Dispersive soils are those soils, which when immersed in relatively pure and still water will deflocculate causing the clay particles... developed by Emerson for the classification of soils. Immerse dry aggregates in water Slaking No slaking Complete Dispersion (Class 1) Some Dispersion (Class 2) No Dispersion Swelling (Class 7) No Swelling (Class 8) Remould at water...

  4. Pulse Propagation in Presence of Polarization Mode Dispersion and Chromatic Dispersion in Single Mode Fibers

    Directory of Open Access Journals (Sweden)

    Hassan Abid Yasser

    2013-01-01

    Full Text Available The presence of (first and second orders polarization mode dispersion (PMD, chromatic dispersion, and initial chirp makes effects on the propagated pulses in single mode fiber. Nowadays, there is not an accurate mathematical formula that describes the pulse shape in the presence of these effects. In this work, a theoretical study is introduced to derive a generalized formula. This formula is exactly approached to mathematical relations used in their special cases. The presence of second-order PMD (SOPMD will not affect the orthogonality property between the principal states of polarization. The simulation results explain that the interaction of the SOPMD components with the conventional effects (chromatic dispersion and chirp will cause a broadening/narrowing and shape distortion. This changes depend on the specified values of SOPMD components as well as the present conventional parameters.

  5. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  6. Global patterns in post-dispersal seed removal by invertebrates and vertebrates.

    Science.gov (United States)

    Peco, Begoña; Laffan, Shawn W; Moles, Angela T

    2014-01-01

    It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant

  7. The dispersion surface of X-rays very near the absorption edge

    International Nuclear Information System (INIS)

    Fukamachi, T.; Negishi, R.; Kawamura, T.

    1995-01-01

    To discuss the X-ray dynamical diffraction when the imaginary part of the X-ray polarizability is larger than the real part, the dispersion surface is studied as a function of the ratio between the real and the imaginary parts of the polarizability. The dispersion surface in the Laue case when the real part is zero has a similar form to that in the Bragg case when the imaginary part is zero. The relations between the dispersion surface and the diffracted intensity are studied in some special cases. The abnormal absorption and the abnormal transmission effect are related to the features of the dispersion surface. (orig.)

  8. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  9. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  10. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  11. In memory of Paco Yndurain: A precise determination of ππ scattering from experiment and dispersion relations

    International Nuclear Information System (INIS)

    Pelaez, J.R.; Garcia Martin, R.; Kaminski, R.; Yndurain, F.J.

    2009-01-01

    This talk is dedicated to the memory of Paco Yndurain, the original speaker in the conference. After a short account of his scientific career, we briefly review our ongoing collaboration to determine precisely the ππ scattering amplitude including the most recent data by means of Forward Dispersion Relations and Roy Equations. A remarkable improvement in precision over the intermediate energy region is obtained by using once-subtracted Roy Equations in addition to the standard twice-subtracted ones

  12. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems.

    Science.gov (United States)

    Zhao, Xiao; Liu, Wen; Fu, Jie; Cai, Zhengqing; O'Reilly, S E; Zhao, Dongye

    2016-08-15

    This work examined effects of model oil dispersants on dispersion, sorption and photodegradation of petroleum hydrocarbons in simulated marine systems. Three dispersants (Corexit 9500A, Corexit 9527A and SPC 1000) were used to prepare dispersed water accommodated oil (DWAO). While higher doses of dispersants dispersed more n-alkanes and PAHs, Corexit 9500A preferentially dispersed C11-C20 n-alkanes, whereas Corexit 9527A was more favorable for smaller alkanes (C10-C16), and SPC 1000 for C12-C28 n-alkanes. Sorption of petroleum hydrocarbons on sediment was proportional to TPH types/fractions in the DWAOs. Addition of 18mg/L of Corexit 9500A increased sediment uptake of 2-3 ring PAHs, while higher dispersant doses reduced the uptake, due to micelle-enhanced solubilization effects. Both dispersed n-alkanes and PAHs were susceptible to photodegradation under simulated sunlight. For PAHs, both photodegradation and photo-facilitated alkylation were concurrently taking place. The information can facilitate sounder assessment of fate and distribution of dispersed oil hydrocarbons in marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves

    Science.gov (United States)

    Vanel, Florence O.; Baysal, Oktay

    1995-01-01

    Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.

  14. Adsorption of dispersing polyelectrolytes: stabilization of drilling fluids; Adsorption de polyelectrolytes dispersants: stabilisation des fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Balastre, M.

    1999-11-10

    Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)

  15. Estimates of the pion-nucleon sigma term using dispersion relations and taking into account the relation between chiral and scale invariance breaking

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1983-01-01

    We study the possible reasons for the disagreement between the estimates of the pion-nucleon sigma term obtained by the method of dispersion relations with extrapolation to the Cheng-Dashen point and by other methods which do not involve this extrapolation. One reason for the disagreement may be the nonanalyticity of the πN amplitude in the variable t for ν = 0. We propose a method for estimating the sigma term using the threshold data for the πN amplitude, in which the effect of this nonanalyticity is minimized. We discuss the relation between scale invariance violation and chiral symmetry breaking and give the corresponding estimate of the sigma term. The two estimates are similar (42 and 34 MeV) and are in agreement when the uncertainties of the two methods are taken into consideration

  16. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  17. DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lin; Masci, F. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Ofek, E.; Gal-Yam, A.; Vreeswijk, P. M.; Leloudas, G.; Cia, A. de; Yaron, O. [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Cao, Y.; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, P. E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rebbapragada, Umaa D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Woźniak, P. R., E-mail: lyan@ipac.caltech.edu [Space and Remote Sensing, ISR-2, MS-B244 Los Alamos National Laboratory Los Alamos, NM 87545 (United States)

    2015-12-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z = 0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises in 83–148 days to reach a peak bolometric luminosity of ∼1.3 × 10{sup 44} erg s{sup −1}, then decays slowly at 0.015 mag day{sup −1}. The measured ejecta velocity is ∼ 13,000 km s{sup −1}. The inferred explosion characteristics, such as the ejecta mass (70–220 M{sub ⊙}), and the total radiative and kinetic energy (E{sub rad} ∼ 10{sup 51} erg, E{sub kin} ∼ 2 × 10{sup 53} erg), are typical of slow-evolving H-poor SLSN events. However, the late-time spectrum taken at +251 days (rest, post-peak) reveals a Balmer Hα emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ∼4500 km s{sup −1} and a ∼300 km s{sup −1} blueward shift relative to the narrow component. We interpret this broad Hα emission with a luminosity of ∼2 × 10{sup 41} erg s{sup −1} as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of ∼4 × 10{sup 16} cm from the explosion site. This interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock-ionized H-shell implies that its Thomson scattering optical depth is likely ≤1, thus setting upper limits on the shell mass ≤30 M{sub ⊙}. Of the existing models, a Pulsational Pair Instability supernova model can naturally explain the observed 30 M{sub ⊙} H-shell, ejected from a progenitor star with an initial mass of (95–150) M{sub ⊙} about 40 years ago. We estimate that at least ∼15% of all SLSNe-I may have late-time Balmer emission lines.

  18. The Green's function approach to the neutron-inelastic-scattering determination of magnon dispersion relations for isotropic disordered magnets

    International Nuclear Information System (INIS)

    Czachor, A.; Al-Wahsh, H.

    1999-01-01

    Complete text of publication follows. To determine the neutron inelastic coherent scattering (MS) cross section for disordered magnets a system of equations of motion for the Green functions (GF) related to the localized-spin correlation-functions, has been exploited. The higher-order Green functions are decoupled using a symmetric 'equal access' (EA) form of the RPA decoupling scheme. The quasi-crystal approximation (QCA) was applied to construct the space-time Fourier transformed GF Q (ω)> related to neutron scattering. On assuming isotropy of the magnetic structure and a short range coupling between the spins (on the sphere approximation, OSA) we have found an explicit analytic form of this function. Poles of the Q (ω)> determine the dispersion relation ω = ω Q for elementary excitations, such as they are seen in the MS experiment - the positions of the MS profile maxima in the ω-Q space. Single formula for the dispersion relations derived here covers a variety of isotropic spin structures: in particular disordered 'longitudinal' ferrornagnets (ω ∼Q z , Q→ 0), disordered 'transverse' spin structures (ω ∼Q, Q→0), and some intermediate cases. For the system of spins coupled identically - the magnetization and the magnetic susceptibility calculated within the present EA-RPA approach do agree with the results of exact calculations. It provides an interesting insight into the nature of the RPA approach do agree with the results of exact calculations. It provides an interesting insight into the nature of the RPA - treatment of the localized spin dynamics. (author)

  19. Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals

    Directory of Open Access Journals (Sweden)

    Glenn D. Sutherland

    2000-07-01

    Full Text Available Natal dispersal is a process that is critical in the spatial dynamics of populations, including population spread, recolonization, and gene flow. It is a central focus of conservation issues for many vertebrate species. Using data for 77 bird and 68 mammal species, we tested whether median and maximum natal dispersal distances were correlated with body mass, diet type, social system, taxonomic family, and migratory status. Body mass and diet type were found to predict both median and maximum natal dispersal distances in mammals: large species dispersed farther than small ones, and carnivorous species dispersed farther than herbivores and omnivores. Similar relationships occurred for carnivorous bird species, but not for herbivorous or omnivorous ones. Natal dispersal distances in birds or mammals were not significantly related to broad categories of social systems. Only in birds were factors such as taxonomic relatedness and migratory status correlated with natal dispersal, and then only for maximum distances. Summary properties of dispersal processes appeared to be derived from interactions among behavioral and morphological characteristics of species and from their linkages to the dynamics of resource availability in landscapes. In all the species we examined, most dispersers moved relatively short distances, and long-distance dispersal was uncommon. On the basis of these findings, we fit an empirical model based on the negative exponential distribution for calculating minimum probabilities that animals disperse particular distances from their natal areas. This model, coupled with knowledge of a species' body mass and diet type, can be used to conservatively predict dispersal distances for different species and examine possible consequences of large-scale habitat alterations on connectedness between populations. Taken together, our results can provide managers with the means to identify species vulnerable to landscape-level habitat changes

  20. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  1. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    Science.gov (United States)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  2. Effects of different dispersal patterns on the presence-absence of multiple species

    Science.gov (United States)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2018-03-01

    Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight

  3. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    Science.gov (United States)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  4. Dispersion Differences and Consistency of Artificial Periodic Structures.

    Science.gov (United States)

    Cheng, Zhi-Bao; Lin, Wen-Kai; Shi, Zhi-Fei

    2017-10-01

    Dispersion differences and consistency of artificial periodic structures, including phononic crystals, elastic metamaterials, as well as periodic structures composited of phononic crystals and elastic metamaterials, are investigated in this paper. By developing a K(ω) method, complex dispersion relations and group/phase velocity curves of both the single-mechanism periodic structures and the mixing-mechanism periodic structures are calculated at first, from which dispersion differences of artificial periodic structures are discussed. Then, based on a unified formulation, dispersion consistency of artificial periodic structures is investigated. Through a comprehensive comparison study, the correctness for the unified formulation is verified. Mathematical derivations of the unified formulation for different artificial periodic structures are presented. Furthermore, physical meanings of the unified formulation are discussed in the energy-state space.

  5. Consistency relation in power law G-inflation

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Shankaranarayanan, S.

    2014-01-01

    In the standard inflationary scenario based on a minimally coupled scalar field, canonical or non-canonical, the subluminal propagation of speed of scalar perturbations ensures the following consistency relation: r ≤ −8n T , where r is the tensor-to-scalar-ratio and n T is the spectral index for tensor perturbations. However, recently, it has been demonstrated that this consistency relation could be violated in Galilean inflation models even in the absence of superluminal propagation of scalar perturbations. It is therefore interesting to investigate whether the subluminal propagation of scalar field perturbations impose any bound on the ratio r/|n T | in G-inflation models. In this paper, we derive the consistency relation for a class of G-inflation models that lead to power law inflation. Within these class of models, it turns out that one can have r > −8n T or r ≤ −8n T depending on the model parameters. However, the subluminal propagation of speed of scalar field perturbations, as required by causality, restricts r ≤ −(32/3) n T

  6. Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay

    Directory of Open Access Journals (Sweden)

    Ahmadishoar Javad

    2017-01-01

    Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.

  7. Cross-Sectional Dispersion of Firm Valuations and Expected Stock Returns

    OpenAIRE

    Jiang, Danling

    2008-01-01

    This paper develops two competing hypotheses for the relation between the cross-sectional standard deviation of logarithmic firm fundamental-to-price ratios (``dispersion'') and expected aggregate returns. In models with fully rational beliefs, greater dispersion indicates greater risk and higher expected aggregate returns. In models with investor overconfidence, greater dispersion indicates greater mispricing and lower expected aggregate returns. Consistent with the behavioral models, the re...

  8. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    Science.gov (United States)

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P apple juice and is a potentially useful fortificant for liquid food products.

  9. Spatial dispersion in atom-surface quantum friction

    International Nuclear Information System (INIS)

    Reiche, D.; Dalvit, D. A. R.; Busch, K.; Intravaia, F.

    2017-01-01

    We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change not only the magnitude but also the distance scaling of quantum friction.

  10. Training for Internationalization through Domestic Geographical Dispersion

    DEFF Research Database (Denmark)

    Santangelo, Grazia D.; Stucchi, Tamara

    Traditionally created to deal with the unfriendly domestic environment, business groups (BGs) are increasingly internationalizing. However, how BGs can reconcile their strictly domestic orientation with an international dimension still remains an open question. Drawing on arguments from...... organizational learning, we seek to solve this puzzle in relation to the internationalization of Indian BGs. In particular, we argue that in heterogeneous domestic emerging markets BG’s geographical dispersion across sub-national states provides training for internationalization. To internationalize successfully......, BGs need to develop the capability of managing geographically dispersed units in institutional heterogeneous contexts. Domestic geographical dispersion would indeed help the BG dealing with different regulations, customers and infrastructures. However, there is less scope for such training as BGs...

  11. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  12. Heavy-ion optical potential for sub-barrier fusion deduced from a dispersion relation

    International Nuclear Information System (INIS)

    Kim, B.T.; Kim, H.C.; Park, K.E.

    1988-01-01

    The heavy-ion energy-dependent optical potentials for the 16 O+ 208 Pb system are deduced from a dispersion relation. These potentials are used to analyze the elastic scattering, fusion, and spin distributions of compound nuclei for the system in a unified way based on the direct reaction theory. It turns out that the energy dependence of the optical potential is essential in explaining the data at near- and sub-barrier energies. The real part of the energy-dependent optical potential deduced was also used in calculating the elastic and fusion cross sections by the conventional barrier penetration model using an incoming wave boundary condition. The predictions of the elastic scattering, fusion cross sections, and the spin distributions of compound nuclei are not satisfactory compared with those from the direct reaction approach. It seems to originate from the fact that this model neglects absorption around the Coulomb barrier region

  13. Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data

    Science.gov (United States)

    Yin, Kedong; Zhang, Ya; Li, Xuemei

    2017-01-01

    Owing to the difference of the sequences’ orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China’s coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what’s more, it can not only handle the non-uniqueness of the grey relational model’s results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm–tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction. PMID:29104262

  14. Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data.

    Science.gov (United States)

    Yin, Kedong; Zhang, Ya; Li, Xuemei

    2017-11-01

    Owing to the difference of the sequences' orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China's coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what's more, it can not only handle the non-uniqueness of the grey relational model's results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm-tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction.

  15. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  16. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  17. A single hole tracer test to determine longitudinal dispersion

    International Nuclear Information System (INIS)

    Noy, D.J.; Holmes, D.C.

    1986-03-01

    The paper concerns a single hole tracer test to determine longitudinal dispersion, which is an important parameter in assessing the suitability of a site for radioactive waste disposal. The theory, equipment and procedure for measuring longitudinal dispersion in a single borehole is described. Results are presented for field trials conducted in an aquifer, where the technique produced good results. The measured value of longitudinal dispersion, from a single hole test, relates only to a limited volume of rock immediately adjacent to the borehole. (U.K.)

  18. Dispersion Engineering of Bose-Einstein Condensates

    Science.gov (United States)

    Khamehchi, Mohammad Amin

    The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel

  19. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  20. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  1. On Dispersion in Visual Photoreceptors

    NARCIS (Netherlands)

    Stavenga, D.G.; Barneveld, H.H. van

    1975-01-01

    An idealized visual pigment absorbance spectrum is used together with a Kramers-Kronig dispersion relation to calculate the contribution of the visual pigment to the refractive index of the fly photoreceptor. It appears that an absorption coefficient of 0.010 µm-1 results in a refractive index

  2. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  3. Linear Dispersion Relation and Depth Sensitivity to Swell Parameters: Application to Synthetic Aperture Radar Imaging and Bathymetry

    Directory of Open Access Journals (Sweden)

    Valentina Boccia

    2015-01-01

    Full Text Available Long gravity waves or swell dominating the sea surface is known to be very useful to estimate seabed morphology in coastal areas. The paper reviews the main phenomena related to swell waves propagation that allow seabed morphology to be sensed. The linear dispersion is analysed and an error budget model is developed to assess the achievable depth accuracy when Synthetic Aperture Radar (SAR data are used. The relevant issues and potentials of swell-based bathymetry by SAR are identified and discussed. This technique is of particular interest for characteristic regions of the Mediterranean Sea, such as in gulfs and relatively close areas, where traditional SAR-based bathymetric techniques, relying on strong tidal currents, are of limited practical utility.

  4. Dispersant field testing : a review of procedures and considerations

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2004-01-01

    The effectiveness of a dispersant is defined by the amount of oil that the dispersant puts into the water column compared to the amount of oil that was initially spilled. Effectiveness is generally determined visually in plumes of dispersed oil that are visible from ships and aircraft. This paper describes 25 specific issues and technical concerns regarding field testing of dispersant effectiveness. Recent field tests were reviewed and literature that relates to testing procedures was sited. The 25 factors that are important for the appropriate outcome of dispersant field experiments include: mass balance; proper controls; analytical method; differential plume movement; time lag and length of time followed; mathematics of calculation and integration; lower and upper limits of analytical methods; use of remote sensing; thickness measurement; behaviour of oil with surfactant content; surfactant stripping; tracking surface oil and dispersed oil; recovering surface oil; visibility of oil from the surface; background levels of hydrocarbons; fluorescence of dispersant; herding; emulsion breaking; application success; heterogeneity of slick and plume; deposition measurements; true analytical standards; effect of wind on dispersant and slick; dispersant run-off; and weathering of the oil. It was concluded that the most important factors are the ability to determine mass balance, use proper controls, analytical methods and to avoid procedures that give incorrect results. 34 refs., 4 tabs., 1 fig

  5. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  6. Influence of local parameters on the dispersion of traffic-related pollutants within street canyons

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Martin Hyde Collaboration

    2011-11-01

    Ventilation within urban cities and street canyons and the associated air quality is a problem of increasing interest in the last decades. It is important for to minimise exposure of the population to traffic-related pollutants at street level. The residence time of pollutants within the street canyons depends on the meteorological conditions such as wind speed and direction, geometry layout and local parameters (position of traffic lane within the street). An experimental study was carried out to investigate the influence of traffic lane position on the dispersion of traffic-related pollutants within different street canyons geometries: symmetrical (equal building heights on both sides of the street), non-symmetrical (uniform building heights but lower on one side of the street) and heterogeneous (non-uniform building heights on both sides of the street) under constant meteorological conditions. Laboratory experiments were carried out within a water channel and simultaneous measurements of velocity field and concentration scalar levels within and above the street canyons using PIV and PLIF techniques. Traffic -related emissions were simulated using a line emission source. Two positions were examined for all street geometries: line emission source was placed in the centre of the street canyon; line emission source was placed off the centre of the street. TSI Incorporated.

  7. Refractive index dispersion measurement using carrier-envelope phasemeters

    International Nuclear Information System (INIS)

    Hansinger, Peter; Töpfer, Philipp; Adolph, Daniel; Hoff, Dominik; Rathje, Tim; Sayler, A Max; Paulus, Gerhard G; Dimitrov, Nikolay; Dreischuh, Alexander

    2017-01-01

    We introduce a novel method for direct and accurate measurement of refractive index dispersion based on carrier-envelope phase detection of few-cycle laser pulses, exploiting the difference between phase and group velocity in a dispersive medium. In a layout similar to an interferometer, two carrier-envelope phasemeters are capable of measuring the dispersion of a transparent or reflective sample, where one phasemeter serves as the reference and the other records the influence of the sample. Here we report on proof-of-principle measurements that already reach relative uncertainties of a few 10 −4 . Further development is expected to allow for unprecedented precision. (paper)

  8. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  9. Experimental Measurements of Temporal Dispersion for Underwater Laser Communications and Imaging

    Science.gov (United States)

    Cochenour, Brandon Michael

    ) at which multiple scattering and temporal dispersion are observed, while finer details of the scattering phase function shape are related to the amount of temporal dispersion that occurs. 3. Consistent with intuition, temporal dispersion is increased while increasing the receiver field-of-view when observing the light field at the beam axis. This is due to the collection of non-scattered, minimally scattered, and multiply scattered light. Observation of the light field far from the beam axis also results in increased temporal dispersion relative to on-axis observation, as only multiply scattered light is collected. However, no additional temporal dispersion is induced by widening the receiver field-of-view at these off-axis locations. This is contrary to the current conventional understanding, and illustrates the interdependence of geometry, system configuration, and environmental characteristics. 4. The experimental results are used to establish operational limits for underwater optical communication links with regard to sensitivity, dynamic range, and bandwidth. Establishing these bounds, particularly as they relate to channel bandwidth, have typically not be possible due to the previous lack of experimental evidence. 5. The intensity distribution of high frequency modulated light exhibits an effective 'angular narrowing' relative to non-modulated light. This result was theoretically predicted over 40 years ago, and experimentally verified for the first time in this work. This phenomenon is then exploited as a method to improve the resolution of underwater laser imaging systems. These results provide an improved understanding of temporal and spatial dispersion, as well as their relationship to each other. Understanding how both environmental and sensor properties effect spatial and temporal impairments are essential for optimizing the operating range and bandwidth of underwater laser communication links, or the range, resolution, and reliability of underwater laser

  10. Wave power balance in resonant dissipative media with spatial and temporal dispersion

    International Nuclear Information System (INIS)

    Tokman, M.D.; Gavrilova, M.A.; Westerhof, E. . www.rijnh.nl

    2003-01-01

    A power balance for waves in resonant dissipative media is formulated, which generalizes well-known expressions for dielectric wave energy density, wave energy flux, and dissipated power density. The identification of the different terms with wave energy density and flux remains only phenomenological. The result is better viewed as an equation for the evolution of wave intensity. In that form, its consequences are discussed in particular in relation to anomalous dispersion. A discrimination is made between boundary and initial value problems. For boundary value problems, anomalous dispersion is shown not to lead to unphysical results. In contrast, for initial value problems the solution for the evolution of wave intensity is shown to be at fault in the case of anomalous dispersion. Further illustration is provided by consideration of wave dispersion in a medium of charged harmonic oscillators and of ordinary-mode dispersion in plasma. Both are characterized by anomalous dispersion and show marked differences in the solutions of the dispersion relation solved either for complex wave vector at real frequency, k(ω) (applicable to boundary value problems), or for complex frequency at real wave vector ω(k) (applicable to initial value problems). (author)

  11. Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm

    International Nuclear Information System (INIS)

    Ding Huafeng; Lu, Jun Q; Wooden, William A; Kragel, Peter J; Hu Xinhua

    2006-01-01

    The refractive index of human skin tissues is an important parameter in characterizing the optical response of the skin. We extended a previously developed method of coherent reflectance curve measurement to determine the in vitro values of the complex refractive indices of epidermal and dermal tissues from fresh human skin samples at eight wavelengths between 325 and 1557 nm. Based on these results, dispersion relations of the real refractive index have been obtained and compared in the same spectral region

  12. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  13. Dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1989-12-01

    Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs

  14. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  15. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    Science.gov (United States)

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  16. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    Science.gov (United States)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical

  17. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    of these for nonlinear problems is impossible or cumbersome, since Floquet theory is applicable for linear systems only. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applica-tions may demand effects of nonlinearity on structural response to be accounted for....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed......The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  18. Water dispersal of vegetative bulbils of the invasive exotic Dioscorea oppositifolia L. in southern Illinois

    Science.gov (United States)

    Thomas, J.R.; Gibson, D.J.; Middleton, B.A.

    2005-01-01

    Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.

  19. Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds

    Science.gov (United States)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Liu, Yangang; Zhang, Guang Jun; Luo, Shi

    2018-01-01

    This study investigates the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.

  20. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  1. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma.

    Science.gov (United States)

    Mierlo, Camille Van; Pinto, Luis Abegão; Stalmans, Ingeborg

    2015-01-01

    Iatrogenic pigment dispersion syndrome generally originates from a repetitive, mechanical trauma to the pigmented posterior epithelium of the iris. This trauma can arise after intraocular surgery, most commonly due to an abnormal contact between the intraocular lens (IOL) and the iris. Whether surgical removal of this primary insult can lead to a successful intraocular pressure (IOP) control remains unclear. Case-series. Patients with IOP elevation and clinical signs of pigment dispersion were screened for a diagnosis of iatrogenic IOL-related pigment dispersion. Three patients in which the IOL or the IOL-bag complex caused a pigment dispersion through a repetitive iris chafing were selected. In two cases, replacement of a sulcus-based single-piece IOL (patient 1) or a sub-luxated in-the-bag IOL (patient 2) by an anterior-chamber (AC) iris-fixed IOL led to a sustained decrease in IOP. In the third case, extensive iris atrophy and poor anatomical AC parameters for IOL implantation precluded further surgical intervention. IOL-exchange appears to be a useful tool in the management of iatrogenic pigment dispersion glaucoma due to inappropriate IOL implantation. This cause-oriented approach seems to be effective in controlling IOP, but should be offered only if safety criteria are met. How to cite this article: Van Mierlo C, Abegao Pinto L, Stalmans I. Surgical Management of Iatrogenic Pigment Dispersion Glaucoma. J Curr Glaucoma Pract 2015;9(1):28-32.

  2. Theory of dispersive microlenses

    Science.gov (United States)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  3. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion.

    Science.gov (United States)

    Zhou, Lulu; Forman, Henry Jay; Ge, Yi; Lunec, Joseph

    2017-08-01

    Chemical functionalization broadens carbon nanotube (CNT) applications, conferring new functions, but at the same time potentially altering toxicity. Although considerable experimental data related to CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The threshold dose for safe medical application in relation to both pristine and functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the in vitro cytotoxicity of pristine and functionalized (OH, COOH) multi-walled carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and DNA mutations, to determine the non-toxic dose and influence of functional group in a human lung-cancer cell line exposed to 1-1000μg/ml MWCNTs for 24, 48 and 72h. The findings suggest that pristine MWCNTs induced more cell death than functionalized MWCNTs while functionalized MWCNTs are more genotoxic compared to their pristine form. The level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  5. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Directory of Open Access Journals (Sweden)

    Alf B Josefson

    Full Text Available The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive

  6. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    Science.gov (United States)

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  7. Dispersal and speciation: The cross Atlantic relationship of two parasitic cnidarians

    DEFF Research Database (Denmark)

    Dnyansagar, Rohit; Zimmermann, Bob; Moran, Yehu

    2018-01-01

    How dispersal strategies impact the distribution of species and subsequent speciation events is a fundamental question in evolutionary biology. Sedentary benthic marine organisms, such as corals or sea anemones usually rely on motile larval stages for dispersal and therefore have a relatively res...

  8. Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction

  9. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing; Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained

  10. Phonon dispersion relation of uranium nitrate above and below the Neel temperature

    International Nuclear Information System (INIS)

    Dolling, G.; Holden, T.M.; Evensson, E.C.; Buyers, W.J.L.; Lander, G.H.

    1977-01-01

    Neutron coherent inelastic scattering measurements have been made of the phonon dispersion relation of uranium nitride both above and below the Neel temperature T/sub N/ = 50 K. Within the precision of the measurements, about 1% in frequency and 10% in line width and in scattered neutron intensity, no significant changes in these phonon properties were observed as a function of temperature other than those arising from population factor changes and a small stiffening of the lattice as the temperature decreases. At 4.2 K, two acoustic and two optic branches have been determined for each of the [001], [110] and [111] directions. The optic mode measurements revealed (a) a 20% variation in frequency across the Brillouin zone and (b) an interesting disposition of the LO and TO modes, such that nu/sub LO/ > nu/sub TO/ along [001] and [110], while the reverse is true along the [111] directions. Within the experimental resolution, the LO and TO modes are degenerate near q = 0. We have been unable to obtain any satisfactory description of these results on the basis of conventional theoretical treatments (e.g. rigid-ion or shell models). Other possible interpretations of the results are discussed

  11. Phonon dispersion relation of uranium nitride above and below the Neel temperature

    International Nuclear Information System (INIS)

    Dolling, G.; Holden, T.M.; Svensson, E.C.; Buyers, W.J.L.; Lander, G.H.

    1977-01-01

    Neutron coherent inelastic scattering measurements have been made of the phonon dispersion relation of uranium nitride both above and below the Neel temperature T N = 50 K. Within the precision of the measurements, about 1% in frequency and 10% in line width and in scattered neutron intensity, no significant changes in these phonon properties were observed as a function of temperature other than those arising from population factor changes and a small stiffening of the lattice as the temperature decreases. At 4.2 K, two acoustic and two optic branches have been determined for each of the [001], [110] and [111] directions. The optic mode measurements revealed (a) a 20% variation in frequency across the Brillouin zone and (b) and interesting disposition of the LO and TO modes, such that ν LO > ν TO along [001] and [11-], while the reverse is true along the [111] directions. Within the experimental resolution, the LO and TO modes are degenerate near q = 0. We have been unable to obtain any satisfactory description of these results on the basis of conventional theoretical treatments (e.g. rigid-ion or shell models). Other possible interpretations of the results are discussed. (author)

  12. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    Energy Technology Data Exchange (ETDEWEB)

    Tuz, Vladimir R., E-mail: tvr@rian.kharkov.ua

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  13. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    International Nuclear Information System (INIS)

    Tuz, Vladimir R.

    2016-01-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  14. Longitudinal dispersion of radioactive substances in Federal waterways

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.

    2007-08-15

    In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)

  15. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  16. Causality and dispersion relations and the role of the S-matrix in the ongoing research

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Univ. , Berlin

    2011-01-01

    The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their seri- ous shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property demands the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These concepts which combine localization, vacuum polarization and thermal properties under the roof of modular theory will be explained and their use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role, but different from Heisenberg's and Mandelstam's proposals the new project is not a pure S-matrix approach. (author)

  17. Causality and dispersion relations and the role of the S-matrix in the ongoing research

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert, E-mail: schroer@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Univ. , Berlin (Germany). Inst. fur Theoretische Physik

    2011-07-01

    The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their seri- ous shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property demands the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These concepts which combine localization, vacuum polarization and thermal properties under the roof of modular theory will be explained and their use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role, but different from Heisenberg's and Mandelstam's proposals the new project is not a pure S-matrix approach. (author)

  18. Dispersive stresses in wind farms

    Science.gov (United States)

    Segalini, Antonio; Braunbehrens, Robert; Hyvarinen, Ann

    2017-11-01

    One of the most famous models of wind farms is provided by the assumption that the farm can be approximated as a horizontally-homogeneous forest canopy with vertically-varying force intensity. By means of this approximation, the flow-motion equations become drastically simpler, as many of the three-dimensional effects are gone. However, the application of the horizontal average operator to the RANS equations leads to the appearance of new transport terms (called dispersive stresses) originating from the horizontal (small-scale) variation of the mean velocity field. Since these terms are related to the individual turbine signature, they are expected to vanish outside the roughness sublayer, providing a definition for the latter. In the present work, an assessment of the dispersive stresses is performed by means of a wake-model approach and through the linearised code ORFEUS developed at KTH. Both approaches are very fast and enable the characterization of a large number of wind-farm layouts. The dispersive stress tensor and its effect on the turbulence closure models are investigated, providing guidelines for those simulations where it is impossible to resolve the farm at a turbine scale due to grid requirements (as, for instance, mesoscale simulations).

  19. Transit time dispersion in pulmonary and systemic circulation: effects of cardiac output and solute diffusivity.

    Science.gov (United States)

    Weiss, Michael; Krejcie, Tom C; Avram, Michael J

    2006-08-01

    We present an in vivo method for analyzing the distribution kinetics of physiological markers into their respective distribution volumes utilizing information provided by the relative dispersion of transit times. Arterial concentration-time curves of markers of the vascular space [indocyanine green (ICG)], extracellular fluid (inulin), and total body water (antipyrine) measured in awake dogs under control conditions and during phenylephrine or isoproterenol infusion were analyzed by a recirculatory model to estimate the relative dispersions of transit times across the systemic and pulmonary circulation. The transit time dispersion in the systemic circulation was used to calculate the whole body distribution clearance, and an interpretation is given in terms of a lumped organ model of blood-tissue exchange. As predicted by theory, this relative dispersion increased linearly with cardiac output, with a slope that was inversely related to solute diffusivity. The relative dispersion of the flow-limited indicator antipyrine exceeded that of ICG (as a measure of intravascular mixing) only slightly and was consistent with a diffusional equilibration time in the extravascular space of approximately 10 min, except during phenylephrine infusion, which led to an anomalously high relative dispersion. A change in cardiac output did not alter the heterogeneity of capillary transit times of ICG. The results support the view that the relative dispersions of transit times in the systemic and pulmonary circulation estimated from solute disposition data in vivo are useful measures of whole body distribution kinetics of indicators and endogenous substances. This is the first model that explains the effect of flow and capillary permeability on whole body distribution of solutes without assuming well-mixed compartments.

  20. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  1. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  2. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD

    1988-01-01

    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  3. The Riemann surface of static limit dispersion relation and projective spaces

    International Nuclear Information System (INIS)

    Majewski, M.; Meshcheryakov, V.A.; Meshcheryakov, D.V.; Tran Quang Tuyet

    2004-01-01

    The rigorous Bogolyubov's proof of the dispersion relations (DR) for pion-nucleon scattering is a good foundation for the static models. DR contain a small parameter (ratio of the pion-nucleon masses). The static models arise when this parameter goes to zero. The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite order NxN and is a matrix of meromorphic functions of the light particle energy ω in the complex plane with cuts (-∞, -1], [+1,+∞). In the elastic case, it reduces to N functions S i (ω) connected by the NxN crossing-symmetry matrix A. The unitarity and the crossing symmetry are the base for the system of nonlinear boundary value problems. It defines the analytical continuation of S i (ω) from the physical sheet to the unphysical ones and can be treated as a system of nonlinear difference equations. The problem is solvable for any 2x2 crossing-symmetry matrix A that permits one to calculate the Regge trajectories for the SU(2) static model. It is shown that global analyses of this system can be carried out effectively in projective spaces P N-1 and P N . The connection between the spaces P N-1 and P N is discussed. Some particular solutions of the system are found

  4. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    Science.gov (United States)

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  5. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing

    2016-12-08

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  6. Determining the near-surface current profile from measurements of the wave dispersion relation

    Science.gov (United States)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  7. Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data

    Science.gov (United States)

    Perschke, C.; Narita, Y.

    2012-12-01

    Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.

  8. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard

    2009-07-01

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  9. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  10. Metapopulation extinction risk: dispersal's duplicity.

    Science.gov (United States)

    Higgins, Kevin

    2009-09-01

    Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation's extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation's extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation's extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation's extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation's extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation's extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.

  11. Dispersive processes in models of regional radionuclide migration. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Dettinger, M.D.

    1980-05-01

    Three broad areas of concern in the development of aquifer scale transport models will be local scale diffusion and dispersion processes, regional scale dispersion processes, and numerical problems associated with the advection-dispersion equation. Local scale dispersion processes are fairly well understood and accessible to observation. These processes will generally be dominated in large scale systems by regional processes, or macro-dispersion. Macro-dispersion is primarily the result of large scale heterogeneities in aquifer properties. In addition, the effects of many modeling approximations are often included in the process. Because difficulties arise in parameterization of this large scale phenomenon, parameterization should be based on field measurements made at the same scale as the transport process of interest or else partially circumvented through the application of a probabilistic advection model. Other problems associated with numerical transport models include difficulties with conservation of mass, stability, numerical dissipation, overshoot, flexibility, and efficiency. We recommend the random-walk model formulation for Lawrence Livermore Laboratory's purposes as the most flexible, accurate and relatively efficient modeling approach that overcomes these difficulties

  12. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    Science.gov (United States)

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  13. Highly dispersive transparency in coupled metamaterials

    International Nuclear Information System (INIS)

    Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y

    2010-01-01

    We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided

  14. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  15. Dispersion stability of thermal nanofluids

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2017-10-01

    Full Text Available Thermal nanofluids, the engineered fluids with dispersed functional nanoparticles, have exhibited extraordinary thermophysical properties and added functionalities, and thus have enabled a broad range of important applications. The poor dispersion stability of thermal nanofluids, however, has been considered as a long-existing issue that limits their further development and practical application. This review overviews the recent efforts and progresses in improving the dispersion stability of thermal nanofluids such as mechanistic understanding of dispersion behavior of nanofluids, examples of both water-based and oil-based nanofluids, strategies to stabilize nanofluids, and characterization techniques for dispersion behavior of nanofluids. Finally, on-going research needs, and possible solutions to research challenges and future research directions in exploring stably dispersed thermal nanofluids are discussed. Keywords: Thermal nanofluids, Dispersion, Aggregation, Electrostatic stabilization, Steric stabilization

  16. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  17. Gulf-Wide Information System, Environmental Sensitivity Index Dispersant Preapproval Zone, Geographic NAD83, LDWF (2001) [esi_dispersant_preapproval_zone_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains dispersant preapproval zones in coastal Louisiana. Feature-specific contact, type, and source information are stored in relational data tables...

  18. Increased QTc dispersion is related to blunted circadian blood pressure variation in normoalbuminuric type 1 diabetic patients

    DEFF Research Database (Denmark)

    Poulsen, P L; Ebbehøj, E; Arildsen, H

    2001-01-01

    . The association between QTc dispersion and diastolic night BP persisted after controlling for potential confounders such as sex, age, duration of diabetes, urinary albumin excretion, and HbA1c. Power spectral analysis suggested an altered sympathovagal balance in patients with QTc dispersion above the median...... (ratio of low-frequency/high-frequency power: 1.0 vs. 0.85, P fall in BP and an altered sympathovagal balance. This coexistence may be operative in the ability of these parameters......A reduced nocturnal fall in blood pressure (BP) and increased QT dispersion both predict an increased risk of cardiovascular events in diabetic as well as nondiabetic subjects. The relationship between these two parameters remains unclear. The role of diabetic autonomic neuropathy in both QT...

  19. Complementary roles of two resilient neotropical mammalian seed dispersers

    Science.gov (United States)

    de Almeida, Adriana; Morris, Rebecca J.; Lewis, Owen T.; Mikich, Sandra B.

    2018-04-01

    Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit-frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.

  20. Relation between Raman backscattering from droplets and bulk water: Effect of refractive index dispersion

    Science.gov (United States)

    Plakhotnik, Taras; Reichardt, Jens

    2018-03-01

    A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.

  1. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang

    2015-10-01

    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  2. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    Science.gov (United States)

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more

  3. Dispersion of multi-walled carbon nanotubes in biocompatible dispersants

    International Nuclear Information System (INIS)

    Piret, J.-P.; Detriche, S.; Vigneron, R.; Vankoningsloo, S.; Rolin, S.; Mejia Mendoza, J. H.; Masereel, B.; Lucas, S.; Delhalle, J.; Luizi, F.; Saout, C.; Toussaint, O.

    2010-01-01

    Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.

  4. Viscoelasticity and diffusional properties of colloidal model dispersions

    International Nuclear Information System (INIS)

    Naegele, Gerhard

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles

  5. Viscoelasticity and diffusional properties of colloidal model dispersions

    CERN Document Server

    Naegele, G

    2003-01-01

    We examine linear viscoelastic, and translational and rotational diffusion properties of colloidal model dispersions. Theoretical results are discussed, in comparison with experiments, for monodisperse suspensions of charged and neutral colloidal spheres, and for binary dispersions of differently sized tracer and host particles. The theoretical methods employed comprise a mode-coupling scheme for Brownian particles, and a rooted cluster expansion scheme of tracer diffusion with two- and three-body hydrodynamic interactions included. We analyse in particular the validity of various empirical generalized Stokes-Einstein-Debye (SED) relations between the (dynamic) shear viscosity and translational/rotational diffusion coefficients. Some of these generalized SED relations are basic to microrheological measurements aimed at characterizing the viscoelasticity of complex fluids on the basis of the diffusional properties of immersed tracer particles.

  6. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    Science.gov (United States)

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  8. No sex-biased dispersal in a primate with an uncommon social system—cooperative polyandry

    Directory of Open Access Journals (Sweden)

    Samuel L. Díaz-Muñoz

    2014-10-01

    Full Text Available An influential hypothesis proposed by Greenwood (1980 suggests that different mating systems result in female and male-biased dispersal, respectively, in birds and mammals. However, other aspects of social structure and behavior can also shape sex-biased dispersal. Although sex-specific patterns of kin cooperation are expected to affect the benefits of philopatry and dispersal patterns, empirical evidence is scarce. Unlike many mammals, Saguinus geoffroyi (Geoffroy’s tamarin has a breeding system in which typically multiple males mate with a single breeding female. Males typically form cooperative reproductive partnerships between relatives, whereas females generally compete for reproductive opportunities. This system of cooperative polyandry is predicted to result in female-biased dispersal, providing an opportunity to test the current hypotheses of sex-biased dispersal. Here we test for evidence of sex-biased dispersal in S. geoffroyi using demographic and genetic data from three populations. We find no sex bias in natal dispersal, contrary to the prediction based on the mating patterns. This pattern was consistent after controlling for the effects of historical population structure. Limited breeding opportunities within social groups likely drive both males and females to disperse, suggesting that dispersal is intimately related to the social context. The integration of genetic and field data revealed that tamarins are another exception to the presumed pattern of male-biased dispersal in mammals. A shift in focus from mating systems to social behavior, which plays a role in most all processes expected to influence sex-bias in dispersal, will be a fruitful target for research both within species and across taxa.

  9. Internal seed dispersal by parrots: an overview of a neglected mutualism

    Directory of Open Access Journals (Sweden)

    Guillermo Blanco

    2016-02-01

    Full Text Available Despite the fact that parrots (Psitacifformes are generalist apex frugivores, they have largely been considered plant antagonists and thus neglected as seed dispersers of their food plants. Internal dispersal was investigated by searching for seeds in faeces opportunistically collected at communal roosts, foraging sites and nests of eleven parrot species in different habitats and biomes in the Neotropics. Multiple intact seeds of seven plant species of five families were found in a variable proportion of faeces from four parrot species. The mean number of seeds of each plant species per dropping ranged between one and about sixty, with a maximum of almost five hundred seeds from the cacti Pilosocereus pachycladus in a single dropping of Lear’s Macaw (Anodorhynchus leari. All seeds retrieved were small (<3 mm and corresponded to herbs and relatively large, multiple-seeded fleshy berries and infrutescences from shrubs, trees and columnar cacti, often also dispersed by stomatochory. An overview of the potential constraints driving seed dispersal suggest that, despite the obvious size difference between seeds dispersed by endozoochory and stomatochory, there is no clear difference in fruit size depending on the dispersal mode. Regardless of the enhanced or limited germination capability after gut transit, a relatively large proportion of cacti seeds frequently found in the faeces of two parrot species were viable according to the tetrazolium test and germination experiments. The conservative results of our exploratory sampling and a literature review clearly indicate that the importance of parrots as endozoochorous dispersers has been largely under-appreciated due to the lack of research systematically searching for seeds in their faeces. We encourage the evaluation of seed dispersal and other mutualistic interactions mediated by parrots before their generalized population declines contribute to the collapse of key ecosystem processes.

  10. Fast flavor conversions of supernova neutrinos: Classifying instabilities via dispersion relations

    Science.gov (United States)

    Capozzi, Francesco; Dasgupta, Basudeb; Lisi, Eligio; Marrone, Antonio; Mirizzi, Alessandro

    2017-08-01

    Supernova neutrinos can exhibit a rich variety of flavor conversion mechanisms. In particular, they can experience "fast" self-induced flavor conversions almost immediately above the core. Very recently, a novel method has been proposed to investigate these phenomena, in terms of the dispersion relation for the complex frequency and wave number (ω ,k ) of disturbances in the mean field of the νeνx flavor coherence. We discuss a systematic approach to such instabilities, originally developed in the context of plasma physics, and based of the time-asymptotic behavior of the Green's function of the system. Instabilities are typically seen to emerge for complex ω and can be further characterized as convective (moving away faster than they spread) and absolute (growing locally), depending on k -dependent features. Stable cases emerge when k (but not ω ) is complex, leading to disturbances damped in space, or when both ω and k are real, corresponding to complete stability. The analytical classification of both unstable and stable modes leads not only to qualitative insights about their features but also to quantitative predictions about the growth rates of instabilities. Representative numerical solutions are discussed in a simple two-beam model of interacting neutrinos. As an application, we argue that supernova and binary neutron star mergers exhibiting a "crossing" in the electron lepton number would lead to an absolute instability in the flavor content of the neutrino gas.

  11. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  12. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  13. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  14. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity

    OpenAIRE

    Székely, Gergely

    2012-01-01

    Within an axiomatic framework of kinematics, we prove that the existence of faster than light particles is logically independent of Einstein's special theory of relativity. Consequently, it is consistent with the kinematics of special relativity that there might be faster than light particles.

  15. The effect of inertially viscous interphase interaction on the acoustic characteristics of disperse media

    International Nuclear Information System (INIS)

    Vladimir S Fedotovsky; Tatiana N Vereshchagina; Alexey V Derbenev

    2005-01-01

    Full text of publication follows: The vibratory-wave dynamics of disperse media with uniformly distributed spherical and ellipsoidal inclusions is considered on the basis of the concept of effective dynamic properties. The notions of effective dynamic density and translation viscosity taking account of the effects of the inertial and viscous interaction of liquid and disperse inclusions are introduced. The effective dynamic properties governing the process of wave propagation in disperse media depend both on the density, viscosity and concentration of components and on the form and orientation of inclusions. It is shown that for disperse media with inclusions as oblate ellipsoids of rotation the effective dynamic density takes the maximum value, whereas for the medium with inclusions as extended ellipsoids - the minimum one. The dynamic density of the medium with spherical inclusions takes the intermediate value. Based on the offered concept, the relations for sound velocity and attenuation in disperse media are derived. It is shown that the acoustic characteristics of disperse media essentially depend on the form of the ellipsoidal inclusions and their orientation relative to the direction of wave propagation. (authors)

  16. Crop size influences pre-dispersal seed predation in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Alexander V. Christianini

    2017-11-01

    Full Text Available ABSTRACT Many pre-dispersal seed predators are specialized insects that rely on seeds for larval development. These insects may respond to the amount of seeds produced by a plant (i.e. crop size, increasing the proportion of seeds damaged with increases in seed numbers. Large seeds have more resources and spend more time in plants to complete their development and are probably more prone to be preyed on by those insects than small seeds. Here I tested how crop size and seed mass influence pre-dispersal seed predation in plants from the Cerrado savannas of Brazil. I related plant crop size to pre-dispersal seed predation for Xylopia aromatica and Erythroxylum pelleterianum. A literature review was performed to test if seed mass may explain among-species differences in pre-dispersal seed predation. Pre-dispersal losses increased proportionally to crop size in the two species investigated, but some species show positive or no density-dependent seed predation in literature, indicating that seed losses are not a simple function of crop sizes. Seed mass did not explain pre-dispersal seed loss differences among 14 species with data available. Pre-dispersal losses are often small and probably less important than seed dispersal and establishment limitation for plant recruitment in Cerrado savannas.

  17. Wage Dispersion and Decentralization of Wage Bargaining

    DEFF Research Database (Denmark)

    Dahl, Christian Møller; le Maire, Christian Daniel; Munch, Jakob R.

    2013-01-01

    This article studies how decentralization of wage bargaining from sector to firm level influences wage levels and wage dispersion. We use detailed panel data covering a period of decentralization in the Danish labor market. The decentralization process provides variation in the individual worker......'s wage-setting system that facilitates identification of the effects of decentralization. We find a wage premium associated with firm-level bargaining relative to sector-level bargaining and that the return to skills is higher under the more decentralized wage-setting systems. Using quantile regression......, we also find that wages are more dispersed under firm-level bargaining compared to more centralized wage-setting systems....

  18. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    Science.gov (United States)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  19. The dispersion-focalization theory of sound systems

    Science.gov (United States)

    Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie

    2005-04-01

    The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.

  20. Fuel oil and dispersant toxicity to the Antarctic sea urchin (Sterechinus neumayeri).

    Science.gov (United States)

    Alexander, Frances J; King, Catherine K; Reichelt-Brushett, Amanda J; Harrison, Peter L

    2017-06-01

    The risk of a major marine fuel spill in Antarctic waters is increasing, yet there are currently no standard or suitable response methods under extreme Antarctic conditions. Fuel dispersants may present a possible solution; however, little data exist on the toxicity of dispersants or fuels to Antarctic species, thereby preventing informed management decisions. Larval development toxicity tests using 3 life history stages of the Antarctic sea urchin (Sterechinus neumayeri) were completed to assess the toxicity of physically dispersed, chemically dispersed, and dispersant-only water-accommodated fractions (WAFs) of an intermediate fuel oil (IFO 180, BP) and the chemical dispersant Slickgone NS (Dasic International). Despite much lower total petroleum hydrocarbon concentrations, physically dispersed fuels contained higher proportions of low-to-intermediate weight carbon compounds and were generally at least an order of magnitude more toxic than chemically dispersed fuels. Based on concentrations that caused 50% abnormality (EC50) values, the embryonic unhatched blastula life stage was the least affected by fuels and dispersants, whereas the larval 4-armed pluteus stage was the most sensitive. The present study is the first to investigate the possible implications of the use of fuel dispersants for fuel spill response in Antarctica. The results indicate that the use of a fuel dispersant did not increase the hydrocarbon toxicity of IFO 180 to the early life stages of Antarctic sea urchins, relative to physical dispersal. Environ Toxicol Chem 2017;36:1563-1571. © 2016 SETAC. © 2016 SETAC.

  1. Quorum sensing and density-dependent dispersal in an aquatic model system.

    Directory of Open Access Journals (Sweden)

    Simon Fellous

    Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.

  2. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two

  3. More about tunnelling times and superluminal tunnelling (Hartmann effect)

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.; Raciti, F.; Zaichenko, A.

    1995-05-01

    Aims of the present paper are: i) presenting and analysing the results of various numerical calculations on the penetration and return times Pen >, Ret >, during tunnelling inside a rectangular potential barrier, for various penetration depths x f ; ii) putting forth and discussing suitable definitions, besides of the mean values, also of the variances (or dispersions) D τT and D τR for the time durations of transmission and reflection processes; iii)mentioning, moreover, that our definition T > for the average transmission time results to constitute an improvement of the ordinary dwell- time formula; iv) commenting, at last, on the basis of the new numerical results, upon some recent criticism by C.R. Leavens. The paper stresses that numerical evaluations confirm that the approach implied, and implies, the existence of the Hartmann effect: an effect that in these days (due to the theoretical connections between tunnelling and evanescent-wave propagation) is receiving - at Cologne, Berkeley, Florence and Vienna - indirect, but quite interesting, experimental verification

  4. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  5. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates

    Science.gov (United States)

    Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.

  6. Dispersant testing : a study on analytical test procedures

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Crude oil is a complex mixture of hydrocarbons, ranging from small, volatile compounds to very large, non-volatile compounds. Analysis of the dispersed oil is crucial. This paper described Environment Canada's ongoing studies on various traits of dispersants. In particular, it describes small studies related to dispersant effectiveness and methods to improve analytical procedures. The study also re-evaluated the analytical procedure for the Swirling Flask Test, which is now part of the ASTM standard procedure. There are new and improved methods for analyzing oil-in-water using gas chromatography (GC). The methods could be further enhanced by integrating the entire chromatogram rather than just peaks. This would result in a decrease in maximum variation from 5 per cent to about 2 per cent. For oil-dispersant studies, the surfactant-dispersed oil hydrocarbons consist of two parts: GC-resolved hydrocarbons and GC-unresolved hydrocarbons. This study also tested a second feature of the Swirling Flask Test in which the side spout was tested and compared with a new vessel with a septum port instead of a side spout. This decreased the variability as well as the energy and mixing in the vessel. Rather than being a variation of the Swirling Flask Test, it was suggested that a spoutless vessel might be considered as a completely separate test. 7 refs., 2 tabs., 4 figs

  7. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  8. Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahesh V. Hosur

    2013-08-01

    Full Text Available Common dispersion methods such as ultrasonic sonication, planetary centrifugal mixing and magnetic dispersion have been used extensively to achieve moderate exfoliation of nanoparticles in polymer matrix. In this study, the effect of adding three roll milling to these three dispersion methods for nanoclay dispersion into epoxy matrix was investigated. A combination of each of these mixing methods with three roll milling showed varying results relative to the unmodified polymer laminate. A significant exfoliation of the nanoparticles in the polymer structure was obtained by dispersing the nanoclay combining three roll milling to magnetic and planetary centrifugal mixing methods. This exfoliation promoted a stronger interfacial bond between the matrix and the fiber, which increased the final properties of the E-glass/epoxy nanocomposite. However, a combination of ultrasound sonication and three roll milling on the other hand, resulted in poor clay exfoliation; the sonication process degraded the polymer network, which adversely affected the nanocomposite final properties relative to the unmodified E-glass/epoxy polymer.

  9. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.

    Science.gov (United States)

    Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna

    2010-08-03

    We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.

  10. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    Science.gov (United States)

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  11. Dissolution rate enhancement of repaglinide by solid dispersion

    African Journals Online (AJOL)

    Keywords: Diabetes, Solid dispersion, Repaglinide, Solubility, Dissolution, Burst release. Tropical Journal of ... high lipophilicity (logP = 3.97) and relatively low oral bioavailability (56 .... II drug, i.e., low soluble and high permeable in nature. As.

  12. Operational evaluation of the RLINE dispersion model for studies of traffic-related air pollutants

    Science.gov (United States)

    Milando, Chad W.; Batterman, Stuart A.

    2018-06-01

    Exposure to traffic-related air pollutants (TRAP) remains a key public health issue, and improved exposure measures are needed to support health impact and epidemiologic studies and inform regulatory responses. The recently developed Research LINE source model (RLINE), a Gaussian line source dispersion model, has been used in several epidemiologic studies of TRAP exposure, but evaluations of RLINE's performance in such applications have been limited. This study provides an operational evaluation of RLINE in which predictions of NOx, CO and PM2.5 are compared to observations at air quality monitoring stations located near high traffic roads in Detroit, MI. For CO and NOx, model performance was best at sites close to major roads, during downwind conditions, during weekdays, and during certain seasons. For PM2.5, the ability to discern local and particularly the traffic-related portion was limited, a result of high background levels, the sparseness of the monitoring network, and large uncertainties for certain processes (e.g., formation of secondary aerosols) and non-mobile sources (e.g., area, fugitive). Overall, RLINE's performance in near-road environments suggests its usefulness for estimating spatially- and temporally-resolved exposures. The study highlights considerations relevant to health impact and epidemiologic applications, including the importance of selecting appropriate pollutants, using appropriate monitoring approaches, considering prevailing wind directions during study design, and accounting for uncertainty.

  13. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    Science.gov (United States)

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem

  14. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics

    Science.gov (United States)

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω2(k ) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  15. Average and dispersion of the luminosity-redshift relation in the concordance model

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, I. [DESY Hamburg (Germany). Theory Group; Gasperini, M. [Bari Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy); Marozzi, G. [College de France, 75 - Paris (France); Geneve Univ. (Switzerland). Dept. de Physique Theorique and CAP; Nugier, F. [Ecole Normale Superieure CNRS, Paris (France). Laboratoire de Physique Theorique; Veneziano, G. [College de France, 75 - Paris (France); CERN, Geneva (Switzerland). Physics Dept.; New York Univ., NY (United States). Dept. of Physics

    2013-03-15

    Starting from the luminosity-redshift relation recently given up to second order in the Poisson gauge, we calculate the effects of the realistic stochastic background of perturbations of the so-called concordance model on the combined light-cone and ensemble average of various functions of the luminosity distance, and on their variance, as functions of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from infrared and ultraviolet divergences, making our results robust with respect to changes of the corresponding cutoffs. Our main conclusions, in part already anticipated in a recent letter for the case of a perturbation spectrum computed in the linear regime, are that such inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent, in principle, the determination of its parameters down to an accuracy of order 10{sup -3} - 10{sup -5}, depending on the averaged observable and on the regime considered for the power spectrum. However, taking into account the appropriate corrections arising in the non-linear regime, we predict an irreducible scatter of the data approaching the 10% level which, for limited statistics, will necessarily limit the attainable precision. The predicted dispersion appears to be in good agreement with current observational estimates of the distance-modulus variance due to Doppler and lensing effects (at low and high redshifts, respectively), and represents a challenge for future precision measurements.

  16. 2.3. Global-scale atmospheric dispersion of microorganisms

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  17. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  18. Optimized nonlinear inversion of surface-wave dispersion data

    International Nuclear Information System (INIS)

    Raykova, Reneta B.

    2014-01-01

    A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software

  19. Dispersive effects on multicomponent transport through porous media

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir

    2017-11-01

    We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.

  20. Executive turnover: the influence of dispersion and other pay system characteristics.

    Science.gov (United States)

    Messersmith, Jake G; Guthrie, James P; Ji, Yong-Yeon; Lee, Jeong-Yeon

    2011-05-01

    Using tournament theory as a guiding theoretical framework, in this study, we assess the organizational implications of pay dispersion and other pay system characteristics on the likelihood of turnover among individual executives in organizational teams. Specifically, we estimate the effect of these pay system characteristics on executive turnover decisions. We use a multi-industry, multilevel data set composed of executives in publicly held firms to assess the effects of pay dispersion at the individual level. Consistent with previous findings, we find that pay dispersion is associated with an increased likelihood of executive turnover. In addition, we find that other pay characteristics also affect turnover, both directly and through a moderating effect on pay dispersion. Turnover is more likely when executives receive lower portions of overall top management team compensation and when they have more pay at risk. These conditions also moderate the relationship between pay dispersion and individual turnover decisions, as does receiving lower compensation relative to the market.

  1. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  2. Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis

    Science.gov (United States)

    Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.

    2013-01-01

    The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957

  3. Microtubule-Associated Proteins in Mesial Temporal Lobe Epilepsy with and without Psychiatric Comorbidities and Their Relation with Granular Cell Layer Dispersion

    Directory of Open Access Journals (Sweden)

    Ludmyla Kandratavicius

    2013-01-01

    Full Text Available Background. Despite strong association between epilepsy and psychiatric comorbidities, biological substrates are unknown. We have previously reported decreased mossy fiber sprouting in mesial temporal lobe epilepsy (MTLE patients with psychosis and increased in those with major depression. Microtubule associated proteins (MAPs are essentially involved in dendritic and synaptic sprouting. Methods. MTLE hippocampi of subjects without psychiatric history, MTLE + major depression, and MTLE + interictal psychosis derived from epilepsy surgery and control necropsies were investigated for neuronal density, granular layer dispersion, and MAP2 and tau immunohistochemistry. Results. Altered MAP2 and tau expression in MTLE and decreased tau expression in MTLE with psychosis were found. Granular layer dispersion correlated inversely with verbal memory scores, and with MAP2 and tau expression in the entorhinal cortex. Patients taking fluoxetine showed increased neuronal density in the granular layer and those taking haloperidol decreased neuronal density in CA3 and subiculum. Conclusions. Our results indicate relations between MAPs, granular layer dispersion, and memory that have not been previously investigated. Differential MAPs expression in human MTLE hippocampi with and without psychiatric comorbidities suggests that psychopathological states in MTLE rely on differential morphological and possibly neurochemical backgrounds. This clinical study was approved by our institution’s Research Ethics Board (HC-FMRP no. 1270/2008 and is registered under the Brazilian National System of Information on Ethics in Human Research (SISNEP no. 0423.0.004.000-07.

  4. Laser control of natural disperse systems

    Science.gov (United States)

    Vlasova, Olga L.; Bezrukova, Alexandra G.

    2003-10-01

    Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.

  5. Design of Normal Concrete Mixtures Using Workability-Dispersion-Cohesion Method

    OpenAIRE

    Qasrawi, Hisham

    2016-01-01

    The workability-dispersion-cohesion method is a new proposed method for the design of normal concrete mixes. The method uses special coefficients called workability-dispersion and workability-cohesion factors. These coefficients relate workability to mobility and stability of the concrete mix. The coefficients are obtained from special charts depending on mix requirements and aggregate properties. The method is practical because it covers various types of aggregates that may not be within sta...

  6. Improved derivation of the modified BGK collision term and applications to the Hall effect and cold plasma dispersion relation

    International Nuclear Information System (INIS)

    Nagata, M.

    1983-01-01

    A derived addition to the BGK collision term,is improved and expressed in simple form. The collision frequency for scattering depends anisotropically on the velocity vector. The improved macroscopic equation of momentum flow is applied to the Hall effect, the cold plasma dispersion relation and the cyclotron resonance. The Hall coefficient which is constant in the case of the BGK collision term now depends on the magnetic field. It is also shown that, compared with the almost symmetric classical curves of cyclotron resonance, the new curves are considerably asymmetric and their half-widths are about 3/2 times the classical ones. (autho)

  7. Comparative toxicity test of water-accommodated fractions of oils and oil dispersants to marine organisms

    International Nuclear Information System (INIS)

    1989-01-01

    This reference method describes a simple procedure for comparing the toxicity of oil, oil dispersants, and mixtures thereof, to marine animals. It allows the toxicity of different dispersants to be rapidly compared to that of oil, or of a mixture of oil an oil dispersant. It is designed for routine monitoring and screening purposes and is not appropriate as a research method. The physical and chemical properties of oil dispersants create many difficulties in the measurements of their toxicity to marine organisms. Strictly speaking, their toxicity can only be accurately estimated using complex procedures and apparatus. (A relatively simple apparatus for preparing oil/water or oil/water/oil dispersant emulsions is described in Appendix B). Simpler methods can provide useful information, provided their limitations are clearly understood and taken into consideration in the assessment and application of their results. Some of the special considerations relating to the measurement of the toxicity of oil and oil dispersants are described in Appendix A. The Appendix also explains the rationale and limitations of the method described here. 3 refs, 4 figs, 2 tabs

  8. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  9. Quantifying the impact of relativity and of dispersion interactions on the activation of molecular oxygen promoted by noble metal nanoparticles

    KAUST Repository

    Kanoun, Mohammed

    2014-06-26

    We compared the mechanism of O2 dissociation catalyzed by Cu38, Ag38, and Au38 nanoparticles. Overall, our results indicate that O2 dissociation is extremely easy on Cu38, with an almost negligible barrier for the O-O breaking step. It presents an energy barrier close to 20 kcal/mol on Ag38, which decreases to slightly more than 10 kcal/mol on Au38. This behavior is analyzed to quantify the impact of relativity and of dispersion interactions through a comparison of nonrelativistic, scalar-relativistic, and dispersioncorrected DFT methods. Nonrelativistic calculations show a clear trend down the triad, with larger in size nanoparticle (NP), weaker O2 adsorption energy, and higher O2 dissociation barrier, which is so high for Au38 to be in sharp contrast with the mild conditions used experimentally. Inclusion of relativity has no impact on the O2 adsorption energy, but it reduces the energy barrier for O2 dissociation on Au38 from 30.1 to 11.4 kcal/mol, making it even lower than that on Ag38 and consistent with the mild conditions used experimentally. Dispersion interactions have a remarkable role in improving the adsorption ability of O2 on the heavier Ag38 and especially Au38 NPs, contributing roughly 50% of the total adsorption energy, while they have much less impact on O2 adsorption on Cu38.

  10. Does an ant-dispersed plant, Viola reichenbachiana, suffer from reduced seed dispersal under inundation disturbances?

    NARCIS (Netherlands)

    Prinzing, A.; Dauber, J.; Hammer, E.; Hammouti, N.; Bohning-Gaese, K.

    2008-01-01

    Many plant species use ants as seed dispersers. This dispersal mode is considered to be susceptible to disturbances, but the effect of natural, small-scale disturbances is still unknown. We investigated how small-scale disturbances due to inundation affect seed dispersal in Viola reichenbachiana, a

  11. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    fracture. The transport properties of these fractures were adjusted to be consistent with the STT1b tracer transport experiment of the Aespoe TRUE-1 in situ transport experiment. For most of the cases simulated, transport aperture, e (m), was correlated to transmissivity, T (m 2 /s), according to e = 15xT 0.6 . This relationship was established based on the results of simulation of STT1b tracer experiments inside the Base case stochastic field fracture. For Case 5, a range of alternative relationships between aperture and transmissivity were considered. Values for transverse dispersion were simulated between 0.01 m and 10 m. The value of 0.01 m represents a 'typical' value of transverse dispersion from the literature, estimated as approximately 1% of the travel distance. The value of 10 is extreme, and is approximately ten times greater than the upper bound realistic value of 1 m (10% of the travel distance). Simulations were carried out primarily for a basically one-dimensional flow field in the plane of the fracture. This boundary condition was implemented by applying no flow boundaries on the north and south edges of the fracture, and heads of 0.5 m and 0 m to the west and east edges of the fracture respectively. The breakthrough statistics t 5 , t 50 , and t 95 , correspond to the time for 5%, 50%, and 95% mass recovery respectively. These results are based on a correlation between transmissivity and transport aperture et 15 T0.6. For this correlation, and the range of spatial transmissivity fields considered in Case 1, changes in transverse dispersion did not produce a significant change in the mean conservative tracer breakthrough times, although it did somewhat decrease the standard deviation. For the simple, channelized fracture considered in Case 5, this same aperture-transmissivity relationship also produced relatively small impacts of even large values of transverse dispersivity. However, when this channelized fracture is given a constant aperture the tracer

  12. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  13. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  14. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  15. An efficient method of reducing glass dispersion tolerance sensitivity

    Science.gov (United States)

    Sparrold, Scott W.; Shepard, R. Hamilton

    2014-12-01

    Constraining the Seidel aberrations of optical surfaces is a common technique for relaxing tolerance sensitivities in the optimization process. We offer an observation that a lens's Abbe number tolerance is directly related to the magnitude by which its longitudinal and transverse color are permitted to vary in production. Based on this observation, we propose a computationally efficient and easy-to-use merit function constraint for relaxing dispersion tolerance sensitivity. Using the relationship between an element's chromatic aberration and dispersion sensitivity, we derive a fundamental limit for lens scale and power that is capable of achieving high production yield for a given performance specification, which provides insight on the point at which lens splitting or melt fitting becomes necessary. The theory is validated by comparing its predictions to a formal tolerance analysis of a Cooke Triplet, and then applied to the design of a 1.5x visible linescan lens to illustrate optimization for reduced dispersion sensitivity. A selection of lenses in high volume production is then used to corroborate the proposed method of dispersion tolerance allocation.

  16. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity.

    Science.gov (United States)

    Das, Shyamal; Larson, Ian; Young, Paul; Stewart, Peter

    2009-06-28

    This study investigated changes in agglomeration and the mechanism of dispersibility decrease of salmeterol xinafoate (SX) from SX-lactose mixtures for inhalation after storage at 75% RH for 3 months. The dispersibility, PSD and in situ PSD of aerosol plumes of SX alone and SX-coarse lactose (CL) mixtures containing 0, 5, 10 and 20% micronized lactose (ML) before and after storage were determined by a Next Generation Impactor (NGI), a Mastersizer 2000 and a Spraytec, respectively. The PSD of ML increased after storage at 75% RH, but dispersibility of SX using the stored ML increased. After storage, the %SX of the mixture containing 20% ML (M20F) significantly increased (Pagglomerates, probably occurring through enhanced capillary interaction and/or solid bridging of ML, entrapping and preventing the release of SX particles.

  17. Intraindividual variability across cognitive domains: investigation of dispersion levels and performance profiles in older adults.

    Science.gov (United States)

    Hilborn, Jennifer V; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-05-01

    A growing body of research suggests that substantial variability exists among cognitive abilities within individuals. This within-person variability across cognitive domains is termed dispersion. The present study investigated the relationship between aging and dispersion of cognitive functions both quantitatively (overall levels of dispersion) and qualitatively (patterns of dispersion) in a sample of 304 nondemented, older adults aged 64 to 92 years (M = 74.02). Quantitatively, higher levels of dispersion were observed in the old-old adults (aged 75-92 years) and those identified as having experienced cognitive decline, suggesting that dispersion level may serve as a marker of cognitive integrity. Qualitatively, three distinct dispersion profiles were identified through clustering methods, and these were found to be related to demographic, health, and performance characteristics of the individuals, suggesting that patterns of dispersion may be meaningful indicators of individual differences.

  18. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  19. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Science.gov (United States)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  20. A constraint on the velocity dispersion of the missing mass in the solar neighborhood

    International Nuclear Information System (INIS)

    Nakamura, Takashi

    1978-01-01

    The stability of an N-component stellar disk with finite thickness is examined with the gas dynamical approximation. The dispersion relation for marginal stability is obtained. This dispersion relation for N = 2 is applied to the missing mass problem in the solar neighborhood, where two components represent the observed mass component and the missing mass component in the solar neighborhood. From the requirement that the Galactic disk should be locally stable, it is found that the velocity dispersion of the missing mass component should be greater than about 25km/sec. The stability of an infinitesimally thin disk is also investigated and compared with the disk of finite thickness. (auth.)