WorldWideScience

Sample records for superlinear threshold detectors

  1. NEUTRON SPECTRUM MEASUREMENTS USING MULTIPLE THRESHOLD DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, William W.; Duffey, Dick

    1963-11-15

    From American Nuclear Society Meeting, New York, Nov. 1963. The use of threshold detectors, which simultaneously undergo reactions with thermal neutrons and two or more fast neutron threshold reactions, was applied to measurements of the neutron spectrum in a reactor. A number of different materials were irradiated to determine the most practical ones for use as multiple threshold detectors. These results, as well as counting techniques and corrections, are presented. Some materials used include aluminum, alloys of Al -Ni, aluminum-- nickel oxides, and magesium orthophosphates. (auth)

  2. Norm based Threshold Selection for Fault Detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Henrik

    1998-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well as the uncertain FDI...... problem are considered. Based on this analysis, a performance index based on norms of the involved transfer functions is given. The performance index allows us also to optimize the structure of the fault detection filter directly...

  3. Superlinear scaling for innovation in cities.

    Science.gov (United States)

    Arbesman, Samuel; Kleinberg, Jon M; Strogatz, Steven H

    2009-01-01

    Superlinear scaling in cities, which appears in sociological quantities such as economic productivity and creative output relative to urban population size, has been observed, but not been given a satisfactory theoretical explanation. Here we provide a network model for the superlinear relationship between population size and innovation found in cities, with a reasonable range for the exponent.

  4. Scintillation neutron detector with dynamic threshold

    International Nuclear Information System (INIS)

    Kornilov, N.; Massey, T.; Grimes, S.

    2014-01-01

    Scintillation neutron detectors with hydrogen are a common tool for neutron spectroscopy. They provide good time resolution, neutron-gamma discrimination and high efficiency of neutron counting. The real open problems connected with application of these detectors are in the energy range >10 MeV. There are no standard neutron spectra known with high accuracy for this energy range. Therefore, traditional methods for experimental investigation of the efficiency function fail for these neutrons. The Monte Carlo simulation cannot provide reasonable accuracy due to unknown characteristics of the reactions for charged particle production (p, α and so on, light output, reaction cross-sections). The application of fission chamber with fissile material as a neutron detector did not help to solve the problem. We may avoid many problems if we use the traditional neutron detector with non-traditional data analysis. In this report we give main relations, and demonstrate the method for Cf-source. Experimental detector efficiency is compared with MC simulation. (authors)

  5. OSCILLATION CRITERIA FOR FORCED SUPERLINEAR DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using Riccati transformation techniques,some oscillation criteria for the forced second-order superlinear difference equations are established.These criteria are dis- crete analogues of the criteria for differential equations proposed by Yan.

  6. How Real Detector Thresholds Create False Standard Candles

    International Nuclear Information System (INIS)

    Shahmoradi, Amir; Nemiroff, Robert

    2009-01-01

    GRB satellites are relatively inefficient detectors of dim hard bursts. For example, given two bursts of identical peak luminosity near the detection threshold, a dim soft burst will be preferentially detected over a dim hard burst. This means that a high E peak burst will need a higher peak luminosity to be detected than a low E peak GRB. This purely detector-created attribute will appear as a correlation between E peak and luminosity, and should not be interpreted as a real standard candle effect. This result derives from Monte Carlo simulations utilizing a wide range of initial GRB spectra, and retriggering to create a final ''detected'' sample. In sum, E peak is not a good standard candle, and its appearance as such in seeming correlations such as the Amati and other L iso vs. E peak relations is likely a ghost of real energy-related detection thresholds.

  7. Constant-current regulator improves tunnel diode threshold-detector performance

    Science.gov (United States)

    Cancro, C. A.

    1965-01-01

    Grounded-base transistor is placed in a tunnel diode threshold detector circuit, and a bias voltage is applied to the tunnel diode. This provides the threshold detector with maximum voltage output and overload protection.

  8. A new temperature threshold detector - Application to missile monitoring

    Science.gov (United States)

    Coston, C. J.; Higgins, E. V.

    Comprehensive thermal surveys within the case of solid propellant ballistic missile flight motors are highly desirable. For example, a problem involving motor failures due to insulator cracking at motor ignition, which took several years to solve, could have been identified immediately on the basis of a suitable thermal survey. Using conventional point measurements, such as those utilizing typical thermocouples, for such a survey on a full scale motor is not feasible because of the great number of sensors and measurements required. An alternate approach recognizes that temperatures below a threshold (which depends on the material being monitored) are acceptable, but higher temperatures exceed design margins. In this case hot spots can be located by a grid of wire-like sensors which are sensitive to temperature above the threshold anywhere along the sensor. A new type of temperature threshold detector is being developed for flight missile use. The considered device consists of KNO3 separating copper and Constantan metals. Above the KNO3 MP, galvanic action provides a voltage output of a few tenths of a volt.

  9. On a fourth order superlinear elliptic problem

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2001-01-01

    Full Text Available We prove the existence of a nonzero solution for the fourth order elliptic equation $$Delta^2u= mu u +a(xg(u$$ with boundary conditions $u=Delta u=0$. Here, $mu$ is a real parameter, $g$ is superlinear both at zero and infinity and $a(x$ changes sign in $Omega$. The proof uses a variational argument based on the argument by Bahri-Lions cite{BL}.

  10. The investigation of fast neutron Threshold Activation Detectors (TAD)

    International Nuclear Information System (INIS)

    Gozani, T; King, M J; Stevenson, J

    2012-01-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ''flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  11. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    , called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  12. The investigation of fast neutron Threshold Activation Detectors (TAD)

    Science.gov (United States)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  13. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    , called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2 , CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  14. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF{sub 2}, CaF{sub 2} and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  15. Threshold self-powered gamma detector for use as a nuclear reactor power monitor

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1977-01-01

    A study of a threshold self-powered gamma detector for use as a nuclear reactor power monitor was conducted. Measurements were performed to ascertain whether certain detector material arrangements could be used to obtain significant discrimination against low energy gammas. Results indicating agreement between detector response and reactor power output are presented. Evidence of rejection of low energy gammas by the detector is presented. The simplicity of construction and ruggedness of the detector are also discussed

  16. Optimizing edge detectors for robust automatic threshold selection : Coping with edge curvature and noise

    NARCIS (Netherlands)

    Wilkinson, M.H.F.

    The Robust Automatic Threshold Selection algorithm was introduced as a threshold selection based on a simple image statistic. The statistic is an average of the grey levels of the pixels in an image weighted by the response at each pixel of a specific edge detector. Other authors have suggested that

  17. Features and performance of a large gas Cherenkov detector with threshold regulation

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Alvarez-Taviel, J.; Asenjo, L.; Colino, N.; Diez-Hedo. F.; Duran, I.; Gonzalez, J.; Hernandez, J.J.; Ladron de Guevara, P.; Marquina, M.A.

    1988-01-15

    We present here the development, main features and calibration procedures for a new type of gas Cherenkov detector, based upon the ability to control its threshold by regulating the temperature of the gas used as radiator. We also include the performance of this detector in particle identification.

  18. Results on light dark matter particles with a low-threshold CRESST-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Defay, X.; Feilitzsch, F. von; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Trinh Thi, H.H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Atominstitut, Vienna University of Technology, Wien (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2016-01-15

    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO{sub 4} crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/c{sup 2} region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles. (orig.)

  19. Gaseous Detector with Sub-keV Threshold to Study Neutrino Scattering at Low Recoil Energies

    International Nuclear Information System (INIS)

    Solomatin, A. E.; Petukhov, V. V.; Kopylov, A. V.; Orekhov, I. V.

    2014-01-01

    Gaseous detector with a sub-keV electron equivalent threshold is a very perspective tool for the precision measurement of the neutrino magnetic moment and for observing coherent scattering of neutrinos on nuclei. The progress in the development of low noise electronics makes it possible to register the rare events at the threshold less than 100 eV. The construction of the gaseous detector is given and the typical pulses with amplitudes of a few eV observed on a bench scale installation are presented. The possible implications for future experiments are discussed

  20. Application of the self-powered detector concept in the design of a threshold gamma-ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1979-01-01

    The self-powered detector concept has been utilized to develop an energy threshold gamma-ray detector. Gamma-ray energy discrimination is achieved by using a thick annular lead shield around the outer wall (emitter) of the detector in conjunction with a self-shielding central electrode (collector). Measurements conducted in the graphite pit of the Argonne Thermal Source Reactor have confirmed its ability to detect high-energy prompt fission gamma rays while discriminating against a significant flux of low-energy gamma rays from the decay of fission products. Also, auto-power spectral densities obtained with the detector were used to estimate the kinetic parameter, β/l, of the reactor

  1. Development of a new pressure dependent threshold superheated drop detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Peiman [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Raisali, Gholamreza, E-mail: graisali@aeoi.org.ir [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Akhavan, Azam [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Ghods, Hossein [Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Hajizadeh, Bardia [Radiation Protection Division, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2015-03-11

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for {sup 241}Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the {sup 241}Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the {sup 241}Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  2. Development of a new pressure dependent threshold superheated drop detector for neutrons

    International Nuclear Information System (INIS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-01-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241 Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241 Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241 Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors

  3. Study of a spherical gaseous detector for research of rare events at low energy threshold

    International Nuclear Information System (INIS)

    Dastgheibi-Fard, Ali

    2014-01-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of a particle detector, with a broad range of applications. Its main features include a very low energy threshold which is independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel. SEDINE, a low background detector installed at the underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at a very low energy threshold, around 40 eV. The sensitivity for the rare events detection at low energy is correlated to the detector background and to the decreasing the level of energy threshold, which was the main point of this thesis. A major effort has been devoted to the operating of the experimental detector. Several detection parameters were optimized: the electric field homogeneity in the sphere, keeping clear of sparks, the electronic noise level and the leak rate of the detector. The detector is optimized for operation with a high pressure stable gain. The modification of the shield, cleanings of the detector and the addition of an anti-Radon tent have significantly reduced the background of SEDINE. Progress has increased the sensitivity of the detector at low energy up to a value comparable to the results other underground research experiences for the low mass WIMPs. We will present the results with a measured background in the region of keV, which has allowed us to show a competitive figure of exclusion for the production of light dark matter. (author) [fr

  4. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    Science.gov (United States)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  5. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  6. Reaching the superlinear convergence phase of the CG method

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Karátson, J.

    2014-01-01

    Roč. 260, č. 260 (2014), s. 244-257 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : superlinear convergence * conjugate gradient method * eigenvalues Subject RIV: BA - General Mathematics Impact factor: 1.266, year: 2014 http://www.sciencedirect.com/science/article/pii/S0377042713005451

  7. Mesh independent superlinear PCG rates via compact - equivalent operators

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Karátson, J.

    2007-01-01

    Roč. 45, č. 4 (2007), s. 1495-1516 ISSN 0036-1429 Institutional research plan: CEZ:AV0Z30860518 Keywords : nonsymmetric elliptic problems * conjugate gradient method * preconditioning * superlinear convergence Subject RIV: BA - General Mathematics Impact factor: 1.470, year: 2007 http://apps.isiknowledge.com

  8. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    International Nuclear Information System (INIS)

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-01-01

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of π/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach ∼10 -3 proton and 10 -2 kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was ∼16 and ∼8, respectively. Moderate particle identification is feasible near threshold

  9. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  10. Application of the Neganov-Luke effect to low-threshold light detectors

    International Nuclear Information System (INIS)

    Stark, M.; Boslau, O.; Feilitzsch, F.v.; Goldstrass, P.; Jochum, J.; Kemmer, J.; Potzel, W.; Rau, W.

    2005-01-01

    Simultaneous measurement of a temperature signal and scintillation light of a CaWO 4 crystal can be used for background rejection in cryogenic dark matter experiments. In our case the light is measured with a cryogenic detector that consists of a silicon absorber with a superconducting phase transition thermometer. Due to the Neganov-Luke effect the thermal signal is enhanced when a voltage is applied to the silicon absorber. First results with the application of this effect to our low-threshold light detectors will be discussed in this paper

  11. Time over threshold based multi-channel LuAG-APD PET detector

    International Nuclear Information System (INIS)

    Shimazoe, Kenji; Orita, Tadashi; Nakamura, Yasuaki; Takahashi, Hiroyuki

    2013-01-01

    To achieve efficient signal processing, several time-based positron emission tomography (PET) systems using a large number of granulated gamma-ray detectors have recently been proposed. In this work described here, a 144-channel Pr:LuAG avalanche photodiode (APD) PET detector that uses time over threshold (ToT) and pulse train methods was designed and fabricated. The detector is composed of 12×12 Pr:LuAG crystals, each of which produces a 2 mm×2 mm×10 mm pixel individually coupled to a 12×12 APD array, which in turn is connected pixel-by-pixel with one channel of a time over threshold based application-specific integrated circuit (ToT-ASIC) that was designed and fabricated using a 0.25 μm 3.3 V Taiwan Semiconductor Company complementary metal oxide semiconductor (TSMC CMOS) process. The ToT outputs are connected through a field-programmable gate array (FPGA) to a data acquisition (DAQ) system. Three front-end ASIC boards—each incorporating a ToT-ASIC chip, threshold control digital-to-analog converters (DACs), and connectors, and dissipating power at about 230 mW per board—are used to read from the 144-channel LuAG-APD detector. All three boards are connected through an FPGA board that is programmed to calibrate the individual thresholds of the ToT circuits to allow digital multiplexing to form an integrated PET module with a measured timing resolution of 4.2 ns. Images transmitted by this PET system can be successfully acquired through collimation masks. As a further implementation of this technology, an animal PET system consisting of eight gamma pixel modules forming a ring is planned

  12. Applications of molecules as high-resolution, high-sensitivity threshold electron detectors

    International Nuclear Information System (INIS)

    Chutjian, A.

    1991-01-01

    The goal of the work under the contract entitled ''Applications of Molecules as High-Resolution, High-Sensitivity Threshold Electron Detectors'' (DoE IAA No. DE-AI01-83ER13093 Mod. A006) was to explore the electron attachment properties of a variety of molecules at electron energies not accessible by other experimental techniques. As a result of this work, not only was a large body of basic data measured on attachment cross sections and rate constants; but also extensive theoretical calculations were carried out to verify the underlying phenomenon of s-wave attachment. Important outgrowths of this week were also realized in other areas of research. The basic data have applications in fields such as combustion, soot reduction, rocket-exhaust modification, threshold photoelectron spectroscopy, and trace species detection

  13. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  14. The Analysis of Closed-form Solution for Energy Detector Dynamic Threshold Adaptation in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    R. Bozovic

    2017-12-01

    Full Text Available Spectrum sensing is the most important process in cognitive radio in order to ensure interference avoidance to primary users. For optimal performance of cognitive radio, it is substantial to monitor and promptly react to dynamic changes in its operating environment. In this paper, energy detector based spectrum sensing is considered. Under the assumption that detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal, as well as primary user signal power. A closed-form solution for optimal decision threshold in dynamic electromagnetic environment is proposed and analyzed.

  15. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  16. A superlinear interior points algorithm for engineering design optimization

    Science.gov (United States)

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  17. Revision of the concept of registration threshold in plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.; Grabisch, K.; Scherzer, R.; Enge, W.

    1976-01-01

    Response curves (V identical Vsub(T)/Vsub(B) versus REL) of various plastic track detectors (CN, CA, PC, PET) were determined in the region of relatively low etching rate ratios V. Comparative investigations made it clear thay the registration threshold concept needs revision. It was found that for most of the commercial plastics the V(REL) curves can be well described by the relation V = 1 + αRELsup(β), where the power index is about 3 within a limit +- 10% for pure materials. With CN the situation proved to be more complex in the presence of a relatively large amount of camphor in the matrix of the detector. For the interpretation of the observed shape of the V(REL) curves, a theoretical model similar to the one that is used to describe the survival curves of irradiated biological objects, was proposed. Experiments performed for a better understanding of the nature of the radiation-damage in plastics yielded a simple relation REL = const x √D between the REL value of nuclei and the volume dose D deposited by accelerated electron beams, which produced equivalent chemical etchability in the irradiated plastics. (orig./ORU) [de

  18. New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    Science.gov (United States)

    Sibczynski, Pawel; Dziedzic, Andrzej; Grodzicki, Krystian; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Syntfeld-Każuch, Agnieszka; Wolski, Dariusz; Carrel, Frédérick; Grabowski, Amélie; Hamel, Matthieu; Laine, Frederic; Sari, Adrien; Iovene, Alessandro; Tintori, Carlo; Fontana, Cristiano; Pino, Felix

    2018-01-01

    In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a "dirty bomb". This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018.

  19. New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    Directory of Open Access Journals (Sweden)

    Sibczynski Pawel

    2018-01-01

    Full Text Available In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD. The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD V known also as a “dirty bomb”. This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α16N or 19F(n,p19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC. Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018.

  20. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  1. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  2. Existence of solutions for some superlinear or sublinear elliptic systems on IRN

    International Nuclear Information System (INIS)

    Ding Yanheng; Li Shujie.

    1993-10-01

    The existence of solutions for some superlinear or sublinear elliptic systems on R N is demonstrated using a compact embedding lemma which enables the application of standard critical theory for such problems. 7 refs

  3. A Superlinearly Convergent O(square root of nL)-Iteration Algorithm for Linear Programming

    National Research Council Canada - National Science Library

    Ye, Y; Tapia, Richard A; Zhang, Y

    1991-01-01

    .... We demonstrate that the modified algorithm maintains its O(square root of nL)-iteration complexity, while exhibiting superlinear convergence for general problems and quadratic convergence for nondegenerate problems...

  4. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers.

    Science.gov (United States)

    Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-12-04

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.

  5. Improvement of the drift chamber system in the SAPHIR detector and first measurements of the Φ meson production at threshold

    International Nuclear Information System (INIS)

    Scholmann, J.N.

    1996-09-01

    The SAPHIR detector at ELSA enables the measurement of photon induced Φ meson production from threshold up to 3 GeV in the full kinematical range. A considerable improvement of the drift chamber system is a precondition of gaining the necessary data rate in an acceptable time. The research focuses attention on the choice of the chamber gas and on a different mechanical construction, so as to minimize the negative influences of the photon beam crossing the sensitive volume of the drift chamber system. In addition, first preliminary results of the total and the differential cross section for the Φ meson production close to threshold were evaluated. (orig.)

  6. Time over threshold readout method of SiPM based small animal PET detector

    International Nuclear Information System (INIS)

    Valastyan, I.; Gal, J.; Hegyesi, G.; Kalinka, G.; Nagy, F.; Kiraly, B.; Imrek, J.; Molnar, J.

    2012-01-01

    Complete text of publication follows. The aim of the work was to design a readout concept for silicon photomultiplier (SiPM) sensor array used in small animal PET scanner. The detector module consist of LYSO 35x35 scintillation crystals, 324 SiPM sensors (arranged in 2x2 blocks and those quads in a 9x9 configuration) and FPGA based readout electronics. The dimensions of the SiPM matrix are area: 48x48 mm 2 and the size of one SiPM sensor is 1.95x2.2 mm 2 . Due to the high dark current of the SiPM, conventional Anger based readout method does not provide sufficient crystal position maps. Digitizing the 324 SiPM channels is a straightforward way to obtain proper crystal position maps. However handling hundreds of analogue input channels and the required DSP resources cause large racks of data acquisition electronics. Therefore coding of the readout channels is required. Proposed readout method: The coding of the 324 SiPMs consists two steps: Step 1) Reduction of the channels from 324 to 36: Row column readout, SiPMs are connected to each other in column by column and row-by row, thus the required channels are 36. The dark current of 18 connected SiPMs is small in off for identifying pulses coming from scintillating events. Step 2) Reduction of the 18 rows and columns to 4 channels: Comparators were connected to each rows and columns, and the level was set above the level of dark noise. Therefore only few comparators are active when scintillation light enters in the tile. The output of the comparator rows and columns are divided to two parts using resistor chains. Then the outputs of the resistor chains are digitized by a 4 channel ADC. However instead of the Anger method, time over threshold (ToT) was used. Figure 1 shows the readout concept of the SiPM matrix. In order to validate the new method and optimize the front-end electronics of the detector, the analogue signals were digitized before the comparators using a CAEN DT5740 32 channel digitizer, then the

  7. Measurement of Beauty Photoproduction near Threshold using Di-electron Events with the H1 Detector at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2012-10-03

    The cross section for ep -> e b\\bar{b} X in photoproduction is measured with the H1 detector at the ep-collider HERA. The decay channel b\\bar{b} -> ee X' is selected by identifying the semi-electronic decays of the b-quarks. The total production cross section is measured in the kinematic range given by the photon virtuality Q^2 down to the threshold. The results are compared to next-to-leading-order QCD predictions.

  8. A superlinear convergence estimate for an iterative method for the biharmonic equation

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M.A. [Wichita State Univ., Wichita, KS (United States)

    1996-12-31

    In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.

  9. Study of threshold energy registration of alpha particles on lexan nuclear track detector (passive) by Kr F laser pre-radiation

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Hashemi, M. M.; Katoozi, M.; Amiri Rad, N.; Zamanipour, Z.; Zarea, A.

    2002-01-01

    The effect of Kr F laser pre-radiation has been investigated on both alpha track density and threshold energy of track registration. While no significant difference was observed on track density an nevertheless ∼100 keV shift of threshold energy occurred due to UV superficial hardening of Lexan detector

  10. Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming

    NARCIS (Netherlands)

    Z-Q. Luo; J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractThis paper establishes the superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming under the assumptions that the semidefinite program has a strictly complementary primal-dual optimal solution and that the size of the central path

  11. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Science.gov (United States)

    Dey, S.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ± 1 . The initial energy of stopping particle in PET was determined with an accuracy of 10 % for ion energies above the Bragg peak.

  12. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Maulik, A., E-mail: atanu.maulik@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Raha, Sibaji; Saha, Swapan K. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Department of Physics, Bose Institute, Kolkata 700 009 (India); Syam, D. [Department of Physics, Barasat Government College, Kolkata 700 124 (India)

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ±1. The initial energy of stopping particle in PET was determined with an accuracy of 10% for ion energies above the Bragg peak.

  13. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'

    International Nuclear Information System (INIS)

    Leger, P.; Sautiez, B.

    1959-01-01

    Using existing data on the (n,p) and (n,α) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 10 13 n/cm 2 /s ± 0.14. (author) [fr

  14. Use of new threshold detector 199Hg(n,n')/sup 199m/Hg for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Sakurai, K.

    1982-01-01

    The nuclear data for the 199 Hg(n,n')/sup 199m/Hg reaction are reviewed and the data are used for neutron spectrum unfolding. The neutron spectrum of the YAYOI glory-hole is unfolded by SAND II with 10 nuclear reactions including the 199 Hg(n,n')/sup 199m/Hg reaction. The ratio of the measured reaction rate to the calculated reaction rate is about 1:1.1 for the guess spectrum. The 199 Hg(n,n')/sup 199m/Hg, 115 In(n,n')/sup 115m/In, 103 Rh(n,n')/sup 103m/Rh reactions should be useful threshold detectors for the neutron dosimetry with low level fast neutron flux

  15. Measurement of beauty photoproduction near threshold using Di-electron events with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-05-15

    The cross section for ep {yields} eb anti bX in photoproduction is measured with the H1 detector at the ep-collider HERA. The decay channel b anti b {yields} eeX' is selected by identifying the semi-electronic decays of the b-quarks. The total production cross section is measured in the kinematic range given by the photon virtuality Q{sup 2} {<=}1 GeV{sup 2}, the inelasticity 0.05{<=} y {<=}0.65 and the pseudorapidity of the b-quarks vertical stroke {eta}(b) vertical stroke, vertical stroke {eta}(anti b) vertical stroke {<=}2. The differential production cross section is measured as a function of the average transverse momentum of the beauty quarks left angle P{sub T}(b) right angle down to the threshold. The results are compared to next-to-leading-order QCD predictions.

  16. Measurement of beauty photoproduction near threshold using di-electron events with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F. D.; Alexa, C.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J. C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cvach, J.; Dainton, J. B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E. A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D. -J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jönsson, L.; Jung, A. W.; Jung, H.; Kapichine, M.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Krämer, M.; Kretzschmar, J.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H. -U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olivier, B.; Olsson, J. E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rusakov, S.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H. -C.; Sefkow, F.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P. D.; Tran, T. H.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2012-10-01

    The cross section for $ep \\to e b\\bar{b} X$ in photoproduction is measured with the H1 detector at the $ep$-collider HERA. The decay channel $b\\bar{b} \\to ee X^\\prime$ is selected by identifying the semi-electronic decays of the b-quarks. The total production cross section is measured in the kinematic range given by the photon virtuality $Q^2 \\le 1 GeV^2$, the inelasticity $0.05 \\le y \\le 0.65$ and the pseudorapidity of the $b$-quarks $|\\eta(b)|$,$|\\eta(\\bar{b})| \\le 2$. The differential production cross section is measured as a function of the average transverse momentum of the beauty quarks <$P_T$(b)> down to the threshold. The results are compared to next-to-leading-order QCD predictions.

  17. Measurement of beauty photoproduction near threshold using Di-electron events with the H1 detector at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Andreev, V.

    2012-05-01

    The cross section for ep → eb anti bX in photoproduction is measured with the H1 detector at the ep-collider HERA. The decay channel b anti b → eeX' is selected by identifying the semi-electronic decays of the b-quarks. The total production cross section is measured in the kinematic range given by the photon virtuality Q 2 ≤1 GeV 2 , the inelasticity 0.05≤ y ≤0.65 and the pseudorapidity of the b-quarks vertical stroke η(b) vertical stroke, vertical stroke η(anti b) vertical stroke ≤2. The differential production cross section is measured as a function of the average transverse momentum of the beauty quarks left angle P T (b) right angle down to the threshold. The results are compared to next-to-leading-order QCD predictions.

  18. Universal squash model for optical communications using linear optics and threshold detectors

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H. F.; Lo, Hoi-Kwong

    2011-01-01

    Transmission of photons through open-air or optical fibers is an important primitive in quantum-information processing. Theoretical descriptions of this process often consider single photons as information carriers and thus fail to accurately describe experimental implementations where any number of photons may enter a detector. It has been a great challenge to bridge this big gap between theory and experiments. One powerful method for achieving this goal is by conceptually squashing the received multiphoton states to single-photon states. However, until now, only a few protocols admit a squash model; furthermore, a recently proven no-go theorem appears to rule out the existence of a universal squash model. Here we show that a necessary condition presumed by all existing squash models is in fact too stringent. By relaxing this condition, we find that, rather surprisingly, a universal squash model actually exists for many protocols, including quantum key distribution, quantum state tomography, Bell's inequality testing, and entanglement verification.

  19. On the decision threshold of eigenvalue ratio detector based on moments of joint and marginal distributions of extreme eigenvalues

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-03-01

    Eigenvalue Ratio (ER) detector based on the two extreme eigenvalues of the received signal covariance matrix is currently one of the most effective solution for spectrum sensing. However, the analytical results of such scheme often depend on asymptotic assumptions since the distribution of the ratio of two extreme eigenvalues is exceptionally complex to compute. In this paper, a non-asymptotic spectrum sensing approach for ER detector is introduced to approximate the marginal and joint distributions of the two extreme eigenvalues. The two extreme eigenvalues are considered as dependent Gaussian random variables such that their joint probability density function (PDF) is approximated by a bivariate Gaussian distribution function for any number of cooperating secondary users and received samples. The PDF approximation approach is based on the moment matching method where we calculate the exact analytical moments of joint and marginal distributions of the two extreme eigenvalues. The decision threshold is calculated by exploiting the statistical mean and the variance of each of the two extreme eigenvalues and the correlation coefficient between them. The performance analysis of our newly proposed approximation approach is compared with the already published asymptotic Tracy-Widom approximation approach. It has been shown that our results are in perfect agreement with the simulation results for any number of secondary users and received samples. © 2002-2012 IEEE.

  20. Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Lin Li

    2012-12-01

    Full Text Available In this article we study the existence of infinitely many large energy solutions for the superlinear Schrodinger-Maxwell equations $$displaylines{ -Delta u+V(xu+ phi u=f(x,u quad hbox{in }mathbb{R}^3,cr -Delta phi=u^2, quad hbox{in }mathbb{R}^3, }$$ via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.

  1. Measurement of cross sections of threshold detectors with spectrum average technique

    International Nuclear Information System (INIS)

    Agus, Y.; Celenk, I.; Oezmen, A.

    2004-01-01

    Cross sections of the reactions 103 Rh(n, n') 103m Rh, 115 In(n, n') 115m In, 232 Th(n, f), 47 Ti(n, p) 47 Sc, 64 Zn(n, p) 64 Cu, 58 Ni(n, p) 58 Co, 54 Fe(n, p) 54 Mn, 46 Ti(n, p) 46 Sc, 27 Al(n, p) 27 Mg, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na, 59 Co(n, α) 56 Mn, 27 Al(n, α) 24 Na and 48 Ti(n, p) 48 Sc were measured with average neutron energies above effective threshold by using the activation method through usage of spectrum average technique in an irradiation system where there are three equivalent Am/Be sources, each of which has 592 GBq activity. The cross sections were determined with reference to the fast neutron fission cross section of 238 U. The measured values and published values are generally in agreement. (orig.)

  2. Program HEFEST for calculation of neutron spectrum on the basis of the activity of threshold detectors; Progam HEFEST za obradu neutronskog spektra na osnovu aktivnosti prag detektora

    Energy Technology Data Exchange (ETDEWEB)

    Cupac, S; Sokcic-Kostic, M; Pesic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1985-07-01

    Program HEFEST for calculation of neutron spectrum on the basis of the activity of threshold detectors is described in this paper. After testing, program is used for the elaboration of the experimental results in determining the fast neutron spectrum on the coupled fast-thermal system on the reactor RB in IBK. (author)

  3. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orita, T., E-mail: orita.tadashi@jaea.go.jp [Japan Atomic Energy Agency, Fukushima (Japan); Shimazoe, K.; Takahashi, H. [Department of Nuclear Management and Engineering, The University of Tokyo, Bunkyō (Japan)

    2015-03-01

    t– Recent advances in manufacturing technology have enabled the use of multi-channel pixelated detectors in gamma-ray imaging applications. When obtaining gamma-ray measurements, it is important to obtain pulse height information in order to avoid unnecessary events such as scattering. However, as the number of channels increases, more electronics are needed to process each channel's signal, and the corresponding increases in circuit size and power consumption can result in practical problems. The time-over-threshold (ToT) method, which has recently become popular in the medical field, is a signal processing technique that can effectively avoid such problems. However, ToT suffers from poor linearity and its dynamic range is limited. We therefore propose a new ToT technique called the dynamic time-over-threshold (dToT) method [4]. A new signal processing system using dToT and CR-RC shaping demonstrated much better linearity than that of a conventional ToT. Using a test circuit with a new Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG) scintillator and an avalanche photodiode, the pulse height spectra of {sup 137}Cs and {sup 22}Na sources were measured with high linearity. Based on these results, we designed a new application-specific integrated circuit (ASIC) for this multi-channel dToT system, measured the spectra of a {sup 22}Na source, and investigated the linearity of the system.

  4. Measurement of beauty photoproduction at threshold using di-electron events with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, Michel David

    2009-12-15

    The cross section of b anti b photoproduction in ep collisions has been measured with the H1 detector at HERA. Events containing b-quarks were identified through detection of two low momentum electrons in the nal state. Semileptonic decays b anti b{yields}eeX were exploited in the kinematic range of the photon virtuality Q{sup 2}<1 GeV{sup 2}, the inelasticity 0.2threshold. The results are compared to other b-quark cross section measurements, as well as to leading-order and next-to-leading-order QCD predictions. The extension to lower b-quark momenta became possible with a dedicated low momentum electron trigger in the data period 2007, which combines track (Fast Track Trigger) and calorimeter information (Jet Trigger), and by mastering the experimental challenges of low p{sub T}-electron identification. (orig.)

  5. Top quark threshold scan and study of detectors for highly granular hadron calorimeters at future linear colliders

    International Nuclear Information System (INIS)

    Tesar, Michal

    2014-01-01

    Two major projects for future linear electron-positron colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), are currently under development. These projects can be seen as complementary machines to the Large Hadron Collider (LHC) which permit a further progress in high energy physics research. They overlap considerably and share the same technological approaches. To meet the ambitious goals of precise measurements, new detector concepts like very finely segmented calorimeters are required. We study the precision of the top quark mass measurement achievable at CLIC and the ILC. The employed method was a t anti t pair production threshold scan. In this technique, simulated measurement points of the t anti t production cross section around the threshold are fitted with theoretical curves calculated at next-to-next-to-leading order. Detector effects, the influence of the beam energy spectrum and initial state radiation of the colliding particles are taken into account. Assuming total integrated luminosity of 100 fb -1 , our results show that the top quark mass in a theoretically well-defined 1S mass scheme can be extracted with a combined statistical and systematic uncertainty of less than 50 MeV. The other part of this work regards experimental studies of highly granular hadron calorimeter (HCAL) elements. To meet the required high jet energy resolution at the future linear colliders, a large and finely segmented detector is needed. One option is to assemble a sandwich calorimeter out of many low-cost scintillators read out by silicon photomultipliers (SiPM). We characterize the areal homogeneity of SiPM response with the help of a highly collimated beam of pulsed visible light. The spatial resolution of the experiment reach the order of 1 μm and allows to study the active area structures within single SiPM microcells. Several SiPM models are characterized in terms of relative photon detection efficiency and probability crosstalk

  6. A numerical method for finding sign-changing solutions of superlinear Dirichlet problems

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, J.M.

    1996-12-31

    In a recent result it was shown via a variational argument that a class of superlinear elliptic boundary value problems has at least three nontrivial solutions, a pair of one sign and one which sign changes exactly once. These three and all other nontrivial solutions are saddle points of an action functional, and are characterized as local minima of that functional restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an appropriate higher codimension subset of that manifold. In this paper, we present a numerical Sobolev steepest descent algorithm for finding these three solutions.

  7. Automatic Threshold Detector Techniques

    Science.gov (United States)

    1976-07-15

    Averaging CFAR in Non- Stationary Weibull Clutter, " L. Novak, (1974 IEEE Symposium on Information Theory ). 8. "The Weibull Distribution Applied to the... UGTS (K) ,Kml NPTS) 140 DO 153 K~lvNPT9 IF(SIGCSO(K) .LT.0. )SIOCSO(K).1 .E-50 IF(SIOWSO(K) .LT.0. )SIGWSQ(K)-1 .E-50 IF(SIONSG(K) .LT.O. )SIG3NSQCIO-1.E

  8. A superlinearly convergent finite volume method for the incompressible Navier-Stokes equations on staggered unstructured grids

    International Nuclear Information System (INIS)

    Vidovic, D.; Segal, A.; Wesseling, P.

    2004-01-01

    A method for linear reconstruction of staggered vector fields with special treatment of the divergence is presented. An upwind-biased finite volume scheme for solving the unsteady incompressible Navier-Stokes equations on staggered unstructured triangular grids that uses this reconstruction is described. The scheme is applied to three benchmark problems and is found to be superlinearly convergent in space

  9. Neutron spectrometry by means of threshold detectors - Neutron spectrometry by means of activation detectors. Studies of the method of approximation by polygonal function. Application to dose determination

    International Nuclear Information System (INIS)

    Bricka, M.

    1962-03-01

    This report addresses the problem of determination of neutron spectrum by using a set of detectors. The spectrum approximation method based on a polygonal function is more particularly studied. The author shows that the coefficients of the usual mathematical model can be simply formulated and assessed. The study of spectra approximation by a polygonal function shows that dose can be expressed by a linear function of the activity of the different detectors [fr

  10. A Strongly and Superlinearly Convergent SQP Algorithm for Optimization Problems with Linear Complementarity Constraints

    International Nuclear Information System (INIS)

    Jian Jinbao; Li Jianling; Mo Xingde

    2006-01-01

    This paper discusses a kind of optimization problem with linear complementarity constraints, and presents a sequential quadratic programming (SQP) algorithm for solving a stationary point of the problem. The algorithm is a modification of the SQP algorithm proposed by Fukushima et al. [Computational Optimization and Applications, 10 (1998),5-34], and is based on a reformulation of complementarity condition as a system of linear equations. At each iteration, one quadratic programming and one system of equations needs to be solved, and a curve search is used to yield the step size. Under some appropriate assumptions, including the lower-level strict complementarity, but without the upper-level strict complementarity for the inequality constraints, the algorithm is proved to possess strong convergence and superlinear convergence. Some preliminary numerical results are reported

  11. Threshold-dependent variability of coronary artery calcification measurements - implications for contrast-enhanced multi-detector row-computed tomography

    International Nuclear Information System (INIS)

    Moselewski, Fabian; Ferencik, Maros; Achenbach, Stephan; Abbara, Suhny; Cury, Ricardo C.; Booth, Sarah L.; Jang, Ik-Kyung; Brady, Thomas J.; Hoffmann, Udo

    2006-01-01

    Introduction: The present study investigated the threshold-dependent variability of coronary artery calcification (CAC) measurements and the potential to quantify CAC in contrast-enhanced multi-detector row-computed tomography (MDCT). Methods: We compared the mean CT attenuation of CAC to luminal contrast enhancement of the coronary arteries in 30 patients (n = 30) undergoing standard coronary contrast-enhanced spiral MDCT. The modified Agatston score [AS], calcified plaque volume [CV], and mineral mass [MM]) at four different thresholds (130, 200, 300, and 400 HU) were measured in 50 patients who underwent non-contrast-enhanced MDCT. Results: Mean CT attenuation of CAC was similar to the attenuation of the contrast-enhanced coronary lumen (CAC 297.1 ± 68.7 HU versus 295 ± 65 HU (p < 0.0001), respectively). Above a threshold of 300 HU CAC measurements significantly varied to standard measurements obtained at a threshold of 130 HU (p < 0.0001). The threshold-dependent variation of MM measurements was significantly smaller than for AS and CV (130 HU versus 400 HU: 63, 75, and 81, respectively; p < 0.001). These differences resulted in a change of age and gender based percentile category for AS in 78% of subjects. Discussion: We demonstrated that CAC measurements are threshold dependent with MM measurements having significantly less variation than AS or CV. Due to the similarity of mean CT attenuation of CAC and the contrast-enhanced coronary lumen accurate quantification of CAC may be difficult in standard coronary contrast-enhanced spiral MDCT

  12. Threshold-dependent variability of coronary artery calcification measurements - implications for contrast-enhanced multi-detector row-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moselewski, Fabian [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Ferencik, Maros [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Achenbach, Stephan [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Department of Internal Medicine II (Cardiology), University of Erlangen (Germany); Abbara, Suhny [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cury, Ricardo C. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Booth, Sarah L. [Jean Mayer USDA Human Nutrition Research Center on Aging, 711 Washington St., Boston, MA 02114 (United States); Jang, Ik-Kyung [Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Brady, Thomas J. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Hoffmann, Udo [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)]. E-mail: uhoffman@partners.org

    2006-03-15

    Introduction: The present study investigated the threshold-dependent variability of coronary artery calcification (CAC) measurements and the potential to quantify CAC in contrast-enhanced multi-detector row-computed tomography (MDCT). Methods: We compared the mean CT attenuation of CAC to luminal contrast enhancement of the coronary arteries in 30 patients (n = 30) undergoing standard coronary contrast-enhanced spiral MDCT. The modified Agatston score [AS], calcified plaque volume [CV], and mineral mass [MM] at four different thresholds (130, 200, 300, and 400 HU) were measured in 50 patients who underwent non-contrast-enhanced MDCT. Results: Mean CT attenuation of CAC was similar to the attenuation of the contrast-enhanced coronary lumen (CAC 297.1 {+-} 68.7 HU versus 295 {+-} 65 HU (p < 0.0001), respectively). Above a threshold of 300 HU CAC measurements significantly varied to standard measurements obtained at a threshold of 130 HU (p < 0.0001). The threshold-dependent variation of MM measurements was significantly smaller than for AS and CV (130 HU versus 400 HU: 63, 75, and 81, respectively; p < 0.001). These differences resulted in a change of age and gender based percentile category for AS in 78% of subjects. Discussion: We demonstrated that CAC measurements are threshold dependent with MM measurements having significantly less variation than AS or CV. Due to the similarity of mean CT attenuation of CAC and the contrast-enhanced coronary lumen accurate quantification of CAC may be difficult in standard coronary contrast-enhanced spiral MDCT.

  13. Development of slew-rate-limited time-over-threshold (ToT) ASIC for a multi-channel silicon-based ion detector

    Science.gov (United States)

    Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.

    2018-01-01

    High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.

  14. Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    CERN Document Server

    Iguaz, F J; Aznar, F; Castel, J F; Dafni, T; Davenport, M; Ferrer-Ribas, E; Galan, J; Garcia, J A; Garza, J G; Giomataris, I; Irastorza, I G; Papaevangelou, T; Rodriguez, A; Tomas, A; Vafeiadis, T; Yildiz, S C

    2014-01-01

    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10$^{-6}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10$^{-7}$ keV$^{-1}$ ...

  15. A new FPGA-based time-over-threshold system for the time of flight detectors at the BGO-OD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freyermuth, Oliver [Physikalisches Institut, Nussallee 12, D-53115 Bonn (Germany); Collaboration: BGO-OD-Collaboration

    2015-07-01

    The BGO-OD experiment at the ELSA accelerator facility at Bonn is built for the systematic investigation of meson photoproduction in the GeV region. It features the unique combination of a central, highly segmented BGO crystal calorimeter covering almost 4π in acceptance and a forward magnetic spectrometer complemented by time of flight walls. The readout of the ToF scintillator bars was upgraded to an FPGA-based VME-board equipped with discriminator mezzanines including per-channel remotely adjustable thresholds. A firmware was developed combining a time-over-threshold (ToT) measurement by implementing a dual-edge TDC, a configurable meantimer trigger logic including a special cosmics trigger, adjustable input delays and gateable scalers, all inside a single electronics module. An experimentally obtained relation between ToT and slope of a PMT signal can be used for a time walk correction to achieve time resolutions comparable to a classical chain of CFD and standard TDC. Additionally, the time-over-threshold information can be exploited for gain matching and allows to monitor online the gain-stability and check for electronics problems such as pulse reflections or baseline jitter. The system is well-suited for a wide range of PMT-based fast detectors with many channels and further applications foreseen.

  16. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    Science.gov (United States)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  17. Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode

    International Nuclear Information System (INIS)

    Reza, S; Wong, W S; Fröjdh, E; Norlin, B; Fröjdh, C; Thungström, G; Thim, J

    2012-01-01

    The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device.

  18. Measurement of beauty photoproduction at threshold using di-electron events with the H1 detector at HERA

    International Nuclear Information System (INIS)

    Sauter, Michel David

    2009-12-01

    The cross section of b anti b photoproduction in ep collisions has been measured with the H1 detector at HERA. Events containing b-quarks were identified through detection of two low momentum electrons in the nal state. Semileptonic decays b anti b→eeX were exploited in the kinematic range of the photon virtuality Q 2 2 , the inelasticity 0.2 T -electron identification. (orig.)

  19. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    Science.gov (United States)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  20. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    Science.gov (United States)

    LeVert, Francis E.; Cox, Samson A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.

  1. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    International Nuclear Information System (INIS)

    LeVert, F.E.; Cox, S.A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor

  2. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Habib, A.; Menouni, M.; Pangaud, P.; Morel, C.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  3. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    Science.gov (United States)

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  4. Methods for determining fast neutron spectra using threshold detectors; Les methodes de determination des spectres de neutrons rapides a l'aide de detecteurs a seuil

    Energy Technology Data Exchange (ETDEWEB)

    Delattre, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We propose to examine all the methods by which fast neutron spectra can be determined using the response of threshold detectors (activation or fission chamber detectors). Most of these methods have been proposed and often even used by various authors of which a list will be found in the bibliography. The aim of the present report is thus not to present original work but rather to gather into a single article and to present in a rational form a whole series of methods which have already been described in articles scattered throughout the specialised literature. Up to the present, each author has in general studied one or two methods and no comparative study of all the possible methods seems to have been made. The most comprehensive study on this topic is that of P.M. UTHE from whose article much has been borrowed. We have tried here to develop a useful tool which should facilitate the systematic experimental study leading to the recognition of the respective merits of the methods proposed. (author) [French] On se propose d'examiner l'ensemble des methodes permettant de determiner les spectres de neutrons rapides a partir des reponses de detecteurs a seuil (detecteurs par activation ou chambre a fission). La plupart de ces methodes ont deja ete proposees, et souvent meme utilisees, par differents auteurs dont on trouvera la liste en bibliographie. Le but du present rapport n'est donc pas de faire oeuvre originale mais plutot de rassembler dans un meme document et de presenter de maniere homogene toute une serie de methodes qui ont deja fait l'objet d'articles disperses dans la litterature specialisee. Jusqu'a present, chaque auteur s'est en general limite a l'etude experimentale d'une ou deux methodes et aucune etude comparative de l'ensemble des methodes possibles ne semble avoir ete faite. Le rapport le plus complet a ce sujet est celui de P.M. UTHE auquel de larges emprunts ont ete faits. On s'est efforce ici d'elaborer un outil de travail commode qui devrait

  5. Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in time-over-threshold mode subjected to monochromatic X-rays

    Science.gov (United States)

    Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Maneuski, D.; Marchal, J.; Norlin, B.; O'Shea, V.; Stewart, G.; Wilhelm, H.; Modh Zain, R.; Thungström, G.

    2012-03-01

    High stopping power is one of the most important figures of merit for X-ray detectors. CdTe is a promising material but suffers from: material defects, non-ideal charge transport and long range X-ray fluorescence. Those factors reduce the image quality and deteriorate spectral information. In this project we used a monochromatic pencil beam collimated through a 20μm pinhole to measure the detector spectral response in dependance on the depth of interaction. The sensor was a 1mm thick CdTe detector with a pixel pitch of 110μm, bump bonded to a Timepix readout chip operating in Time-Over-Threshold mode. The measurements were carried out at the Extreme Conditions beamline I15 of the Diamond Light Source. The beam was entering the sensor at an angle of \\texttildelow20 degrees to the surface and then passed through \\texttildelow25 pixels before leaving through the bottom of the sensor. The photon energy was tuned to 77keV giving a variation in the beam intensity of about three orders of magnitude along the beam path. Spectra in Time-over-Threshold (ToT) mode were recorded showing each individual interaction. The bias voltage was varied between -30V and -300V to investigate how the electric field affected the spectral information. For this setup it is worth noticing the large impact of fluorescence. At -300V the photo peak and escape peak are of similar height. For high bias voltages the spectra remains clear throughout the whole depth but for lower voltages as -50V, only the bottom part of the sensor carries spectral information. This is an effect of the low hole mobility and the longer range the electrons have to travel in a low field.

  6. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'; Mesures de flux rapides a l'aide de detecteurs a seuil sur le reacteur 'Melusine'

    Energy Technology Data Exchange (ETDEWEB)

    Leger, P; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Using existing data on the (n,p) and (n,{alpha}) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 10{sup 13} n/cm{sup 2}/s {+-} 0.14. (author) [French] A l'aide des donnees actuelles sur les reactions a seuil (n,p) et (n,{alpha}) nous avons realise des mesures de flux rapide dans le reacteur du type piscine 'Melusine'. Quatre corps courants: P, S, Mg, Al, ont ete choisis parce qu'ils constituent au point de vue de l'analyse du spectre rapide un assez bon etalement en energie de 2,4 MeV A 8 MeV. La valeur du flux de fission trouve dans l'element central a une puissance de 1 MW est de 1,4.10{sup 13} n/cm{sup 2}/s {+-} 0,14. (auteur)

  7. Limits on light WIMPs with a 1 kg-scale germanium detector at 160 eVee physics threshold at the China Jinping Underground Laboratory

    Science.gov (United States)

    Yang, Li-Tao; Li, Hau-Bin; Yue, Qian; Kang, Ke-Jun; Cheng, Jian-Ping; Li, Yuan-Jing; Tsz-King Wong, Henry; Aǧartioǧlu, M.; An, Hai-Peng; Chang, Jian-Ping; Chen, Jing-Han; Chen, Yun-Hua; Deng, Zhi; Du, Qiang; Gong, Hui; He, Li; Hu, Jin-Wei; Hu, Qing-Dong; Huang, Han-Xiong; Jia, Li-Ping; Jiang, Hao; Li, Hong; Li, Jian-Min; Li, Jin; Li, Xia; Li, Xue-Qian; Li, Yu-Lan; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Liu, Zhong-Zhi; Ma, Hao; Ma, Jing-Lu; Pan, Hui; Ren, Jie; Ruan, Xi-Chao; Sevda, B.; Sharma, Vivek; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Tang, Chang-Jian; Tang, Wei-You; Tian, Yang; Wang, Ji-Min; Wang, Li; Wang, Qing; Wang, Yi; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hai-Jun; Yue, Jian-Feng; Zeng, Xiong-Hui; Zeng, Ming; Zeng, Zhi; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Ji-Fang; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Zhong-Hua; CDEX Collaboration

    2018-01-01

    We report results of a search for light weakly interacting massive particle (WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory (CJPL). Constraints on WIMP-nucleon spin-independent (SI) and spin-dependent (SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV. Supported by the National Key Research and Development Program of China (2017YFA0402200, 2017YFA0402201), the National Natural Science Foundation of China (11175099, 11275107, 11475117, 11475099, 11475092, 11675088), the National Basic Research Program of China (973 Program) (2010CB833006). We thank the support of grants from the Tsinghua University Initiative Scientific Research Program (20121088494, 20151080354) and the Academia Sinica Investigator Award 2011-15, contracts 103-2112-M-001-024 and 104-2112-M-001-038-MY3 from the Ministry of Science and Technology of Taiwan.

  8. 64 x 64 thresholding photodetector array for optical pattern recognition

    Science.gov (United States)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  9. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  10. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  11. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  12. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  13. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  14. CARA Risk Assessment Thresholds

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  15. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  16. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  17. The IMB proton decay detector

    International Nuclear Information System (INIS)

    Svoboda, R.C.; Gajewski, W.; Kropp, W.R.; Reines, F.; Schultz, J.; Smith, D.W.; Sobel, H.; Wuest, C.; Bionta, R.M.; Cortez, B.G.; Errede, S.; Foster, G.W.; Greenberg, J.; Park, H.S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.R.; Velde, J.C. van der; Goldhaber, M.; Blewitt, G.; Lehmann, E.; LoSecco, J.M.; Bratton, C.B.; Learned, J.; Svoboda, R.; Jones, T.W.; Ramana Murthy, P.V.

    1983-01-01

    A description is given of the Irvine-Michigan-Brookhaven proton decay detector which is nearing completion in a salt mine in Cleveland, Ohio, U.S.A. The detector is a water Cerenkov one with a fiducial volume of 4,000 tons and a threshold of 24 MeV. Initial results indicate that the detector is working according to specification and has a high potential for deep underground cosmic ray applications. I will give a brief account of the IMB detector construction and operation and also its present status and possible cosmic ray applications. (orig.)

  18. Threshold quantum cryptography

    International Nuclear Information System (INIS)

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding

  19. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  20. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  1. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  2. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  3. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  4. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  5. Particles near threshold

    International Nuclear Information System (INIS)

    Bhattacharya, T.; Willenbrock, S.

    1993-01-01

    We propose returning to the definition of the width of a particle in terms of the pole in the particle's propagator. Away from thresholds, this definition of width is equivalent to the standard perturbative definition, up to next-to-leading order; however, near a threshold, the two definitions differ significantly. The width as defined by the pole position provides more information in the threshold region than the standard perturbative definition and, in contrast with the perturbative definition, does not vanish when a two-particle s-wave threshold is approached from below

  6. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  7. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  8. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  9. Measurement of {sigma}(e{sup +}e{sup -}{yields}{pi}{sup +}{pi}{sup -}) from threshold to 0.85 GeV{sup 2} using initial state radiation with the KLOE detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F. [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' , Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Archilli, F. [Dipartimento di Fisica dell' Universita ' Tor Vergata, Roma (Italy); INFN Sezione di Roma Tor Vergata, Roma (Italy); Beltrame, P., E-mail: beltrame@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Bloise, C. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bocchetta, S. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Bossi, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Capon, G.; Capussela, T. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ceradini, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ciambrone, P.; De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Santis, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Simone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Zorzi, G. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Denig, A., E-mail: denig@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Donato, C. [INFN Sezione di Napoli, Napoli (Italy)

    2011-06-06

    We have measured the cross section of the radiative process e{sup +}e{sup -}{yields}{pi}{sup +}{pi}{sup -}{gamma} with the KLOE detector at the Frascati {phi}-factory DA{Phi}NE, from events taken at a CM energy W=1 GeV. Initial state radiation allows us to obtain the cross section for e{sup +}e{sup -}{yields}{pi}{sup +}{pi}{sup -}, the pion form factor {sup 2}|F{sub {pi}}| and the dipion contribution to the muon magnetic moment anomaly, {Delta}a{sub {mu}}{sup {pi}{pi}}=(478.5{+-}2.0{sub stat}{+-}5.0{sub syst}{+-}4.5{sub th})x10{sup -10} in the range 0.1

  10. Double Photoionization Near Threshold

    Science.gov (United States)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  11. Thresholds in radiobiology

    International Nuclear Information System (INIS)

    Katz, R.; Hofmann, W.

    1982-01-01

    Interpretations of biological radiation effects frequently use the word 'threshold'. The meaning of this word is explored together with its relationship to the fundamental character of radiation effects and to the question of perception. It is emphasised that although the existence of either a dose or an LET threshold can never be settled by experimental radiobiological investigations, it may be argued on fundamental statistical grounds that for all statistical processes, and especially where the number of observed events is small, the concept of a threshold is logically invalid. (U.K.)

  12. Regional Seismic Threshold Monitoring

    National Research Council Canada - National Science Library

    Kvaerna, Tormod

    2006-01-01

    ... model to be used for predicting the travel times of regional phases. We have applied these attenuation relations to develop and assess a regional threshold monitoring scheme for selected subregions of the European Arctic...

  13. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    Science.gov (United States)

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  14. Threshold guidance update

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1986-01-01

    The Department of Energy (DOE) is developing the concept of threshold quantities for use in determining which waste materials must be handled as radioactive waste and which may be disposed of as nonradioactive waste at its sites. Waste above this concentration level would be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. Last years' activities (1984) included the development of a threshold guidance dose, the development of threshold concentrations corresponding to the guidance dose, the development of supporting documentation, review by a technical peer review committee, and review by the DOE community. As a result of the comments, areas have been identified for more extensive analysis, including an alternative basis for selection of the guidance dose and the development of quality assurance guidelines. Development of quality assurance guidelines will provide a reasonable basis for determining that a given waste stream qualifies as a threshold waste stream and can then be the basis for a more extensive cost-benefit analysis. The threshold guidance and supporting documentation will be revised, based on the comments received. The revised documents will be provided to DOE by early November. DOE-HQ has indicated that the revised documents will be available for review by DOE field offices and their contractors

  15. Near threshold fatigue testing

    Science.gov (United States)

    Freeman, D. C.; Strum, M. J.

    1993-01-01

    Measurement of the near-threshold fatigue crack growth rate (FCGR) behavior provides a basis for the design and evaluation of components subjected to high cycle fatigue. Typically, the near-threshold fatigue regime describes crack growth rates below approximately 10(exp -5) mm/cycle (4 x 10(exp -7) inch/cycle). One such evaluation was recently performed for the binary alloy U-6Nb. The procedures developed for this evaluation are described in detail to provide a general test method for near-threshold FCGR testing. In particular, techniques for high-resolution measurements of crack length performed in-situ through a direct current, potential drop (DCPD) apparatus, and a method which eliminates crack closure effects through the use of loading cycles with constant maximum stress intensity are described.

  16. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  17. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  18. Multi-angle gas and Si detector particle telescope

    International Nuclear Information System (INIS)

    McDonald, R.J.; Sobotka, L.G.; Wozniak, G.J.

    1984-01-01

    A simple gas ΔE and multiple Si E detector telescope (called a WEDGE detector) has been constructed, which is particularly suitable for angular distribution studies of light ion emission from fragments following heavy ion reactions. This inexpensive detector was designed to have a low detection threshold, large dynamic range and constant ΔE path length. The detector has been used in studies of complex fragment emission (typically 2 < Z < 10) following compound nucleus and deep-inelastic heavy ion reactions

  19. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  20. Threshold factorization redux

    Science.gov (United States)

    Chay, Junegone; Kim, Chul

    2018-05-01

    We reanalyze the factorization theorems for the Drell-Yan process and for deep inelastic scattering near threshold, as constructed in the framework of the soft-collinear effective theory (SCET), from a new, consistent perspective. In order to formulate the factorization near threshold in SCET, we should include an additional degree of freedom with small energy, collinear to the beam direction. The corresponding collinear-soft mode is included to describe the parton distribution function (PDF) near threshold. The soft function is modified by subtracting the contribution of the collinear-soft modes in order to avoid double counting on the overlap region. As a result, the proper soft function becomes infrared finite, and all the factorized parts are free of rapidity divergence. Furthermore, the separation of the relevant scales in each factorized part becomes manifest. We apply the same idea to the dihadron production in e+e- annihilation near threshold, and show that the resultant soft function is also free of infrared and rapidity divergences.

  1. Elaborating on Threshold Concepts

    Science.gov (United States)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  2. Gamin partable radiation meter with alarm threshold

    International Nuclear Information System (INIS)

    Payat, Rene.

    1981-10-01

    The Gamin Radiation meter is a direct reading, portable, battery-powered gamma doserate meter featuring alarm thresholds. Doserate is read on a micro-ammeter with a millirad-per-hour logarithmic scale, covering a range of 0,1 to 1000 millirads/hour. The instrument issues an audible warning signal when dose-rate level exceeds a threshold value, which can be selected. The detector tube is of the Geiger-Muller counter, energy compensated type. Because of its low battery drain, the instrument can be operated continously for 1000 hours. It is powered by four 1.5 volt alcaline batteries of the R6 type. The electronic circuitry is housed in a small lightweight case made of impact resistant plastic. Applications of the Gamin portable radiation monitor are found in health physics, safety departments, medical facilities, teaching, civil defense [fr

  3. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  4. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  5. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  6. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  7. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  8. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  9. Hadron production near threshold

    Indian Academy of Sciences (India)

    Abstract. Final state interaction effects in pp → pΛK+ and pd → 3He η reactions are explored near threshold to study the sensitivity of the cross-sections to the pΛ potential and the ηN scattering matrix. The final state scattering wave functions between Λ and p and η and 3He are described rigorously. The Λ production is ...

  10. Casualties and threshold effects

    International Nuclear Information System (INIS)

    Mays, C.W.; National Cancer Inst., Bethesda

    1988-01-01

    Radiation effects like cancer are denoted as casualties. Other radiation effects occur almost in everyone when the radiation dose is sufficiently high. One then speaks of radiation effects with a threshold dose. In this article the author puts his doubt about this classification of radiation effects. He argues that some effects of exposure to radiation do not fit in this classification. (H.W.). 19 refs.; 2 figs.; 1 tab

  11. Resonance phenomena near thresholds

    International Nuclear Information System (INIS)

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  12. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  13. The detector for dark matter search

    International Nuclear Information System (INIS)

    Li Jin

    2004-01-01

    The dark matter search and dark matter detection is very importance project in Particle Physics, Astrophysics and Cosmology. The paper introduces the current status of the dark matter search in the world and points out that the development of detector with larger scale, lower threshold, very low radioactive background and building of underground laboratory is important developing direction. So far, there is no such detector and underground laboratory in our county. We should change such situation as soon as possible. (authors)

  14. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  15. Intermediate structure and threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2004-01-01

    The Intermediate Structure, evidenced through microstructures of the neutron strength function, is reflected in open reaction channels as fluctuations in excitation function of nuclear threshold effects. The intermediate state supporting both neutron strength function and nuclear threshold effect is a micro-giant neutron threshold state. (author)

  16. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  17. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  18. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  19. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  1. Neutron television camera detector

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1976-01-01

    A neutron area detector system is being developed at the Institut Laue-Langevin which is based on a system for x-rays. The system has a large counting rate capability; this is extremely important where the total background count exceeds the total counts in the signals of interest. Its spatial resolution is of the order of one mm, while the screen size is 400 mm. The main limitation of the system is its limited counting efficiency, and this is directly attributable to the optical self-absorption of the neutron phosphor. All coherent noise in the system, i.e., all noise synchronized with the TV scans, has to be kept lower than the first bit threshold. However, this requirement can be relaxed when dealing with diffraction patterns, such as those from single crystals, for which a local background is subtracted from the pattern

  2. Crossing the Petawatt threshold

    International Nuclear Information System (INIS)

    Perry, M.

    1996-01-01

    A revolutionary new laser called the Petawatt, developed by Lawrence Livermore researchers after an intensive three-year development effort, has produced more than 1,000 trillion (open-quotes petaclose quotes) watts of power, a world record. By crossing the petawatt threshold, the extraordinarily powerful laser heralds a new age in laser research. Lasers that provide a petawatt of power or more in a picosecond may make it possible to achieve fusion using significantly less energy than currently envisioned, through a novel Livermore concept called open-quotes fast ignition.close quotes The petawatt laser will also enable researchers to study the fundamental properties of matter, thereby aiding the Department of Energy's Stockpile Stewardship efforts and opening entirely new physical regimes to study. The technology developed for the Petawatt has also provided several spinoff technologies, including a new approach to laser material processing

  3. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  4. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  5. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  6. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  7. Process allowing the spectral compensation of semi-conductor nuclear detector

    International Nuclear Information System (INIS)

    L'Hote, J.P.

    1987-01-01

    The process includes a discriminator whose threshold level is applied to the detector during a fixed time and is externally controlled by a pre-programmed system; the different threshold levels and their application time to the detector are fixed by the nature of the used detector and by the tolerance allowed on the spectral response. The measurements made for each threshold level are corrected by a coefficient depending on the nature of the used detector and the tolerance on the spectral response [fr

  8. Generalized mean detector for collaborative spectrum sensing

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-04-01

    In this paper, a unified generalized eigenvalue based spectrum sensing framework referred to as Generalized mean detector (GMD) has been introduced. The generalization of the detectors namely (i) the eigenvalue ratio detector (ERD) involving the ratio of the largest and the smallest eigenvalues; (ii) the Geometric mean detector (GEMD) involving the ratio of the largest eigenvalue and the geometric mean of the eigenvalues and (iii) the Arithmetic mean detector (ARMD) involving the ratio of the largest and the arithmetic mean of the eigenvalues is explored. The foundation of the proposed unified framework is based on the calculation of exact analytical moments of the random variables of test statistics of the respective detectors. In this context, we approximate the probability density function (PDF) of the test statistics of the respective detectors by Gaussian/Gamma PDF using the moment matching method. Finally, we derive closed-form expressions to calculate the decision threshold of the eigenvalue based detectors by exchanging the derived exact moments of the random variables of test statistics with the moments of the Gaussian/Gamma distribution function. The performance of the eigenvalue based detectors is compared with the traditional detectors such as energy detector (ED) and cyclostationary detector (CSD) and validate the importance of the eigenvalue based detectors particularly over realistic wireless cognitive environments. Analytical and simulation results show that the GEMD and the ARMD yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed simple and tractable approximation approaches are in perfect agreement with the empirical results. © 1972-2012 IEEE.

  9. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  10. Norm based design of fault detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Hans Henrik

    1999-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered in this paper from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well...

  11. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  12. Detector LENS as a new tool for solar neutrino spectroscopy

    International Nuclear Information System (INIS)

    Kornoukhov, V.N.

    2001-01-01

    LENS detector is a low-threshold, electron-flavor specific detector for real time measurement of the solar neutrino spectrum at low energies. It is expected that 20 tons of Yb used as a neutrino target should give several hundred events per year. The basic method for implementation of the LENS detector is scintillator technique, namely a liquid scintillator doped (up to 10% in mass) with natural Yb

  13. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  14. Cascaded systems analysis of photon counting detectors

    International Nuclear Information System (INIS)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at

  15. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  16. Crossing the threshold

    Science.gov (United States)

    Bush, John; Tambasco, Lucas

    2017-11-01

    First, we summarize the circumstances in which chaotic pilot-wave dynamics gives rise to quantum-like statistical behavior. For ``closed'' systems, in which the droplet is confined to a finite domain either by boundaries or applied forces, quantum-like features arise when the persistence time of the waves exceeds the time required for the droplet to cross its domain. Second, motivated by the similarities between this hydrodynamic system and stochastic electrodynamics, we examine the behavior of a bouncing droplet above the Faraday threshold, where a stochastic element is introduced into the drop dynamics by virtue of its interaction with a background Faraday wave field. With a view to extending the dynamical range of pilot-wave systems to capture more quantum-like features, we consider a generalized theoretical framework for stochastic pilot-wave dynamics in which the relative magnitudes of the drop-generated pilot-wave field and a stochastic background field may be varied continuously. We gratefully acknowledge the financial support of the NSF through their CMMI and DMS divisions.

  17. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  18. Influence of material and geometry on the performance of superconducting nanowire single-photon detectors

    CERN Document Server

    Henrich, Dagmar

    2013-01-01

    Superconducting Nanowire Single-Photon Detectors offer the capability to detect electromagnetic waves on a single photon level in a wavelength range that far exceeds that of alternative detector types. However, above a certain threshold wavelength, the efficiency of those detectors decreases stronlgy, leading to a poor performance in the far-infrared range. Influences on this threshold are studied and approaches for improvement are verified experimentally by measurement of the device performance.

  19. Albania - Thresholds I and II

    Data.gov (United States)

    Millennium Challenge Corporation — From 2006 to 2011, the government of Albania (GOA) received two Millennium Challenge Corporation (MCC) Threshold Programs totaling $29.6 million. Albania received...

  20. Hedging, arbitrage and optimality with superlinear frictions

    OpenAIRE

    Guasoni, Paolo; Rásonyi, Miklós

    2015-01-01

    In a continuous-time model with multiple assets described by c\\`{a}dl\\`{a}g processes, this paper characterizes superhedging prices, absence of arbitrage, and utility maximizing strategies, under general frictions that make execution prices arbitrarily unfavorable for high trading intensity. Such frictions induce a duality between feasible trading strategies and shadow execution prices with a martingale measure. Utility maximizing strategies exist even if arbitrage is present, because it is n...

  1. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  2. Threshold Concepts and Information Literacy

    Science.gov (United States)

    Townsend, Lori; Brunetti, Korey; Hofer, Amy R.

    2011-01-01

    What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…

  3. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  4. Detector decoy quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2009-01-01

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  5. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  6. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  7. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  8. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  9. Three Alternative Symbol-Lock Detectors

    Science.gov (United States)

    Shihabi, Mazen M.; Hinedi, Sami M.; Shah, Biren N.

    1993-01-01

    Three symbol-lock detectors proposed as alternatives in advanced receivers processing non-return-to-zero binary data signals. Two perform operations similar to those of older square-law and absolute-value types. However, integrals computed during nonoverlapping symbol periods and, therefore, only one integrator needed in each such detector. Proposed detectors simpler, but performances worse because noises in overlapping samples correlated, whereas noises in nonoverlapping samples not correlated. Third detector is signal-power-estimator type. Signal integrated during successive half symbol cycles, and therefore only one integrator needed. Half-cycle integrals multiplied to eliminate effect of symbol polarity, and products accumulated during M-cycle observation period to smooth out estimate of signal power. If estimated signal power exceeds threshold, delta, then lock declared.

  10. Heavy ion measurement by chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1979-02-01

    In testing the applicability of the threshold system polyvinyl alcohol/methyl orange/chloral hydrate/sodium tetraborate to the quantitative detection of single particles, the chemical detector was irradiated with 4 He, 12 C, 18 O, 22 He ions of different LET. Detectors with 4 different borax concentrations (chloral hydrate concentration kept constant) have been irradiated. The dose causing the colour change increased linearly with the borax concentration. For equal borax concentrations this dose increases with increasing LET due to the decreasing G value of the HCl. The fluence ranges measurable with the various detector compositions are given. 4 He and 18 O ion ranges have been determined. The measured depth dose curves have been corrected because the dose is LET-dependent. The experimentally determined ranges are in good agreement with values calculated for the detector material

  11. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  12. Music effect on pain threshold evaluated with current perception threshold

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: Music relieves anxiety and psychotic tension. This effect of music is applied to surgical operation in the hospital and dental office. It is still unclear whether this music effect is only limited to the psychological aspect but not to the physical aspect or whether its music effect is influenced by the mood or emotion of audience. To elucidate these issues, we evaluated the music effect on pain threshold by current perception threshold (CPT) and profile of mood states (POMC) test. METHODS: Healthy 30 subjects (12 men, 18 women, 25-49 years old, mean age 34.9) were tested. (1)After POMC test, all subjects were evaluated pain threshold with CPT by Neurometer (Radionics, USA) under 6 conditions, silence, listening to the slow tempo classic music, nursery music, hard rock music, classic paino music and relaxation music with 30 seconds interval. (2)After Stroop color word test as the stresser, pain threshold was evaluated with CPT under 2 conditions, silence and listening to the slow tempo classic music. RESULTS: Under litening to the music, CPT sores increased, especially 2 000 Hz level related with compression, warm and pain sensation. Type of music, preference of music and stress also affected CPT score. CONCLUSION: The present study demonstrated that the concentration on the music raise the pain threshold and that stress and mood influence the music effect on pain threshold.

  13. Modelling of performance of the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Kazi, S.

    2000-01-01

    Full text: The ATLAS detector being built at LHC will use the SCT (semiconductor tracking) module for particle tracking in the inner core of the detector. An analytical/numerical model of the discriminator threshold dependence and the temperature dependence of the SCT module was derived. Measurements were conducted on the performance of the SCT module versus temperature and these results were compared with the predictions made by the model. The affect of radiation damage of the SCT detector was also investigated. The detector will operate for approximately 10 years so a study was carried out on the effects of the 10 years of radiation exposure to the SCT

  14. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  15. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  16. Parton distributions with threshold resummation

    CERN Document Server

    Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.

    2015-01-01

    We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.

  17. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  18. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  19. The CRESST-III detector module

    Energy Technology Data Exchange (ETDEWEB)

    Wuestrich, Marc [Max-Planck-Institut f. Physik (Werner-Heisenberg-Institut) (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    The direct dark matter experiment CRESST uses scintillating calorimeters to detected WIMP induced nuclear scattering in CaWO{sub 4} single crystals. Equipped with transition edge sensors (TESs), these detectors can achieve detection thresholds well below 1 keV. The last physics run of CRESST-II proved the high potential of the experiment especially for small WIMP masses and triggered the development of a new detector module using much smaller CaWO{sub 4} main absorbers. The upcoming CRESST-III run will mainly be equipped with these newly developed modules, which combine a fully scintillating detector housing with an improved detection threshold (<100 keV). While many features of the new module were adapted from previous module designs in an improved way, also new features are implemented like instrumented sticks (iSticks) holding the crystals and optimized TES structures for phonon and light detectors. First tests above ground validated the improved performance of these detector modules and promise to explore new regions in the WIMP parameter space in the next CRESST-III run.

  20. Conceptions of nuclear threshold status

    International Nuclear Information System (INIS)

    Quester, G.H.

    1991-01-01

    This paper reviews some alternative definitions of nuclear threshold status. Each of them is important, and major analytical confusions would result if one sense of the term is mistaken for another. The motives for nations entering into such threshold status are a blend of civilian and military gains, and of national interests versus parochial or bureaucratic interests. A portion of the rationale for threshold status emerges inevitably from the pursuit of economic goals, and another portion is made more attraction by the derives of the domestic political process. Yet the impact on international security cannot be dismissed, especially where conflicts among the states remain real. Among the military or national security motives are basic deterrence, psychological warfare, war-fighting and, more generally, national prestige. In the end, as the threshold phenomenon is assayed for lessons concerning the role of nuclear weapons more generally in international relations and security, one might conclude that threshold status and outright proliferation coverage to a degree in the motives for all of the states involved and in the advantages attained. As this paper has illustrated, nuclear threshold status is more subtle and more ambiguous than outright proliferation, and it takes considerable time to sort out the complexities. Yet the world has now had a substantial amount of time to deal with this ambiguous status, and this may tempt more states to exploit it

  1. Large-Area Liquid Scintillation Detector Slab

    International Nuclear Information System (INIS)

    Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W.; Reines, F.; Sobel, H.; Hruschka, A. A.

    1966-01-01

    A low-cost detector 18' x 2' x 5' has been developed for an underground cosmic ray neutrino experiment. The liquid employed is a high-clarity mineral oil-based mixture, and light is guided to the ends of the detector by total internal reflection at the surface of the Lucite container. Signals from 2 five-inch photomultipliers at each end give energy and event location for single penetrating particles, with relatively good discrimination against natural radioactivity by virtue of the substantial thickness. Data are presented on the response function of the tank, energy resolution, rates and thresholds. A number of modifications that have been tried are also described

  2. Handling of BLM abort thresholds in the LHC

    CERN Document Server

    Nebot Del Busto, E; Holzer, EB; Zamantzas, C; Kruk, G; Nordt, A; Sapinski, M; Nemcic, M; Orecka, A; Jackson, S; Roderick, C; Skaugen, A

    2011-01-01

    The Beam Loss Monitoring system (BLM) for the LHC consists of about 3600 Ionization Chambers (IC) located around the ring. Its main purpose is to request a beam abort when the measured losses exceed a certain threshold. The BLM detectors integrate the measured signals in 12 different time intervals (running from 40us to 83.8s) enabling for a different set of abort thresholds depending on the duration of the beam loss. Furthermore, 32 energy levels running from 450GeV to 7TeV account for the fact that the energy density of a particle shower increases with the energy of the primary particle, i.e. the beam energy. Thus, a set of ! 3600 × 12 × 32 = 1.3 · 106 thresholds must be handled. These thresholds are highly critical for the safety of the machine and depend to a large part on human judgment, which cannot be replaced by automatic test procedures. The BLM team has defined well established procedures to compute, set and check new BLM thresholds, in order to avoid and/or find non-conformities due to manipulat...

  3. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  4. Measurement of inclusive eta production in e+e- interactions near charm threshold

    International Nuclear Information System (INIS)

    Porter, F.C.

    1981-01-01

    We have measured the inclusive cross section for eta production in e + e - interactions near charm threshold using the Crystal Ball detector at SPEAR. By comparing the inclusive eta production above and below charm threshold we obtain the limits: R(e + e - →FFX) BR(F→etax)<0.3 (90% C.L., E/sub c.m./<4.5 GeV); BR(D→etax)<0.13

  5. MUON DETECTORS: RPC

    CERN Multimedia

    Pierluigi Paolucci

    2013-01-01

    In the second part of 2013 the two main activities of the RPC project are the reparation and maintenance of the present system and the construction and installation of the RE4 system. Since the opening of the barrel, repair activities on the gas, high-voltage and electronic systems are being done in parallel, in agreement with the CMS schedule. In YB0, the maintenance of the RPC detector was in the shadow of other interventions, nevertheless the scaffolding turned out to be a good solution for our gas leaks searches. Here we found eight leaking channels for about 100 l/h in total. 10 RPC/DT modules were partially extracted –– 90 cm –– in YB0, YB–1 and YB–2 to allow for the replacement of FE and LV distribution boards. Intervention was conducted on an additional two chambers on the positive endcap to solve LV and threshold control problems. Until now we were able to recover 0.67% of the total number of RPC electronic channels (1.5% of the channels...

  6. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC detector continued to operate well during the March-June 2011 period. As the luminosity has climbed three orders of magnitude, the currents drawn in the CSC high-voltage system have risen correspondingly, and the current trip thresholds have been increased from 1 μA to 5 μA (and 20 in ME1/1 chambers). A possible concern is that a long-lasting and undesirable corona is capable of drawing about 1 μA, and thus may not be detected by causing current trips; on the other hand it is easily dealt with by cycling HV when detected. To better handle coronas, software is being developed to better detect them, although a stumbling block is the instability of current measurements in some of the channels of the CAEN supplies used in ME1/1. A survey of other issues faced by the CSC Operations team was discussed at the 8th June 2011 CSC Operations/DPG meeting (Rakness). The most important issues, i.e. those that have caused a modest amount of downtime, are all being actively addressed. These are:...

  7. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  8. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  9. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  10. Plutonium Assay in Soil at the BRC Threshold

    International Nuclear Information System (INIS)

    Miller, T.

    2003-01-01

    The Atomic Weapons Establishment (AWE) at Aldermaston has investigated the performance of low and high-resolution gamma-ray detectors for plutonium (Pu) assay in soil at the UK Below Regulatory Concern (BRC) threshold (0.4 Bq/g above the natural background activity level). The goal was a rapid and economical technique for sorting large volumes of lightly contaminated soils into above and BRC fractions. The strategy involved utilizing the relatively high yield 60 keV emission from Am-241 ingrowth (Pu-241 daughter) and known isotopic ratios. This paper covers the determination of detector response factors for an Am-241 source positioned at various locations within a circular tray of soil. These factors were weighted, according to the relative volumes that they represent, in order to derive a uniform response factor and quantify the systematic error for non-uniform activity distributions. Detection limits and random errors were also derived from the counting data. The high-resolution detector was shown to have the best detection levels and lowest systematic and random errors. However, uncertainties for non-uniform distributions of contamination were relatively large. Hence, analyzing soils at the BRC threshold would only be feasible if contamination was well distributed throughout the soil sample being monitored. Fortunately, contaminated land at AWE is generally homogeneous and so the technique has wide applicability

  11. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  12. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  13. Thermotactile perception thresholds measurement conditions.

    Science.gov (United States)

    Maeda, Setsuo; Sakakibara, Hisataka

    2002-10-01

    The purpose of this paper is to investigate the effects of posture, push force and rate of temperature change on thermotactile thresholds and to clarify suitable measuring conditions for Japanese people. Thermotactile (warm and cold) thresholds on the right middle finger were measured with an HVLab thermal aesthesiometer. Subjects were eight healthy male Japanese students. The effects of posture in measurement were examined in the posture of a straight hand and forearm placed on a support, the same posture without a support, and the fingers and hand flexed at the wrist with the elbow placed on a desk. The finger push force applied to the applicator of the thermal aesthesiometer was controlled at a 0.5, 1.0, 2.0 and 3.0 N. The applicator temperature was changed to 0.5, 1.0, 1.5, 2.0 and 2.5 degrees C/s. After each measurement, subjects were asked about comfort under the measuring conditions. Three series of experiments were conducted on different days to evaluate repeatability. Repeated measures ANOVA showed that warm thresholds were affected by the push force and the rate of temperature change and that cold thresholds were influenced by posture and push force. The comfort assessment indicated that the measurement posture of a straight hand and forearm laid on a support was the most comfortable for the subjects. Relatively high repeatability was obtained under measurement conditions of a 1 degrees C/s temperature change rate and a 0.5 N push force. Measurement posture, push force and rate of temperature change can affect the thermal threshold. Judging from the repeatability, a push force of 0.5 N and a temperature change of 1.0 degrees C/s in the posture with the straight hand and forearm laid on a support are recommended for warm and cold threshold measurements.

  14. DOE approach to threshold quantities

    International Nuclear Information System (INIS)

    Wickham, L.E.; Kluk, A.F.; Department of Energy, Washington, DC)

    1985-01-01

    The Department of Energy (DOE) is developing the concept of threshold quantities for use in determining which waste materials must be handled as radioactive waste and which may be disposed of as nonradioactive waste at its sites. Waste above this concentration level would be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. Ideally, the threshold must be set high enough to significantly reduce the amount of waste requiring special handling. It must also be low enough so that waste at the threshold quantity poses a very small health risk and multiple exposures to such waste would still constitute a small health risk. It should also be practical to segregate waste above or below the threshold quantity using available instrumentation. Guidance is being prepared to aid DOE sites in establishing threshold quantity values based on pathways analysis using site-specific parameters (waste stream characteristics, maximum exposed individual, population considerations, and site specific parameters such as rainfall, etc.). A guidance dose of between 0.001 to 1.0 mSv/y (0.1 to 100 mrem/y) was recommended with 0.3 mSv/y (30 mrem/y) selected as the guidance dose upon which to base calculations. Several tasks were identified, beginning with the selection of a suitable pathway model for relating dose to the concentration of radioactivity in the waste. Threshold concentrations corresponding to the guidance dose were determined for waste disposal sites at a selected humid and arid site. Finally, cost-benefit considerations at the example sites were addressed. The results of the various tasks are summarized and the relationship of this effort with related developments at other agencies discussed

  15. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  16. Thresholds in chemical respiratory sensitisation.

    Science.gov (United States)

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-03

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the

  17. Optimization Problems on Threshold Graphs

    Directory of Open Access Journals (Sweden)

    Elena Nechita

    2010-06-01

    Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.

  18. Threshold current for fireball generation

    Science.gov (United States)

    Dijkhuis, Geert C.

    1982-05-01

    Fireball generation from a high-intensity circuit breaker arc is interpreted here as a quantum-mechanical phenomenon caused by severe cooling of electrode material evaporating from contact surfaces. According to the proposed mechanism, quantum effects appear in the arc plasma when the radius of one magnetic flux quantum inside solid electrode material has shrunk to one London penetration length. A formula derived for the threshold discharge current preceding fireball generation is found compatible with data reported by Silberg. This formula predicts linear scaling of the threshold current with the circuit breaker's electrode radius and concentration of conduction electrons.

  19. Nuclear threshold effects and neutron strength function

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia

    2003-01-01

    One proves that a Nuclear Threshold Effect is dependent, via Neutron Strength Function, on Spectroscopy of Ancestral Neutron Threshold State. The magnitude of the Nuclear Threshold Effect is proportional to the Neutron Strength Function. Evidence for relation of Nuclear Threshold Effects to Neutron Strength Functions is obtained from Isotopic Threshold Effect and Deuteron Stripping Threshold Anomaly. The empirical and computational analysis of the Isotopic Threshold Effect and of the Deuteron Stripping Threshold Anomaly demonstrate their close relationship to Neutron Strength Functions. It was established that the Nuclear Threshold Effects depend, in addition to genuine Nuclear Reaction Mechanisms, on Spectroscopy of (Ancestral) Neutron Threshold State. The magnitude of the effect is proportional to the Neutron Strength Function, in their dependence on mass number. This result constitutes also a proof that the origins of these threshold effects are Neutron Single Particle States at zero energy. (author)

  20. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  1. Multicomponent activation detector measurements of reactor neutron spectra

    International Nuclear Information System (INIS)

    Sandberg, J.; Aarnio, P. A.; Routti, J. T.

    1984-01-01

    Information on the neutron flux is required in many applications of research reactors, such as activation analysis or radiation damage measurements. Flux spectrum measurements are commonly carried out with activation foils. The reaction types used are threshold reactions in the fast energy region, resonance reactions in the intermediate region and neutron capture reactions with l/v-cross section in the thermal region. It has been shown that it is possible to combine several detector elements into homogeneous multicomponent detectors. The activities of all detector reaction products can be determined with a single gamma spectrum measurement. The multicomponent principle sets some restrictions on the choice of detector reactions, for example, each product nuclide may be produced in one reaction only. Separate multicomponent threshold and resonance detectors were designed for the fast and intermediate regions, respectively. The detectors were fabricated in polyethylene irradiation capsules or quartz glass ampoules, and they were irradiated in a cadmium cover. The detectors were succesfully used in the irradiation ring and in the core of a Triga reactor. The intermediate and fast neutron spectrum was unfolded with the least-squares unfolding program LOUHI. According to the preliminary results multicomponent activation detectors might constitute a convenient means for carrying out routine neutron spectrum measurements in research reactors. (orig.)

  2. The germanium wall of the GEM detector system GEM Collaboration

    International Nuclear Information System (INIS)

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  3. Percolation Threshold Parameters of Fluids

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Nezbeda, Ivo

    2009-01-01

    Roč. 79, č. 4 (2009), 041141-041147 ISSN 1539-3755 Institutional research plan: CEZ:AV0Z40720504 Keywords : percolation threshold * universality * infinite cluster Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2009

  4. Threshold analyses and Lorentz violation

    International Nuclear Information System (INIS)

    Lehnert, Ralf

    2003-01-01

    In the context of threshold investigations of Lorentz violation, we discuss the fundamental principle of coordinate independence, the role of an effective dynamical framework, and the conditions of positivity and causality. Our analysis excludes a variety of previously considered Lorentz-breaking parameters and opens an avenue for viable dispersion-relation investigations of Lorentz violation

  5. Threshold enhancement of diphoton resonances

    Directory of Open Access Journals (Sweden)

    Aoife Bharucha

    2016-10-01

    Full Text Available We revisit a mechanism to enhance the decay width of (pseudo-scalar resonances to photon pairs when the process is mediated by loops of charged fermions produced near threshold. Motivated by the recent LHC data, indicating the presence of an excess in the diphoton spectrum at approximately 750 GeV, we illustrate this threshold enhancement mechanism in the case of a 750 GeV pseudoscalar boson A with a two-photon decay mediated by a charged and uncolored fermion having a mass at the 12MA threshold and a small decay width, <1 MeV. The implications of such a threshold enhancement are discussed in two explicit scenarios: i the Minimal Supersymmetric Standard Model in which the A state is produced via the top quark mediated gluon fusion process and decays into photons predominantly through loops of charginos with masses close to 12MA and ii a two Higgs doublet model in which A is again produced by gluon fusion but decays into photons through loops of vector-like charged heavy leptons. In both these scenarios, while the mass of the charged fermion has to be adjusted to be extremely close to half of the A resonance mass, the small total widths are naturally obtained if only suppressed three-body decay channels occur. Finally, the implications of some of these scenarios for dark matter are discussed.

  6. The ATLAS Pixel Detector operation and performance

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately $80 imes 10^6$~electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region. The complete Pixel Detector has been taking part in cosmic-ray data-taking since 2008. Since November 2009 it has been operated with LHC colliding beams at $sqrt{s}=900$~GeV, 2.36~TeV and 7 TeV. The detector operated with an active fraction of 97.2% at a threshold of 3500~$e$, showing a noise occupancy rate better than $10^{-9}$~hit/pixel/BC and a track association efficiency of 99%. The Lorentz angle for electrons in silicon is measured to be $ heta_mathrm{L}=12.11^circ pm 0.09^circ$ and its temperature dependence has been verified. The pulse height information from the time-over-threshold technique allows to improve the point resolution using charge sharing and to perform parti...

  7. Near-threshold photoproduction of {phi} mesons from deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Qian, X., E-mail: xqian@caltech.ed [Duke University, Durham, NC 27708 (United States); Kellogg Radiation Laboratory, California Institute of Technology, CA 91125 (United States); Chen, W.; Gao, H. [Duke University, Durham, NC 27708 (United States); Hicks, K. [Ohio University, Athens, OH 45701 (United States); Kramer, K. [Duke University, Durham, NC 27708 (United States); Laget, J.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Mibe, T. [Ohio University, Athens, OH 45701 (United States); Qiang, Y. [Duke University, Durham, NC 27708 (United States); Stepanyan, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tedeschi, D.J. [University of South Carolina, Columbia, SC 29208 (United States); Xu, W. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Adhikari, K.P.; Amaryan, M. [Old Dominion University, Norfolk, VA 23529 (United States); Anghinolfi, M. [INFN, Sezione di Genova, 16146 Genova (Italy); Ball, J. [CEA, Centre de Saclay, Irfu/Service de Physique Nucleaire, 91191 Gif-sur-Yvette (France); Battaglieri, M. [INFN, Sezione di Genova, 16146 Genova (Italy); Batourine, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bedlinskiy, I. [Institute of Theoretical and Experimental Physics, Moscow 117259 (Russian Federation); Bellis, M. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Biselli, A.S. [Fairfield University, Fairfield, CT 06824 (United States); Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2011-02-07

    We report the first, kinematically-complete measurement of the differential cross section of {phi}-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, K{sup +} and K{sup -} near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections (d{sigma})/(dt) for the initial photon energy range of 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Our finding is different from recent LEPS results on {phi}-meson photoproduction from deuterium in a similar incident photon energy range, but in a different momentum transfer region.

  8. Photoproduction of {omega} mesons on nuclei near the production threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nanova, M.; Friedrich, S.; Metag, V.; Thiel, M.; Gregor, R.; Kotulla, M.; Lugert, S.; Novotny, R.; Pant, L.M.; Pfeiffer, M.; Roy, A.; Schadmand, S.; Trnka, D.; Varma, R. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Weil, J.; Mosel, U. [Universitaet Giessen, Institut fuer Theoretische Physik I, Giessen (Germany); Anton, G.; Bogendoerfer, R.; Hoessl, J.; Suft, G. [Universitaet Erlangen, Physikalisches Institut, Erlangen (Germany); Bacelar, J.C.S.; Castelijns, R.; Loehner, H.; Messchendorp, J.G.; Shende, S. [Kernfysisch Versneller Institut, Groningen (Netherlands); Bartholomy, O.; Crede, V.; Ehmanns, A.; Essig, K.; Fabry, I.; Fuchs, M.; Funke, C.; Gutz, E.; Hoeffgen, S.; Hoffmeister, P.; Horn, I.; Junkersfeld, J.; Kalinowsky, H.; Klempt, E.; Lotz, J.; Pee, H. van; Schmidt, C.; Szczepanek, T.; Thoma, U.; Walther, D.; Weinheimer, C.; Wendel, C. [Helmholtz-Institut fuer Strahlen- und Kernphysik Universitaet Bonn, Bonn (Germany); Bayadilov, D. [Helmholtz-Institut fuer Strahlen- und Kernphysik Universitaet Bonn, Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Beloglazov, Y.A.; Gridnev, A.B.; Lopatin, I.V.; Radkov, A.; Sumachev, V.V. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Dutz, H.; Elsner, D.; Ewald, R.; Gothe, R.; Klein, Frank; Klein, Friedrich; Konrad, M.; Menze, D.; Morales, C.; Ostrick, M.; Schmieden, H.; Schoch, B.; Suele, A. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Jaegle, I.; Krusche, B.; Mertens, T. [Universitaet Basel, Physikalisches Institut, Basel (Switzerland); Kopf, B. [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (Germany); Universitaet Bochum, Physikalisches Institut, Bochum (Germany); Langheinrich, J. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Universitaet Bochum, Physikalisches Institut, Bochum (Germany)

    2011-02-15

    The photoproduction of {omega} mesons on LH{sub 2}, C and Nb has been measured for incident photon energies from 900 to 1300MeV using the CB/TAPS detector at ELSA. The {omega} lineshape does not show any significant difference between the LH{sub 2} and the Nb targets. The experiment was motivated by transport calculations that predicted a sensitivity of the {omega} lineshape to in-medium modifications near the production threshold on a free nucleon of E{sub {gamma}}{sup lab}=1109 MeV. A comparison with recent calculations is given. (orig.)

  9. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  10. Electronic device increases threshold sensitivity and removes noise from FM communications receiver

    Science.gov (United States)

    Conrad, W. M.; Loch, F. J.

    1971-01-01

    Threshold extension device connected between demodulator output and filter output minimizes clicking noise. Device consists of click-eliminating signal transfer channel with follow-and-hold circuit and detector for sensing click impulses. Final output consists of signal plus low level noise without high amplitude impulses.

  11. Neutron Detection at JET Using Artificial Diamond Detectors

    International Nuclear Information System (INIS)

    Pillon, M.; Angelone, M.; Lattanzi, D.; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Murari, A.

    2006-01-01

    Three CVD diamond detectors are installed and operated at Joint European Torus, Culham laboratory. Diamond detectors are very promising detectors to be used in fusion environment due to their radiation hardness, gamma discrimination properties, fast response and spectroscopy properties. The aim of this work is to test and qualify artificial diamond detectors as neutron counters and spectrometers on a large fusion device. Two of these detectors are polycrystalline CVD diamond films of thickness 30 mm and 40 mm respectively while the third detector is a monocrystalline CVD of 110 mm thickness. The first polycrystalline diamond is covered with 4 mm of LiF 95 % enriched in 6 Li and enclosed inside a polyethylene moderator cap. This detector is used with a standard electronic chain made with a charge preamplifier, shaping amplifier and threshold discriminator. It is used to measure the time-dependent total neutron yield produced by JET plasma and its signal is compared with JET fission chambers. The second polycrystalline diamond is connected with a fast (1 GHz) preamplifier and a threshold discriminator via a long (about 100 m) double screened cable. This detector is used to detect the 14 MeV neutrons produced by triton burn-up using the reaction 12 C (n, α) 9 Be which occurs in diamond and a proper discriminator threshold. The response of this detector is fast and the electronic is far from the high radiation environment. Its signal is used in comparison with JET silicon diodes. The third monocrystalline diamond is also connected using a standard electronic and is used to demonstrate the feasibility of 14 MeV neutron spectrometry at about 3% peak resolution taking advantage of the spectrometer properties of monocrystalline diamonds. The results obtained are presented in this work. (author)

  12. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  13. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  14. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  15. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  16. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  17. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  18. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  19. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  20. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  1. The issue of threshold states

    International Nuclear Information System (INIS)

    Luck, L.

    1994-01-01

    The states which have not joined the Non-proliferation Treaty nor have undertaken any other internationally binding commitment not to develop or otherwise acquire nuclear weapons are considered a threshold states. Their nuclear status is rendered opaque as a conscious policy. Nuclear threshold status remains a key disarmament issue. For those few states, as India, Pakistan, Israel, who have put themselves in this position, the security returns have been transitory and largely illusory. The cost to them, and to the international community committed to the norm of non-proliferation, has been huge. The decisions which could lead to recovery from the situation in which they find themselves are essentially at their own hands. Whatever assistance the rest of international community is able to extend, it will need to be accompanied by a vital political signal

  2. Multiscalar production amplitudes beyond threshold

    CERN Document Server

    Argyres, E N; Kleiss, R H

    1993-01-01

    We present exact tree-order amplitudes for $H^* \\to n~H$, for final states containing one or two particles with non-zero three-momentum, for various interaction potentials. We show that there are potentials leading to tree amplitudes that satisfy unitarity, not only at threshold but also in the above kinematical configurations and probably beyond. As a by-product, we also calculate $2\\to n$ tree amplitudes at threshold and show that for the unbroken $\\phi^4$ theory they vanish for $n>4~$, for the Standard Model Higgs they vanish for $n\\ge 3~$ and for a model potential, respecting tree-order unitarity, for $n$ even and $n>4~$. Finally, we calculate the imaginary part of the one-loop $1\\to n$ amplitude in both symmetric and spontaneously broken $\\phi^4$ theory.

  3. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  4. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  5. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  6. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  7. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  8. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  9. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  10. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  11. Realistic Realizations Of Threshold Circuits

    Science.gov (United States)

    Razavi, Hassan M.

    1987-08-01

    Threshold logic, in which each input is weighted, has many theoretical advantages over the standard gate realization, such as reducing the number of gates, interconnections, and power dissipation. However, because of the difficult synthesis procedure and complicated circuit implementation, their use in the design of digital systems is almost nonexistant. In this study, three methods of NMOS realizations are discussed, and their advantages and shortcomings are explored. Also, the possibility of using the methods to realize multi-valued logic is examined.

  12. Root finding with threshold circuits

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2012-01-01

    Roč. 462, Nov 30 (2012), s. 59-69 ISSN 0304-3975 R&D Projects: GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional support: RVO:67985840 Keywords : root finding * threshold circuit * power series Subject RIV: BA - General Mathematics Impact factor: 0.489, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304397512008006#

  13. PIC Detector for Piano Chords

    Directory of Open Access Journals (Sweden)

    Barbancho AnaM

    2010-01-01

    Full Text Available In this paper, a piano chords detector based on parallel interference cancellation (PIC is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  14. Design proposal for door thresholds

    Directory of Open Access Journals (Sweden)

    Smolka Radim

    2017-01-01

    Full Text Available Panels for openings in structures have always been an essential and integral part of buildings. Their importance in terms of a building´s functionality was not recognised. However, the general view on this issue has changed from focusing on big planar segments and critical details to sub-elements of these structures. This does not only focus on the forms of connecting joints but also on the supporting systems that keep the panels in the right position and ensure they function properly. One of the most strained segments is the threshold structure, especially the entrance door threshold structure. It is the part where substantial defects in construction occur in terms of waterproofing, as well as in the static, thermal and technical functions thereof. In conventional buildings, this problem is solved by pulling the floor structure under the entrance door structure and subsequently covering it with waterproofing material. This system cannot work effectively over the long term so local defects occur. A proposal is put forward to solve this problem by installing a sub-threshold door coupler made of composite materials. The coupler is designed so that its variability complies with the required parameters for most door structures on the European market.

  15. Dead time of different neutron detectors associated with a pulsed electronics with current collection

    International Nuclear Information System (INIS)

    Bacconnet, Eugene; Duchene, Jean; Duquesne, Henry; Schmitt, Andre

    1968-01-01

    After having outlined that the development of fast neutron reactor physics, notably kinetics, requires highly efficient neutron detectors and pulse measurement chains able to cope with high counting rates, the authors report the measurement of dead time of various neutron detectors which are used in the experimental study of fast neutron reactors. They present the SAITB 1 electronic measurement set, its components, its general characteristics, the protected connection between the detector and the electronics. They present and report the experiment: generalities about detector location and measurements, studied detectors (fission chambers, boron counters), and report the exploitation of the obtained results (principle, data, high-threshold counting gain) [fr

  16. Test of a superheated superconducting granule detector with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a Superheated Superconducting Granule (SSG) detector development for neutrinos and dark matter. An aluminum SSG detector was exposed to a 70MeV neutron beam to test the detector sensitivity to nuclear recoils. The neutron scattering angels were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120mK for different SSG intrinsic thresholds. The proved sensitivity of the detector to nuclear recoils above 10keV is encouraging for possible applications of SSG as a dark matter detector. (orig.)

  17. Search for the solar pp-neutrinos with an upgrade of CTF detector

    International Nuclear Information System (INIS)

    Smirnov, O.Yu.; Zajmidoroga, O.A.; Derbin, A.V.

    2001-01-01

    A possibility to use ultrapure liquid organic scintillator as a low energy solar neutrino detector is discussed. The detector with an active volume of 10 tons and 4π coverage will count 1.8 pp-neutrinos and 5.4 7 Be neutrinos per day with an energy threshold of 170 keV for the recoil electrons. The evaluation of the detector sensitivity and backgrounds is based on the results obtained by the Borexino collaboration with the Counting Test Facility (CTF). The detector can be build at the Italian Gran Sasso underground laboratory as an upgrade of the CTF detector using already developed technologies

  18. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  19. Color difference thresholds in dentistry.

    Science.gov (United States)

    Paravina, Rade D; Ghinea, Razvan; Herrera, Luis J; Bona, Alvaro D; Igiel, Christopher; Linninger, Mercedes; Sakai, Maiko; Takahashi, Hidekazu; Tashkandi, Esam; Perez, Maria del Mar

    2015-01-01

    The aim of this prospective multicenter study was to determine 50:50% perceptibility threshold (PT) and 50:50% acceptability threshold (AT) of dental ceramic under simulated clinical settings. The spectral radiance of 63 monochromatic ceramic specimens was determined using a non-contact spectroradiometer. A total of 60 specimen pairs, divided into 3 sets of 20 specimen pairs (medium to light shades, medium to dark shades, and dark shades), were selected for psychophysical experiment. The coordinating center and seven research sites obtained the Institutional Review Board (IRB) approvals prior the beginning of the experiment. Each research site had 25 observers, divided into five groups of five observers: dentists-D, dental students-S, dental auxiliaries-A, dental technicians-T, and lay persons-L. There were 35 observers per group (five observers per group at each site ×7 sites), for a total of 175 observers. Visual color comparisons were performed using a viewing booth. Takagi-Sugeno-Kang (TSK) fuzzy approximation was used for fitting the data points. The 50:50% PT and 50:50% AT were determined in CIELAB and CIEDE2000. The t-test was used to evaluate the statistical significance in thresholds differences. The CIELAB 50:50% PT was ΔEab  = 1.2, whereas 50:50% AT was ΔEab  = 2.7. Corresponding CIEDE2000 (ΔE00 ) values were 0.8 and 1.8, respectively. 50:50% PT by the observer group revealed differences among groups D, A, T, and L as compared with 50:50% PT for all observers. The 50:50% AT for all observers was statistically different than 50:50% AT in groups T and L. A 50:50% perceptibility and ATs were significantly different. The same is true for differences between two color difference formulas ΔE00 /ΔEab . Observer groups and sites showed high level of statistical difference in all thresholds. Visual color difference thresholds can serve as a quality control tool to guide the selection of esthetic dental materials, evaluate clinical performance, and

  20. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  1. A new kind of metal detector based on chaotic oscillator

    Science.gov (United States)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  2. Bedding material affects mechanical thresholds, heat thresholds and texture preference

    Science.gov (United States)

    Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.

    2015-01-01

    It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764

  3. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  4. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  5. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  6. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  7. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Yang, Hongtao; The ATLAS collaboration

    2018-01-01

    In this presentation, I will discuss the operation of ATLAS Pixel Detector during Run 2 proton-proton data-taking at √s=13 TeV in 2017. The topics to be covered include 1) the bandwidth issue and how it is mitigated through readout upgrade and threshold adjustment; 2) the auto-corrective actions; 3) monitoring of radiation effects.

  8. Quality control measurements for digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, N W [Department of Radiology, University Hospitals Leuven, 49 Herenstraat, 3000 Leuven (Belgium); Mackenzie, A [National Co-ordinating Centre for the Physics of Mammography, Medical Physics, Level B, St Luke' s Wing, The Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX (United Kingdom); Honey, I D, E-mail: nicholas.marshall@uz.kuleuven.ac.be [Department of Medical Physics, Floor 3, Henriette Raphael House, Guy' s and St Thomas' Hospital, London, SE1 9RT (United Kingdom)

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 {mu}Gy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 {mu}Gy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm{sup -1} {+-} 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 {mu}Gy {+-} 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 x 10{sup -5} mm{sup 2} (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm{sup -1}, with a maximum cov of 10% at 2.9 mm{sup -1}, while the average DQE was 0.56 at 0.5 mm{sup -1} for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found

  9. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    International Nuclear Information System (INIS)

    Adamian, A.Z.; Adamian, Z.N.; Aroutiounian, V.M.

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi 2 O 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold

  10. Monte Carlo simulation of neutron detection efficiency for NE213 scintillation detector

    International Nuclear Information System (INIS)

    Xi Yinyin; Song Yushou; Chen Zhiqiang; Yang Kun; Zhangsu Yalatu; Liu Xingquan

    2013-01-01

    A NE213 liquid scintillation neutron detector was simulated by using the FLUKA code. The light output of the detector was obtained by transforming the secondary particles energy deposition using Birks formula. According to the measurement threshold, detection efficiencies can be calculated by integrating the light output. The light output, central efficiency and the average efficiency as a function of the front surface radius of the detector, were simulated and the results agreed well with experimental results. (authors)

  11. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    CERN Document Server

    Adamian, A Z; Aroutiounian, V M

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi sub 2 O sub 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold.

  12. Optimizing Systems of Threshold Detection Sensors

    National Research Council Canada - National Science Library

    Banschbach, David C

    2008-01-01

    .... Below the threshold all signals are ignored. We develop a mathematical model for setting individual sensor thresholds to obtain optimal probability of detecting a significant event, given a limit on the total number of false positives allowed...

  13. 11 CFR 9036.1 - Threshold submission.

    Science.gov (United States)

    2010-01-01

    ... credit or debit card, including one made over the Internet, the candidate shall provide sufficient... section shall not count toward the threshold amount. (c) Threshold certification by Commission. (1) After...

  14. Nuclear thermodynamics below particle threshold

    International Nuclear Information System (INIS)

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  15. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  16. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  17. Threshold Concepts in Finance: Student Perspectives

    Science.gov (United States)

    Hoadley, Susan; Kyng, Tim; Tickle, Leonie; Wood, Leigh N.

    2015-01-01

    Finance threshold concepts are the essential conceptual knowledge that underpin well-developed financial capabilities and are central to the mastery of finance. In this paper we investigate threshold concepts in finance from the point of view of students, by establishing the extent to which students are aware of threshold concepts identified by…

  18. Epidemic threshold in directed networks

    Science.gov (United States)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  19. Computational gestalts and perception thresholds.

    Science.gov (United States)

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.

  20. Threshold enhancement of diphoton resonances

    CERN Document Server

    Bharucha, Aoife; Goudelis, Andreas

    2016-10-10

    The data collected by the LHC collaborations at an energy of 13 TeV indicates the presence of an excess in the diphoton spectrum that would correspond to a resonance of a 750 GeV mass. The apparently large production cross section is nevertheless very difficult to explain in minimal models. We consider the possibility that the resonance is a pseudoscalar boson $A$ with a two--photon decay mediated by a charged and uncolored fermion having a mass at the $\\frac12 M_A$ threshold and a very small decay width, $\\ll 1$ MeV; one can then generate a large enhancement of the $A\\gamma\\gamma$ amplitude which explains the excess without invoking a large multiplicity of particles propagating in the loop, large electric charges and/or very strong Yukawa couplings. The implications of such a threshold enhancement are discussed in two explicit scenarios: i) the Minimal Supersymmetric Standard Model in which the $A$ state is produced via the top quark mediated gluon fusion process and decays into photons predominantly through...

  1. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  2. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  3. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  4. First photoelectron timing error evaluation of a new scintillation detector model

    International Nuclear Information System (INIS)

    Petrick, N.; Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III

    1991-01-01

    In this paper, a general timing system model for a scintillation detector developed is experimentally evaluated. The detector consists of a scintillator and a photodetector such as a photomultiplier tube or an avalanche photodiode. The model uses a Poisson point process to characterize the light output from the scintillator. This timing model was used to simulate a BGO scintillator with a Burle 8575 PMT using first photoelectron timing detection. Evaluation of the model consisted of comparing the RMS error from the simulations with the error from the actual detector system. The authors find that the general model compares well with the actual error results for the BGO/8575 PMT detector. In addition, the optimal threshold is found to be dependent upon the energy of the scintillation. In the low energy part of the spectrum, the authors find a low threshold is optimal while for higher energy pulses the optimal threshold increases

  5. First photoelectron timing error evaluation of a new scintillation detector model

    International Nuclear Information System (INIS)

    Petrick, N.; Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III

    1990-01-01

    In this paper, a general timing system model for a scintillation detector that was developed, is experimentally evaluated. The detector consists of a scintillator and a photodetector such as a photomultiplier tube or an avalanche photodiode. The model uses a Poisson point process to characterize the light output from the scintillator. This timing model was used to simulated a BGO scintillator with a Burle 8575 PMT using first photoelectron timing detection. Evaluation of the model consisted of comparing the RMS error from the simulations with the error from the actual detector system. We find that the general model compares well with the actual error results for the BGO/8575 PMT detector. In addition, the optimal threshold is found to be dependent upon the energy of the scintillation. In the low energy part of the spectrum, we find a low threshold is optimal while for higher energy pulses the optimal threshold increases

  6. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  7. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  8. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  9. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  10. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  11. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  12. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  13. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  14. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  15. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  16. Risk thresholds for alcohol consumption

    DEFF Research Database (Denmark)

    Wood, Angela M; Kaptoge, Stephen; Butterworth, Adam S

    2018-01-01

    previous cardiovascular disease. METHODS: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard......BACKGROUND: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without......·4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100...

  17. Detection thresholds of macaque otolith afferents.

    Science.gov (United States)

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  18. The Higgs portal above threshold

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Lou, Hou Keong [Department of Physics, Princeton University,Princeton, NJ 08540 (United States); McCullough, Matthew [Theory Division, CERN,1211 Geneva 23 (Switzerland); Thalapillil, Arun [Department of Physics and Astronomy, Rutgers University,Piscataway, NJ 08854 (United States)

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  19. The Higgs portal above threshold

    International Nuclear Information System (INIS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-01-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  20. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  1. Scintillation light detectors with Neganov Luke amplification

    Science.gov (United States)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  2. Strangeness photoproduction with the SAPHIR-detector

    International Nuclear Information System (INIS)

    Merkel, H.

    1993-12-01

    At the ELSA facility at Bonn a photon beam with a high duty cycle up to energies of 3.3 GeV is available. In this energy range the large solid angle detector SAPHIR enables us to investigate the strangeness photoproduction starting from threshold. SAPHIR has already achieved results for the reactions γ+p→K + +Λ and γ+p→K + +Σ 0 . This work investigates the possibilities to measure the related reactions γ+n→K 0 +Λ and γ+n→K 0 +Σ 0 at a deuteron target and to measure the reaction γ+p→K 0 +Σ + at a proton target. For the first time the Σ + polarisation has been measured. With an cross section 10 times smaller compared to the kaon hyperon reactions, the photoproduction of the Φ(1020) meson can be investigated with the SAPHIR detector too. First reconstructed events are shown. (orig.)

  3. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    Wisshak, K.; Guber, K.; Kaeppeler, F.; Krisch, J.; Mueller, H.; Rupp, G.; Voss, F.

    1989-12-01

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7 Li(p,n) 7 Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF 2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI) [de

  4. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  5. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Weizman, Y.; Hirning, C.R.

    1995-01-01

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 μm, 72 μm or 98 μm thick. The back detector (C) is a Li compensated silicon detector, 5000 μm thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author)

  6. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  7. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  8. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  9. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  10. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  11. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  12. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  13. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  14. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  15. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  16. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  17. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  18. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  19. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  20. Ultra low energy-ultra low background high purity germanium detectors for studies on dark matter

    International Nuclear Information System (INIS)

    Soma, A.K.; Singh, V.; Singh, L.; Singh, M.K.; Wong, H.T.

    2009-01-01

    Weakly Interacting Massive Particles (WIMP) are the leading DM candidates. Super symmetric particles (SUSY) are one of the leading WIMP candidates. To probe this least explored region Taiwan EXperiments On NeutrinO collaboration is pursuing research and development program by using High Purity Germanium detectors (HPGe). These detectors offer a matured technology to scale up the detectors and achieve sub-keV level threshold i.e. few hundreds of eV, economically. The various detectors developed by the collaboration is shown in the below figure. The current goal of the collaboration is to develop detectors of kg-scale target mass, ∼100 eV threshold and low-background specification for the studies on WIMPs, μ v and neutrino - nucleus coherent scattering

  1. Measurement of inclusive eta production in e+e- interactions near charm threshold

    International Nuclear Information System (INIS)

    Porter, F.C.

    1980-08-01

    The inclusive cross section for eta production in e + e - interactions near charm threshold was measured by use of the Crystal Ball detector at SPEAR. By comparison of the inclusive eta production above and below charm threshold the following limits were obtained: R(e + e - → F anti FX)BR(F → eta x) < 0.3 (90% C.L., E/sub cm/ < 4.5 GeV); BR(D → eta x) < 0.13 (90% C.L., averaged over charged and neutral D components of the psi''). 4 figures, 1 table

  2. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  3. The 56Fe(n,x α) reaction from threshold to 30 MeV

    International Nuclear Information System (INIS)

    Sterbenz, S.M.; Young, P.G.; Bateman, F.B.

    1994-01-01

    Alpha-particle emission in neutron reactions with 56 Fe has been studied from threshold to over 30 MeV using the spallation neutron source at WNR/LAMPF. Alpha-particle production cross sections, spectra, and angular distributions were measured at scattering angles of 30, 60, 90, and 135 degrees using detector telescopes consisting of a low-pressure gas proportional counter and a large area silicon detector. Time-of-flight techniques with a 10-meter flight path were used to deduce the incident neutron energies. Our results are compared with literature values and with several theoretical calculations

  4. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  5. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  6. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  7. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  8. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  9. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  10. Superheated superconducting granule detector tested with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Brandt, B. van den; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a superheated superconducting granule (SSG) detector development for neutrino and dark matter. The aim of the experiment was to measure the sensitivity of the detector to nuclear recoil energies when exposed to a 70 MeV neutron beam. The detector consists of a small readout coil (diameter 5 mm, length 10 mm) filled with aluminum granules of average diameter 23 μm embedded in an Al 2 O 3 granulate with a 6% volume filling factor. The neutron scattering angles were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120 mK for different SSG intrinsic thresholds. The results prove the sensitivity of the detector to nuclear recoils around 10 keV. (orig.)

  11. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  12. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  13. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  14. Threshold behavior in electron-atom scattering

    International Nuclear Information System (INIS)

    Sadeghpour, H.R.; Greene, C.H.

    1996-01-01

    Ever since the classic work of Wannier in 1953, the process of treating two threshold electrons in the continuum of a positively charged ion has been an active field of study. The authors have developed a treatment motivated by the physics below the double ionization threshold. By modeling the double ionization as a series of Landau-Zener transitions, they obtain an analytical formulation of the absolute threshold probability which has a leading power law behavior, akin to Wannier's law. Some of the noteworthy aspects of this derivation are that the derivation can be conveniently continued below threshold giving rise to a open-quotes cuspclose quotes at threshold, and that on both sides of the threshold, absolute values of the cross sections are obtained

  15. A numerical study of threshold states

    International Nuclear Information System (INIS)

    Ata, M.S.; Grama, C.; Grama, N.; Hategan, C.

    1979-01-01

    There are some experimental evidences of charged particle threshold states. On the statistical background of levels, some simple structures were observed in excitation spectrum. They occur near the coulombian threshold and have a large reduced width for the decay in the threshold channel. These states were identified as charged cluster threshold states. Such threshold states were observed in sup(15,16,17,18)O, sup(18,19)F, sup(19,20)Ne, sup(24)Mg, sup(32)S. The types of clusters involved were d, t, 3 He, α and even 12 C. They were observed in heavy-ions transfer reactions in the residual nucleus as strong excited levels. The charged particle threshold states occur as simple structures at high excitation energy. They could be interesting both from nuclear structure as well as nuclear reaction mechanism point of view. They could be excited as simple structures both in compound and residual nucleus. (author)

  16. To the use of bubble detectors in personal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Vlcek, B [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    In this paper the commercially available bubble neutron detectors (bubble damage neutron detectors (BDNDs*) from Bubble Technology Industries, Chalk River; and superheated drop detectors (SDDs*) from APFEL Industries, New Haven) for lowest limit of detection of an individual neutron dosimeter were tested. They were tested with the different neutron sources. BDNDs* tested had the sensitivity about 1 bubble per 1 Sv of H*(10) of AmBe neutrons, they were evaluated by eye counting (20 to 30 bubbles per detector). Two types of reusable BDNDs* were tested: BD-100R without and with temperature compensation, both with neutron energy threshold about 100 keV. SDDs* tested had the sensitivity about 3 bubbles per 1 {mu}Sv of H*10 from AmBe neutrons, they were evaluated using APFEL Survey Meter Model 202. SDDs* with three different energy thresholds have been used: 0.1, 1 and 6 MeV. For energetical dependence of BDNDs* the general conclusions were formulated in the following way: (1) With the exception of thermal neutron source SIGMA (50% of H*(10) from thermal neutrons) and high energy reference fields there is a reasonable agreement of data measured with BDNDs* and expected values; (2) the new lots to have a little different energetic dependence. The relative responses for `soft` fields are for them systematically higher than for previous samples. The response to energies between 0.01 and 1 MeV is for these lots relatively higher. (3) The underestimation of high energy neutrons is typical for any LET-threshold type detectors.It should be kept in mind when BDNDs* are used as dosemeters in high energy neutron environment. For energetical dependence of SDDs* was concluded: (1) The energetical dependence of SDD 100 is comparable with the dependencies of BD-100R and PND, the underestimation of high energy neutrons included; (2) The use of SDD with different energy thresholds can provide interesting spectrometric information; (Abstract Truncated)

  17. Iran: the next nuclear threshold state?

    OpenAIRE

    Maurer, Christopher L.

    2014-01-01

    Approved for public release; distribution is unlimited A nuclear threshold state is one that could quickly operationalize its peaceful nuclear program into one capable of producing a nuclear weapon. This thesis compares two known threshold states, Japan and Brazil, with Iran to determine if the Islamic Republic could also be labeled a threshold state. Furthermore, it highlights the implications such a status could have on U.S. nonproliferation policy. Although Iran's nuclear program is mir...

  18. Dynamical thresholds for complete fusion

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Sierk, A.J.; Nix, J.R.

    1983-01-01

    It is our purpose here to study the effect of nuclear dissipation and shape parametrization on dynamical thresholds for compound-nucleus formation in symmetric heavy-ion reactions. This is done by solving numerically classical equations of motion for head-on collisions to determine whether the dynamical trajectory in a multidimensional deformation space passes inside the fission saddle point and forms a compound nucleus, or whether it passes outside the fission saddle point and reseparates in a fast-fission or deep-inelastic reaction. Specifying the nuclear shape in terms of smoothly joined portions of three quadratic surfaces of revolution, we take into account three symmetric deformation coordinates. However, in some cases we reduce the number of coordinates to two by requiring the ends of the fusing system to be spherical in shape. The nuclear potential energy of deformation is determined in terms of a Coulomb energy and a double volume energy of a Yukawa-plus-exponential folding function. The collective kinetic energy is calculated for incompressible, nearly irrotational flow by means of the Werner-Wheeler approximation. Four possibilities are studied for the transfer of collective kinetic energy into internal single-particle excitation energy: zero dissipation, ordinary two body viscosity, one-body wall-formula dissipation, and one-body wall-and-window dissipation

  19. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector

    International Nuclear Information System (INIS)

    Korn, A.

    2007-01-01

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  20. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  1. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  2. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  3. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  4. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  5. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  6. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  7. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  8. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  9. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  10. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  11. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  12. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  13. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  14. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  15. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  16. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  17. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  18. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  19. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  20. Low-threshold amplitude discriminator circuit with tunnel diode and two transistors in differential connection

    International Nuclear Information System (INIS)

    Ryba, J.; Volny, J.

    1973-01-01

    The connection is designed of a low-threshold amplitude discriminator and a tunnel diode with two transistors in differential connection. The discriminator is by its simple connection, its low consumption and high temperature stability suitable especially for portable radiation detectors. The tunnel diode is connected by one pole to a collector clamp and by the other to the supply voltage. A suitable resistor is connected in parallel with the tunnel diode to meet demands for higher sensitivity. (Z.S.)

  1. Measurement of the reaction 12C(νμ,μ-)X near threshold

    International Nuclear Information System (INIS)

    Albert, M.; Athanassopoulos, C.; Auerbach, L.B.; Bauer, D.; Bolton, R.; Boyd, B.; Burman, R.L.; Cohen, I.; Caldwell, D.O.; Dieterle, B.D.; Donahue, J.B.; Eisner, A.M.; Fazely, A.; Federspiel, F.J.; Garvey, G.T.; Gunasingha, R.M.; Highland, V.; Hill, J.; Imlay, R.; Johnston, K.; Louis, W.C.; Lu, A.; Mann, A.K.

    1995-01-01

    The reaction 12 C(ν μ ,μ - )X has been measured near threshold using a π + decay-in-flight ν μ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region 123.7 ν -40 cm 2 } is more than a factor of 2 lower than that predicted by the Fermi-gas model and by a recent random phase approximation calculation

  2. Simulating Makrofol as a detector for neutron-induced recoils

    International Nuclear Information System (INIS)

    Zhang, G.; Becker, F.; Urban, M.; Xuan, Y.

    2011-01-01

    The response of solid-state nuclear track detector is extremely dependent on incident angles of neutrons, which determine the angular distribution of secondary particles. In this paper, the authors present a method to investigate the angular response of Makrofol detectors. Using the C++-based Monte-Carlo tool-kit Geant4 in combination with SRIM and our MATLAB codes, we simulated the angular response of Makrofol. The simulations were based on the restricted energy loss model, and the concept of energy threshold and critical angle. Experiments were carried out with 252 Cf neutrons to verify the simulation results. (authors)

  3. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  4. Method of plastic track detector electrochemical etching

    International Nuclear Information System (INIS)

    D'yakov, A.A.

    1984-01-01

    The review of studies dealing with the development of the method for the electro-chemical etching (ECE) of the plastic track detectors on the base of polyethy-leneterephthalate (PET) and polycarbonate (PC) is given. Physical essence of the method, basic parameters of the processes, applied equipment and methods of measurement automation are considered. The advantages of the method over the traditional chemical etching are pointed out. Recommendations on the detector operation modes when detecting fission fragments, α-particles and fast neutrons are given. The ECE method is based on the condition that during chemical etching the high-voltage sound frequency alternating electric field is applied to the detector. In this case the detector serves as an isolating layer betWeen two vessels with etching solution in which high-voltage electrode are submerged. At a fixed electric field potential higher (over than the threshold value) at the end of the etching track cone atree-like discharge spot arises. It is shown that when PET is used for fast neutron detection it is advisable to apply for ECE the PEW solution (15g KOH+40 g C 2 H 2 OH + 45g H 2 O) the field potential should constitute 30 kVxcm -1 at the freqUency of 9 kHz. In the case of fission fragment detection Using ECE and PC the following ECE conditions are recommended: 30% KOH etcher, field potential of 10 kVxcm -1 , 2-4 kHz frequency. It is concluded that the ECE method permits considerably eXtend the sphere of plastic track detector application for detecting ionizing particles,

  5. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  6. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  7. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  8. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  9. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  10. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  11. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  12. Time-efficient multidimensional threshold tracking method

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Kowalewski, Borys; Dau, Torsten

    2015-01-01

    Traditionally, adaptive methods have been used to reduce the time it takes to estimate psychoacoustic thresholds. However, even with adaptive methods, there are many cases where the testing time is too long to be clinically feasible, particularly when estimating thresholds as a function of anothe...

  13. 40 CFR 68.115 - Threshold determination.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Regulated Substances for Accidental Release Prevention... process exceeds the threshold. (b) For the purposes of determining whether more than a threshold quantity... portion of the process is less than 10 millimeters of mercury (mm Hg), the amount of the substance in the...

  14. Applying Threshold Concepts to Finance Education

    Science.gov (United States)

    Hoadley, Susan; Wood, Leigh N.; Tickle, Leonie; Kyng, Tim

    2016-01-01

    Purpose: The purpose of this paper is to investigate and identify threshold concepts that are the essential conceptual content of finance programmes. Design/Methodology/Approach: Conducted in three stages with finance academics and students, the study uses threshold concepts as both a theoretical framework and a research methodology. Findings: The…

  15. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  16. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  17. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  18. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  19. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  20. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  1. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity measurements in ATLAS. Most changes were motivated by the number of interactions per bunch-crossing and the 25 ns bunch-spacing expected in LHC RUN II (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2

  2. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  3. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  4. Summary of DOE threshold limits efforts

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1987-01-01

    The Department of Energy (DOE) has been developing the concept of threshold quantities for use in determining which waste materials may be disposed of as nonradioactive waste in DOE sanitary landfills. Waste above a threshold level could be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. After extensive review of a draft threshold guidance document in 1985, a second draft threshold background document was produced in March 1986. The second draft included a preliminary cost-benefit analysis and quality assurance considerations. The review of the second draft has been completed. Final changes to be incorporated include an in-depth cost-benefit analysis of two example sites and recommendations of how to further pursue (i.e. employ) the concept of threshold quantities within the DOE. 3 references

  5. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  6. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  7. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  8. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  9. A Threshold Continuum for Aeolian Sand Transport

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  10. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  11. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  12. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  13. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  14. A threshold-based fixed predictor for JPEG-LS image compression

    Science.gov (United States)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.

  15. Measurement of inclusive eta production in e+e- interactions near charm threshold

    International Nuclear Information System (INIS)

    Partridge, R.; Peck, C.; Porter, F.C.; Gu, Y.F.; Kollmann, W.; Richardson, M.; Strauch, K.; Wacker, K.; Aschman, D.; Bagger, J.; Burnett, T.; Cavalli-Sforza, M.; Coyne, D.; Joy, M.; Sadrozinski, H.F.W.; Hofstadter, R.; Horisberger, R.; Kirkbride, I.; Kolanoski, H.; Koenigsmann, K.; Liberman, A.; O'Reilly, J.; Osterheld, A.; Tompkins, J.; Bloom, E.; Bulos, F.; Chestnut, R.; Gaiser, J.; Godfrey, G.; Kiesling, C.; Lockman, W.; Oreglia, M.

    1981-01-01

    We have measured the inclusive cross section for eta production in e + e - interactions near charm threshold using the Crystal Ball detector. No pronounced structure in the energy dependence is observed. By comparing cross sections above and below charm threshold we obtain the limits (90% confidence limit): R(e + e - →FF-barX)Br(F→etax) <0.15--0.32 (for E/sub c.m./ from 4.0 to 4.5 GeV), Br(D→etax)<0.13 [averaged over charged and neutral D components of the psi''(3770) decays]. Our results are inconsistent with a previous report of a large energy dependence of the eta cross section ascribed to the crossing the FF* and F*F* production thresholds

  16. Particle identification using the time-over-threshold method in the ATLAS Transition Radiation Tracker

    International Nuclear Information System (INIS)

    Akesson, T.; Arik, E.; Assamagan, K.; Baker, K.; Barberio, E.; Barberis, D.; Bertelsen, H.; Bytchkov, V.; Callahan, J.; Catinaccio, A.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Ebenstein, W.L.; Eerola, P.; Farthouat, P.; Froidevaux, D.; Grichkevitch, Y.; Hajduk, Z.; Hansen, J.R.; Keener, P.T.; Kekelidze, G.; Konovalov, S.; Kowalski, T.; Kramarenko, V.A.; Krivchitch, A.; Laritchev, A.; Lichard, P.; Lucotte, A.; Lundberg, B.; Luehring, F.; Mailov, A.; Manara, A.; McFarlane, K.; Mitsou, V.A.; Morozov, S.; Muraviev, S.; Nadtochy, A.; Newcomer, F.M.; Olszowska, J.; Ogren, H.; Oh, S.H.; Peshekhonov, V.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.R.; Schegelsky, V.; Sapinski, M.; Shmeleva, A.; Smirnov, S.; Smirnova, L.N.; Sosnovtsev, V.; Soutchkov, S.; Spiridenkov, E.; Tikhomirov, V.; Van Berg, R.; Vassilakopoulos, V.; Wang, C.; Williams, H.H.

    2001-01-01

    Test-beam studies of the ATLAS Transition Radiation Tracker (TRT) straw tube performance in terms of electron-pion separation using a time-over-threshold method are described. The test-beam data are compared with Monte Carlo simulations of charged particles passing through the straw tubes of the TRT. For energies below 10 GeV, the time-over-threshold method combined with the standard transition-radiation cluster-counting technique significantly improves the electron-pion separation in the TRT. The use of the time-over-threshold information also provides some kaon-pion separation, thereby significantly enhancing the B-physics capabilities of the ATLAS detector

  17. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  18. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  19. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  20. DARWIN: towards the ultimate dark matter detector

    Science.gov (United States)

    Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  1. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  2. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  3. DARWIN: towards the ultimate dark matter detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalbers, J.; Breur, P.A.; Brown, A. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [Department of Physics and Astrophysics, University of Bologna and INFN-Bologna, Bologna (Italy); Alfonsi, M.; Beskers, B. [Institut für Physik and Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, Mainz (Germany); Amaro, F.D. [Department of Physics, University of Coimbra, Coimbra (Portugal); Amsler, C. [Albert Einstein Center for Fundamental Physics, Universität Bern, Bern (Switzerland); Aprile, E. [Physics Department, Columbia University, New York, NY (United States); Arazi, L.; Breskin, A.; Budnik, R. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot (Israel); Arneodo, F.; Benabderrahmane, M.L. [New York University Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L. [Physik-Institut, Universität Zürich, Zürich (Switzerland); Berger, T.; Brown, E. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY (United States); Bruenner, S. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Bruno, G., E-mail: lior.arazi@weizmann.ac.il, E-mail: laura.baudis@physik.uzh.ch, E-mail: amos.breskin@weizmann.ac.il, E-mail: decowski@nikhef.nl, E-mail: marc.schumann@lhep.unibe.ch [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); and others

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/ c {sup 2}, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of {sup 136}Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R and D efforts.

  4. Defective pixel map creation based on wavelet analysis in digital radiography detectors

    International Nuclear Information System (INIS)

    Park, Chun Joo; Lee, Hyoung Koo; Song, William Y.; Achterkirchen, Thorsten Graeve; Kim, Ho Kyung

    2011-01-01

    The application of digital radiography detectors has attracted increasing attention in both medicine and industry. Since the imaging detectors are fabricated by semiconductor manufacturing process over large areas, defective pixels in the detectors are unavoidable. Moreover, the radiation damage due to the routine use of the detectors progressively increases the density of defective pixels. In this study, we present a method of identifying defective pixels in digital radiography detectors based on wavelet analysis. Artifacts generated due to wavelet transformations have been prevented by an additional local threshold method. The proposed method was applied to a sample digital radiography and the result was promising. The proposed method uses a single pair of dark and white images and does not require them to be corrected in gain-and-offset properties. This method will be helpful for the reliable use of digital radiography detectors through the working lifetime.

  5. Hyper-arousal decreases human visual thresholds.

    Directory of Open Access Journals (Sweden)

    Adam J Woods

    Full Text Available Arousal has long been known to influence behavior and serves as an underlying component of cognition and consciousness. However, the consequences of hyper-arousal for visual perception remain unclear. The present study evaluates the impact of hyper-arousal on two aspects of visual sensitivity: visual stereoacuity and contrast thresholds. Sixty-eight participants participated in two experiments. Thirty-four participants were randomly divided into two groups in each experiment: Arousal Stimulation or Sham Control. The Arousal Stimulation group underwent a 50-second cold pressor stimulation (immersing the foot in 0-2° C water, a technique known to increase arousal. In contrast, the Sham Control group immersed their foot in room temperature water. Stereoacuity thresholds (Experiment 1 and contrast thresholds (Experiment 2 were measured before and after stimulation. The Arousal Stimulation groups demonstrated significantly lower stereoacuity and contrast thresholds following cold pressor stimulation, whereas the Sham Control groups showed no difference in thresholds. These results provide the first evidence that hyper-arousal from sensory stimulation can lower visual thresholds. Hyper-arousal's ability to decrease visual thresholds has important implications for survival, sports, and everyday life.

  6. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  7. Reaction thresholds in doubly special relativity

    International Nuclear Information System (INIS)

    Heyman, Daniel; Major, Seth; Hinteleitner, Franz

    2004-01-01

    Two theories of special relativity with an additional invariant scale, 'doubly special relativity', are tested with calculations of particle process kinematics. Using the Judes-Visser modified conservation laws, thresholds are studied in both theories. In contrast with some linear approximations, which allow for particle processes forbidden in special relativity, both the Amelino-Camelia and Magueijo-Smolin frameworks allow no additional processes. To first order, the Amelino-Camelia framework thresholds are lowered and the Magueijo-Smolin framework thresholds may be raised or lowered

  8. Decision for counting condition of radioactive waste activities measuring by Ludlum detector

    International Nuclear Information System (INIS)

    Bambang-Purwanto

    2000-01-01

    Radioactive waste must measured for activities before be throw out to environment. Measuring will be important in ordered to know activities can be given management direction. For activities radioactive waste on limit threshold value must processed, but for under limit threshold value activities can be throw out to environment. Activities measuring for solid radioactive waste and liquid by (Total, β, γ) Ludlum detector connected Mode-1000 Scaler Counting. Before measuring for solid waste activities was decisioned optimally counting condition, and be obtained are : sample weight 3.5 gram, heating temperature of 125 o C and heating time at 60 minutes. Activities measuring result by total detector ranges from (0.68-0.71) 10 -1 μCi/gram, β detector ranges from (0.24-0.25) 10 -1 μCi/gram and γ detector ranges from (0.35-0.37) μCi/gram

  9. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  10. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  11. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  12. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  13. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  14. Artificial neural network based pulse-shape analysis for cryogenic detectors operated in CRESST-II

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85747 Garching (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    In this talk we report on results of a pulse-shape analysis of cryogenic detectors based on artificial neural networks. To train the neural network a large amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets will be explained. The presented analysis shows an excellent discrimination performance even down to the energy threshold. The method is applied to several detectors, among them is the module with the lowest threshold (307eV) operated in CRESST-II phase 2. The performed blind analysis of this module confirms the substantially enhanced sensitivity for light dark matter published in 2015.

  15. First results with the 4π charged particle detector INDRA at GANIL

    International Nuclear Information System (INIS)

    Dayras, R.

    1995-01-01

    After a three year construction period, the 4π charged particle detector INDRA took its first data at GANIL, during the spring of 1993. After a brief description of the detector characteristics, an overview of the ongoing scientific program is given. The general trend of the data are discussed. For the first time, the energy threshold for the full vaporization of a nuclear system into neutrons and Z=1 and 2 isotopes has been determined for the 36 Ar + 58 Ni reaction. For this system, this threshold is observed for an incident energy of about 50 A.MeV. (author). 18 refs., 6 figs

  16. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  17. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  18. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  19. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  20. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  1. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  2. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  3. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  4. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  5. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  6. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  7. Approach to DOE threshold guidance limits

    International Nuclear Information System (INIS)

    Shuman, R.D.; Wickham, L.E.

    1984-01-01

    The need for less restrictive criteria governing disposal of extremely low-level radioactive waste has long been recognized. The Low-Level Waste Management Program has been directed by the Department of Energy (DOE) to aid in the development of a threshold guidance limit for DOE low-level waste facilities. Project objectives are concernd with the definition of a threshold limit dose and pathway analysis of radionuclide transport within selected exposure scenarios at DOE sites. Results of the pathway analysis will be used to determine waste radionuclide concentration guidelines that meet the defined threshold limit dose. Methods of measurement and verification of concentration limits round out the project's goals. Work on defining a threshold limit dose is nearing completion. Pathway analysis of sanitary landfill operations at the Savannah River Plant and the Idaho National Engineering Laboratory is in progress using the DOSTOMAN computer code. Concentration limit calculations and determination of implementation procedures shall follow completion of the pathways work. 4 references

  8. Pion photoproduction on the nucleon at threshold

    International Nuclear Information System (INIS)

    Cheon, I.T.; Jeong, M.T.

    1989-08-01

    Electric dipole amplitudes of pion photoproduction on the nucleon at threshold have been calculated in the framework of the chiral bag model. Our results are in good agreement with the existing experimental data

  9. Effect of dissipation on dynamical fusion thresholds

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1986-01-01

    The existence of dynamical thresholds to fusion in heavy nuclei (A greater than or equal to 200) due to the nature of the potential-energy surface is shown. These thresholds exist even in the absence of dissipative forces, due to the coupling between the various collective deformation degrees of freedom. Using a macroscopic model of nuclear shape dynamics, It is shown how three different suggested dissipation mechanisms increase by varying amounts the excitation energy over the one-dimensional barrier required to cause compound-nucleus formation. The recently introduced surface-plus-window dissipation may give a reasonable representation of experimental data on fusion thresholds, in addition to properly describing fission-fragment kinetic energies and isoscalar giant multipole widths. Scaling of threshold results to asymmetric systems is discussed. 48 refs., 10 figs

  10. 40 CFR 98.411 - Reporting threshold.

    Science.gov (United States)

    2010-07-01

    ...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.411 Reporting threshold. Any supplier of industrial greenhouse gases who meets the requirements of § 98.2(a)(4) must report GHG...

  11. Melanin microcavitation threshold in the near infrared

    Science.gov (United States)

    Schmidt, Morgan S.; Kennedy, Paul K.; Vincelette, Rebecca L.; Schuster, Kurt J.; Noojin, Gary D.; Wharmby, Andrew W.; Thomas, Robert J.; Rockwell, Benjamin A.

    2014-02-01

    Thresholds for microcavitation of isolated bovine and porcine melanosomes were determined using single nanosecond (ns) laser pulses in the NIR (1000 - 1319 nm) wavelength regime. Average fluence thresholds for microcavitation increased non-linearly with increasing wavelength. Average fluence thresholds were also measured for 10-ns pulses at 532 nm, and found to be comparable to visible ns pulse values published in previous reports. Fluence thresholds were used to calculate melanosome absorption coefficients, which decreased with increasing wavelength. This trend was found to be comparable to the decrease in retinal pigmented epithelial (RPE) layer absorption coefficients reported over the same wavelength region. Estimated corneal total intraocular energy (TIE) values were determined and compared to the current and proposed maximum permissible exposure (MPE) safe exposure levels. Results from this study support the proposed changes to the MPE levels.

  12. Secure information management using linguistic threshold approach

    CERN Document Server

    Ogiela, Marek R

    2013-01-01

    This book details linguistic threshold schemes for information sharing. It examines the opportunities of using these techniques to create new models of managing strategic information shared within a commercial organisation or a state institution.

  13. Robust Adaptive Thresholder For Document Scanning Applications

    Science.gov (United States)

    Hsing, To R.

    1982-12-01

    In document scanning applications, thresholding is used to obtain binary data from a scanner. However, due to: (1) a wide range of different color backgrounds; (2) density variations of printed text information; and (3) the shading effect caused by the optical systems, the use of adaptive thresholding to enhance the useful information is highly desired. This paper describes a new robust adaptive thresholder for obtaining valid binary images. It is basically a memory type algorithm which can dynamically update the black and white reference level to optimize a local adaptive threshold function. The results of high image quality from different types of simulate test patterns can be obtained by this algorithm. The software algorithm is described and experiment results are present to describe the procedures. Results also show that the techniques described here can be used for real-time signal processing in the varied applications.

  14. Recent progress in understanding climate thresholds

    NARCIS (Netherlands)

    Good, Peter; Bamber, Jonathan; Halladay, Kate; Harper, Anna B.; Jackson, Laura C.; Kay, Gillian; Kruijt, Bart; Lowe, Jason A.; Phillips, Oliver L.; Ridley, Jeff; Srokosz, Meric; Turley, Carol; Williamson, Phillip

    2018-01-01

    This article reviews recent scientific progress, relating to four major systems that could exhibit threshold behaviour: ice sheets, the Atlantic meridional overturning circulation (AMOC), tropical forests and ecosystem responses to ocean acidification. The focus is on advances since the

  15. Verifiable Secret Redistribution for Threshold Sharing Schemes

    National Research Council Canada - National Science Library

    Wong, Theodore M; Wang, Chenxi; Wing, Jeannette M

    2002-01-01

    .... Our protocol guards against dynamic adversaries. We observe that existing protocols either cannot be readily extended to allow redistribution between different threshold schemes, or have vulnerabilities that allow faulty old shareholders...

  16. Segmented detector for recoil neutrons in the p(γ, n)π+ reaction

    International Nuclear Information System (INIS)

    Korkmaz, E.; O'Rielly, G.V.; Hutcheon, D.A.; Feldman, G.; Jordan, D.; Kolb, N.R.; Pywell, R.E.; Retzlaff, G.A.; Sawatzky, B.D.; Skopik, D.M.; Vogt, J.M.; Cairns, E.; Giesen, U.; Holm, L.; Opper, A.K.; Rozon, F.M.; Soukup, J.

    1999-01-01

    A segmented neutron detector has been constructed and used for recoil neutron (6-13 MeV) measurements of the reaction γp→nπ + very close to threshold. BC-505 liquid scintillator was used to allow pulse shape discrimination between neutrons and photons. A measurement of the absolute efficiency of the detector was performed using stopped pions in the reaction π - p→nγ. Results of the efficiency calibration are compared to a Monte Carlo simulation. (author)

  17. Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal

    International Nuclear Information System (INIS)

    Woody, C.L.; Petridou, C.I.; Smith, G.C.

    1985-01-01

    The properties of a detector consisting of a large barium fluoride crystal and a multiwire proportional chamber operating at low pressure with TMAE have been studied. Measurements of the time resolution, pulse width, energy resolution, photoelectron yield and the effective energy threshold were carried out in a test beam using minimum ionizing particles. Although the detector is sensitive to signals originating from an adsorbed layer of TMAE from the crystal surface, no indication of such a signal was observed. 7 refs., 6 figs

  18. Development of criticality accident detector measuring neutrons and gamma-rays

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Ishii, Masato

    2005-01-01

    The authors developed a new criticality accident detector measuring neutrons and gamma-rays. The detector is a cylindrical plastic scintillator coupled to a current-mode operated photomultiplier, and is covered by an inner cadmium shell, acting as a neutron to gamma-ray converter, and a 5cm thick outer polyethylene moderator in order to respond to the same threshold triggering dose regardless of whether it was exposed to neutrons, gamma-rays or a mixture of the two radiations. (author)

  19. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  20. Thresholding projection estimators in functional linear models

    OpenAIRE

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  1. Noise thresholds for optical quantum computers.

    Science.gov (United States)

    Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A

    2006-01-20

    In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4).

  2. Design of Threshold Controller Based Chaotic Circuits

    DEFF Research Database (Denmark)

    Mohamed, I. Raja; Murali, K.; Sinha, Sudeshna

    2010-01-01

    We propose a very simple implementation of a second-order nonautonomous chaotic oscillator, using a threshold controller as the only source of nonlinearity. We demonstrate the efficacy and simplicity of our design through numerical and experimental results. Further, we show that this approach...... of using a threshold controller as a nonlinear element, can be extended to obtain autonomous and multiscroll chaotic attractor circuits as well....

  3. Detectors for rare events

    International Nuclear Information System (INIS)

    Charpak, G.

    1984-01-01

    This chapter discusses the possibility of combining the advantages of photographic data retrieval with the flexibility of operation of conventional gaseous or liquid detectors operated with electronic data retrieval. Possible applications of the proposed detectors to such problems as nucleon decay, neutrinoelectron interaction, and the search for magnetic monopoles are examined. Topics considered include the photography of ionization patterns, the photography of ionization tracks with the multistep avalanche chambers, and exploiting the stimulated scintillation light. Two processes which give rise to the emission of light when ionizing electrons interact in gases under the influence of an electric field are described

  4. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  5. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  6. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  7. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  8. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  9. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  10. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  11. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  12. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  13. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity monitoring and measurements in the ATLAS Experiment at CERN. Most changes were motivated by the large (up to 50) number of interactions per bunch-crossing and short (25 ns) bunch-spacing expected in LHC run 2 (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2.

  14. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  15. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  16. A New Wavelet Threshold Function and Denoising Application

    Directory of Open Access Journals (Sweden)

    Lu Jing-yi

    2016-01-01

    Full Text Available In order to improve the effects of denoising, this paper introduces the basic principles of wavelet threshold denoising and traditional structures threshold functions. Meanwhile, it proposes wavelet threshold function and fixed threshold formula which are both improved here. First, this paper studies the problems existing in the traditional wavelet threshold functions and introduces the adjustment factors to construct the new threshold function basis on soft threshold function. Then, it studies the fixed threshold and introduces the logarithmic function of layer number of wavelet decomposition to design the new fixed threshold formula. Finally, this paper uses hard threshold, soft threshold, Garrote threshold, and improved threshold function to denoise different signals. And the paper also calculates signal-to-noise (SNR and mean square errors (MSE of the hard threshold functions, soft thresholding functions, Garrote threshold functions, and the improved threshold function after denoising. Theoretical analysis and experimental results showed that the proposed approach could improve soft threshold functions with constant deviation and hard threshold with discontinuous function problems. The proposed approach could improve the different decomposition scales that adopt the same threshold value to deal with the noise problems, also effectively filter the noise in the signals, and improve the SNR and reduce the MSE of output signals.

  17. Experiments with the Skylab fire detectors in zero gravity

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  18. Heavy ion measurements by use of chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1980-01-01

    In order to test whether the threshold system polyvinyl alcohol/methyl organe/chloral hydrate/sodium tetraborate permits quantitative detection of individual particles, the chemical detector was irradiated at the JINR U-200 cyclotron with 4 He, 12 C, 18 O, 22 Ne ions having different LET. Irradiations were performed with detectors of four different borax concentrations (the chloral hydrate concentration being constant). The colour change dose Dsub(u) increases linearly with increasing borax concentration and at constant borax concentration with increasing LET. Hence it follows that the G value of dehydrochlorination decreases with increasing LET. Fluence ranges measurable with detectors of different composition are given for the heavy ions studied. (author)

  19. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  20. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  1. Method for HEPA filter leak scanning with differentiating aerosol detector

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  2. Improving neutron dosimetry using bubble detector technology

    International Nuclear Information System (INIS)

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research

  3. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  4. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  5. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  6. Simulations of charge summing and threshold dispersion effects in Medipix3

    International Nuclear Information System (INIS)

    Pennicard, D.; Ballabriga, R.; Llopart, X.; Campbell, M.; Graafsma, H.

    2011-01-01

    A novel feature of the Medipix3 photon-counting pixel readout chip is inter-pixel communication. By summing together the signals from neighbouring pixels at a series of 'summing nodes', and assigning each hit to the node with the highest signal, the chip can compensate for charge-sharing effects. However, previous experimental tests have demonstrated that the node-to-node variation in the detector's response is very large. Using computer simulations, it is shown that this variation is due to threshold dispersion, which results in many hits being assigned to whichever summing node in the vicinity has the lowest threshold level. A reduction in threshold variation would attenuate but not solve this issue. A new charge summing and hit assignment process is proposed, where the signals in individual pixels are used to determine the hit location, and then signals from neighbouring pixels are summed to determine whether the total photon energy is above threshold. In simulation, this new mode accurately assigns each hit to the pixel with the highest pulse height without any losses or double counting. - Research highlights: → Medipix3 readout chip compensates charge sharing using inter-pixel communication. → In initial production run, the flat-field response is unexpectedly nonuniform. → This effect is reproduced in simulation, and is caused by threshold dispersion. → A new inter-pixel communication process is proposed. → Simulations demonstrate the new process should give much better uniformity.

  7. Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    CERN Document Server

    Mir, J.A.; MacInnes, R.; Gough, C.; Plackett, R.; Shipsey, I.; Sawada, H.; MacLaren, I.; Ballabriga, R.; Maneuski, D.; O'Shea, V.; McGrouther, D.; Kirkland, A.I.

    2016-01-01

    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM a...

  8. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  9. B-factory detectors

    International Nuclear Information System (INIS)

    Marlow, D.R.

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B 0 →J/ΨK S decays and related modes

  10. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  11. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  12. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  13. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  14. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  15. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  16. The Borexino Detector

    Science.gov (United States)

    Montanari, David

    2010-04-01

    The Borexino detector is a large volume liquid scintillator detector for low energy neutrino spetroscopy currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. Main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the mono-energetic (862KeV) 7Be electron capture neutrinos, via neutrino-electron scattering in ultra-pure liquid scintillator. We report the description of the detector itself from its construction to the final current configuration. The initial requirements are first presented, then the strategy developed to achieve them: choice of materials and components, purification of the scintillator, cleaning, leak tightness, fluid handling. Every single point is analyzed, particularly the purification plants, that allowed reaching an ultra high pure scintillator and the fluid handling system, a large modular system connecting fluid receiving, purification and fluid delivery processes for every fluid involved. The different phases of the filling follow: from air to water to the final liquid scintillator, mainly focusing on the scintillator filling. The performances of the detector and the results are then presented.

  17. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  18. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  19. The LUCID-2 detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  20. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  1. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  2. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  3. The LDC detector concept

    Indian Academy of Sciences (India)

    foresees a TPC with around 200 points measured along a track, and read out by a system of micro-pattern gas detectors. These novel gas amplification devices promise to provide a stable, reliable readout system, which can be realized with comparatively little material in the endplate compared to a traditional wire readout.

  4. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  5. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  6. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  7. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  8. Smoke Detector Technology.

    Science.gov (United States)

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  9. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  10. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  11. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  12. Identifying Threshold Concepts for Information Literacy: A Delphi Study

    Directory of Open Access Journals (Sweden)

    Lori Townsend

    2016-06-01

    Full Text Available This study used the Delphi method to engage expert practitioners on the topic of threshold concepts for information literacy. A panel of experts considered two questions. First, is the threshold concept approach useful for information literacy instruction? The panel unanimously agreed that the threshold concept approach holds potential for information literacy instruction. Second, what are the threshold concepts for information literacy instruction? The panel proposed and discussed over fifty potential threshold concepts, finally settling on six information literacy threshold concepts.

  13. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  14. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Christensen, Julie A. E.; Kempfner, Jacob

    2012-01-01

    Many of the automatic sleep spindle detectors currently used to analyze sleep EEG are either validated on young subjects or not validated thoroughly. The purpose of this study is to develop and validate a fast and reliable sleep spindle detector with high performance in middle aged subjects....... An automatic sleep spindle detector using a bandpass filtering approach and a time varying threshold was developed. The validation was done on sleep epochs from EEG recordings with manually scored sleep spindles from 13 healthy subjects with a mean age of 57.9 ± 9.7 years. The sleep spindle detector reached...

  15. Experimental study on the CsI (Tl) crystal anti-compton detector in CDEX

    International Nuclear Information System (INIS)

    Liu Shukui; Yue Qian; Tang Changjian

    2012-01-01

    CDEX (China Dark matter Experiment) Collaboration will carry out direct search for dark matter with Ultra-Low Energy Threshold High Purity germanium (ULE-HPGe) detector at CJPL (China Jinping deep underground Laboratory). Before underground research, some experiments of the CsI (Tl) crystal Anti-Compton detector have been done on the ground, including light guide choice, wrapping material choice, height uniformity of CsI (Tl) crystal, side uniformity of CsI (Tl) crystal and the test results of all the crystals. Through the preliminary work on the ground, we have got some knowledge of the anti-compton detector and prepared for the underground experiment. (authors)

  16. A CMOS self-powered front-end architecture for subcutaneous event-detector devices

    CERN Document Server

    Colomer-Farrarons, Jordi

    2011-01-01

    A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices presents the conception and prototype realization of a Self-Powered architecture for subcutaneous detector devices. The architecture is designed to work as a true/false (event detector) or threshold level alarm of some substances, ions, etc. that are detected through a three-electrodes amperometric BioSensor approach. The device is conceived as a Low-Power subcutaneous implantable application powered by an inductive link, one emitter antenna at the external side of the skin and the receiver antenna under the ski

  17. QRS Detection Based on Improved Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Xuanyu Lu

    2018-01-01

    Full Text Available Cardiovascular disease is the first cause of death around the world. In accomplishing quick and accurate diagnosis, automatic electrocardiogram (ECG analysis algorithm plays an important role, whose first step is QRS detection. The threshold algorithm of QRS complex detection is known for its high-speed computation and minimized memory storage. In this mobile era, threshold algorithm can be easily transported into portable, wearable, and wireless ECG systems. However, the detection rate of the threshold algorithm still calls for improvement. An improved adaptive threshold algorithm for QRS detection is reported in this paper. The main steps of this algorithm are preprocessing, peak finding, and adaptive threshold QRS detecting. The detection rate is 99.41%, the sensitivity (Se is 99.72%, and the specificity (Sp is 99.69% on the MIT-BIH Arrhythmia database. A comparison is also made with two other algorithms, to prove our superiority. The suspicious abnormal area is shown at the end of the algorithm and RR-Lorenz plot drawn for doctors and cardiologists to use as aid for diagnosis.

  18. Cost-effectiveness thresholds: pros and cons.

    Science.gov (United States)

    Bertram, Melanie Y; Lauer, Jeremy A; De Joncheere, Kees; Edejer, Tessa; Hutubessy, Raymond; Kieny, Marie-Paule; Hill, Suzanne R

    2016-12-01

    Cost-effectiveness analysis is used to compare the costs and outcomes of alternative policy options. Each resulting cost-effectiveness ratio represents the magnitude of additional health gained per additional unit of resources spent. Cost-effectiveness thresholds allow cost-effectiveness ratios that represent good or very good value for money to be identified. In 2001, the World Health Organization's Commission on Macroeconomics in Health suggested cost-effectiveness thresholds based on multiples of a country's per-capita gross domestic product (GDP). In some contexts, in choosing which health interventions to fund and which not to fund, these thresholds have been used as decision rules. However, experience with the use of such GDP-based thresholds in decision-making processes at country level shows them to lack country specificity and this - in addition to uncertainty in the modelled cost-effectiveness ratios - can lead to the wrong decision on how to spend health-care resources. Cost-effectiveness information should be used alongside other considerations - e.g. budget impact and feasibility considerations - in a transparent decision-making process, rather than in isolation based on a single threshold value. Although cost-effectiveness ratios are undoubtedly informative in assessing value for money, countries should be encouraged to develop a context-specific process for decision-making that is supported by legislation, has stakeholder buy-in, for example the involvement of civil society organizations and patient groups, and is transparent, consistent and fair.

  19. At-Risk-of-Poverty Threshold

    Directory of Open Access Journals (Sweden)

    Táňa Dvornáková

    2012-06-01

    Full Text Available European Statistics on Income and Living Conditions (EU-SILC is a survey on households’ living conditions. The main aim of the survey is to get long-term comparable data on social and economic situation of households. Data collected in the survey are used mainly in connection with the evaluation of income poverty and determinationof at-risk-of-poverty rate. This article deals with the calculation of the at risk-of-poverty threshold based on data from EU-SILC 2009. The main task is to compare two approaches to the computation of at riskof-poverty threshold. The first approach is based on the calculation of the threshold for each country separately,while the second one is based on the calculation of the threshold for all states together. The introduction summarizes common attributes in the calculation of the at-risk-of-poverty threshold, such as disposable household income, equivalised household income. Further, different approaches to both calculations are introduced andadvantages and disadvantages of these approaches are stated. Finally, the at-risk-of-poverty rate calculation is described and comparison of the at-risk-of-poverty rates based on these two different approaches is made.

  20. Threshold concepts in finance: student perspectives

    Science.gov (United States)

    Hoadley, Susan; Kyng, Tim; Tickle, Leonie; Wood, Leigh N.

    2015-10-01

    Finance threshold concepts are the essential conceptual knowledge that underpin well-developed financial capabilities and are central to the mastery of finance. In this paper we investigate threshold concepts in finance from the point of view of students, by establishing the extent to which students are aware of threshold concepts identified by finance academics. In addition, we investigate the potential of a framework of different types of knowledge to differentiate the delivery of the finance curriculum and the role of modelling in finance. Our purpose is to identify ways to improve curriculum design and delivery, leading to better student outcomes. Whilst we find that there is significant overlap between what students identify as important in finance and the threshold concepts identified by academics, much of this overlap is expressed by indirect reference to the concepts. Further, whilst different types of knowledge are apparent in the student data, there is evidence that students do not necessarily distinguish conceptual from other types of knowledge. As well as investigating the finance curriculum, the research demonstrates the use of threshold concepts to compare and contrast student and academic perceptions of a discipline and, as such, is of interest to researchers in education and other disciplines.

  1. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  2. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  3. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  4. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  5. Black and grey neutron detectors

    International Nuclear Information System (INIS)

    Gabbard, F.

    1977-01-01

    Recent progress in the development and use of ''black'' and ''grey'' detectors is reviewed. Such detectors are widely used for counting neutrons in (p,n) and (α,n) experiments and in neutron cross section measurements. Accuracy of each detector is stressed. 19 figures

  6. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  7. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  8. Imaging properties of the Medipix2 system exploiting single and dual energy thresholds

    CERN Document Server

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H M; Kincade, Karla Lorraine; Llopart-Cudie, Xavier; Stejskal, Pavel

    2006-01-01

    Low noise, high resolution and high dose efficiency are the common requirements for most X-ray imaging applications. Especially in medical applications the dose efficiency is a necessity for detector systems. We present the imaging performance of the Medipix2 readout chip bump bonded to a 300 mu m thick Si detector as a function of the detection threshold, a free parameter not available in conventional integrating imaging systems. Spatial resolution has been measured using the modulation transfer function (MTF) and it varies between 8.2 Ip/mm and 11.0 Ip/mm at 70%. An associated measurement of noise power spectrum (NPS) permits us to derive the detective quantum efficiency (DQE) which can be as a high as 25.5 % for a broadband incoming spectrum. The influence of charge diffusion in the sensor together with threshold variation in the readout chip is discussed. Although the Medipix2 system is used in photon counting mode with a single threshold in energy, the system is also capable of counting within a given en...

  9. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  10. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to 25 mm

  11. Mobility and powering of large detectors. Moving large detectors

    International Nuclear Information System (INIS)

    Thompson, J.

    1977-01-01

    The possibility is considered of moving large lepton detectors at ISABELLE for readying new experiments, detector modifications, and detector repair. A large annex (approximately 25 m x 25 m) would be built adjacent to the Lepton Hall separated from the Lepton Hall by a wall of concrete 11 m high x 12 m wide (for clearance of the detector) and approximately 3 m thick (for radiation shielding). A large pad would support the detector, the door, the cryogenic support system and the counting house. In removing the detector from the beam hall, one would push the pad into the annex, add a dummy beam pipe, bake out the beam pipe, and restack and position the wall on a small pad at the door. The beam could then operate again while experimenters could work on the large detector in the annex. A consideration and rough price estimate of various questions and proposed solutions are given

  12. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  13. Psychophysical thresholds of face visibility during infancy

    DEFF Research Database (Denmark)

    Gelskov, Sofie; Kouider, Sid

    2010-01-01

    The ability to detect and focus on faces is a fundamental prerequisite for developing social skills. But how well can infants detect faces? Here, we address this question by studying the minimum duration at which faces must appear to trigger a behavioral response in infants. We used a preferential...... looking method in conjunction with masking and brief presentations (300 ms and below) to establish the temporal thresholds of visibility at different stages of development. We found that 5 and 10 month-old infants have remarkably similar visibility thresholds about three times higher than those of adults....... By contrast, 15 month-olds not only revealed adult-like thresholds, but also improved their performance through memory-based strategies. Our results imply that the development of face visibility follows a non-linear course and is determined by a radical improvement occurring between 10 and 15 months....

  14. Stimulated Brillouin scattering threshold in fiber amplifiers

    International Nuclear Information System (INIS)

    Liang Liping; Chang Liping

    2011-01-01

    Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)

  15. Threshold Theory Tested in an Organizational Setting

    DEFF Research Database (Denmark)

    Christensen, Bo T.; Hartmann, Peter V. W.; Hedegaard Rasmussen, Thomas

    2017-01-01

    A large sample of leaders (N = 4257) was used to test the link between leader innovativeness and intelligence. The threshold theory of the link between creativity and intelligence assumes that below a certain IQ level (approximately IQ 120), there is some correlation between IQ and creative...... potential, but above this cutoff point, there is no correlation. Support for the threshold theory of creativity was found, in that the correlation between IQ and innovativeness was positive and significant below a cutoff point of IQ 120. Above the cutoff, no significant relation was identified, and the two...... correlations differed significantly. The finding was stable across distinct parts of the sample, providing support for the theory, although the correlations in all subsamples were small. The findings lend support to the existence of threshold effects using perceptual measures of behavior in real...

  16. Effects of pulse duration on magnetostimulation thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Saritas, Emine U., E-mail: saritas@ee.bilkent.edu.tr [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800 (Turkey); National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Goodwill, Patrick W. [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Conolly, Steven M. [Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762 (United States); Department of EECS, University of California, Berkeley, California 94720-1762 (United States)

    2015-06-15

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  17. Thresholds of ion turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Roubin, J.P.; Samain, A.; Zou, X.L.

    1991-01-01

    The linear thresholds of ionic turbulence are numerically calculated for the Tokamaks JET and TORE SUPRA. It is proved that the stability domain at η i >0 is determined by trapped ion modes and is characterized by η i ≥1 and a threshold L Ti /R of order (0.2/0.3)/(1+T i /T e ). The latter value is significantly smaller than what has been previously predicted. Experimental temperature profiles in heated discharges are usually marginal with respect to this criterium. It is also shown that the eigenmodes are low frequency, low wavenumber ballooned modes, which may produce a very large transport once the threshold ion temperature gradient is reached

  18. THRESHOLD PARAMETER OF THE EXPECTED LOSSES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2012-12-01

    Full Text Available The objective of extreme value analysis is to quantify the probabilistic behavior of unusually large losses using only extreme values above some high threshold rather than using all of the data which gives better fit to tail distribution in comparison to traditional methods with assumption of normality. In our case we estimate market risk using daily returns of the CROBEX index at the Zagreb Stock Exchange. Therefore, it’s necessary to define the excess distribution above some threshold, i.e. Generalized Pareto Distribution (GPD is used as much more reliable than the normal distribution due to the fact that gives the accent on the extreme values. Parameters of GPD distribution will be estimated using maximum likelihood method (MLE. The contribution of this paper is to specify threshold which is large enough so that GPD approximation valid but low enough so that a sufficient number of observations are available for a precise fit.

  19. Effects of pulse duration on magnetostimulation thresholds

    International Nuclear Information System (INIS)

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-01-01

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  20. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas

    2017-01-01

    which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus...... on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test...... of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration...