WorldWideScience

Sample records for superlattice period partial

  1. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  2. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  3. Scaling properties of optical reflectance from quasi-periodic superlattices

    International Nuclear Information System (INIS)

    Wu Xiang; Yao Hesheng; Feng Weiguo

    1991-08-01

    The scaling properties of the optical reflectance from two types of quasi-periodic metal-insulator superlattices, one with the structure of Cantor bars and the other with the structure of Cantorian-Fibonaccian train, have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the hydrodynamic model of electron dynamics and transfer-matrix method, and be taking into account retardation effects, we have presented the formalism of the reflectivity for the superlattices. From our numerical results, we found that the reflection spectra of the quasi-superlattices have a rich structure of self-similarity. The interesting scaling indices, which are related to the fractal dimensions, of the spectra are also discussed for the two kinds of the quasi-superlattices. (author). 10 refs, 7 figs

  4. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  5. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  6. Magneto-transport studies of InAs/GaSb short period superlattices

    International Nuclear Information System (INIS)

    Broadley, Victoria Jane

    2002-01-01

    This thesis studies the transport properties of short period semiconducting InAs/GaSb superlattices in the presence of strong electric and magnetic fields applied parallel to the growth axis. Electrical transport parallel to the growth axis occurs through the superlattice miniband, which have widths varying from three to 30meV. Resonant scattering between confined Landau levels and Stark levels is observed at low temperatures (4.2K). In addition LO-phonon assisted scattering between Landau levels is observed in both type-I GaAs/AIAs and type-ll inAs/GaSb superlattices, which are enhanced in the type-ll system due to the strong interband coupling. K·p band structure calculations show that the interband coupling causes the superlattice miniband energy dispersion to be strongly dependent on the in-plane wavevector and the applied magnetic field. For large applied electric fields, where the miniband is split into discrete Stark levels, strong stark-cyclotron resonance (SCR) features are observed, which occur when the Landau level separation equals to the stark level separation. These resonances are enhanced when compared to SCR in type-I superlattices due to the suppression of miniband conduction in higher lying Landau levels. At low electric fields electrical transport through the superlattice miniband yields characteristic miniband transport features, which are modelled using the Esaki-Tsu miniband transport model. Strong electron - LO-phonon scattering is also observed in InAs/GaSb superlattices, where we report the first observation of miniband transport assisted via the emission of LO-phonons between stark levels in adjacent wells. Below 50K thermally activated behaviour is reported and at high magnetic fields (in the quantum limit) complete localisation of carriers is observed. In this regime LO-phonon delocalised transport in also observed. (author)

  7. THz laser based on quasi-periodic AlGaAs superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K V [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2013-06-30

    The use of quasi-periodic AlGaAs superlattices as an active element of a quantum cascade laser of terahertz range is proposed and theoretically investigated. A multi-colour emission, having from three to six peaks of optical gain, is found in Fibonacci, Thue-Morse, and figurate superlattices in electric fields of intensity F = 11 - 13 kV cm{sup -1} in the frequency range f = 2 - 4 THz. The peaks depend linearly on the electric field, retain the height of 20 cm{sup -1}, and strongly depend on the thickness of the AlGaAs-layers. (lasers)

  8. Coherent Phonon Dynamics in Short-Period InAs/GaSb Superlattices

    OpenAIRE

    Noe, G. T.; Haugan, H. J.; Brown, G. J.; Sanders, G. D.; Stanton, C. J.; Kono, J.

    2011-01-01

    We have performed ultrafast pump-probe spectroscopy studies on a series of InAs/GaSb-based short-period superlattice (SL) samples with periods ranging from 46 \\AA to 71 \\AA. We observe two types of oscillations in the differential reflectivity with fast ($\\sim$ 1- 2 ps) and slow ($\\sim$ 24 ps) periods. The period of the fast oscillations changes with the SL period and can be explained as coherent acoustic phonons generated from carriers photoexcited within the SL. This mode provides an accura...

  9. Kinetic Monte Carlo simulation of phase-precipitation versus instability behavior in short period FeCr superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Martínez, F.J. [UCAM, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Guadalupe (Murcia) (Spain); Castejón-Mochón, J.F., E-mail: jfcastejon@ucam.edu [UCAM, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Guadalupe (Murcia) (Spain); Castrillo, P.; Berenguer-Vidal, R. [UCAM, Universidad Católica de Murcia, Campus de los Jerónimos, 30107 Guadalupe (Murcia) (Spain); Dopico, I.; Martin-Bragado, I. [IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe (Madrid) (Spain)

    2017-02-15

    The structural evolution of FeCr superlattices has been studied using a quasi-atomistic Object Kinetic Monte Carlo model. Superlattices with different spatial periods have been simulated for anneal durations from few hours to several months at 500 °C. Relatively-long period superlattices stabilize into Fe-rich and Cr-rich layers with compositions close to those of bulk α and α′ phases. In contrast, superlattices with very short periods (4, 5, 6 nm) are observed to undergo instability and, for long annealing times, evolve into three-dimensionally decomposed regions, in qualitative agreement to recent experimental observations. The instability onset is delayed as the spatial period increases, and it occurs via interface roughness. This evolution can be explained as a minimization of the free-energy associated to the α/α′ interfaces. A comprehensive description of the evolution dynamics of FeCr-based structures is obtained with our model.

  10. Hydrostatic pressure and strain effects in short period InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    The electronic structures of short-period pseudomorphically grown superlattices (SLs) of the form mInN/nGaN are calculated and the band gap variation with the well and the barrier thicknesses is discussed including hydrostatic pressure effects. The calculated band gap shows a strong dependence...... strongly on the strain conditions and SL geometry, but weakly on the applied external hydrostatic pressure....

  11. Raman analysis of phonon modes in a short period AlN/GaN superlattice

    Science.gov (United States)

    Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.; Shi, Fengyuan; Nicholls, Alan; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shifted from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibration was done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.

  12. Visualizing period fluctuations in strained-layer superlattices with scanning tunneling microscopy

    Science.gov (United States)

    Kanedy, K.; Lopez, F.; Wood, M. R.; Gmachl, C. F.; Weimer, M.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.; Kim, J. K.

    2018-01-01

    We show how cross-sectional scanning tunneling microscopy (STM) may be used to accurately map the period fluctuations throughout epitaxial, strained-layer superlattices based on the InAs/InAsSb and InGaAs/InAlAs material systems. The concept, analogous to Bragg's law in high-resolution x-ray diffraction, relies on an analysis of the [001]-convolved reciprocal-space satellite peaks obtained from discrete Fourier transforms of individual STM images. Properly implemented, the technique enables local period measurements that reliably discriminate vertical fluctuations localized to within ˜5 superlattice repeats along the [001] growth direction and orthogonal, lateral fluctuations localized to within ˜40 nm along directions in the growth plane. While not as accurate as x-ray, the inherent, single-image measurement error associated with the method may be made as small as 0.1%, allowing the vertical or lateral period fluctuations contributing to inhomogeneous energy broadening and carrier localization in these structures to be pinpointed and quantified. The direct visualization of unexpectedly large, lateral period fluctuations on nanometer length scales in both strain-balanced systems supports a common understanding in terms of correlated interface roughness.

  13. Simulation of electron transport in GaAs/AlAs superlattices with a small number of periods for the THz frequency range

    International Nuclear Information System (INIS)

    Pavelyev, D. G.; Vasilev, A. P.; Kozlov, V. A.; Koschurinov, Yu. I.; Obolenskaya, E. S.; Obolensky, S. V.; Ustinov, V. M.

    2016-01-01

    The electron transport in superlattices based on GaAs/AlAs heterostructures with a small number of periods (6 periods) is calculated by the Monte Carlo method. These superlattices are used in terahertz diodes for the frequency stabilization of quantum cascade lasers in the range up to 4.7 THz. The band structure of superlattices with different numbers of AlAs monolayers is considered and their current–voltage characteristics are calculated. The calculated current–voltage characteristics are compared with the experimental data. The possibility of the efficient application of these superlattices in the THz frequency range is established both theoretically and experimentally.

  14. Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices

    Science.gov (United States)

    Zheng, Nan; Ahrenkiel, S. Phillip

    2017-07-01

    Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and lattice images.

  15. Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices

    Directory of Open Access Journals (Sweden)

    Paulina Komar

    2016-10-01

    Full Text Available Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSnn:(HfNiSn6−n, and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity (κ showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured κ can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.

  16. Photoluminescence and pressure effects in short period InN/nGaN superlattices

    DEFF Research Database (Denmark)

    Staszczak, G.; Gorczyca, I.; Suski, T.

    2013-01-01

    Measurements of photoluminescence and its dependence on hydrostatic pressure are performed on a set of InN/nGaN superlattices with one InN monolayer and with different numbers of GaN monolayers. The emission energies, EPL, measured at ambient pressure, are close to the value of the band gap, Eg......, in bulk GaN, in agreement with other experimental findings. The pressure dependence of the emission energies, dEPL/dp, however, resembles that of the InN energy gap. Further, the magnitudes of both EPL and dEPL/dp are significantly higher than those obtained from ab-initio calculations for 1In...

  17. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Luna, E.; Satpati, B.; Trampert, A.; Rodriguez, J. B.; Baranov, A. N.; Tournie, E.

    2010-01-01

    The unique properties of the noncommon-atom InAs/GaSb short-period-superlattices (SPSL) strongly depend on the interface structure. These interfaces are characterized using transmission electron microscopy (TEM). The compositional sharpness is obtained from the comparison of the experimental contrast in g 002 two-beam dark-field TEM images with simulated intensity profiles, which are calculated assuming that the element distribution profiles are described by sigmoidal functions. The interfacial intermixing, defined by the chemical width, is obtained for SPSL with different periods and layer thicknesses, even in the extreme case of nominally less than 3 ML thick InAs layers. Nominal 1 ML InSb layers intentionally inserted are also identified.

  18. Superlattices in thermoelectric applications

    International Nuclear Information System (INIS)

    Sofo, J.O.; Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1994-08-01

    The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure

  19. POSITION AND CHARACTER (Ɖ OR X) OF ENERGY STATES IN SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATTICES

    OpenAIRE

    Nagle , J.; Garriga , M.; Stolz , W.; Isu , T.; Ploog , K.

    1987-01-01

    We have grown a series of (GaAs)m(AlAs)n short period superlattices by molecular beam epitaxy including samples with m=n and m≠n. Low temperature photoluminescence, excitation spectroscopy and ellipsometry measurements have been performed to determine the positions and origins of the different electronic states.

  20. Superlattice Structures, Electronic Properties, and Spin Dynamics of the Partially Cu-Extracted Phase for the Composite Crystal System CuxV4O11

    Science.gov (United States)

    Onoda, Masashige; Tamura, Asato

    2017-02-01

    The crystal structures, electronic properties, and spin dynamics of CuxV4O11 with 1.2 ≤ x electron paramagnetic resonance. This system has superlattice structures mainly ascribed to the partial ordering of Cu ions. Cu1.78V4O11 is triclinic with space group Pbar{1} and the double supercell of the V4O11 substructure of the composite crystal. The significantly Cu-extracted crystal Cu1.40V4O11 has a quadruple supercell with space group P1. The electron transport for V ions is nonmetallic owing to the polaronic nature and/or phonon softening and to the random potential of Cu ions. The Curie-Weiss-type paramagnetism basically originates from the Cu2+ chain coordinated octahedrally, and the EPR relaxation at low temperatures is understood through the exchange mechanism for the dipole-dipole and anisotropic exchange interactions. The near absence of paramagnetic behaviors of V4+ ions might be due to the spin-singlet ladder model or alternating-exchange chain model depending on the superlattice structure and valence distribution. The electrochemical performance of Li rechargeable batteries using this superlattice system is about 300 A h kg-1 at voltages above 2 V.

  1. Electronic states in tunneling semiconductor superlattices: Technical progress report for the period September 15, 1987-September 14, 1988

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1988-01-01

    This research project funded by DOE has concentrated in the systematic study of the effects of a gate voltage on the electronic structure of a tunneling superlattice system. The effects of strong magnetic fields and other various parameters on energy levels of tunneling superlattices have been investigated

  2. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  3. Evidence of negative electrorefraction in type-II GaAs/GaAlAs short-period superlattice

    International Nuclear Information System (INIS)

    Shchukin, V A; Ledentsov, N N; Karachinsky, L Ya; Novikov, I I; Egorov, A Yu; Blokhin, S A; Maximov, M V; Gordeev, N Yu; Kulagina, M M; Ustinov, V M

    2015-01-01

    A type-II GaAs/GaAlAs short-period superlattice (SPSL) used as an electro-optic medium for the spectral range 820–850 nm is studied in a vertical microcavity geometry. SPSL is sandwiched between two GaAlAs distributed Bragg reflectors. Optical power reflectance (OR) spectra are measured as a function of applied reverse bias at different tilt angles and temperatures. All spectra reveal a blue shift of the reflectivity dip upon applied voltage which evidences a negative electrorefraction of the electro-optic medium. The shift enhances up to ∼0.6 nm once the exciton resonance is brought close to the wavelength of the reflectivity dip. As opposed to those modulators based on quantum–confined Stark effect, no increased absorption is observed at an applied bias, because the integrated intensity of the reflectivity dip in the OR spectra is virtually constant. This indicates a low absorption loss with applied bias and consequently a high potential for the increased dynamic range of the related modulator. (paper)

  4. Optical properties of spontaneous lateral composition modulation in AlAs/InAs short-period superlattices

    International Nuclear Information System (INIS)

    Francoeur, S.; Zhang, Yong; Norman, A. G.; Alsina, F.; Mascarenhas, A.; Reno, J. L.; Jones, E. D.; Lee, S. R.; Follstaedt, D. M.

    2000-01-01

    The effect of lateral composition modulation, spontaneously generated during the epitaxial growth of an AlAs/InAs short-period superlattice, on the electronic band structure is investigated using phototransmission and photoluminescence spectroscopy. Compared with uniform layers of identical average composition, the presence of the composition modulation considerably reduces the band-gap energy and produces strongly polarized emission and absorption spectra. We demonstrate that the dominant polarization direction can selectively be aligned along the [1(bar sign)10] or [010] crystallographic directions. In compressively strained samples, the use of (001) InP substrates slightly miscut toward (111)A or (101) resulted in modulation directions along [110] or [100], respectively, and dominant polarization directions along a direction orthogonal to the respective composition modulation. Band-gap reductions as high as 350 and 310 meV are obtained for samples with composition modulation along [110] and [100], respectively. Ratios of polarized intensities up to 26 are observed in transmission spectra. (c) 2000 American Institute of Physics

  5. Coupling of reciprocal vectors and corresponding degeneracy effect in a dual-periodic optical superlattice

    International Nuclear Information System (INIS)

    Qin Yiqiang

    2006-01-01

    A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed

  6. InN/GaN short-period superlattices as ordered InGaN ternary alloys

    International Nuclear Information System (INIS)

    Kusakabe, Kazuhide; Imai, Daichi; Wang, Ke; Yoshikawa, Akihiko

    2016-01-01

    Coherent (InN) 1 /(GaN) n short-period superlattices (SPSs) were successfully grown through dynamic atomic layer epitaxy (D-ALEp) mode by RF-plasma molecular beam epitaxy (MBE), where GaN layer thicknesses n were thinned down to 4 monolayer (ML). After this achievement, we demonstrated quasi-ternary InGaN behavior in their photoluminescence (PL) spectra for the first time. It was found interestingly that GaN layer thickness of n = 4 ML was the criterion both for structural control and continuum-band formation. Although highly lattice-mismatched InN/GaN interfaces easily introduce relaxation in (InN) 1 /(GaN) 4 SPSs during growth depending on the dynamic surface stoichiometry condition, this problem was overcome by precise control/removal of fluid-like residual In/Ga metals on the growth front with in-situ monitoring method. The (InN) 1 /(GaN) n SPSs with n ≥ 7 ML showed a constant PL peak energy around 3.2 eV at 12 K, reflecting discrete electron/hole wavefunctions. On the other hand, the (InN) 1 /(GaN) 4 SPSs indicated the red-shifted PL peak at 2.93 eV at 12 K, which was attributed to the continuum-band state with increasing in the overlap of electrons/hole wavefunctions. This result is concluded that the (InN) 1 /(GaN) 4 SPSs can be considered as ordered InGaN alloys. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. A nanowire magnetic memory cell based on a periodic magnetic superlattice

    International Nuclear Information System (INIS)

    Song, J-F; Bird, J P; Ochiai, Y

    2005-01-01

    We analyse the operation of a semiconductor nanowire-based memory cell. Large changes in the nanowire conductance result when the magnetization of a periodic array of nanoscale magnetic gates, which comprise the other key component of the memory cell, is switched between distinct configurations by an external magnetic field. The resulting conductance change provides the basis for a robust memory effect, which can be implemented in a semiconductor structure compatible with conventional semiconductor integrated circuits

  8. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport

    Science.gov (United States)

    Cheaito, Ramez; Polanco, Carlos A.; Addamane, Sadhvikas; Zhang, Jingjie; Ghosh, Avik W.; Balakrishnan, Ganesh; Hopkins, Patrick E.

    2018-02-01

    We report on the room temperature thermal conductivity of AlAs-GaAs superlattices (SLs), in which we systematically vary the period thickness and total thickness between 2 -24 nm and 20.1 -2 ,160 nm , respectively. The thermal conductivity increases with the SL thickness and plateaus at a thickness around 200 nm, showing a clear transition from a quasiballistic to a diffusive phonon transport regime. These results demonstrate the existence of classical size effects in SLs, even at the highest interface density samples. We use harmonic atomistic Green's function calculations to capture incoherence in phonon transport by averaging the calculated transmission over several purely coherent simulations of independent SL with different random mixing at the AlAs-GaAs interfaces. These simulations demonstrate the significant contribution of incoherent phonon transport through the decrease in the transmission and conductance in the SLs as the number of interfaces increases. In spite of this conductance decrease, our simulations show a quasilinear increase in thermal conductivity with the superlattice thickness. This suggests that the observation of a quasilinear increase in thermal conductivity can have important contributions from incoherent phonon transport. Furthermore, this seemingly linear slope in thermal conductivity versus SL thickness data may actually be nonlinear when extended to a larger number of periods, which is a signature of incoherent effects. Indeed, this trend for superlattices with interatomic mixing at the interfaces could easily be interpreted as linear when the number of periods is small. Our results reveal that the change in thermal conductivity with period thickness is dominated by incoherent (particlelike) phonons, whose properties are not dictated by changes in the AlAs or GaAs phonon dispersion relations. This work demonstrates the importance of studying both period and sample thickness dependencies of thermal conductivity to understand the

  9. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    DEFF Research Database (Denmark)

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...

  10. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  11. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    Science.gov (United States)

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  12. Magnetic superlattices

    International Nuclear Information System (INIS)

    Kwo, J.; Hong, M.; McWhan, D.B.; Yafet, Y.; Fleming, R.M.; DiSalvo, F.J.; Waszczak, J.V.; Majkrzak, C.F.; Gibbs, D.; Goldmann, A.I.; Boni, P.; Bohr, J.; Grimm, H.; Bohr, J.; Chien, C.L.; Grimm, H.; Cable, J.W.

    1988-01-01

    Single crystal magnetic rare earth superlattices were synthesized by molecular beam epitaxy. The studies include four rare earth systems: Gd-Y, Dy-Y, Ho-Y, and Gd-Dy. The magnetic properties and the long-range spin order are reviewed in terms of the interfacial behavior, and the interlayer exchange coupling across Y medium

  13. Graphene: A partially ordered non-periodic solid

    International Nuclear Information System (INIS)

    Wei, Dongshan; Wang, Feng

    2014-01-01

    Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allow large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic

  14. Thermoelectric infrared microsensors based on a periodically suspended thermopile integrating nanostructured Ge/SiGe quantum dots superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Ziouche, K., E-mail: katir.ziouche@iemn.univ-lille1.fr, E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Bougrioua, Z., E-mail: katir.ziouche@iemn.univ-lille1.fr, E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Lejeune, P.; Lasri, T.; Leclercq, D. [IEMN, Institute of Electronics, Microelectronics and Nanotechnology, CNRS and Lille 1 University, F-59652 Villeneuve d' Ascq (France); Savelli, G.; Hauser, D.; Michon, P.-M. [CEA, LITEN, Thermoelectricity Laboratory, F-38054 Grenoble (France)

    2014-07-28

    This paper presents an original integration of polycrystalline SiGe-based quantum dots superlattices (QDSL) into Thermoelectric (TE) planar infrared microsensors (μSIR) fabricated using a CMOS technology. The nanostructuration in QDSL results into a considerably reduced thermal conductivity by a factor up to 10 compared to the one of standard polysilicon layers that are usually used for IR sensor applications. A presentation of several TE layers, QDSL and polysilicon, is given before to describe the fabrication of the thermopile-based sensors. The theoretical values of the sensitivity to irradiance of μSIR can be predicted thanks to an analytical model. These findings are used to interpret the experimental measurements versus the nature of the TE layer exploited in the devices. The use of nanostructured QDSL as the main material in μSIR thermopile has brought a sensitivity improvement of about 28% consistent with theoretical predictions. The impact of QDSL low thermal conductivity is damped by the contribution of the thermal conductivity of all the other sub-layers that build up the device.

  15. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  16. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    Science.gov (United States)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction

  17. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.

    Science.gov (United States)

    Felix, Isaac M; Pereira, Luiz Felipe C

    2018-02-09

    Superlattices are ideal model systems for the realization and understanding of coherent (wave-like) and incoherent (particle-like) phonon thermal transport. Single layer heterostructures of graphene and hexagonal boron nitride have been produced recently with sharp edges and controlled domain sizes. In this study we employ nonequilibrium molecular dynamics simulations to investigate the thermal conductivity of superlattice nanoribbons with equal-sized domains of graphene and hexagonal boron nitride. We analyze the dependence of the conductivity with the domain sizes, and with the total length of the ribbons. We determine that the thermal conductivity reaches a minimum value of 89 W m -1 K -1 for ribbons with a superlattice period of 3.43 nm. The effective phonon mean free path is also determined and shows a minimum value of 32 nm for the same superlattice period. Our results also reveal that a crossover from coherent to incoherent phonon transport is present at room temperature for BNC nanoribbons, as the superlattice period becomes comparable to the phonon coherence length. Analyzing phonon populations relative to the smallest superlattice period, we attribute the minimum thermal conductivity to a reduction in the population of flexural phonons when the superlattice period equals 3.43 nm. The ability to manipulate thermal conductivity using superlattice-based two-dimensional materials, such as graphene-hBN nanoribbons, opens up opportunities for application in future nanostructured thermoelectric devices.

  18. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  19. Magnetic modes in superlattices

    International Nuclear Information System (INIS)

    Oliveira, F.A.

    1990-04-01

    A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt

  20. Existence of pseudo almost periodic solutions for a class of partial functional differential equations

    Directory of Open Access Journals (Sweden)

    Hui-Sheng Ding

    2013-04-01

    Full Text Available In this paper, we first introduce a new class of pseudo almost periodic type functions and investigate some properties of pseudo almost periodic type functions; and then we discuss the existence of pseudo almost periodic solutions to the class of abstract partial functional differential equations $x'(t=Ax(t+f(t,x_t$ with finite delay in a Banach space X.

  1. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  2. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    Science.gov (United States)

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  4. Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode

    International Nuclear Information System (INIS)

    Jin, Xiuguang; Matsuba, Shunya; Honda, Yosuke; Miyajima, Tsukasa; Yamamoto, Masahiro; Utiyama, Takashi; Takeda, Yoshikazu

    2013-01-01

    GaAs/GaAsP strained superlattices are excellent candidates for use as spin-polarized electron sources. In the present study, picosecond electron bunches were successfully generated from such a superlattice photocathode. However, electron transport in the superlattice was much slower than in bulk GaAs. Transmission electron microscopy observations revealed that a small amount of variations in the uniformity of the layers was present in the superlattice. These variations lead to fluctuations in the superlattice mini-band structure and can affect electron transport. Thus, it is expected that if the periodicity of the superlattice can be improved, much faster electron bunches can be produced. - Highlights: • GaAs/GaAsP strained superlattices are excellent candidates for spin-polarized electron beam. • Pulse spin-polarized electron beam is required for investigating the magnetic domain change. • Picosecond electron bunches were achieved from GaAs/GaAsP superlattice photocathode. • TEM observation revealed a small disorder of superlattice layers. • Improvement of superlattice periodicity can achieve much faster electron bunches

  5. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  6. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  7. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  8. Electronic structure of superlattices

    International Nuclear Information System (INIS)

    Altarelli, M.

    1987-01-01

    Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt

  9. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  10. Participation of mechanical oscillations in thermodynamics of crystals with superlattice

    International Nuclear Information System (INIS)

    Jacjimovski K, S.; Mirjanicj Lj, D.; Shetrajchicj P, J.

    2012-01-01

    The superlattice, consisting of two periodically repeating films, is analyzed in proposal paper. Due to the structural deformations and small thickness, the acoustic phonons do not appear in these structures. The spontaneous appearance of phonons is possible in an ideal structure only. Therefore the thermodynamical analysis of phonon subsystems is the first step in investigations of superlattice properties. Internal energy as well as specific heat will be analyzed, too. Low-temperature behavior of these quantities will be compared to the corresponding quantities of bulk structures and of thin films. The general conclusion is that the main thermodynamic characteristics of superlattices are considerably lower than those of the bulk structure. Consequently, their superconductive characteristics are better than the superconductive characteristics of corresponding bulk structures. Generally considered, the application field of superlattices is wider than that of bulk structures and films. (Author)

  11. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  12. Ordered quantum-ring chains grown on a quantum-dot superlattice template

    International Nuclear Information System (INIS)

    Wu Jiang; Wang, Zhiming M.; Holmes, Kyland; Marega, Euclydes; Mazur, Yuriy I.; Salamo, Gregory J.

    2012-01-01

    One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.

  13. Optical properties of graphene superlattices.

    Science.gov (United States)

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  14. Optical properties of graphene superlattices

    International Nuclear Information System (INIS)

    Le, H Anh; Do, V Nam; Ho, S Ta; Nguyen, D Chien

    2014-01-01

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, U b ), where U b is the potential barrier height. In the higher photon energy range, i.e. Ω > U b , the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism. (paper)

  15. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  16. Superlattice to nanoelectronics

    CERN Document Server

    Tsu, Raphael

    2005-01-01

    Superlattice to Nanoelectronics provides a historical overview of the early work performed by Tsu and Esaki, to orient those who want to enter into this nanoscience. It describes the fundamental concepts and goes on to answer many questions about todays 'Nanoelectronics'. It covers the applications and types of devices which have been produced, many of which are still in use today. This historical perspective is important as a guide to what and how technology and new fundamental ideas are introduced and developed. The author communicates a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials. Topics covered include * Introductory materials * Superlattice, Bloch oscillations and transport * Tunneling in QWs to QDs * Optical properties: optical transitions, size dependent dielectric constant, capacitance and doping * Quantum devices: New approaches without doping and heterojunctions - quantum confinement...

  17. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Itoi, Takaomi [Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan)

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  18. Growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi; Itoi, Takaomi; Yoshikawa, Akihiko

    2016-01-01

    The growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)_1/(GaN)_4 SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  19. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  20. Thermoelectric transport in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T L; Broido, D A

    1997-07-01

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  1. [Intensity of negative symptoms, working memory and executive functions disturbances in schizophrenic patients in partial remission period].

    Science.gov (United States)

    Hintze, Beata; Borkowska, Alina

    2011-01-01

    The aim of the study was to assess the correlation between the level of working memory and executive functions impairment in schizophrenic subjects in their partial remission period and the intensity of psychopathological symptoms measured by PANSS scale. 45 patients with schizophrenia were included in the study (28 male and 17 female), aged 18-46 (mean 27 +/- 7) years during partial remission of psychopathological symptoms (PANSS partial remission period, the significant dysfunctions of working memory and executive functions show association with negative (not positive) schizophrenic symptoms.

  2. Different Training Loads Partially Influence Physiological Responses to the Preparation Period in Basketball.

    Science.gov (United States)

    Ferioli, Davide; Bosio, Andrea; La Torre, Antonio; Carlomagno, Domenico; Connolly, Darragh R; Rampinini, Ermanno

    2018-03-01

    Ferioli, D, Bosio, A, La Torre, A, Carlomagno, D, Connolly, DR, and Rampinini, E. Different training loads partially influence physiological responses to preparation period in basketball. J Strength Cond Res 32(3): 790-797, 2018-The aim of this study was to compare the session rating of perceived exertion training load (sRPE-TL), training volume (TV), and the changes in physical fitness between professional (n = 14) and semiprofessional (n = 18) basketball players during the preparation period. Furthermore, relationships between sRPE-TL and TV with changes in physical fitness level were investigated. The players performed the Yo-Yo intermittent recovery test-level 1 (Yo-Yo IR1) before and after the preparation period. In addition, physiological responses to a standardized 6-minute continuous running test (Mognoni's test) and to a standardized 5-minute high-intensity intermittent running test (HIT) were measured. Session rating of perceived exertion-TL and TV were greater for professional (5,241 ± 1787 AU; 914 ± 122 minutes) compared with semiprofessional players (2,408 ± 487 AU; 583 ± 65 minutes). Despite these differences, Yo-Yo IR1 performance improvements (∼30%) and physiological adaptations to the Mognoni's test were similar between the 2 groups. Furthermore, physiological adaptations to HIT were slightly greater for professional compared with semiprofessional players; however, the magnitude of these effects was only small/moderate. No clear relationships were found between sRPE-TL and changes in Yo-Yo IR1 performance and Mognoni's test (rs ± 90% confidence interval [CI]: Yo-Yo IR1, 0.18 ± 0.30; Mognoni's test, -0.14 ± 0.29). Only moderate relationships were found between sRPE-TL and changes in HIT (rs ± 90% CI: [La], -0.48 ± 0.23; [H], -0.42 ± 0.25). These results raise doubts on the effectiveness of using high sRPE-TL and TV during the preparation period to improve the physical fitness level of players. The Yo-Yo IR1 seems to be sensitive to

  3. Engineering the oxygen coordination in digital superlattices

    Science.gov (United States)

    Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.

    2017-12-01

    The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.

  4. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

    International Nuclear Information System (INIS)

    Kupka, F.

    1997-11-01

    This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

  5. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    YANG; Juekuan(杨决宽); CHEN; Yunfei(陈云飞); YAN; Jingping(颜景平)

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  6. Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media

    International Nuclear Information System (INIS)

    Arana, J I; Bonilla, L L; Grahn, H T

    2011-01-01

    Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains. (paper)

  7. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  8. Dissipative chaos in semiconductor superlattices

    Directory of Open Access Journals (Sweden)

    F. Moghadam

    2008-03-01

    Full Text Available In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of chaotic behaviors.

  9. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  10. Impact of Costing and Cost Analysis Methods on the Result of the Period: Methods Based on Partial Cost Theory

    Directory of Open Access Journals (Sweden)

    Toma Maria

    2017-01-01

    Looking from this perspective, in the present paper we have proposed that objectives, to approach the full cost calculation methods based on partial costs (direct-costing on the product or direct-costing evolved, and comparing them to determine the effect they have on the outcome of the period.

  11. Transport in a magnetic field modulated graphene superlattice.

    Science.gov (United States)

    Li, Yu-Xian

    2010-01-13

    Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.

  12. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  13. New definition for the partial remission period in children and adolescents with type 1 diabetes

    DEFF Research Database (Denmark)

    Mortensen, Henrik B; Hougaard, Philip; Swift, Peter

    2009-01-01

    OBJECTIVE To find a simple definition of partial remission in type 1 diabetes that reflects both residual beta-cell function and efficacy of insulin treatment. RESEARCH DESIGN AND METHODS A total of 275 patients aged ..., stimulated C-peptide during a challenge was used as a measure of residual beta-cell function. RESULTS By multiple regression analysis, a negative association between stimulated C-peptide and A1C (regression coefficient -0.21, P ... the definition of an insulin dose-adjusted A1C (IDAA1C) as A1C (percent) + [4 x insulin dose (units per kilogram per 24 h)]. A calculated IDAA1C 300 pmol/l was used to define partial remission. The IDAA1C

  14. A geometric theory for semilinear almost-periodic parabolic partial differential equations on RN

    International Nuclear Information System (INIS)

    Vuillermot, P.A.

    1991-01-01

    In this short expository article we review various applications of some geometric methods which have been recently devised to investigate the long time behaviour of classical solutions to certain semilinear almost-periodic reaction-diffusion equations on R N . As a consequence, we also show how to construct almost-periodic attractors for such equations and how to investigate their stability properties. The class of problems which we analyse here contains in particular well known equations of population genetics. (author). 17 refs

  15. Topotactic interconversion of nanoparticle superlattices.

    Science.gov (United States)

    Macfarlane, Robert J; Jones, Matthew R; Lee, Byeongdu; Auyeung, Evelyn; Mirkin, Chad A

    2013-09-13

    The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.

  16. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  17. Fourier method for three-dimensional partial differential equations in periodic geometry. Application: HELIAC

    International Nuclear Information System (INIS)

    Shestakov, A.I.; Mirin, A.A.

    1984-01-01

    A numerical method based on Fourier expansions and finite differences is presented. The method is demonstrated by solving a scalar, three-dimensional elliptic equation arising in MFE research, but has applicability to a wider class of problems. The scheme solves equations whose solutions are expected to be periodic in one or more of the independent variables

  18. A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement

    Science.gov (United States)

    Jamali Mahabadi, S. E.; Rajabi, Saba; Loiacono, Julian

    2015-09-01

    In this paper a partial silicon on insulator (PSOI) lateral double diffused metal oxide semiconductor field effect transistor (LDMOSFET) with periodic buried oxide layer (PBO) for enhancing breakdown voltage (BV) and self-heating effects (SHEs) is proposed for the first time. This new structure is called periodic buried oxide partial silicon on insulator (PBO-PSOI). In this structure, periodic small pieces of SiO2 were used as the buried oxide (BOX) layer in PSOI to modulate the electric field in the structure. It was demonstrated that the electric field is distributed more evenly by producing additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the PBO-PSOI structure. Hence, the area underneath the electric field curve increases which leads to higher breakdown voltage. Also a p-type Si window was introduced in the source side to force the substrate to share the vertical voltage drop, leading to a higher vertical BV. Furthermore, the Si window under the source and those between periodic pieces of SiO2 create parallel conduction paths between the active layer and substrate thereby alleviating the SHEs. Simulations with the two dimensional ATLAS device simulator from the Silvaco suite of simulation tools show that the BV of PBO-PSOI is 100% higher than that of the conventional partial SOI (C-PSOI) structure. Furthermore the PBO-PSOI structure alleviates SHEs to a greater extent than its C-PSOI counterpart. The achieved drain current for the PBO-PSOI structure (100 μA), at drain-source voltage of VDS = 100 V and gate-source voltage of VGS = 25 V, is shown to be significantly larger than that in C-PSOI and fully depleted SOI (FD-SOI) structures (87 μA and 51 μA respectively). Drain current can be further improved at the expense of BV by increasing the doping of the drift region.

  19. Excitation on breather (bion) in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.

    1999-09-01

    Soliton breather excitation in superlattice has been studied in this paper. It is observed that under certain conditions, the vector potential equation for the electromagnetic wave propagating through the superlattice assumes the sine-Gordon(sG) equation. The solution of which does not give only a soliton but also a soliton breather. The binding energy of the breather is calculated to be E b = 16γ(1 - sin ν), γ = (1 - u 2 /v 0 2 ) -1/2 where u is the velocity of the breather and v 0 is the velocity of the electromagnetic wave in the absence of electrons. As can be seen, when ν → π/2 the binding energy tends to zero, hence, the breather disintegrates into a soliton and antisoliton. It was further observed that the binding energy decreases with an increase in Δ (the half miniband width) for a given value of d (SL period). Similarly it also decreases with increase in d for a given value of Δ. Comparing the breather's rest energy E b to that of soliton E s i.e E b = 2E s sin ν. We noted that the breather's rest energy is less than that required to excite a soliton. (author)

  20. Lateral surface superlattices in strained InGaAs layers

    International Nuclear Information System (INIS)

    Milton, B.

    2000-08-01

    Lateral Surface Superlattices were fabricated by etching in strained InGaAs layers above a GaAs/AlGaAs 2DEG channel. These were etched both by dry plasma wet chemical etching to produce periods of 100nm, 200nm and 300nm. These superlattices were fabricated on Hall bars to allow four terminal measurement and a blanket gate was placed on top, to allow variations in the carrier concentration. The magnetoresistance effects of these superlattices were studied at varying values of gate voltage, which varies the carrier concentration and the electrostatic periodic potential and at temperatures down to 45mK in a dilution refrigerator. From the oscillations observed in the magnetoresistance trace's it is possible to calculate the magnitude of the periodic potential. This showed that the etched, strained InGaAs was producing an anisotropic piezoelectric potential, along with an isotropic electrostatic potential. The variation in period allowed a study of the change of this piezoelectric potential with the period as well as a study of the interactions between the electrostatic and piezoelectric potentials. Further, at the lowest temperatures a strong interaction was observed between the Commensurability Oscillations, caused by the periodic potential, and the Shubnikov-de Haas Oscillations due to the Landau. Levels. This interaction was studied as it varied with temperature and carrier concentration. (author)

  1. Phonon-induced optical superlattice.

    Science.gov (United States)

    de Lima, M M; Hey, R; Santos, P V; Cantarero, A

    2005-04-01

    We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

  2. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  3. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  4. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  5. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice

    Science.gov (United States)

    Li, X. J.; Yu, J. H.; Luo, K.; Wu, Z. H.; Yang, W.

    2018-04-01

    We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin-orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron-hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.

  6. Thermal conductivity and heat transfer in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G; Neagu, M; Borca-Tasciuc, T

    1997-07-01

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  7. Electronic structure of a graphene superlattice with massive Dirac fermions

    International Nuclear Information System (INIS)

    Lima, Jonas R. F.

    2015-01-01

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g  ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems

  8. Transport and spin effects in homogeneous magnetic superlattice

    International Nuclear Information System (INIS)

    Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.

    2000-09-01

    Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)

  9. Phase transitions of a spin-one Ising ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Saber, A.

    2001-09-01

    Using the effective field theory with a probability distribution technique, the magnetic properties in an infinite superlattice consisting of two different ferromagnets are studied in a spin-one Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs in one period and as a function of the intra- and interlayer exchange interactions. A critical value of the exchange reduced interaction above which the interface magnetism appears is found. (author)

  10. Matter-Wave Solitons In Optical Superlattices

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.

    2006-01-01

    In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton

  11. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  12. Enhancement of dielectric and ferroelectric properties of PbZrO3/PbTiO3 artificial superlattices

    International Nuclear Information System (INIS)

    Choi, Taekjib; Lee, Jaichan

    2005-01-01

    PbZrO 3 (PZO)/PbTiO 3 (PTO) artificial superlattices have been grown on La 0.5 Sr 0.5 CoO 3 (LSCO) (100)/MgO (100) substrate by pulsed laser deposition with various stacking periods from 1 to 100 unit cells. The PZO/PTO artificial lattice exhibited a diffraction pattern characteristic of a superlattice structure, i.e., a main diffraction peak with satellite peaks. The electrical properties of the superlattices were investigated as a function of the stacking period. The dielectric constant and remnant polarization improved on decreasing the stacking periodicity. The dielectric constant of the superlattice reached 800 at a stacking period of 1unit cell/1unit cell (PZO 1 /PTO 1 ), which is larger than that of the single PZT solid-solution film. Moreover, the remnant polarization reached a maximum, 2Pr = 38.7 μC/cm 2 , at a 2-unit-cell stacking period. Progressive enhancement of dielectric constant and remnant polarization in artificial PZO/PTO superlattice was accompanied by expansion of the (100)-plane spacing on decreasing the stacking periodicity. These results suggest that the lattice strain developed in the PZO/PTO superlattice may have influence on dielectric constant and ferroelectric behavior.

  13. Tunneling of electrons through semiconductor superlattices

    Indian Academy of Sciences (India)

    Unknown

    Tunneling of electrons through semiconductor superlattices. C L ROY. Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. The purpose of the present paper is to report a study of tunneling of electrons through semicon- ductor superlattices (SSL); specially, we have ...

  14. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  15. Photostimulated attenuation of hypersound in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.; Adjepong, S.K.

    1992-10-01

    Photostimulated attenuation of hypersound in semiconductor superlattice has been investigated. It is shown that the attenuation coefficient depends on the phonon wave vector q in an oscillatory manner and that from this oscillation the band width Δ of superlattice can be found. (author). 14 refs, 1 fig

  16. Photoacoustic transformation of Bessel light beams in magnetoactive superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mityurich, G. S., E-mail: George-mityurich@mail.ru [Belarusian Trade and Economics University of Consumer Cooperatives (Belarus); Chernenok, E. V.; Sviridova, V. V.; Serdyukov, A. N. [Gomel State University (Belarus)

    2015-03-15

    Photoacoustic transformation of the TE mode of a Bessel light beam (BLB) has been studied for piezoelectric detection in short-period superlattices formed by magnetoactive crystals of bismuth germanate (Bi{sub 12}GeO{sub 20}) and bismuth silicate (Bi{sub 12}SiO{sub 20}) types. It is shown that the resulting signal amplitude can be controlled using optical schemes of BLB formation with a tunable cone angle. A resonant increase in the signal amplitude has been found in the megahertz range of modulation frequencies and its dependences on the BLB modulation frequency, geometric sizes of the two-layer structure and piezoelectric transducer, radial coordinate of the polarization BLB mode, and dissipative superlattice parameters are analyzed.

  17. Quantum ratchets for quantum communication with optical superlattices

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose

    2007-01-01

    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments

  18. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  19. Band structure of ABC-trilayer graphene superlattice

    International Nuclear Information System (INIS)

    Uddin, Salah; Chan, K. S.

    2014-01-01

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k y direction for k x  = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case

  20. X-ray diffraction of multilayers and superlattices

    International Nuclear Information System (INIS)

    Bartels, W.J.; Hornstra, J.; Lobeek, D.J.W.

    1986-01-01

    Recursion formulae for calculating the reflected amplitude ratio of multilayers and superlattices have been derived from the Takagi-Taupin differential equations, which describe the dynamical diffraction of X-rays in deformed crystals. Calculated rocking curves of complicated layered structures, such as non-ideal superlattices on perfect crystals, are shown to be in good agreement with observed diffraction profiles. The kinematical theory can save computing time only in the case of an ideal superlattice, for which a geometric series can be used, but the reflections must be below 10% so that multiple reflections can be neglected. For a perfect crystal of arbitrary thickness the absorption at the center of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter-deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-ray diffraction calculations give results very similar to those of a macroscopic optical description in terms of the complex index of refraction and Fresnel reflection coefficients. (orig.)

  1. Waves in man-made materials: superlattice to metamaterials

    Science.gov (United States)

    Tsu, Raphael; Fiddy, Michael A.

    2014-07-01

    While artificial or man-made structures date back to Lord Rayleigh, the work started by Lewin in 1947, placing spheres onto cubic lattices, greatly enriched microwave materials and devices. It was very suggestive of both metamaterials and photonics crystals. Effective medium models were used to describe bulk properties with some success. The concept of metamaterials followed photonic crystals, and these both were introduced after the introduction of the man-made superlattices designed to enrich the class of materials for electronic devices. The work on serrated ridged waveguides by Kirschbaum and Tsu for the control of the refractive index of microwave lenses as well as microwave matching devices in 1959 used a combination of theory, such as Floquet's theory, Bloch theory in one dimension, as well as periodic lumped loading. There is much in common between metamaterials and superlattices, but in this paper, we discuss some practical limitations to both. It is pointed out that unlike superlattices where kl > 1 is the most important criterion, metamaterials try to avoid involve such restrictions. However, the natural random fluctuations that limit the properties of naturally occurring materials are shown to take a toll on the theoretical predictions of metamaterials. The question is how great that toll, i.e. how significant those fluctuations will be, in diminishing the unusual properties that metamaterials can exhibit.

  2. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  3. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  4. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz

    2013-01-01

    Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...... with one monolayer of InN and 40 monolayers of GaN. The results are compared with calculations performed for different types of superlattices: InN/GaN, InGaN/GaN, and InN/InGaN/GaN with single monolayers of InN and/or InGaN. The superlattices are simulated by band structure calculations based on the local...... density approximation (LDA) with a semi-empirical correction for the ‘‘LDA gap error’’. A similarity is observed between the results of calculations for an InGaN/GaN superlattice (with one monolayer of InGaN) and the experimental results. This indicates that the fabricated InN quantum wells may contain...

  5. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  6. Theory of transmission through disordered superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Hu, Ben Yu-Kuang

    1999-01-01

    We derive a theory for transmission through disordered finite superlattices in which the interface roughness scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission through samples with large cross sections. These calculations can be performed...

  7. Effects of anharmonic strain on the phase stability of epitaxial films and superlattices: Applications to noble metals

    International Nuclear Information System (INIS)

    Ozolins, V.; Wolverton, C.; Zunger, A.

    1998-01-01

    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total-energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%), and Ni/Au (15%). We find that left-angle 001 right-angle is the elastically soft direction for biaxial expansion of Cu and Ni, but it is left-angle 201 right-angle for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along left-angle 111 right-angle and left-angle 001 right-angle behave like phase separating systems, while for left-angle 110 right-angle they behave like ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents. copyright 1998 The American Physical Society

  8. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  9. Investigation of InAs/GaSb-based superlattices by diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Ashuach, Y.; Kauffmann, Y.; Lakin, E. [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Zolotoyabko, E., E-mail: zloto@tx.technion.ac.i [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Grossman, S.; Klin, O.; Weiss, E. [SCD, SemiConductor Devices, P. O. Box 2250, Haifa 31021 (Israel)

    2010-02-15

    We use high-resolution X-ray diffraction and high-resolution transmission electron microscopy in order to study the strain state, atomic intermixing and layer thicknesses in the MBE-grown GaSb/InSb/InAs/InSb superlattices. Simple and fast metrology procedure is developed, which allows us to obtain the most important technological parameters, such as the thicknesses of the GaSb, InAs and ultra-thin InSb sub-layers, the superlattice period and the fraction of atomic substitutions in the InSb sub-layers.

  10. Structure of highly perfect semiconductor strained-layer superlattices

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1989-01-01

    High-resolution x-ray diffraction (HRXRD) measurements of strained-layer superlattices (SLS's) have been carried out using a four-crystal monochromator. A wide asymmetric range of sharp higher-order x-ray satellite peaks is observed indicating well-defined periodic structures. Using a kinematical diffraction step model very good agreement between measured and simulated x-ray satellite patterns could be achieved. These results show that this x- ray method is a powerful tool to evaluate the crystal quality of SLS's

  11. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  12. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; Rich, Matthew B.; Zhang, Qingteng; Chen, Pice; Yusuf, Mohammed H.; Wen, Haidan; Dawber, Matthew; Evans, Paul G.

    2017-07-01

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  13. Deep levels in silicon–oxygen superlattices

    International Nuclear Information System (INIS)

    Simoen, E; Jayachandran, S; Delabie, A; Caymax, M; Heyns, M

    2016-01-01

    This work reports on the deep levels observed in Pt/Al 2 O 3 /p-type Si metal-oxide-semiconductor capacitors containing a silicon–oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as-deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance–Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P b dangling bond centers at the Si/SiO 2 interface has been observed as well. (paper)

  14. Superlattice design for optimal thermoelectric generator performance

    Science.gov (United States)

    Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran

    2018-05-01

    We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el   =  6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.

  15. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/G...... wells and barriers one may tune band gaps over a wide spectral range, which provides flexibility in band gap engineering.......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite In......N/GaN(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...

  16. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  17. Tunneling in quantum superlattices with variable lacunarity

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro, Francisco R. [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)], E-mail: jmonsori@fis.upv.es

    2008-05-19

    Fractal superlattices are composite, aperiodic structures comprised of alternating layers of two semiconductors following the rules of a fractal set. The scattering properties of polyadic Cantor fractal superlattices with variable lacunarity are determined. The reflection coefficient as a function of the particle energy and the lacunarity parameter present tunneling curves, which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for such curves are derived using the transfer matrix method. Comparison with numerical results shows good accuracy. The new results may be useful in the development of band-pass energy filters for electrons, semiconductor solar cells, and solid-state radiation sources up to THz frequencies.

  18. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  19. Strain-tunable half-metallicity in hybrid graphene-hBN monolayer superlattices

    International Nuclear Information System (INIS)

    Meng, Fanchao; Zhang, Shiqi; Lee, In-Ho; Jun, Sukky; Ciobanu, Cristian V.

    2016-01-01

    Highlights: • Armchair superlattices have a bandgap modulated by the deformed domain widths. • Strain and domain width lead to novel spin-dependent behavior for zigzag boundaries. • Limits for spin-dependent bandgap and half-metallic behavior have been charted. - Abstract: As research in 2-D materials evolves toward combinations of different materials, interesting electronic and spintronic properties are revealed and may be exploited in future devices. A way to combine materials is the formation of spatially periodic domain boundaries in an atom-thick monolayer: as shown in recent reports, when these domains are made of graphene and hexagonal boron nitride, the resulting superlattice has half-metallic properties in which one spin component is (semi)metallic and the other is semiconductor. We explore here the range of spin-dependent electronic properties that such superlattices can develop for different type of domain boundaries, domain widths, and values of tensile strain applied to the monolayer. We show evidence of an interplay between strain and domain width in determining the electronic properties: while for armchair boundaries the bandgap is the same for both spin components, superlattices with zigzag boundaries exhibit rich spin-dependent behavior, including different bandgaps for each spin component, half-metallicity, and reversal of half-metallicity. These findings can lead to new ways of controlling the spintronic properties in hybrid-domain monolayers, which may be exploited in devices based on 2-D materials.

  20. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains

    International Nuclear Information System (INIS)

    Isohätälä, J; Alekseev, K N

    2012-01-01

    We study theoretically the dynamical rectification of a terahertz AC electric field, i.e. the DC current and voltage response to the incident radiation, in strongly coupled semiconductor superlattices. We address the problem of stability against electric field domains: a spontaneous DC voltage is known to appear exactly for parameters for which a spatially homogeneous electron distribution is unstable. We show that by applying a weak direct current bias the rectifier can be switched from a state with zero DC voltage to one with a finite voltage in full absence of domains. The switching occurs near the conditions of dynamical symmetry breaking of an unbiased semiconductor superlattice. Therefore our scheme allows for the generation of DC voltages that would otherwise be unreachable due to domain instabilities. Furthermore, for realistic, highly doped wide miniband superlattices at room temperature, the generated DC field can be nearly quantized, that is, be approximately proportional to an integer multiple of ħω/ea where a is the superlattice period and ω is the AC field frequency. (paper)

  1. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  2. Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices

    Directory of Open Access Journals (Sweden)

    Luis L. Bonilla

    2016-07-01

    Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.

  3. Nanophysics in graphene: neutrino physics in quantum rings and superlattices.

    Science.gov (United States)

    Fertig, H A; Brey, Luis

    2010-12-13

    Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.

  4. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  5. Sequential magnetic switching in Fe/MgO(001) superlattices

    Science.gov (United States)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  6. Dynamic localization in finite quantum dot superlattices

    International Nuclear Information System (INIS)

    Madureira, Justino R.; Schulz, Peter A.; Maialle, Marcelo Z.

    2004-01-01

    Full text: The dynamic properties of electrons and holes in low dimensional systems, driven by ac fields, reveal exciting emergent phenomena in the time span around the turn of the century. Such a rich scenario has been established by the concurrent development of powerful theoretical analysis tools, design and realization of high quality nano structured devices, as well as of tunable microwave and T Hz ac field sources. These striking developments made possible the exploration of the interaction of T Hz fields with condensed matter, leading even to biological tissue imaging. Therefore, a microscopic understanding of the T Hz field effects on designed nano structures constitute an important framework for further developments. A very interesting example in this context is the prediction of dynamic localization, which has been a subject of intense research in the past few years, from both theoretical and experimental point of views. The initial prediction states that, within a single band tight-binding approximation, an initially localized particle will return to its initial state following the periodical evolution of a driving pure sinusoidal field. This phenomenon can be simply visualized by the related collapse of the quasi energy mini bands, i.e., the localization of electronic states of a periodic unidimensional structure in real space driven by a field periodic in time. Such collapses occur whenever the field intensity/frequency ratio, eaF/(h/2π)ω, is a root of the zero-order Bessel function of the first kind. The quest for experimental signatures of dynamic localization is an involved task, since a variety of perturbations to an ideal situation is always present in real systems. The question that has to be answered is how the dynamic localization, related to the quasi-energy mini band collapses, may be identified in a context where concurring effects also tend to modify the quasi-energy spectra. For semiconductor superlattices, dynamic localization has been

  7. Quantitative x-ray structure determination of superlattices and interfaces

    International Nuclear Information System (INIS)

    Schuller, I.K.; Fullerton, E.E.

    1990-01-01

    This paper presents a general procedure for quantitative structural refinement of superlattice structures. To analyze a wide range of superlattices, the authors have derived a general kinematical diffraction formula that includes random, continuous and discrete fluctuations from the average structure. By implementing a non-linear fitting algorithm to fit the entire x-ray diffraction profile, refined parameters that describe the average superlattice structure, and deviations from this average are obtained. The structural refinement procedure is applied to a crystalline/crystalline Mo/Ni superlattices and crystalline/amorphous Pb/Ge superlattices. Roughness introduced artificially during growth in Mo/Ni superlattices is shown to be accurately reproduced by the refinement

  8. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.

    1999-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains

  9. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C. S.; Bader, S. D.

    2000-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains. (c) 2000 American Vacuum Society

  10. The solitary electromagnetic waves in the graphene superlattice

    International Nuclear Information System (INIS)

    Kryuchkov, Sergey V.; Kukhar', Egor I.

    2013-01-01

    d’Alembert equation written for the electromagnetic waves propagating in the graphene superlattice is analyzed. The possibility of the propagation of the solitary electromagnetic waves in the graphene superlattice is discussed. The amplitude and the width of the electromagnetic pulse are calculated. The drag current induced by such wave across the superlattice axis is investigated. The numerical estimate of the charge dragged by the solitary wave is made.

  11. Charge dynamics in graphene and graphene superlattices under a high-frequency electric field: a semiclassical approach

    International Nuclear Information System (INIS)

    Kryuchkov, S V; Kukhar’, E I; Zav’yalov, D V

    2013-01-01

    The semiclassical theory of the dynamics of the charge carriers in graphene and in graphene superlattices exposed to a high-frequency electric field is developed. The dispersion law of the solid averaged over the period of the high-frequency electric field is found with the Kapitza method. The band gap in graphene is shown to arise under a high-frequency electric field polarized circularly. The effective mass of charge carriers in the center of the Brillouin band of the graphene superlattice is found to change sign under certain values of the amplitude of the high-frequency field. These values are shown to determine the bounds of the regions of the electromagnetic 2π-pulse stability. The dynamics of the π-pulse in a graphene superlattice is studied. (paper)

  12. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  13. Stability and electronic structure of superlattices (IIIV)n/(IV2)n

    International Nuclear Information System (INIS)

    Casagrande, D.; Ferraz, A.C.

    1996-01-01

    Theoretical investigations of atomic relaxation and electronic states have been made for ultrathin superlattices (GaP) n /(Ge 2 ) n , (GaP) n /(Si 2 ) n , (In P) n /(Ge 2 ) n and (In P) n /(Si 2 ) n with period n ≤ 3 in growth directions (001) and (110). The calculations were performed within the momentum-space formalism of the self-consistent ab-initio pseudopotential method and the molecular dynamics approach as proposed by Car and Parrinello. The structures were found to be unstable with respect to the phase separation into the constituent bulk materials. The results for the enthalpy show a metastability as increasing the superlattice period n. The density of nonoctet wrong-bonds play an important role to determine the stability of the structures. (author). 13 refs., 2 figs., 3 tabs

  14. THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrichs, Henning, E-mail: hulrich@gwdg.de; Meyer, Dennis; Müller, Markus; Wittrock, Steffen; Mansurova, Maria [I. Physical Institute, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Walowski, Jakob; Münzenberg, Markus [Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2016-10-14

    In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. To further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.

  15. Superlattices: problems and new opportunities, nanosolids

    Directory of Open Access Journals (Sweden)

    Tsu Raphael

    2011-01-01

    Full Text Available Abstract Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids.

  16. Superlattices of platinum and palladium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have used a nonionic inverse micelle synthesis technique to form nanoclusters of platinum and palladium. These nanoclusters can be rendered hydrophobic or hydrophilic by the appropriate choice of capping ligand. Unlike Au nanoclusters, Pt nanoclusters show great stability with thiol ligands in aqueous media. Alkane thiols, with alkane chains ranging from C{sub 6} to C{sub 18} were used as hydrophobic ligands, and with some of these they were able to form 2-D and/or 3-D superlattices of Pt nanoclusters as small as 2.7 nm in diameter. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function of the particle centers, from which they can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the gaps between particles within superlattice domains increases, but more slowly than one might expect, possibly indicating thiol chain interdigitation.

  17. Electron dynamics in intentionally disordered semiconductor superlattices

    International Nuclear Information System (INIS)

    Diez, E.; Sanchez, A.; Dominguez-Adame, F.; Berman, G.P.

    1996-01-01

    We study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Domacute inguez-Adame et al.[Phys. Rev. B 51, 14359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controlling the output band using a dc-electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work. copyright 1996 The American Physical Society

  18. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  19. Effects of underlying InGaN/GaN superlattice structures on the structural and optical properties of InGaN LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Lung, E-mail: cltsai@mail.cgu.edu.tw

    2016-06-15

    This study proposes the use of InGaN/GaN superlattices grown beneath InGaN multiple quantum wells (MQWs) and designed with different well widths to act as an electron emitter layer (EEL). Cross-sectional transmission electron microscopy reveals strong indium segregation in the underlying superlattices with a 5-nm-thick In{sub 0.1}Ga{sub 0.9}N well, thus corrupting the crystalline perfection of the resulting LEDs, and also increasing their leakage current. It was also found that the depth of the localized states increases with the well width of the underlying superlattices. In the proposed LEDs, variation in the biaxial strains of the superlattice EELs with different well widths results in an increase in indium incorporation of InGaN MQWs, thus obtaining a redshifted photoluminescence emission with respect to that of normal LED. Furthermore, the presence of relatively strong carrier localization and the alleviation of electron leakage from the InGaN MQWs results in improved light output performance from the proposed LEDs grown with a narrow In{sub 0.1}Ga{sub 0.9}N well in the underlying superlattices. Although growth in a wide In{sub 0.1}Ga{sub 0.9}N well (~3.5 nm) containing underlying superlattices suffers from poor crystalline quality due to partial strain relaxation, it resulted in improved roll-off behavior in terms of light intensity. This may be due to the improved hot electron cooling capacity mitigating the extent of carrier leakage. - Highlights: • In{sub 0.1}Ga{sub 0.9}N/GaN superlattices are used as an electron emitter layer. • Improved LED performance can be achieved using a narrow In{sub 0.1}Ga{sub 0.9}N well. • A wider well can further reduce carrier leakage despite poor quality is presented.

  20. A new approach to age-period-cohort analysis using partial least squares regression: the trend in blood pressure in the Glasgow Alumni cohort.

    Directory of Open Access Journals (Sweden)

    Yu-Kang Tu

    2011-04-01

    Full Text Available Due to a problem of identification, how to estimate the distinct effects of age, time period and cohort has been a controversial issue in the analysis of trends in health outcomes in epidemiology. In this study, we propose a novel approach, partial least squares (PLS analysis, to separate the effects of age, period, and cohort. Our example for illustration is taken from the Glasgow Alumni cohort. A total of 15,322 students (11,755 men and 3,567 women received medical screening at the Glasgow University between 1948 and 1968. The aim is to investigate the secular trends in blood pressure over 1925 and 1950 while taking into account the year of examination and age at examination. We excluded students born before 1925 or aged over 25 years at examination and those with missing values in confounders from the analyses, resulting in 12,546 and 12,516 students for analysis of systolic and diastolic blood pressure, respectively. PLS analysis shows that both systolic and diastolic blood pressure increased with students' age, and students born later had on average lower blood pressure (SBP: -0.17 mmHg/per year [95% confidence intervals: -0.19 to -0.15] for men and -0.25 [-0.28 to -0.22] for women; DBP: -0.14 [-0.15 to -0.13] for men; -0.09 [-0.11 to -0.07] for women. PLS also shows a decreasing trend in blood pressure over the examination period. As identification is not a problem for PLS, it provides a flexible modelling strategy for age-period-cohort analysis. More emphasis is then required to clarify the substantive and conceptual issues surrounding the definitions and interpretations of age, period and cohort effects.

  1. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing.

    Science.gov (United States)

    Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger

    2017-08-01

    To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Possible THz gain in superlattices at a stable operation point

    DEFF Research Database (Denmark)

    Wacker, Andreas; Allen, S. J.; Scott, J. S.

    1997-01-01

    We demonstrate that semiconductor superlattices may provide gain at THz frequencies at an operation point which is stable against fluctuations at lower frequency. While an explicit experimental demonstration for the sample considered could not be achieved, the underlying principle of quantum resp...... response is quite general and may prove successful for differently designed superlattices....

  3. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  4. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  5. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  6. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    Unknown

    Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes. 1. Introduction ... tem and a model of superlattice configuration was proposed4, in terms of .... C18 system,4 the angle with value = 3⋅3° was seen to play an ...

  7. Band structure of superlattice with δ-like potential

    International Nuclear Information System (INIS)

    Gashimzade, N.F.; Gashimzade, F.M.; Hajiev, A.T.

    1993-08-01

    Band structure of superlattice with δ-like potential has been calculated taking into account interaction of carriers of different kinds. Superlattices of semiconductors with degenerated valence band and zero-gap semiconductors have been considered. For the latter semimetal-semiconductor transition has been obtained. (author). 8 refs, 1 fig

  8. Raman Scattering and Surface Photovoltage Spectroscopy Studies of InGaAs/GaAs Radial Superlattices

    Science.gov (United States)

    Angelova, T.; Cros, A.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Shtinkov, N.; Deneke, Ch.; Schmidt, O. G.

    2011-12-01

    In this work we get insight into the multilayer structure of rolled-up microtube radial superlattices (RSLs) by the study of the optical and folded acoustic phonon modes of individual microtubes. Raman results show shifts of the InGaAs and GaAs related longitudinal optical modes that can be related to the strain state of the tubes. The folding of the acoustic modes has been related with the periodicity of the artificial superlattice formed by the multiple turns of the heterostructures. Information on the electronic structure and optical transitions of RSLs has been obtained by surface photovoltage spectroscopy. Room temperature spectra reveal several electronic transitions with energies below 1.3 eV. These transitions have been identified as originating from defect levels at the interfaces, as well as from the RSLs and the In0.215Ga0.785As/GaAs quantum well in the unfolded regions of the sample.

  9. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    International Nuclear Information System (INIS)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul

    2006-01-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  11. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    Science.gov (United States)

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  12. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2006-07-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Survival of inlays and partial crowns made of IPS empress after a 10-year observation period and in relation to various treatment parameters.

    Science.gov (United States)

    Stoll, Richard; Cappel, I; Jablonski-Momeni, Anahita; Pieper, K; Stachniss, V

    2007-01-01

    This study evaluated the long-term survival of inlays and partial crowns made of IPS Empress. For this purpose, the patient data of a prospective study were examined in retrospect and statistically evaluated. All of the inlays and partial crowns fabricated of IPS-Empress within the Department of Operative Dentistry at the School of Dental Medicine of Philipps University, Marburg, Germany were systematically recorded in a database between 1991 and 2001. The corresponding patient files were revised at the end of 2001. The information gathered in this way was used to evaluate the survival of the restorations using the method described by Kaplan and Meyer. A total of n = 1624 restorations were fabricated of IPS-Empress within the observation period. During this time, n = 53 failures were recorded. The remaining restorations were observed for a mean period of 18.77 months. The failures were mainly attributed to fractures, endodontic problems and cementation errors. The last failure was established after 82 months. At this stage, a cumulative survival probability of p = 0.81 was registered with a standard error of 0.04. At this time, n = 30 restorations were still being observed. Restorations on vital teeth (n = 1588) showed 46 failures, with a cumulative survival probability of p = 0.82. Restorations performed on non-vital teeth (n = 36) showed seven failures, with a cumulative survival probability of p = 0.53. Highly significant differences were found between the two groups (p < 0.0001) in a log-rank test. No significant difference (p = 0.41) was found between the patients treated by students (n = 909) and those treated by qualified dentists (n = 715). Likewise, no difference (p = 0.13) was established between the restorations seated with a high viscosity cement (n = 295) and those placed with a low viscosity cement (n = 1329).

  14. Stratigraphy of a diamond epitaxial three-dimensional overgrowth using doping superlattices

    Science.gov (United States)

    Lloret, F.; Fiori, A.; Araujo, D.; Eon, D.; Villar, M. P.; Bustarret, E.

    2016-05-01

    The selective doped overgrowth of 3D mesa patterns and trenches has become an essential fabrication step of advanced monolithic diamond-based power devices. The methodology here proposed combines the overgrowth of plasma-etched cylindrical mesa structures with the sequential growth of doping superlattices. The latter involve thin heavily boron doped epilayers separating thicker undoped epilayers in a periodic fashion. Besides the classical shape analysis under the scanning electron microscope relying on the appearance of facets corresponding to the main crystallographic directions and their evolution toward slow growing facets, the doping superlattices were used as markers in oriented cross-sectional lamellas prepared by focused ion beam and observed by transmission electron microscopy. This stratigraphic approach is shown here to be applicable to overgrown structures where faceting was not detectable. Intermediate growth directions were detected at different times of the growth process and the periodicity of the superlattice allowed to calculate the growth rates and parameters, providing an original insight into the planarization mechanism. Different configurations of the growth front were obtained for different sample orientations, illustrating the anisotropy of the 3D growth. Dislocations were also observed along the lateral growth fronts with two types of Burger vector: b 01 1 ¯ = /1 2 [ 01 1 ¯ ] and b 112 = /1 6 [ 112 ] . Moreover, the clustering of these extended defects in specific regions of the overgrowth prompted a proposal of two different dislocation generation mechanisms.

  15. Investigation of switching region in superlattice phase change memories

    Science.gov (United States)

    Ohyanagi, T.; Takaura, N.

    2016-10-01

    We investigated superlattice phase change memories (PCMs) to clarify which regions were responsible for switching. We observed atomic structures in a superlattice PCM film with a stack of GeTe / Sb2Te3 layers using atomically resolved EDX maps, and we found an intermixed region with three atom species of the Ge, Sb and Te around the top GeTe layer under the top electrode. We also found that a device with a GeTe layer on an Sb2Te3 layer without superlattice structure had the same switching characteristics as a device with a superlattice PCM, that had the same top GeTe layer. We developed and fabricated a modified superlattice PCM that attained ultra low Reset / Set currents under 60 μ A .

  16. Engineering the oxygen coordination in digital superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Seyoung [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Andersen, Tassie K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Hong, Hawoong [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rosenberg, Richard A. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Marks, Laurence D. [Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Fong, Dillon D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-12-01

    The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.

  17. Anisotropic critical fields in superconducting superlattices

    International Nuclear Information System (INIS)

    Banerjee, I.; Yang, Q.S.; Falco, C.M.; Schuller, I.K.

    1983-01-01

    The temperature and angular dependence of critical fields (H/sub c/) have been studied as a function of layer thickness for superconducting Nb/Cu superlattices. For layer thicknesses between 100 and 300 A, dimensional crossover has been observed in the temperature dependence of H/sub c/. Associated with the crossover we find a change in the angular dependence of H/sub c/ to that given by the effective-mass theory. This is the first time that a relationship has been found between dimensional crossover observed in the temperature dependence and that in the angular dependence of critical fields

  18. Magnetoelectric control of valley and spin in a silicene nanoribbon modulated by the magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    An, Xing-Tao, E-mail: anxt@hku.hk

    2015-03-20

    The control of valley and spin degrees of freedom and the transport properties of electrons in a zigzag silicene nanoribbon modulated by the magnetic superlattices are investigated theoretically. Due to the valley–spin locking effect in silicene, the valley degree of freedom can be controlled by magnetic means. The valley or/and spin selection induced by the exchange field result in the perfect spin–valley filter and tunneling magnetoresistance effect in the double ferromagnetic barriers on the surface of the silicene nanoribbon. It is more interesting that there are valley-resolved minigaps and minibands in the zigzag silicene nanoribbon modulated by the magnetic superlattices which give rise to the periodically modulated spin (or/and valley) polarization and tunneling magnetoresistance. The results obtained may have certain practical significance in applications for future valleytronic and spintronic devices. - Highlights: • The valley can be controlled by a magnetic field in silicene. • The valley-resolved miniband transport is studied in the silicene superlattices. • There are the perfect spin–valley filter and tunneling magnetoresistance effect.

  19. Solvent-driven symmetry of self-assembled nanocrystal superlattices-A computational study

    KAUST Repository

    Kaushik, Ananth P.

    2012-10-29

    The preference of experimentally realistic sized 4-nm facetted nanocrystals (NCs), emulating Pb chalcogenide quantum dots, to spontaneously choose a crystal habit for NC superlattices (Face Centered Cubic (FCC) vs. Body Centered Cubic (BCC)) is investigated using molecular simulation approaches. Molecular dynamics simulations, using united atom force fields, are conducted to simulate systems comprised of cube-octahedral-shaped NCs covered by alkyl ligands, in the absence and presence of experimentally used solvents, toluene and hexane. System sizes in the 400,000-500,000-atom scale followed for nanoseconds are required for this computationally intensive study. The key questions addressed here concern the thermodynamic stability of the superlattice and its preference of symmetry, as we vary the ligand length of the chains, from 9 to 24 CH2 groups, and the choice of solvent. We find that hexane and toluene are "good" solvents for the NCs, which penetrate the ligand corona all the way to the NC surfaces. We determine the free energy difference between FCC and BCC NC superlattice symmetries to determine the system\\'s preference for either geometry, as the ratio of the length of the ligand to the diameter of the NC is varied. We explain these preferences in terms of different mechanisms in play, whose relative strength determines the overall choice of geometry. © 2012 Wiley Periodicals, Inc.

  20. Novel electronic structures of superlattice composed of graphene and silicene

    International Nuclear Information System (INIS)

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-01-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction

  1. Microwave absorption in YBCO/PrBCO superlattices

    International Nuclear Information System (INIS)

    Carlos, W.E.; Kaplan, R.; Lowndes, D.H.; Norton, D.P.

    1992-01-01

    In this paper, non-resonant microwave absorption is employed to probe YBCO/PrBCO superlattices and compare the response to that of a YBCO film. Near the transition temperatures, the response of the superlattice samples and the YBCO film have similar amplitudes and orientation dependencies. At lower temperatures, the response of the superlattices is much stronger than that of the YBCO film and, while both responses are hysteretic at low temperatures, the widths of the hysteresis have opposite orientation dependencies, which the authors attribute to the role of the PrBCO layers

  2. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  3. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  4. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  5. First-principles modeling of titanate/ruthenate superlattices

    Science.gov (United States)

    Junquera, Javier

    2013-03-01

    The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.

  6. Magnetic profiles in ferromagnetic/superconducting superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  7. Organic p-n heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Stefan [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Osso, Oriol [MATGAS 2000 A.I.E., Esfera UAB, Barcelona (Spain); Wang, Cheng; Hexemer, Alexander [Advanced Light Source, Berkeley, CA (United States)

    2009-07-01

    For many applications of organic semiconductors two components such as e.g. n and p-type layers are required, and the morphology of such heterostructures is crucial for their performance. Pentacene (PEN) is one of the most promising p-type molecular semiconductors and recently perfluoro-pentacene (PFP) has been identified as a good electron conducting material for complementary circuits with PEN. We use soft and hard X-ray reflectivity measurements, scanning transmission X-ray microscopy (STXM) and atomic force microscopy for structural investigations of PFP-PEN heterostructures. The chemical contrast between PEN and PFP in STXM allows us to determine the lateral length scales of p and n domains in a bilayer. For a superlattice of alternating PFP and PEN layers grown by organic molecular beam deposition, X-ray reflectivity measurements demonstrate good structural order. We find a superlattice reflection that varies strongly when tuning the X-ray energy around the fluorine edge, demonstrating that there are indeed alternating PFP and PEN layers.

  8. Passive high-frequency devices based on superlattice ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Ye, B.; Li, F.; Cimpoesu, D.; Wiley, J.B.; Jung, J.-S.; Stancu, A.; Spinu, L.

    2007-01-01

    In this paper we propose to tailor the bandwidth of a microwave filter by exploitation of shape anisotropy of nanowires. In order to achieve this control of shape anisotropy, we considered superlattice wires containing varying-sized ferromagnetic regions separated by nonferromagnetic regions. Superlattice wires of Ni and Au with a nominal diameter of 200 nm were grown using standard electrodeposition techniques. The microwave properties were probed using X-band (9.8 GHz) ferromagnetic resonance (FMR) experiments performed at room temperature. In order to investigate the effectiveness of the shape anisotropy on the superlattice nanowire based filter the FMR spectrum of superlattice structure is compared to the FMR spectra of nanowires samples with constant length

  9. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  10. Thermoelectric cross-plane properties on p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ferre Llin, L.; Samarelli, A. [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Cecchi, S.; Chrastina, D.; Isella, G. [L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy); Müller Gubler, E. [ETH, Electron Microscopy ETH Zurich, Wolgang-Pauli-Str. Ch-8093 Zurich (Switzerland); Etzelstorfer, T.; Stangl, J. [Johannes Kepler Universität, Institute of Semiconductor and Solid State Physics, A-4040 Linz (Austria); Paul, D.J., E-mail: Douglas.Paul@glasgow.ac.uk [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2016-03-01

    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si{sub 0.5}Ge{sub 0.5} superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si{sub 0.3}Ge{sub 0.7} superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period. - Highlights: • Growth of epitaxial Ge/SiGe superlattices on Si substrates as energy harvesters • Study of cross-plane thermoelectric properties of Ge/SiGe superlattices at 300 K • Thermoelectric figures of merit studied as a function of doping density • Phonon scattering at different wavelengths to reduce thermal transport.

  11. Transmission of electrons with flat passbands in finite superlattices

    International Nuclear Information System (INIS)

    Barajas-Aguilar, A H; Rodríguez-Magdaleno, K A; Martínez-Orozco, J C; Enciso-Muñoz, A; Contreras-Solorio, D A

    2013-01-01

    Using the transfer matrix method and the Ben Daniel-Duke equation for variable mass electrons propagation, we calculate the transmittance for symmetric finite superlattices where the width and the height of the potential barriers follow a linear dependence. The width and height of the barriers decreases from the center to the ends of the superlattice. The transmittance presents intervals of stopbands and quite flat passbands.

  12. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, S.; Weber, C. [Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin (Germany); Hinderhofer, A.; Gerlach, A.; Schreiber, F. [Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen (Germany); Wang, C.; Hexemer, A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Leone, S. R. [Departments of Chemistry and Physics, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2015-11-15

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  13. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    Directory of Open Access Journals (Sweden)

    S. Kowarik

    2015-11-01

    Full Text Available Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs of the organic semiconductors pentacene (PEN and perfluoro-pentacene (PFP. Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices.

  14. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  15. Superconducting superlattices. Les super reseaux de supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Triscone, J M; Fischer, O [Geneva Univ. (Switzerland)

    1993-03-01

    By piling up ultra-thin layers of discrete materials, physicists now have a choice method for the study of superconductivity at high temperature. These superlattices are prepared by successive layers of YBaCuO and PrBaCuO deposited by cathode sputtering to study the variation of superconductivity with layer thickness. The transition temperature decreases rapidly when the distance between two layers increases. Current vortices are created, without a magnetic field, widening the transition temperature. The variation of resistivity near critical temperature in a magnetic field shows that the energy required to displace vortices is increasing with the thickness of the YBaCuO layer, with thin layers anisotropy is high and energy dissipation is important. (G.R.). refs., figs.

  16. Epitaxial (100)-oriented Mo/V superlattice grown on MgO(100) by dcMS and HiPIMS

    International Nuclear Information System (INIS)

    Shayestehaminzadeh, S.; Magnusson, R.L.; Gislason, H.P.; Olafsson, S.

    2013-01-01

    Epitaxial (100)-oriented Mo/V superlattices have been grown by High Power Impulse Magnetron Sputtering (HiPIMS) and dc Magnetron Sputtering (dcMS) on single-crystalline MgO(100) substrates at growth temperatures ranging from 30 °C to 600 °C. Superlattice bilayer period of Mo/V around 12/12 monolayers and 15 repeat periods was studied. This study aims to investigate the effect of the HiPIMS process on reducing the growth temperature of Mo/V superlattices using the high energy ionized Mo, V species in the HiPIMS plasma. In one case, the Mo layer was only grown with the HiPIMS process and V layer grown using the dcMS process while in another both layers were grown with the HiPIMS process. The as-deposited films were characterized by X-ray reflection and diffraction techniques. The dcMS process was found to give superior superlattice growth at high growth temperatures while a mixed Mo HiPIMS and V dcMS process gives better result at lower growth temperatures (300 °C). Room temperature growth reveals that neither the mixed Mo HiPIMS and V dcMS process nor the pure HiPIMS for both materials can produce better result compared to the pure dcMS process, which gives a relatively better result. - Highlights: • Epitaxial (100)-oriented Mo/V superlattices have been grown by HiPIMS and dcMS on MgO(100) for various temperatures. • The study was aimed to investigate the effect of ionized HiPIMS process onlowering the growth temperature. • The dcMS process was found to give superior superlattice growth at high growth temperature. • The mixed Mo HiPIMS and V dcMS process gives best result at lower growth temperatures

  17. Strained superlattices and magnetic tunnel junctions based on doped manganites

    International Nuclear Information System (INIS)

    Yafeng Lu

    2001-01-01

    In the first part of this work the effect of biaxial strain on the structure and transport properties of doped manganites has been studied to explore the relevance of Jahn-Teller electron-lattice interaction for the CMR phenomenon in these materials. A series of high quality, coherently strained La 2/3 (Ca or Ba) 1/3 MnO 3 /SrTiO 3 superlattices with different modulation periods have been fabricated on (001) SrTiO 3 and NdGaO 3 substrates by laser molecular beam epitaxy. A detailed structural characterization was performed by high-angle X-ray diffraction (HAXRD) and low-angle X-ray reflectivity (LAXRR). The fabricated superlattices are very flat, show excellent structural coherence and very small mosaic spread (0.2 ∝0.03 ). The in-plane coherency strain could be varied by changing the thickness ratio of the constituent layers allowing for a systematic variation of the resulting lattice distortion of La 2/3 (Ca or Ba) 1/3 MnO 3 . By the in-plane coherency strain the out-of-plane lattice constant could be continuously adjusted by varying the relative thickness of the SrTiO 3 and La 2/3 (Ca or Ba) 1/3 MnO 3 layers: the c-axis lattice constant of La 2/3 Ba 1/3 MnO 3 was found to vary from 3.910 A to 3.975 A due to a compressive in-plane strain, whereas the c-axis constant of La 2/3 Ca 1/3 MnO 3 was found to change from 3.87 A to 3.79A due to tensile in-plane strain. The strain results in a biaxial distortion ε bi of La 2/3 (Ca or Ba) 1/3 MnO 3 that strongly affects the electrical transport properties and the magnetoresistance. Our measurements show that there is a clear correlation between ε bi and the temperature T p corresponding to the maximum in the resistivity versus temperature curves as well as the measured magnetoresistance in the two systems. In the second part of this work we have investigated the spin-dependent tunneling in trilayer structures of La 2/3 Ba 1/3 MnO 3 /SrTiO 3 /La 2/3 Ba 1/3 MnO 3 . (orig.)

  18. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.; Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized

  19. RAMAN SCATTERING BY ACOUSTIC PHONONS AND STRUCTURAL PROPERTIES OF FIBONACCI, THUE-MORSE AND RANDOM SUPERLATTICES

    OpenAIRE

    Merlin , R.; Bajema , K.; Nagle , J.; Ploog , K.

    1987-01-01

    We report structural studies of incommensurate and random GaAs-AlAs superlattices using Raman scattering by acoustic phonons. Properties of the structure factor of Fibonacci and Thue-Morse superlattices are discussed in some detail.

  20. Tunable superlattice in graphene to control the number of Dirac points.

    Science.gov (United States)

    Dubey, Sudipta; Singh, Vibhor; Bhat, Ajay K; Parikh, Pritesh; Grover, Sameer; Sensarma, Rajdeep; Tripathi, Vikram; Sengupta, K; Deshmukh, Mandar M

    2013-09-11

    Superlattice in graphene generates extra Dirac points in the band structure and their number depends on the superlattice potential strength. Here, we have created a lateral superlattice in a graphene device with a tunable barrier height using a combination of two gates. In this Letter, we demonstrate the use of lateral superlattice to modify the band structure of graphene leading to the emergence of new Dirac cones. This controlled modification of the band structure persists up to 100 K.

  1. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing

    2014-01-01

    , we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS...

  2. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    potential; bulk materials; total energy calculations; entropy; strained- layer superlattice (SLS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES

  3. Touching points in the energy band structure of bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C Huy; Nguyen, V Lien

    2014-01-01

    The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)

  4. Transmission spectra of electrons through the Thue-Morse graphene superlattice

    International Nuclear Information System (INIS)

    Korol', A.M.

    2014-01-01

    The transmission spectra of the Thue-Morse superlattice (SL) based on a monolayer gapped graphene are investigated. The SL consists of rectangular barriers located along the Ox axis. The Thue-Morse aperiodic modulation is proposed to be realized due to the difference in values of the gap width in different SL elements. It is shown that the effective splitting of the allowed bands (and thereby the arising of a series of gaps) is observed under the influence of the aperiodic factor in the case of normal incidence of the electron wave on the SL as well as in the case of oblique incidence. The spectra are periodical with potential barrier height. In some regions of the spectra, the splitting of bands is subjected to the Fibonacci inflation rule in every new Thue-Morse generation. As in the periodical graphene-based SL, in every Thue-Morse sequence a superlattice Dirac point is created. The width of the gap associated with this point depends on SL parameters substantially; at the same time the energy location of this gap depends weakly on mass term in the Hamiltonian and it does not depend on SL period. The spectra dependence on the angle of electron wave incidence is not substantial

  5. Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials

    International Nuclear Information System (INIS)

    Li, Guanqiang; Chen, Guangde; Peng, Ping; Cao, Zhenzhou; Ye, Honggang

    2013-01-01

    We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices

  6. The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2011-01-01

    Research highlights: → This paper is dedicated to structures based on Cd 1-x Zn x S. - Abstract: The present work reports on a theoretical investigation of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. The system to model is assumed to be a series of flattened cylindrical quantum dots with a finite barrier at the boundary and is studied using a sinusoidal potential. The electronic states of both Γ 1 - (ground) and Γ 2 - (first excited) minibands have been computed as a function of inter-quantum dot separation and Zn composition. An analysis of the results shows that the widths of Γ 1 - and Γ 2 - minibands decrease as the superlattice period and Zn content increase separately. Moreover, the sinusoidal shape of the confining potential accounts for the coupling between quantum dots quantitatively less than the Kronig-Penney potential model.

  7. Influence of substrate quality on structural properties of AlGaN/GaN superlattices grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); Merkel, U.; Schmult, S. [TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany)

    2014-02-28

    Short-period AlGaN/GaN superlattices were established as versatile test structures to investigate the structural properties of molecular beam epitaxy (MBE)-grown GaN and AlGaN layers and their dependence on the GaN substrate quality. X-ray diffractometry data of the investigated superlattices allow access to relevant structural parameters such as aluminum mole fraction and layer thicknesses. The occurrence of theoretically predicted intense high-order satellite peaks and pronounced interface fringes in the diffraction pattern reflects abrupt interfaces and perfect 2-dimensional growth resulting in smooth surfaces. The data unambiguously demonstrate that the structural quality of the MBE grown layers is limited by the structural properties of the GaN substrate.

  8. Control of the interparticle spacing in gold nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have investigated the formation of 2-D and 3-D superlattices of Au nanoclusters synthesized in nonionic inverse micelles, and capped with alkyl thiol ligands, with alkane chains ranging from C{sub 6} to C1{sub 18}. The thiols are found to play a significant role in the ripening of these nanoclusters, and in the formation of superlattices. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function, from which one can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the nanoclusters become more polydisperse and larger, and the gaps between particles within superlattice domains increases. Annealing studies at elevated temperatures confirm nanocluster ripening. Finally, the effect of the particle gaps on physical properties is illustrated by computing the effective dielectric constant, and it is shown that the gap size now accessible in superlattices is rather large for dielectric applications.

  9. Characterization of the Nb-B superlattice system

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.G.; Sarmiento-Chavez, A.; Schenone, N.; Llacsahuanga Allcca, A.E.; Gómez Berisso, M.; Fasano, Y.; Guimpel, J., E-mail: jguimpel@cab.cnea.gov.ar

    2016-12-15

    Highlights: • In this manuscript we study the crystalline and superconducting properties of this system, as a possible material to be used in solid state neutron detector sensors. • The results show that this superlattice system can be grown even for very thin layers, in spite of the Nb-B binary system showing many possible compounds, which could enhance interdifussion at the interfaces. • Also, the superconducting properties are not degraded, and they are even enhanced with respect to those of single Nb films of the same thickness. • In conclusion, we find that this system is a good potential candidate for the design and construction of solid state neutron Transition Edge Sensors. - Abstract: We study the growth, stacking and superconducting properties of Nb and B thin films and superlattices. The interest in these resides in their possible use in transition edge neutron sensors. The samples were grown by magnetron sputtering over Si (1  0  0) substrates. The X-ray diffraction patterns for all Nb containing samples show a Nb (1  1  0) preferential orientation. From the low-angle X-ray reflectivity we obtain information on the superlattice structure. The superconducting transition temperatures of the superlattices, obtained from the temperature dependence of the magnetization, are higher than those of single Nb films of similar thickness. The temperature dependence of the perpendicular and parallel upper critical fields indicate that the superlattices behave as an array of decoupled superconducting Nb layers.

  10. Characterization of the Nb-B superlattice system

    International Nuclear Information System (INIS)

    Franco, D.G.; Sarmiento-Chavez, A.; Schenone, N.; Llacsahuanga Allcca, A.E.; Gómez Berisso, M.; Fasano, Y.; Guimpel, J.

    2016-01-01

    Highlights: • In this manuscript we study the crystalline and superconducting properties of this system, as a possible material to be used in solid state neutron detector sensors. • The results show that this superlattice system can be grown even for very thin layers, in spite of the Nb-B binary system showing many possible compounds, which could enhance interdifussion at the interfaces. • Also, the superconducting properties are not degraded, and they are even enhanced with respect to those of single Nb films of the same thickness. • In conclusion, we find that this system is a good potential candidate for the design and construction of solid state neutron Transition Edge Sensors. - Abstract: We study the growth, stacking and superconducting properties of Nb and B thin films and superlattices. The interest in these resides in their possible use in transition edge neutron sensors. The samples were grown by magnetron sputtering over Si (1  0  0) substrates. The X-ray diffraction patterns for all Nb containing samples show a Nb (1  1  0) preferential orientation. From the low-angle X-ray reflectivity we obtain information on the superlattice structure. The superconducting transition temperatures of the superlattices, obtained from the temperature dependence of the magnetization, are higher than those of single Nb films of similar thickness. The temperature dependence of the perpendicular and parallel upper critical fields indicate that the superlattices behave as an array of decoupled superconducting Nb layers.

  11. Treadmill training with partial body weight support compared with conventional gait training for low-functioning children and adolescents with nonspastic cerebral palsy: a two-period crossover study.

    Science.gov (United States)

    Su, Ivan Y W; Chung, Kenny K Y; Chow, Daniel H K

    2013-12-01

    Partial body weight-supported treadmill training has been shown to be effective in gait training for patients with neurological disorders such as spinal cord injuries and stroke. Recent applications on children with cerebral palsy were reported, mostly on spastic cerebral palsy with single subject design. There is lack of evidence on the effectiveness of such training for nonspastic cerebral palsy, particularly those who are low functioning with limited intellectual capacity. This study evaluated the effectiveness of partial body weight-supported treadmill training for improving gross motor skills among these clients. A two-period randomized crossover design with repeated measures. A crossover design following an A-B versus a B-A pattern was adopted. The two training periods consisted of 12-week partial body weight-supported treadmill training (Training A) and 12-week conventional gait training (Training B) with a 10-week washout in between. Ten school-age participants with nonspastic cerebral palsy and severe mental retardation were recruited. The Gross Motor Function Measure-66 was administered immediately before and after each training period. Significant improvements in dimensions D and E of the Gross Motor Function Measure-66 and the Gross Motor Ability Estimator were obtained. Our findings revealed that the partial body weight-supported treadmill training was effective in improving gross motor skills for low-functioning children and adolescents with nonspastic cerebral palsy. .

  12. Modelling and measurement of bandgap behaviour in medium-wavelength IR InAs/InAs0.815Sb0.185 strained-layer superlattices

    Science.gov (United States)

    Letka, Veronica; Keen, James; Craig, Adam; Marshall, Andrew R. J.

    2017-10-01

    InAs/InAs1-xSbx type-II strained-layer superlattices (SLS) are a structure with potential infrared detection applications, owing to its tunable bandgap and suppressed Auger recombination. A series of medium-wavelength infrared (MWIR) InAs/InAs0.815Sb0.185 SLS structures, grown as undoped absorption epilayers on GaAs, were fabricated using molecular beam epitaxy in order to study the dependence of the ground state transitions on temperature and superlattice period thickness. Photoluminescence peaks at 4 K were obtained with the use of a helium-cooled micro-PL system and an InSb detector, and temperature-dependent absorption spectra were measured in the range 77 K - 300 K on a Fourier Transform Infrared (FTIR) spectrometer, equipped with a 1370 K blackbody source and a DTGS detector. An nBn device sample with the absorber structure identical to one of the undoped samples was also grown and processed with the goal of measuring temperature-dependent spectral response. A model for superlattice band alignment was also devised, incorporating the Bir-Pikus transformation results for uniaxial and biaxial strain, and the Einstein oscillator model for bandgap temperature dependence. Absorption coefficients of several 1000 cm-1 throughout the entire MWIR range are found for all samples, and temperature dependence of the bandgaps is extracted and compared to the model. This and photoluminescence data also demonstrate bandgap shifts consistent with the different superlattice periods of the three samples.

  13. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.

    Science.gov (United States)

    Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C; Luo, Tengfei

    2015-11-16

    Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.

  14. Magnetic structures of holmium-lutetium alloys and superlattices

    DEFF Research Database (Denmark)

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vector...... of the helix remaining coherent through the nonmagnetic Lu blocks. The neutron scattering from the superlattices is consistent with a model in which there are different phase advances of the helix turn angle through the Ho and Lu blocks, but with a localized moment on the Ho sites only. A comparison...... of Ho and Lu. At low temperatures, for superlattices with fewer than approximately twenty atomic planes of Ho, the Ho moments within a block undergo a phase transition from helical to ferromagnetic order, with the coupling between successive blocks dependent on the thickness of the Lu spacer....

  15. Stability and dynamic of strain mediated adatom superlattices on Cu

    Science.gov (United States)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  16. Sm cluster superlattice on graphene/Ir(111)

    Science.gov (United States)

    Mousadakos, Dimitris; Pivetta, Marina; Brune, Harald; Rusponi, Stefano

    2017-12-01

    We report on the first example of a self-assembled rare earth cluster superlattice. As a template, we use the moiré pattern formed by graphene on Ir(111); its lattice constant of 2.52 nm defines the interparticle distance. The samarium cluster superlattice forms for substrate temperatures during deposition ranging from 80 to 110 K, and it is stable upon annealing to 140 K. By varying the samarium coverage, the mean cluster size can be increased up to 50 atoms, without affecting the long-range order. The spatial order and the width of the cluster size distribution match the best examples of metal cluster superlattices grown by atomic beam epitaxy on template surfaces.

  17. Interface disorder and transport properties in HTC/CMR superlattices

    International Nuclear Information System (INIS)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E.

    2004-01-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T c RBa 2 Cu 3 O 7 (RBCO) and colossal magnetoresistance La x A 1-x MnO 3 (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La 2/3 Ca 1/3 MnO 3 and GdBCO/La 0.6 Sr 0.04 MnO 3 superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness

  18. Exploring graphene superlattices: Magneto-optical properties

    Science.gov (United States)

    Duque, C. A.; Hernández-Bertrán, M. A.; Morales, A. L.; de Dios-Leyva, M.

    2017-02-01

    We present a detailed study of magnetic subbands, wave functions, and transition strengths for graphene superlattices (SLs) subject to a perpendicular magnetic field. It is shown that, for a weak magnetic field, the flat subbands of a SL exhibiting extra Dirac points are grouped into subsets, each of which consists of a singlet subband and a nearly degenerate doublet subband, and one nearly degenerate triplet subband. It was found that the wave functions corresponding to a singlet or to a doublet are always located around the image in real space of the central or extra Dirac points in k-space. The latter properties were explained by assuming that the electron motion is quasi-classical. Our study revealed that, for an intermediate field, the general characteristics of the wave functions are very similar to those of the pristine graphene, while for weak field, their behavior is drastically different. The latter is characterized by rapid oscillations which were understood using the solutions provided by the formalism of Luttinger-Kohn. The study on transition strengths allows us to obtain, for SLs with extra Dirac points in a weak magnetic field and different polarizations, the conditions under which transitions between multiplets are approximately allowed. It was shown that these conditions correspond to an unusual selection rule that is broken when the magnetic field intensity increases from weak to an intermediate value.

  19. Mixing of III-V compound semiconductor superlattices

    International Nuclear Information System (INIS)

    Mei, Ping.

    1989-01-01

    In this work, the methods as well as mechanisms of III-V compound superlattice mixing are discussed, with particular attention on the AlGaAs based superlattice system. Comparative studies of ion-induced mixing showed two distinct effects resulting from ion implantation followed by a thermal anneal; i.e. collisional mixing and impurity induced mixing. It was found that Ga and As ion induced mixing are mainly due to the collisional effect, where the extent of the mixing can be estimated theoretically, with the parameters of ion mass, incident energy and the implant dose. The impurity effect was dominant for Si, Ge, Be, Zn and Te. Quantitative studies of impurity induced mixing have been conducted on samples doped with Si or Te during the growth process. It was discovered that Si induced AlGaAs superlattice mixing yielded an activation energy of approximately 4 eV for the Al diffusion coefficient with a high power law dependence of the prefactor on the Si concentration. In the Te doped AlGaAs superlattice the Al diffusion coefficient exhibited an activation energy of ∼3.0 eV, with a prefactor approximately proportional to the Te concentration. These results are of importance in examining the current diffusion models. Zn and Si induced InP/InGaAs superlattice mixing are examined. It was found that Zn predominantly induces cation interdiffusion, while Si induces comparable cation and anion interdiffusion. In addition, widely dispersed Zn rich islands form with Zn residing in the InP layers in the form of Zn 3 P 2 . With unstrained starting material, the layer bandgap disparity increases due to mixing induced strain, while in the Si diffused sample the mixed region would be expected to exhibit bandgaps intermediate between those of the original layers. Semiconductor superlattice mixing shows technological potential for optoelectronic device fabrication

  20. Surface phonon polaritons in semi-infinite semiconductor superlattices

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1986-07-01

    Surface phonon polaritons in a semi-infinite semiconductor superlattice bounded by vacuum are studied. The modes associated with the polaritons are obtained and used to obtain the dispersion relation. Numerical results show that polariton bands exist between the TO and LO phonon frequencies, and are found to approach two surface mode frequencies in the limit of large tangential wave vector. Dependency of frequencies on the ratio of layer thicknesses is shown. Results are illustrated by a GaAs-GaP superlattice bounded by vacuum. (author)

  1. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  2. A possible radiation-resistant solar cell geometry using superlattices

    Science.gov (United States)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  3. Interface properties of superlattices with artificially broken symmetry

    International Nuclear Information System (INIS)

    Lottermoser, Th.; Yamada, H.; Matsuno, J.; Arima, T.; Kawasaki, M.; Tokura, Y.

    2007-01-01

    We have used superlattices made of thin layers of transition metal oxides to design the so-called multiferroics, i.e. materials possessing simultaneously an electric polarization and a magnetic ordering. The polarization originates from the asymmetric stacking order accompanied by charge transfer effects, while the latter one also influences the magnetic properties of the interfaces. Due to the breaking of space and time-reversal symmetry by multiple ordering mechanism magnetic second harmonic generation is proven to be an ideal method to investigate the electric and magnetic properties of the superlattices

  4. Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices

    International Nuclear Information System (INIS)

    Yang Gui; Zhang Fengying; Li Yuanhong; Li Yuqi

    2012-01-01

    A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes. (semiconductor physics)

  5. Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate

    Science.gov (United States)

    Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin

    2017-06-01

    Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.

  6. Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(0 0 1)

    Science.gov (United States)

    Thumfart, L.; Carrete, J.; Vermeersch, B.; Ye, N.; Truglas, T.; Feser, J.; Groiss, H.; Mingo, N.; Rastelli, A.

    2018-01-01

    The cross-plane thermal conductivities of Ge-rich Si/Ge superlattices have been measured using both time-domain thermoreflectance and the differential 3ω method. The superlattices were grown by molecular beam epitaxy on Ge(0 0 1) substrates. Crystal quality and structural information were investigated by x-ray diffractometry and transmission electron microscopy. The influence of segregation during growth on the composition profiles was modeled using the experimental growth temperatures and deposition rates. Those profiles were then employed to obtain parameter-free theoretical estimates of the thermal conductivity by combining first-principles calculations, Boltzmann transport theory and phonon Green’s functions. Good agreement between theory and experiment is observed. The thermal conductivity shows a strong dependence on the composition and the thickness of the samples. Moreover, the importance of the composition profile is reflected in the fact that the thermal conductivity of the superlattices is considerably lower than predicted values for alloys with the same average composition and thickness. Measurement on different samples with the same Si layer thickness and number of periods, but different Ge layer thickness, show that the thermal resistance is only weakly dependent on the Ge layers. We analyze this phenomenon based on the first-principles mode, and build an approximate parametrization showing that, in this regime, the resistivity of a SL is roughly linear on the amount of Si.

  7. Induced magnetism at the interfaces of a Fe/V superlattice investigated by resonant magnetic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Martin, E-mail: Martin.Magnuson@ifm.liu.se

    2017-01-15

    The induced magnetic moments in the V 3d electronic states of interface atomic layers in a Fe(6ML)/V(7ML) superlattice was investigated by x-ray resonant magnetic scattering. The first V atomic layer next to Fe was found to be strongly antiferromagnetically polarized relatively to Fe and the magnetic moments of the next few atomic layers in the interior V region decay exponentially with increasing distance from the interface, while the magnetic moments of the Fe atomic layers largely remain bulk-like. The induced V moments decay more rapidly as observed by x-ray magnetic scattering than in standard x-ray magnetic circular dichroism. The theoretical description of the induced magnetic atomic layer profile in V was found to strongly rely on the interface roughness within the superlattice period. These results provide new insight into interface magnetism by taking advantage of the enhanced depth sensitivity to the magnetic profile over a certain resonant energy bandwidth in the vicinity of the Bragg angles. - Highlights: • Magnetic moments of buried layers are probed by XRMS in a Fe/V superlattice. • The induced V magnetic moments in XRMS are more rapidly decaying than previously observed by XMCD. • The magnetic depth profile sensitivity is enhanced at an energy bandwidth in the vicinity of the Bragg angles.

  8. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  9. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    Science.gov (United States)

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  10. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice

    Science.gov (United States)

    Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.

    2017-01-01

    Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.

  11. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    International Nuclear Information System (INIS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.

    2017-01-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.

  12. Ferroic properties in bi-component perovskites: artificial superlattices and naturally forming compounds

    International Nuclear Information System (INIS)

    Saha-Dasgupta, T

    2014-01-01

    The use of four different metal cations in a bi-component perovskite ABO 3 structure with 50 : 50 substitution at A sublattice as well as B sublattice, opens up the door for materials designing, with the aim to improve ferroic properties. This can be achieved following two different routes; one using the concept of artificially grown superlattices with alternating layers of ABO 3 and A′B′O 3 perovskites in a periodic set-up and another, through synthesis of naturally grown bulk double perovskites with ordered arrangement of A and A′ cations, simultaneously with that of B and B′ cations. The tremendous progress in layered deposition techniques as well as advances in solid state chemistry methods, has made both routes equally plausible and an area of much activity. This review summarizes some of the recent progress in this field, with a special emphasis on two computational studies, (i) one on ultra-thin 1–1 superlattices built out of paraelectric and ferroelectric components, showing tunable piezoelectric properties, and (ii) another on CrOs-based double perovskites which show multiferroic behavior, achieved through layered ordering of A and A′ cations. (topical review)

  13. Localization in superlattices with randomness in layer thickness

    International Nuclear Information System (INIS)

    Yuan Jian; Tsai Chienhua.

    1987-08-01

    The localization length for electrons in superlattices with randomness in layer thickness is studied in both the commensurate and the incommensurate cases. It is demonstrated that disorder limits the electrons to see only structures within the extent of their wave functions and to be hardly effected by any long range correlation. (author). 4 refs, 6 figs

  14. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  15. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing; Lü ders, Ulrike; Fré sard, Raymond; Eckern, Ulrich; Schwingenschlö gl, Udo

    2018-01-01

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states

  16. Second harmonic generation in generalized Thue-Morse ferroelectric superlattices

    International Nuclear Information System (INIS)

    Wang Longxiang; Yang Xiangbo; Chen Tongsheng

    2009-01-01

    In this paper the second harmonic generation (SHG) in generalized Thue-Morse (GTM(m, n)) ferroelectric superlattices is studied. Under the small-signal approximation, the SHG spectra in both real and reciprocal spaces are investigated. It is found that: (1) only when the structure parameters l, l A , and l B are all chosen to be proper, can SHG in GTM(m, n) ferroelectric superlattices be generated; (2) for Family A of generalized Thue-Morse, GTM(m, 1) ferroelectric systems, with the increase of parameter m, the intense peaks of SHG concentrate on the long wavelength 1.4-1.5μm (the fundamental beam (FB) wavelength is within 0.8-1.5μm), but for Family B of generalized Thue-Morse, GTM(1, n) ferroelectric superlattices, with the increase of parameter n, the intense peaks of SHG concentrate on the middle wavelength 1.1-1.2μm; and (3) for GTM(m, 1) ferroelectric superlattices, the bigger the m, the stronger the relative integral intensity (RII) of SHG would be, but for GTM(1, n) ferroelectric systems, the bigger the n, the weaker the RII of SHG would be.

  17. Recent results on heterojunctions and superlattices: transport and optics

    International Nuclear Information System (INIS)

    Voos, M.

    1983-01-01

    Recent experimental results obtained on two-dimensional semiconductor structures, namely heterojunctions and superlattices are presented. This review, which includes both optical and transport experiments, is not exhaustive, but describes briefly some investigations which are thought to be important from the point of view of fundamental physics. (Author) [pt

  18. Phonon dispersion relations in monoatomic superlattices: a transfer matrix theory

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de; Fulco, P.

    1986-01-01

    We present a lattice dynamical theory for monoatomic superlattices consisting of alternating layers of two different materials. Using a transfer matrix method we obtain explicit the equation for dispersion of the phonon's bulk modes, including the well known result in the long wave-length limit which can be obtained by elasticity theory. An illustation is shown and its features discussed. (Author) [pt

  19. Quantum Transport: The Link between Standard Approaches in Superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium G...

  20. A CPA study of the phonon structure of disordered superlattices

    International Nuclear Information System (INIS)

    Shijie Xiong; Gendi Pang; Chienhua Tsai.

    1985-08-01

    The phonon structure of superlattices or modulated alloys with substitutional disorder is studied in the Coherent Phase Approximation (CPA). We consider first the case with diagonal disorder only, by adopting a virtual crystal approximation for the force constants. Then we treat the more complicated case with inclusion of off-diagonal disorder. Numerical examples are also studied in both cases. (author)

  1. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  2. Medicare and Medicaid programs; physicians' referrals to health care entities with which they have financial relationships: partial delay of effective date. Interim final rule with comment period; partial delay in effective date.

    Science.gov (United States)

    2001-12-03

    This interim final rule with comment period delays for 1 year the effective date of the last sentence of 42 CFR 411.354(d)(1). Section 411.354(d)(1) was promulgated in the final rule entitled "Medicare and Medicaid Programs; Physicians' Referrals to Health Care Entities With Which They Have Financial Relationships," published in the Federal Register on January 4, 2001 (66 FR 856). A 1-year delay in the effective date of the last sentence in Section 411.354(d)(1) will give Department officials the opportunity to reconsider the definition of compensation that is "set in advance" as it relates to percentage compensation methodologies in order to avoid unnecessarily disrupting existing contractual arrangements for physician services. Accordingly, the last sentence of Section 411.354(d)(1), which would have become effective January 4, 2002, will not become effective until January 6,2003.

  3. Film thickness determining method of the silicon isotope superlattices by SIMS

    International Nuclear Information System (INIS)

    Takano, Akio; Shimizu, Yasuo; Itoh, Kohei M.

    2008-01-01

    It is becoming important to evaluate silicon self-diffusion with progress of a silicon semiconductor industry. In order to evaluate the self-diffusion of silicon, silicon isotope superlattices (SLs) is the only marker. For this reason, it is important to correctly evaluate a film thickness and a depth distribution of isotope SLs by secondary ion mass spectrometry (SIMS). As for film thickness, it is difficult to estimate the thicknesses correctly if the cycles of SLs are short. In this work, first, we report the determination of the film thickness for short-period SLs using mixing roughness-information (MRI) analysis to SIMS profile. Next, the uncertainty of the conventional method to determine the film thicknesses of SLs is determined. It was found that the conventional methods cannot correctly determine film thickness of short-period-isotope SLs where film thickness differs for every layer

  4. Electric-field domain boundary instability in weakly coupled semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Rasulova, G. K., E-mail: rasulova@sci.lebedev.ru [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 119991 Moscow (Russian Federation); Pentin, I. V. [Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Brunkov, P. N. [A. F. Ioffe Physical and Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation); Egorov, A. Yu. [National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation)

    2016-05-28

    Damped oscillations of the current were observed in the transient current pulse characteristics of a 30-period weakly coupled GaAs/AlGaAs superlattice (SL). The switching time of the current is exponentially decreased as the voltage is verged towards the current discontinuity region indicating that the space charge necessary for the domain boundary formation is gradually accumulated in a certain SL period in a timescale of several hundreds ns. The spectral features in the electroluminescence spectra of two connected in parallel SL mesas correspond to the energy of the intersubband transitions and the resonance detuning of subbands caused by charge trapping in the quantum wells (QWs) residing in a region of the expanded domain boundary. The obtained results support our understanding of the origin of self-oscillations as a cyclic dynamics of the subband structure in the QWs forming the expanded domain boundary.

  5. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    Science.gov (United States)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  6. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period.

    Science.gov (United States)

    Sorathiya, L M; Patel, M D; Tyagi, K K; Fulsoundar, A B; Raval, A P

    2015-01-01

    The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L.) tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50%) of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding.

  7. Effect of sugar beet tubers as a partial replacer to green fodder on production performance and economics of lactating Surti buffaloes in lean period

    Directory of Open Access Journals (Sweden)

    L. M. Sorathiya

    2015-01-01

    Full Text Available Aim: The objective of this study was to evaluate the effects of sugar beet tubers as a replacer to green fodder on production performance and economics of lactating Surti buffaloes. Materials and Methods: This trial was conducted at the Livestock Research Station, Navsari Agricultural University, Navsari. Twenty lactating Surti buffaloes in a changeover experimental design were selected to assess the effects of replacing green fodder with sugar beet (Beta vulgaris L. tubers on production performance, economics of feeding sugar beet and blood biochemical profile. Half (50% of the hybrid Napier was replaced with sliced sugar beet tubers in the ration of experimental animals. Results: Partial replacement of hybrid Napier with that of sugar beet tubers numerically improved dry matter intake, milk yield, 4% fat corrected milk and milk composition parameters such as fat, solid non-fat, protein and lactose, but not significantly. The blood parameters were in normal range and non-significant except that of glucose and triglycerides, which were increased in the sugar beet group. Replacing sugar beet tubers also proved to be cost-effective with improved net profit around Rs. 6.63/day. Conclusion: It can be concluded that 50% hybrid Napier fodder can be replaced with sugar beet tubers without any adverse effect on animal production performance, milk composition blood biochemical profile and economics of feeding.

  8. Stability and Dynamic of strain mediated Adatom Superlattices on Cu<111>

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    Substrate strain mediated adatom density distributions have been calculated for Cu surfaces. Complemented by Monte Carlo calculations a hexagonal close packaged adatom superlattice in a coverage range up to 0.045 ML is derived. Conditions for the stability of the superlattice against nucleation and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusi...

  9. Computer simulation of the anomalous elastic behavior of thin films and superlattices

    International Nuclear Information System (INIS)

    Wolf, D.

    1992-10-01

    Atomistic simulations are reviewed that elucidate the causes of the anomalous elastic behavior of thin films and superlattices (the so-called supermodulus effect). The investigation of free-standing thin films and of superlattices of grain boundaries shows that the supermodulus effect is not an electronic but a structural interface effect intricately connected with the local atomic disorder at the interfaces. The consequent predictions that (1) coherent strained-layer superlattices should show the smallest elastic anomalies and (2) the introduction of incoherency at the interfaces should enhance all anomalies are validated by simulations of dissimilar-material superlattices. 38 refs, 10 figs

  10. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  11. Piezoelectricity in the dielectric component of nanoscale dielectric-ferroelectric superlattices.

    Science.gov (United States)

    Jo, Ji Young; Sichel, Rebecca J; Lee, Ho Nyung; Nakhmanson, Serge M; Dufresne, Eric M; Evans, Paul G

    2010-05-21

    The origin of the functional properties of complex oxide superlattices can be resolved using time-resolved synchrotron x-ray diffraction into contributions from the component layers making up the repeating unit. The CaTiO3 layers of a CaTiO3/BaTiO3 superlattice have a piezoelectric response to an applied electric field, consistent with a large continuous polarization throughout the superlattice. The overall piezoelectric coefficient at large strains, 54  pm/V, agrees with first-principles predictions in which a tetragonal symmetry is imposed on the superlattice by the SrTiO3 substrate.

  12. Binding of biexcitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, Vygantas; Birkedal, Dan; Langbein, Wolfgang Werner

    1997-01-01

    Properties of the heavy-hole excitons and biexcitons in GaAs/Al0.3Ga0.7As superlattices are studied using linear and nonlinear optical techniques. In superlattices with miniband halfwidths less than the exciton binding energy, the biexciton binding energy is found to be the same as in the noninte......Properties of the heavy-hole excitons and biexcitons in GaAs/Al0.3Ga0.7As superlattices are studied using linear and nonlinear optical techniques. In superlattices with miniband halfwidths less than the exciton binding energy, the biexciton binding energy is found to be the same...

  13. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  14. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  15. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K. V., E-mail: malyshev@bmstu.ru [Electronics and Laser Technology Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  16. PARTIAL SUPPORT OF THE COMMITTEE OF ATOMIC, MOLECULAR, AND OPTICAL SCIENCES Final Report for the period September 30, 2008 to June 30, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, James

    2015-06-29

    This report is the final report for the 2008-2014 cycle of DOE support for the Committee on Atomic, Molecular, and Optical Sciences. Highlights of the committee’s activities over this period included: • Meetings of the committee were held semiannually (Washington, DC in April and Irvine, CA in October) for four of the six years and annually the last two years (Washington, DC in April). • Committee meetings included half-day focus sessions on each of the areas identified in the last AMO decadal survey as having great scientific promise and short summaries of the focus session were prepared and delivered to sponsoring agencies. • CAMOS initiated a study that has been funded on high intensity lasers. DOE support for CAMOS has been of central importance to the committee’s ability to continue to fulfill its mandate to the Board on Physics and Astronomy and to the wider atomic, molecular, and optical sciences research community.

  17. Advances in the characterization of InAs/GaSb superlattice infrared photodetectors

    Science.gov (United States)

    Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.

    2016-10-01

    This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.

  18. Structure and lattice dynamics of GaN and AlN. Ab-initio investigations of strained polytypes and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan-Martin

    2004-10-14

    In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)

  19. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  20. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ma, Jie [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); May, Andrew F.; Delaire, Olivier, E-mail: delaireoa@ornl.gov, E-mail: shaohorn@mit.edu [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  1. Stark effect of excitons in corrugated lateral surface superlattices: effect of centre-of-mass quantization

    International Nuclear Information System (INIS)

    Hong Sun

    1998-11-01

    The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)

  2. On the structure of the incommensurate superlattices of 2H - TaSe2

    International Nuclear Information System (INIS)

    Withers, R.L.; Bursill, L.A.

    1979-01-01

    Reinterpretation of the neutron diffraction study of 2H-TaSe 2 by Moncton, Axe and DiSalvo (1977) reveals an ambiguity in the sense of the displacements proposed for the commensurate superlattice structure. An attempt is made to resolve this ambiguity by electrostatic and short-range energy calculations of the phase dependence of the energy of the periodic structural distortion wave. There is a fine balance between Se-Se short range repulsion, Ta-Se electrostatic and short-range repulsion and the CDW-Ta ion interaction energy terms. The analysis reveals the phase dependence of the various terms and allows the different contributions to the stability of the distortion waves to be discussed more completely than previously

  3. Tunneling time and Hartman effect in a ferromagnetic graphene superlattice

    Directory of Open Access Journals (Sweden)

    Farhad Sattari

    2012-03-01

    Full Text Available Using transfer-matrix and stationary phase methods, we study the tunneling time (group delay time in a ferromagnetic monolayer graphene superlattice. The system we peruse consists of a sequence of rectangular barriers and wells, which can be realized by putting a series of electronic gates on the top of ferromagnetic graphene. The magnetization in the two ferromagnetic layers is aligned parallel. We find out that the tunneling time for normal incident is independent of spin state of electron as well as the barrier height and electron Fermi energy while for the oblique incident angles the tunneling time depends on the spin state of electron and has an oscillatory behavior. Also the effect of barrier width on tunneling time is also investigated and shown that, for normal incident, the Hartman effect disappears in a ferromagnetic graphene superlattice but it appears for oblique incident angles when the x component of the electron wave vector in the barrier is imaginary.

  4. Large negative differential resistance in graphene nanoribbon superlattices

    Science.gov (United States)

    Tseng, P.; Chen, C. H.; Hsu, S. A.; Hsueh, W. J.

    2018-05-01

    A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90-220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier-Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

  5. Magnetism and superconductivity in neodymium/lanthanum superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, Desmond Francis

    1997-01-01

    bilayers. Magnetization studies reveal the onset of superconductivity at a temperature comparable to bulk DHCP La, and the results suggest coupling across the antiferromagnetic Nd layers. The magnetic structures, investigated using neutron diffraction techniques, resemble those found in bulk Nd....... For the cubic sites of the DHCP structure the magnetic order is confined to individual Nd blocks. However, the magnetic order on the Nd hexagonal sites propagates coherently through the La, even when it becomes superconducting. (C) 1998 Elsevier Science B.V. All rights reserved.......A single-crystal Nd30La10 superlattice grown using molecular beam epitaxy is found to consist of alternating antiferromagnetic and superconducting layers at low temperature. The superlattice has the DHCP crystal structure, and the stacking sequence of close-packed planes is coherent over many...

  6. Surface magnetic phase transitions in Dy/Lu superlattices

    International Nuclear Information System (INIS)

    Goff, J.P.; Sarthour, R.S.; Micheletti, C.; Langridge, S.; Wilkins, C.J.T.; Ward, R.C.C.; Wells, M.R.

    1999-01-01

    Dy/Lu superlattices comprising ferromagnetic Dy blocks coupled antiferromagnetically across the Lu blocks may be modelled as a chain of XY spins with antiferromagnetic exchange and six-fold anisotropy. We have calculated the stable magnetic phases for the cases of large anisotropy and a field applied along an easy direction. For an infinite chain an intermediate phase (1, 5,...) is predicted, where the notation gives the angle between the moment and the applied field in units of π/3. Furthermore, the effects of surface reconstruction are determined for finite chains. A [Dy 20 Lu 12 ] 20 superlattice has been studied using bulk magnetization and polarized neutron reflectivity. The (1, 5,...) phase has been identified and the results provide direct evidence in support of the theoretical predictions. Dipolar forces are shown to account for the magnitude of the observed exchange coupling. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing

    2018-05-04

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states for both superlattices are found due to epitaxial strain. At the interfaces, however, the V spins couple antiferromagnetically for m = 5 and ferromagnetically for m = 6 (m‐dependence of the magnetization). Electronic reconstruction in form of charge ordering is predicted to occur with V3+ and V4+ states arranged in a checkerboard pattern on both sides of the SrO layer. As compared to bulk LaVO3, the presence of V4+ ions introduces in‐gap states that strongly reduce the bandgap and influence the orbital occupation and ordering.

  8. Capacitance-Voltage (CV) Measurement of Type-2 Superlattice Photodiodes

    Science.gov (United States)

    2016-01-05

    Department of Defense position, policy, or decision. CQD Contents 1. Background and Motivation ...1. Background and Motivation 1.1. Development of Type-II superalttice Type-II InAs/GaSb superlattices (T2SLs) were first proposed by Sai-Halasz et...equals the ionized impurity concentration. In such case, the semiconductor is under extrinsic regime, and the dynamic of mobile carriers depends on

  9. Structural study of multilayered vanadium/nickel superlattices

    International Nuclear Information System (INIS)

    Homma, H.; Lepetre, Y.; Murduck, J.M.; Schuller, I.K.; Majkrzak, C.F.

    1985-07-01

    We have studied the microstructure of V/Ni metallic superlattice, using x-ray and neutron diffraction. We find a sharp and broad rocking curves around the first-order Bragg peak, and attribute them to a columnar structure which gives rise to two modulation structures; one the ordinary layered structure within the columns and the other the averaged modulation structure which produces the sharp rocking peak

  10. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu; Choi, Joshua J.; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M.; Hanrath, Tobias

    2011-01-01

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  11. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.; Hedhili, Mohamed N.; Cha, Dong Kyu; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  12. pi-phase magnetism in ferromagnetic-superconductor superlattices

    CERN Document Server

    Khusainov, M G; Proshin, Y N

    2001-01-01

    The Larkin-Ovchinnikov-Fylde-Ferrel new 0 pi- and pi pi-states are forecasted for the ferromagnetic metal/superconductor superlattices with antiferromagnetic magnetization orientation in the neighbouring layers. The above-mentioned states are characterized under certain conditions by higher critical temperature T sub c as compared to the earlier known LOFF 00- and pi 0-states with the FM-layers ferromagnetic ordering. It is shown that the nonmonotonous behavior of the T sub c of the FM/S superlattices by the thickness of the S-layers lower than the d sub s suppi value is connected with the cascades of the 0 pi-pi pi-0 pi phase transitions. The character of the T sub c oscillations by the d sub s > d sub s suppi is related to the 00-pi 0-00 transitions. The logical elements of the new type, combining the advantages of the superconducting and magnetic information recording in one sample are proposed on the basis of the FM/S superlattices

  13. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  14. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  15. Interface disorder and transport properties in HTC/CMR superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E

    2004-08-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.

  16. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass

    KAUST Repository

    Ding, Junfeng

    2016-05-04

    Emerging physical phenomena at the unit-cell-controlled interfaces of transition-metal oxides have attracted lots of interest because of the rich physics and application opportunities. This work reports a reentrant spin glass behavior with strong magnetic memory effect discovered in oxide heterostructures composed of ultrathin manganite La0.7Sr0.3MnO3 (LSMO) and cuprate La2CuO4 (LCO) layers. These heterostructures are featured with enhanced ferromagnetism before entering the spin glass state: a Curie temperature of 246 K is observed in the superlattice with six-unit-cell LSMO layers, while the reference LSMO film with the same thickness shows much weaker magnetism. Furthermore, an insulator-metal transition emerges at the Curie temperature, and below the freezing temperature the superlattices can be considered as a glassy ferromagnetic insulator. These experimental results are closely related to the interfacial spin reconstruction revealed by the first-principles calculations, and the dependence of the reentrant spin glass behavior on the LSMO layer thickness is in line with the general phase diagram of a spin system derived from the infinite-range SK model. The results of this work underscore the manganite/cuprate superlattices as a versatile platform of creating artificial materials with tailored interfacial spin coupling and physical properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.

    2014-04-22

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  18. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions

    International Nuclear Information System (INIS)

    McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; Lee, Byeongdu; Olvera de la Cruz, Monica; Mirkin, Chad A.

    2017-01-01

    Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB 2 packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.

  19. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  20. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Lawrence, Samantha K.; Bahr, David F. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Schroeder, Jeremy L.; Birch, Jens [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  1. Materials science and technology strained-layer superlattices materials science and technology

    CERN Document Server

    Pearsall, Thomas P; Willardson, R K; Pearsall, Thomas P

    1990-01-01

    The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting ...

  2. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    International Nuclear Information System (INIS)

    Wang, C.; Wang, F.; Cao, J. C.

    2014-01-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation

  3. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.

    Science.gov (United States)

    Wang, C; Wang, F; Cao, J C

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  4. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  5. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  6. Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices

    Directory of Open Access Journals (Sweden)

    James (Zi-Jian Ju

    2016-04-01

    Full Text Available The thermoelectric properties of n-type InGaN alloys with high In-content and InN/InGaN thin film superlattices (SL grown by molecular beam epitaxy are investigated. Room-temperature measurements of the thermoelectric properties reveal that an increasing Ga-content in ternary InGaN alloys (0 < x(Ga < 0.2 yields a more than 10-fold reduction in thermal conductivity (κ without deteriorating electrical conductivity (σ, while the Seebeck coefficient (S increases slightly due to a widening band gap compared to binary InN. Employing InN/InGaN SLs (x(Ga = 0.1 with different periods, we demonstrate that confinement effects strongly enhance electron mobility with values as high as ∼820 cm2/V s at an electron density ne of ∼5×1019 cm−3, leading to an exceptionally high σ of ∼5400 (Ωcm−1. Simultaneously, in very short-period SL structures S becomes decoupled from ne, κ is further reduced below the alloy limit (κ < 9 W/m-K, and the power factor increases to 2.5×10−4 W/m-K2 by more than a factor of 5 as compared to In-rich InGaN alloys. These findings demonstrate that quantum confinement in group-III nitride-based superlattices facilitates improvements of thermoelectric properties over bulk-like ternary nitride alloys.

  7. Collective excitations in semiconductor superlattices and plasma modes of a two-dimensional electron gas with spatially modulated charge density

    International Nuclear Information System (INIS)

    Eliasson, G.L.

    1987-01-01

    The theory of collective excitations in semiconductor superlattices is formulated by using linear response theory. Different kinds of collective excitations in type I (GaAs-GaAlAs) and type II (GaSb-InAs) superlattices are surveyed. Special attention is paid to the presence of surface and finite-size effects. In calculating the dielectric matrix, the effect of different approximations of the system is discussed. The theory for inelastic length scattering (Raman scattering), and for Electron Energy Loss (EEL) due to collective excitations, is formulated. Calculations for several model systems are presented and the main features of the spectra are discussed. In part II the theory of collective excitations of a two-dimensional electron gas with a spatially periodic equilibrium density is formulated. As a first example a periodic array of two-dimensional electron gas strips with constant equilibrium density is studied. The integral equation that describes the charge fluctuations on the strips is derived and solved numerically. The spatial dependence of the density fluctuation across a single strip can be in the form of either propagating or evanescent waves

  8. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  9. Tunable electronic transmission gaps in a graphene superlattice

    International Nuclear Information System (INIS)

    Lu Weitao; Wang Shunjin; Li Wen; Wang Yonglong; Jiang Hua

    2012-01-01

    The transmission in graphene superlattices with adjustable barrier height is investigated using transfer-matrix method. It is found that one could control the angular range of transmission by changing the ratio of incidence energy and barrier height. The transmission as a function of incidence energy has more than one gaps, due to the appearance of evanescent waves in different barriers. Accordingly, more than one conductivity minimums are induced. The transmission gaps could be controlled by adjusting the incidence angle, the barrier height, and the barrier number, which gives the possibility to construct an energy-dependent wavevector filter.

  10. Theory of the negative differential conductivity effect in semiconductor superlattices

    International Nuclear Information System (INIS)

    Vo Hong Anh; Nguyen Hong Shon; Le Vu Ky

    1990-01-01

    A new mechanism of the negative differential conductivity (NDC) effect in semiconductor superlattices (SL) is proposed and analysed that is due to the conduction electron trapping by donor centers. It is shown that the NDC effect occurs for sufficently high (but reasonable) impurity concentration and not too large value of the τ ε /τ c ratio (where τ ε is the electron energy relaxation time and τ c the electron life time in the conduction band) when the applied d.c. electric field reaches certain critical value defined by the physical parameters of the sample. (author). 8 refs, 2 figs

  11. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  12. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  13. Minority Carrier Lifetime Studies of Narrow Bandgap Antimonide Superlattices

    Science.gov (United States)

    Hoglund, Linda; Ting, David Z.; Khoshakhlagh, Arezou; Soibel, Alexander; Hill, Cory J.; Fisher, Anita; Keo, Sam; Gunapala, Sarath D.

    2014-01-01

    In this study optical modulation response and photoluminescence spectroscopy were used to study mid-wave Ga-free InAs/InAsSb superlattices. The minority carrier lifetimes in the different samples varied from 480 ns to 4700 ns, partly due to different background doping concentrations. It was shown that the photoluminescence intensity can be used as a fast non-destructive tool to predict the material quality. It was also demonstrated that it is crucial to use a low excitation power in the photoluminescence measurements in order to get a good correlation between the photoluminescence intensity and the minority carrier lifetime.

  14. The hyperfine properties of a hydrogenated Fe/V superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2012-03-15

    We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.

  15. Leaky electronic states for photovoltaic photodetectors based on asymmetric superlattices

    Science.gov (United States)

    Penello, Germano Maioli; Pereira, Pedro Henrique; Pires, Mauricio Pamplona; Sivco, Deborah; Gmachl, Claire; Souza, Patricia Lustoza

    2018-01-01

    The concept of leaky electronic states in the continuum is used to achieve room temperature operation of photovoltaic superlattice infrared photodetectors. A structural asymmetric InGaAs/InAlAs potential profile is designed to create states in the continuum with the preferential direction for electron extraction and, consequently, to obtain photovoltaic operation at room temperature. Due to the photovoltaic operation and virtual increase in the bandoffset, the device presents both low dark current and low noise. The Johnson noise limited specific detectivity reaches values as high as 1.4 × 1011 Jones at 80 K. At 300 K, the detectivity obtained is 7.0 × 105 Jones.

  16. Non-linear spin transport in magnetic semiconductor superlattices

    International Nuclear Information System (INIS)

    Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.

    2004-01-01

    The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field

  17. Optical and vibrational properties of (ZnO){sub k} In{sub 2}O{sub 3} natural superlattice nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, Samuel [Laboratoire Matériaux Optiques, Photonique et Systèmes, Université de Lorraine et CentraleSupélec, 57070 Metz (France); John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States); Pokorny, Jan; Skiadopoulou, Stella; Kamba, Stanislav [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Liang, Xin [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Clarke, David R. [John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138 (United States)

    2016-05-21

    A thermodynamically stable series of superlattices, (ZnO){sub k}In{sub 2}O{sub 3}, form in the ZnO-In{sub 2}O{sub 3} binary oxide system for InO{sub 1.5} concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO{sub 6} octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm{sup −1}, not present in either ZnO or In{sub 2}O{sub 3}, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO{sub 1.5} sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO{sub 2}, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO{sub 2} interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.

  18. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  19. Interfaces in Si/Ge atomic layer superlattices on (001)Si: Effect of growth temperature and wafer misorientation

    Science.gov (United States)

    Baribeau, J.-M.; Lockwood, D. J.; Syme, R. W. G.

    1996-08-01

    We have used x-ray diffraction, specular reflectivity, and diffuse scattering, complemented by Raman spectroscopy, to study the interfaces in a series of (0.5 nm Ge/2 nm Si)50 atomic layer superlattices on (001)Si grown by molecular beam epitaxy in the temperature range 150-650 °C. X-ray specular reflectivity revealed that the structures have a well-defined periodicity with interface widths of about 0.2-0.3 nm in the 300-590 °C temperature range. Offset reflectivity scans showed that the diffuse scattering peaks at values of perpendicular wave vector transfer corresponding to the superlattice satellite peaks, indicating that the interfaces are vertically correlated. Transverse rocking scans of satellite peaks showed a diffuse component corresponding to an interface corrugation of typical length scale of ˜0.5 μm. The wavelength of the undulations is a minimum along the miscut direction and is typically 30-40 times larger than the surface average terrace width assuming monolayer steps, independently of the magnitude of the wafer misorientation. The amplitude of the undulation evolves with growth temperature and is minimum for growth at ˜460 °C and peaks at ˜520 °C. Raman scattering showed the chemical abruptness of the interfaces at low growth temperatures and indicated a change in the growth mode near 450 °C.

  20. COMPORTAMENTO A CORROSIONE E TRIBOCORROSIONE DI RIVESTIMENTI CERMET E CERMET/ SUPERLATTICE

    OpenAIRE

    Monticelli, C.; Zucchi, F.

    2009-01-01

    È stato studiato il comportamento a corrosione e tribocorrosione di riporti cermet e cermet/superlattice,applicati su campioni di acciaio. I riporti cermet consistono in riporti termici HVOF a spessore,di tipo WC-12Co o Cr3C2-37WC-18Me. I doppi riporti cermet/superlattice sono ottenuti sovrapponendoai depositi cermet citati un superlattice a base di nitruri, in cui si alternano strati di CrN e di NbN. Unasoluzione al 3.5 % di NaCl costituisce l’ambiente aggressivo. Le condizioni di tribocorro...

  1. Structural and magnetic properties of holmium-scandium alloys and superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top...... of the seed layer; while the superlattices have different a lattice parameters for the Sc seed, and for both the Ho and Sc in the superlattice layers. The structural characteristics are related to the large lattice mismatches (of the order 7%) between the constituent elements. The magnetic moments...

  2. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  3. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  4. Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices

    Science.gov (United States)

    Yusuf, Mohammed; Du, Xu; Dawber, Matthew

    2013-03-01

    Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)

  5. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  6. Effect of layer composition on band spectrum of CdxHg1-xTe - CdyHg1-yTe-type superlattices

    International Nuclear Information System (INIS)

    Gerchikov, L.G.; Subashiev, A.V.; Salman Dalla

    1993-01-01

    Evolution of energy spectrum of Cd x Hg 1-x Te -Cd y Hg 1-y Te superlattices at variation of layer composition is considered. Transition from 3 type superlattice to 1 type superlattice occurring for y=0.16 is studied comprehensively. In this case, dependence of the width of superlattice forbidden zone on layer thickness is shown to become more smooth, than in CdTe - HgTe superlattice and it gives more possibilities to use such superlattices for making IR phototransistors. 10 refs., 4 figs

  7. Intraband dynamics and terahertz emission in biased semiconductor superlattices coupled to double far-infrared pulses

    International Nuclear Information System (INIS)

    Min, Li; Xian-Wu, Mi

    2009-01-01

    This paper studies both the intraband polarization and terahertz emission of a semiconductor superlattice in combined dc and ac electric fields by using the superposition of two identical time delayed and phase shifted optical pulses. By adjusting the delay between these two optical pulses, our results show that the intraband polarization is sensitive to the time delay. The peak values appear again for the terahertz emission intensity due to the superposition of two optical pulses. The emission lines of terahertz blueshift and redshift in different ac electric fields and dynamic localization appears. The emission lines of THz only appear to blueshift when the biased superlattice is driven by a single optical pulse. Due to excitonic dynamic localization, the terahertz emission intensity decays with time in different dc and ac electric fields. These are features of this superlattice which distinguish it from a superlattice generated by a single optical pulse to drive it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Hydrogenation of Very Long Wavelength Infrared Focal Plane Arrays Based on Type II Superlattices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to advance the Ga-free InAs/InAsSb type II superlattice (T2SL) materials technology for very long wavelength infrared (VLWIR) focal plane arrays (FPAs) by...

  9. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    Science.gov (United States)

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1987-06-08

    A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.

  10. GeTe sequences in superlattice phase change memories and their electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ohyanagi, T., E-mail: ohyanagi@leap.or.jp; Kitamura, M.; Takaura, N. [Low-Power Electronics Association and Projects (LEAP), Onogawa 16-1, Tsukuba, Ibaraki 305-8569 (Japan); Araidai, M. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kato, S. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Shiraishi, K. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2014-06-23

    We studied GeTe structures in superlattice phase change memories (superlattice PCMs) with a [GeTe/Sb{sub 2}Te{sub 3}] stacked structure by X-ray diffraction (XRD) analysis. We examined the electrical characteristics of superlattice PCMs with films deposited at different temperatures. It was found that XRD spectra differed between the films deposited at 200 °C and 240 °C; the differences corresponded to the differences in the GeTe sequences in the films. We applied first-principles calculations to calculate the total energy of three different GeTe sequences. The results showed the Ge-Te-Ge-Te sequence had the lowest total energy of the three and it was found that with this sequence the superlattice PCMs did not run.

  11. Solvent-driven symmetry of self-assembled nanocrystal superlattices-A computational study

    KAUST Repository

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    used solvents, toluene and hexane. System sizes in the 400,000-500,000-atom scale followed for nanoseconds are required for this computationally intensive study. The key questions addressed here concern the thermodynamic stability of the superlattice

  12. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu; Hughes, Kevin J.; Zhang, Wenyu; Smilgies, Detlef-M.; Hennig, Richard G.; Engstrom, James R.; Hanrath, Tobias

    2011-01-01

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  13. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  14. Interwell and intrawell magnetoexcitons in GaAs/AlGaAs superlattices

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Filin, A. I.; Tartakovskii, A. I.

    1997-01-01

    The formation of spatially indirect (interwell) excitons in superlattices (SLs) with different barrier widths (different tunneling coupling) is experimentally investigated in a strong enough magnetic field with the use of photoluminescence (PL), photoluminescence excitation (PLE), reflectance spec...

  15. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  16. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  17. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    Science.gov (United States)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  18. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  19. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  20. Optical properties of InAs/GaAs quantum dot superlattice structures

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Zahid, M. Noaman; Yousaf, M.; Shah, Z. H.

    2018-06-01

    Quantum dot (QD) structure has potential applications in modern highly efficient optoelectronic devices due to their band-tuning. The device dimensions have been miniatured with increased efficiencies by virtue of this discovery. In this research, we have presented modified analytical and simulation results of InAs/GaAs QD superlattice (QDSL). We have applied tight binding model for the investigation of ground state energies using timeindependent Schrödinger equation (SE) with effective mass approximation. It has been investigated that the electron energies are confined due to wave function delocalization in closely coupled QD structures. The minimum ground state energy can be obtained by increasing the periodicity and decreasing the barrier layer thickness. We have calculated electronics and optical properties which includes ground state energies, transition energies, density of states (DOS), absorption coefficient and refractive index, which can be tuned by structure modification. In our results, the minimum ground state energy of QDSL is achieved to be 0.25 eV with a maximum period of 10 QDs. The minimum band to band and band to continuum transition energies are 63 meV and 130 meV with 2 nm barrier layer thickness respectively. The absorption coefficient of our proposed QDSL model is found to be maximum 1.2 × 104 cm-1 and can be used for highly sensitive infrared detector and high efficiency solar cells.

  1. Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy

    Science.gov (United States)

    Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V.

    2018-05-01

    The structure and morphology of BimSen epitaxial layers with compositions ranging from Bi2Se3 to the Bi1Se1 grown by molecular beam epitaxy with different flux compositions are investigated by transmission electron microscopy, high-resolution x-ray diffraction, and atomic force microscopy. It is shown that the lattice structure changes significantly as a function of the beam flux composition, i.e., Se/BiSe flux ratio that determines the stoichiometry of the layers. A perfect Bi2Se3 phase is formed only with a sufficiently high additional Se flux, whereas Bi1Se1 is obtained when only a BiSe compound source without additional Se is used. For intermediate values of the excess Se flux during growth, Bi2Se3 -δ layers are obtained with the Se deficit δ varying between 0 and 1. This Se deficit is accommodated by incorporation of additional Bi-Bi double layers into the Bi2Se3 structure that otherwise exclusively consists of Se-Bi-Se-Bi-Se quintuple layers. While a periodic insertion of such Bi double layers would result in the formation of natural BimSen superlattices, we find that this Bi double-layer insertion is rather stochastic with a high degree of disorder depending on the film composition. Therefore, the structure of such epilayers is better described by a one-dimensional paracrystal model, consisting of disordered sequences of quintuple and double layers rather than by strictly periodic natural superlattices. From detailed analysis of the x-ray diffraction data, we determine the dependence of the lattice parameters a and c and distances of the individual (0001) planes dj as a function of composition, evidencing that only the in-plane lattice parameter a shows a linear dependence on composition. The simulation of the diffraction curves with the random stacking paracrystal model yields an excellent agreement with the experimental data and it brings quantitative information on the randomness of the stacking sequence, which is compared to growth modeling using Monte

  2. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova

    2017-05-01

    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  3. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  4. Alternating current-driven graphene superlattices: Kinks, dissipative solitons, dynamic chaotization

    International Nuclear Information System (INIS)

    Kryuchkov, S. V.; Kukhar', E. I.

    2015-01-01

    The possibility of the solitary electromagnetic wave formation in graphene superlattice subjected to the electromagnetic radiation is discussed. The chaotic behavior of the electron subsystem in graphene superlattice is studied by Melnikov method. Dynamic chaos of electrons is shown to appear for certain intervals of frequencies of incident electromagnetic radiation. The frequency dependence of the radiation critical amplitude which determines the bound of chaos appearance is investigated. The values of radiation frequency at which the critical amplitude increases indefinitely were found

  5. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Spectral properties of waves in superlattices with 2D and 3D inhomogeneities

    International Nuclear Information System (INIS)

    Ignatchenko, V. A.; Tsikalov, D. S.

    2011-01-01

    We investigate the dynamic susceptibility and one-dimensional density of states in an initially sinusoidal superlattice containing simultaneously 2D phase inhomogeneities simulating correlated rough-nesses of superlattice interfaces and 3D amplitude inhomogeneities of the superlattice layer materials. The analytic expression for the averaged Green’s function of the sinusoidal superlattice with two phase inhomogeneities is derived in the Bourret approximation. It is shown that the effect of increasing asymmetry in the peak heights of dynamic susceptibility at the Brillouin zone boundary of the superlattice, which was discovered earlier [15] upon an increase in root-mean-square (rms) fluctuations, also takes place upon an increase in the correlation wavenumber of inhomogeneities. However, the peaks in this case also become closer, and the width and depth of the gap in the density of states decrease thereby. It is shown that the enhancement of rms fluctuations of 3D amplitude inhomogeneities in a superlattice containing 2D phase inhomogeneities suppresses the effect of dynamic susceptibility asymmetry and leads to a slight broadening of the gap in the density of states and a decrease in its depth. Targeted experiments aimed at detecting the effects studied here would facilitate the development of radio-spectroscopic and optical methods for identifying the presence of inhomogeneities of various dimensions in multilayer magnetic and optical structures.

  7. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  8. Laser induced structural transformation in chalcogenide based superlattices

    International Nuclear Information System (INIS)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-01-01

    Superlattices made of alternating layers of nominal GeTe and Sb 2 Te 3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  9. Optical properties of metallic Fibonacci quasi-superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Liu Nianhua; Wu Xiang

    1990-06-01

    Within the approximation of hydrodynamic model, the optical properties of the metallic Fibonacci quasi-superlattice have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the transfer-matrix method and taking account of damping effects, we have discussed the electromagnetic normal modes for the quasisuperlattice in the rational approximation. The related dispersion curves explain the reflection spectra well, and we found that similar to the reflectivities, both real part and imagine part of the dispersion relation pattern has a rich structure of self-similarity. With the increasing of the generation number, the electromagnetic modes all become critical. (author). 13 refs, 3 figs

  10. Laser induced structural transformation in chalcogenide based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zallo, Eugenio, E-mail: zallo@pdi-berlin.de; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-05-30

    Superlattices made of alternating layers of nominal GeTe and Sb{sub 2}Te{sub 3} have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  11. Superlattices assembled through shape-induced directional binding

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  12. Emergent chirality in the electric polarization texture of titanate superlattices.

    Science.gov (United States)

    Shafer, Padraic; García-Fernández, Pablo; Aguado-Puente, Pablo; Damodaran, Anoop R; Yadav, Ajay K; Nelson, Christopher T; Hsu, Shang-Lin; Wojdeł, Jacek C; Íñiguez, Jorge; Martin, Lane W; Arenholz, Elke; Junquera, Javier; Ramesh, Ramamoorthy

    2018-01-30

    Chirality is a geometrical property by which an object is not superimposable onto its mirror image, thereby imparting a handedness. Chirality determines many important properties in nature-from the strength of the weak interactions according to the electroweak theory in particle physics to the binding of enzymes with naturally occurring amino acids or sugars, reactions that are fundamental for life. In condensed matter physics, the prediction of topologically protected magnetic skyrmions and related spin textures in chiral magnets has stimulated significant research. If the magnetic dipoles were replaced by their electrical counterparts, then electrically controllable chiral devices could be designed. Complex oxide BaTiO 3 /SrTiO 3 nanocomposites and PbTiO 3 /SrTiO 3 superlattices are perfect candidates, since "polar vortices," in which a continuous rotation of ferroelectric polarization spontaneously forms, have been recently discovered. Using resonant soft X-ray diffraction, we report the observation of a strong circular dichroism from the interaction between circularly polarized light and the chiral electric polarization texture that emerges in PbTiO 3 /SrTiO 3 superlattices. This hallmark of chirality is explained by a helical rotation of electric polarization that second-principles simulations predict to reside within complex 3D polarization textures comprising ordered topological line defects. The handedness of the texture can be topologically characterized by the sign of the helicity number of the chiral line defects. This coupling between the optical and novel polar properties could be exploited to encode chiral signatures into photon or electron beams for information processing.

  13. Perspectives from ab-initio and tight-binding: Applications to transition metal compounds and superlattices

    Science.gov (United States)

    Venkataraman, Vijay Shankar

    The experimental and theoretical study of transition metal compounds have occupied condensed matter physicists for the best part of the last century. The rich variety of physical behaviour exhibited by these compounds owes its origin to the subtle balance of the energy scales at play for the d orbitals. In this thesis, we study three different systems comprised of transition metal atoms from the third, the fourth, and the fifth group of the periodic table using a combination of ab-initio density functional theory (DFT) computations and effective tight-binding models for the electronic properties. We first consider the electronic properties of artificially fabricated perovskite superlattices of the form [(SrIrO3)m / SrTiO3] with integer m denoting the number of layers of SrIrO3. After discussing the results of experiments undertaken by our collaborators, we present the results of our DFT calculations and build tight-binding models for the m = 1 and m = 2 superlattices. The active ingredient is found to be the 5d orbitals with significant spin-orbit coupling. We then study the energies of magnetic ground states within DFT and compare and contrast our results with those obtained for the bulk Ruddlesden-Popper iridates. Together with experimental measurements, our results suggest that these superlattices are an exciting venue to probe the magnetism and metal-insulator transitions that occur from the intricate balance of the spin-orbit coupling and electron interactions, as has been reported for their bulk counterparts. Next, we consider alpha-RuCl3, a honeycomb lattice compound. We first show using DFT calculations in conjunction with experiments performed by our collaborators, how spin-orbit coupling in the 4d orbitals of Ru is essential to understand the insulating state realized in this compound. Then, in the latter half of the chapter, we study the magnetic ground states of a two-dimensional analogue of alpha-RuCl3 in weak and strong-coupling regimes obtained from

  14. Crystalline and quasi-crystalline patterns in X-Ray diffraction from periodic arrays of quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Holy, V.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    The structural properties of a square periodic array of quantum dots of a GaAs/AlAs superlattice were studied by x-ray diffractometry. If the azimuthal direction of the primary beam can be expressed by integer Miller indices, the profile is perfectly periodic. However, if its azimuthal orientation

  15. Effect of InSb/In0.9Al0.1Sb superlattice buffer layer on the structural and electronic properties of InSb films

    Science.gov (United States)

    Zhao, Xiaomeng; Zhang, Yang; Guan, Min; Cui, Lijie; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2017-07-01

    The effect of InSb/In0.9Al0.1Sb buffer layers on InSb thin films grown on GaAs (0 0 1) substrate by molecular beam epitaxy (MBE) is investigated. The crystal quality and the surface morphology of InSb are characterized by XRD and AFM. The carrier transport property is researched through variable temperature hall test. The sharp interface between InSb/In0.9Al0.1Sb is demonstrated important for the high quality InSb thin film. We try different superlattice buffer layers by changing ratios, 2-0.5, thickness, 300-450 nm, and periods, 20-50. According to the function of the dislocation density to the absolute temperature below 150 K with different periods of SL buffers, we can find that the number of periods of superlattice is a major factor to decrease the density of threading dislocations. With the 50 periods SL buffer layer, the electron mobility of InSb at the room temperature and liquid nitrogen cooling temperature is ∼63,000 and ∼4600 cm2/V s, respectively. We deduce that the interface in the SL structure works as a filter layer to prevent the dislocation propagating to the upper InSb thin films.

  16. A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD

    Science.gov (United States)

    Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd

    2017-12-01

    Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.

  17. Charge polarization effects and hole spectra characteristics in AlxGa1-xN/GaN superlattices

    International Nuclear Information System (INIS)

    Assaoui, Fatna; Pereyra, Pedro

    2001-10-01

    We study the effects of charge polarization on the extended physical properties of superlattices, such as transmission coefficients and valence band structure. We consider both linear and parabolic modulation of the band edge. Based on the theory of finite periodic systems (TFPS), analytic expressions and high precision calculations of the relevant physical quantities for n-cell systems are obtained. New and also well-known features of these systems are identified. Besides the well-known energy bandstructure, we also have the field bandstructure, with interesting characteristics. Wider field gaps at stronger internal electric fields and higher density of field bands for larger layer widths are some of these characteristics. Well defined level density asymmetries identify the minibands induced by charge polarization or the so-called Quantum Confining Stark Effect. We present the n-cell transmission amplitudes, transmission coefficients and miniband structures for different values of the relevant parameters. (author)

  18. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Science.gov (United States)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  19. The reflected amplitude ratio of multilayers and superlattice describe the dynamical diffraction of x-rays

    International Nuclear Information System (INIS)

    Bhatti, Q.A.; Mangi, F.A.

    2006-01-01

    Calculating the rocking curves of complicated layered structures, such as non-ideal super lattices on perfect crystals are clearly exposed with observed diffraction profile. Recursion formulas for calculating reflected amplitude ratio of multilayer and super lattices have been involved from the Takagi-Taupin differential equation, which describes the dynamical diffraction of X-rays in deformed crystal. The Kinematical theory can computing time only in case of ideal superlattice for which geometric series can be used but the reflectivity must be below 10 % so that multiple reflections can be neglected for a perfect crystal of arbitrary thickness the absorption at the centre of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter- deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-rays diffraction calculations give the result very similar to those of macroscopic optical description in terms of the complex index of refraction and Frensnel relation coefficient. (author)

  20. Feshbach shape resonance for high Tc superconductivity in superlattices of nanotubes

    International Nuclear Information System (INIS)

    Bianconi, Antonio

    2006-01-01

    The case of a Feshbach shape resonance in the pairing mechanism for high T c superconductivity in a crystalline lattice of doped metallic nanotubes is described. The superlattice of doped metallic nanotubes provides a superconductor with a strongly asymmetric gap. The disparity and different spatial locations of the wave functions of electrons in different subbands at the Fermi level should suppress the single electron impurity interband scattering giving multiband superconductivity in the clean limit. The Feshbach resonances will arise from the component single-particle wave functions out of which the electron pair wave function is constructed: pairs of wave functions which are time inverse of each other. The Feshbach shape resonance increases the critical temperature by tuning the chemical potential at the Lifshitz electronic topological transition (ETT) where the Fermi surface of one of the bands changes from the one dimensional (1D) to the two dimensional (2D) topology (1D/2D ETT). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Dopant-free twinning superlattice formation in InSb and InP nanowires

    International Nuclear Information System (INIS)

    Yuan, Xiaoming; Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati; He, Jun

    2017-01-01

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Dopant-free twinning superlattice formation in InSb and InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaoming [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); He, Jun [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China)

    2017-11-15

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  4. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Directory of Open Access Journals (Sweden)

    G. Y. Yang

    2017-04-01

    Full Text Available The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM. The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  5. Polaritons in periodic and quasiperiodic structures

    CERN Document Server

    Albuquerque, Eudenilson L

    2004-01-01

    In recent years there have been exciting developments in techniques for producing multilayered structures of different materials, often with thicknesses as small as only a few atomic layers. These artificial structures, known as superlattices, can either be grown with the layers stacked in an alternating fashion (the periodic case) or according to some other well-defined mathematical rule (the quasiperiodic case). This book describes research on the excitations (or wave-like behavior) of these materials, with emphasis on how the material properties are coupled to photons (the quanta of the l

  6. Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals

    International Nuclear Information System (INIS)

    Xiong Zhengwei; Sun Weiguo; Wang Xuemin; Jiang Fan; Wu Weidong

    2012-01-01

    Highlights: ► The BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs were successfully fabricated by L-MBE. ► The influence with the various concentrations of Ni nanocrystals embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. ► The BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss compared with the pure BaTiO 3 /SrTiO 3 superlattices. ► The dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory. - Abstract: The self-organized Ni nanocrystals (NCs) were embedded in BaTiO 3 /SrTiO 3 superlattices using laser molecular beam epitaxy (L-MBE). The stress of the composite films was increased with the increasing concentration of embedded Ni NCs, as investigation in stress calculation. The influence with the various concentrations of Ni NCs embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. The internal stress of the films was too strong to epitaxial growth of BaTiO 3 /SrTiO 3 superlattices. Compared with the pure BaTiO 3 /SrTiO 3 superlattices, the BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss. Furthermore, the dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory.

  7. Strain and Defect Engineering for Tailored Electrical Properties in Perovskite Oxide Thin Films and Superlattices

    Science.gov (United States)

    Hsing, Greg Hsiang-Chun

    Functional complex-oxides display a wide spectrum of physical properties, including ferromagnetism, piezoelectricity, ferroelectricity, photocatalytic and metal-insulating transition (MIT) behavior. Within this family, oxides with a perovskite structure have been widely studied, especially in the form of thin films and superlattices (heterostructures), which are strategically and industrially important because they offer a wide range of opportunities for electronic, piezoelectric and sensor applications. The first part of my thesis focuses on understanding and tuning of the built-in electric field found in PbTiO3/SrTiO3 (PTO/STO) ferroelectric superlattices and other ferroelectric films. The artificial layering in ferroelectric superlattices is a potential source of polarization asymmetry, where one polarization state is preferred over another. One manifestation of this asymmetry is a built-in electric field associated with shifted polarization hysteresis. Using off-axis RF-magnetron sputtering, we prepared several compositions of PTO/STO superlattice thin films; and for comparison PbTiO3/SrRuO 3 (PTO/SRO) superlattices, which have an additional intrinsic compositional asymmetry at the interface. Both theoretical modeling and experiments indicate that the layer-by-layer superlattice structure aligns the Pb-O vacancy defect dipoles in the c direction which contributes significantly to the built-in electric field; however the preferred polarization direction is different between the PTO/STO and PTO/SRO interface. By designing a hybrid superlattice that combines PTO/STO and PTO/SRO superlattices, we show the built-in electric field can be tuned to zero by changing the composition of the combo-superlattice. The second part of my thesis focuses on the epitaxial growth of SrCrO 3 (SCO) films. The inconsistent reports regarding its electrical and magnetic properties through the years stem from the compositionally and structurally ill-defined polycrystalline samples, but

  8. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    Science.gov (United States)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  9. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  10. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  11. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  12. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  13. Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers

    Directory of Open Access Journals (Sweden)

    Aeberhard Urs

    2011-01-01

    Full Text Available Abstract Si-SiOx superlattices are among the candidates that have been proposed as high band gap absorber material in all-Si tandem solar cell devices. Owing to the large potential barriers for photoexited charge carriers, transport in these devices is restricted to quantum-confined superlattice states. As a consequence of the finite number of wells and large built-in fields, the electronic spectrum can deviate considerably from the minibands of a regular superlattice. In this article, a quantum-kinetic theory based on the non-equilibrium Green's function formalism for an effective mass Hamiltonian is used for investigating photogeneration and transport in such devices for arbitrary geometry and operating conditions. By including the coupling of electrons to both photons and phonons, the theory is able to provide a microscopic picture of indirect generation, carrier relaxation, and inter-well transport mechanisms beyond the ballistic regime.

  14. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  15. Effect of anisotropy on the magnon energy gap in a two-layer ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Qiu Rongke; Liang Jing; Li Qingfeng; Zhang Zhidong; Song Panpan; Hong Xiaomin

    2009-01-01

    The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found that a modulated energy gap exists in the magnon energy band along K x direction perpendicular to the superlattice plane, which is different from the optical magnon gap at K x =0. The anisotropy, the spin quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra of the two-layer ferromagnetic superlattice are lowered with increasing temperature.

  16. Energy minibands degeneration induced by magnetic field effects in graphene superlattices

    Science.gov (United States)

    Reyes-Villagrana, R. A.; Carrera-Escobedo, V. H.; Suárez-López, J. R.; Madrigal-Melchor, J.; Rodríguez-Vargas, I.

    2017-12-01

    Energy minibands are a basic feature of practically any superlattice. In this regard graphene superlattices are not the exception and recently miniband transport has been reported through magneto-transport measurements. In this work, we compute the energy miniband and transport characteristics for graphene superlattices in which the energy barriers are generated by magnetic and electric fields. The transfer matrix approach and the Landauer-Büttiker formalism have been implemented to calculate the energy minibands and the linear-regime conductance. We find that energy minibands are very sensitive to the magnetic field and become degenerate by rising it. We were also able to correlate the evolution of the energy minibands as a function of the magnetic field with the transport characteristics, finding that miniband transport can be destroyed by magnetic field effects. Here, it is important to remark that although magnetic field effects have been a key element to unveil miniband transport, they can also destroy it.

  17. The effect of interfacial charge transfer on ferromagnetism in perovskite oxide superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Gu, M. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Arenholz, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Browning, N. D. [Univ. of California, Davis, CA (United States). Department of Molecular and Cellular Biology; Takamura, Y. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science

    2012-01-05

    We investigate the structural, magnetic, and electrical properties of superlattices composed of the ferromagnetic/metal La0.7Sr0.3MnO3 and non-magnetic/metal La0.5Sr0.5TiO3 grown on (001)-oriented SrTiO3 substrates. Using a combination of bulk magnetometry, soft x-ray magnetic spectroscopy, and scanning transmission electron microscopy, we demonstrate that robust ferromagnetic properties can be maintained in this superlattice system where charge transfer at the interfaces is minimized. Thus, ferromagnetism can be controlled effectively through the chemical identity and the thickness of the individual superlattice layers.

  18. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  19. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain

    Science.gov (United States)

    Xie, Saien; Tu, Lijie; Han, Yimo; Huang, Lujie; Kang, Kibum; Lao, Ka Un; Poddar, Preeti; Park, Chibeom; Muller, David A.; DiStasio, Robert A.; Park, Jiwoong

    2018-03-01

    Epitaxy forms the basis of modern electronics and optoelectronics. We report coherent atomically thin superlattices in which different transition metal dichalcogenide monolayers—despite large lattice mismatches—are repeated and laterally integrated without dislocations within the monolayer plane. Grown by an omnidirectional epitaxy, these superlattices display fully matched lattice constants across heterointerfaces while maintaining an isotropic lattice structure and triangular symmetry. This strong epitaxial strain is precisely engineered via the nanoscale supercell dimensions, thereby enabling broad tuning of the optical properties and producing photoluminescence peak shifts as large as 250 millielectron volts. We present theoretical models to explain this coherent growth and the energetic interplay governing the ripple formation in these strained monolayers. Such coherent superlattices provide building blocks with targeted functionalities at the atomically thin limit.

  20. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  1. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  2. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices.

    Science.gov (United States)

    Ravichandran, Jayakanth; Yadav, Ajay K; Cheaito, Ramez; Rossen, Pim B; Soukiassian, Arsen; Suresha, S J; Duda, John C; Foley, Brian M; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W; Moore, Joel E; Muller, David A; Schlom, Darrell G; Hopkins, Patrick E; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A

    2014-02-01

    Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.

  3. Electronic properties of a new structured Sin/O superlattice

    Directory of Open Access Journals (Sweden)

    S. Yu

    2016-11-01

    Full Text Available Silicon is a material which dominants the semiconductor industry and has a well-established processing technology based on it. However, silicon has an indirect-bandgap and is not efficient in light emitting. This limits its applications in optoelectronics. In this paper, we proposed a new structural model for the silicon-based superlattice, i.e., the Sin/O one. The model consists of alternating films of n-layers of Si and a monolayer of oxygen along z-direction, together with a surface cell of Si(001 (2×1 reconstruction in the x-y plane. The importance of employing such a Si(001 (2×1 reconstruction is that all the electrons at interface can be strongly bonded. Our results showed interesting electronic properties, e.g., the band folding and large band gap of bulk Si, when the thickness of the silicon layers was increased (but still thin. Our structure might also offer other interesting properties.

  4. Angle-dependent bandgap engineering in gated graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)

    2016-03-15

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  5. Angle-dependent bandgap engineering in gated graphene superlattices

    International Nuclear Information System (INIS)

    García-Cervantes, H.; Sotolongo-Costa, O.; Gaggero-Sager, L. M.; Naumis, G. G.; Rodríguez-Vargas, I.

    2016-01-01

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  6. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  7. Full controlling of Fano resonances in metal-slit superlattice.

    Science.gov (United States)

    Deng, Zi-Lan; Yogesh, Natesan; Chen, Xiao-Dong; Chen, Wen-Jie; Dong, Jian-Wen; Ouyang, Zhengbiao; Wang, Guo Ping

    2015-12-18

    Controlling of the lineshape of Fano resonance attracts much attention recently due to its wide capabilities for lasing, biosensing, slow-light applications and so on. However, the controllable Fano resonance always requires stringent alignment of complex symmetry-breaking structures and thus the manipulation could only be performed with limited degrees of freedom and narrow tuning range. Furthermore, there is no report so far on independent controlling of both the bright and dark modes in a single structure. Here, we semi-analytically show that the spectral position and linewidth of both the bright and dark modes can be tuned independently and/or simultaneously in a simple and symmetric metal-slit superlattice, and thus allowing for a free and continuous controlling of the lineshape of both the single and multiple Fano resonances. The independent controlling scheme is applicable for an extremely large electromagnetic spectrum range from optical to microwave frequencies, which is demonstrated by the numerical simulations with real metal and a microwave experiment. Our findings may provide convenient and flexible strategies for future tunable electromagnetic devices.

  8. Ferromagnetic resonance in a Ni-Mo superlattice

    International Nuclear Information System (INIS)

    Pechan, M.J.; Salamon, M.B.; Schuller, I.K.

    1985-01-01

    Ferromagnetic resonance (FMR) measurements, at room temperature and at 4.2 K, have been made on a layered Ni (249 A)-Mo(83 A) superlattice. We have examined the resonance position as a function of the angle between the film normal and the applied field. The measured g value agrees with that of bulk Ni, but the magnetization is lower than that obtained for bulk Ni and also for this sample using both light scattering and direct measurement techniques. This low magnetization contrasts with FMR measurements on compositionally modulated Ni-Cu samples, where the magnetization was reported to be greater than that of bulk Ni. We show that a reduced value of the magnetization is consistent with perpendicular uniaxial anisotropy. When the applied field is less than 20 0 from the surface normal, additional lines appear that move to higher fields than the main resonance. These lines are consistent with the existence of nonuniform regions of distinct magnetization. An observed resonance, which is suggestive of a spin-wave mode, is discussed

  9. A model for temperature dependent resistivity of metallic superlattices

    Directory of Open Access Journals (Sweden)

    J. I. Uba

    2015-11-01

    Full Text Available The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant ε q , ω = 8 . 33 × 10 − 2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

  10. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  11. Mid-wavelength infrared unipolar nBp superlattice photodetector

    Science.gov (United States)

    Kazemi, Alireza; Myers, Stephen; Taghipour, Zahra; Mathews, Sen; Schuler-Sandy, Ted; Lee, Seunghyun; Cowan, Vincent M.; Garduno, Eli; Steenbergen, Elizabeth; Morath, Christian; Ariyawansa, Gamini; Scheihing, John; Krishna, Sanjay

    2018-01-01

    We report a Mid-Wavelength Infrared (MWIR) barrier photodetector based on the InAs/GaSb/AlSb type-II superlattice (T2SL) material system. The nBp design consists of a single unipolar barrier (InAs/AlSb SL) placed between a 4 μm thick p-doped absorber (InAs/GaSb SL) and an n-type contact layer (InAs/GaSb SL). At 80 K, the device exhibited a 50% cut-off wavelength of 5 μm, was fully turned-ON at zero bias and the measured QE was 50% (front side illumination with no AR coating) at 4.5 μm with a dark current density of 4.7 × 10-6 A/cm2 at Vb = 50 mV. At 150 K and Vb = 50 mV, the 50% cut-off wavelength increased to 5.3 μm, and the QE was 54% at 4.5 μm with a dark current of 5.0 × 10-4 A/cm2.

  12. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.

    Science.gov (United States)

    Zhuang, Jincheng; Liu, Chen; Gao, Qian; Liu, Yani; Feng, Haifeng; Xu, Xun; Wang, Jiaou; Zhao, Jijun; Dou, Shi Xue; Hu, Zhenpeng; Du, Yi

    2018-05-22

    Exploring stable two-dimensional materials with appropriate band gaps and high carrier mobility is highly desirable due to the potential applications in optoelectronic devices. Here, the electronic structures of phosphorene on a Au(111) substrate are investigated by scanning tunneling spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. The substrate-induced phosphorene superstructure gives a superlattice potential, leading to a strong band folding effect of the sp band of Au(111) on the band structure. The band gap could be clearly identified in the ARPES results after examining the folded sp band. The value of the energy gap (∼1.1 eV) and the high charge carrier mobility comparable to that of black phosphorus, which is engineered by the tensile strain, are revealed by the combination of ARPES results and DFT calculations. Furthermore, the phosphorene layer on the Au(111) surface displays high surface inertness, leading to the absence of multilayer phosphorene. All these results suggest that the phosphorene on Au(111) could be a promising candidate, not only for fundamental research but also for nanoelectronic and optoelectronic applications.

  13. DNA-nanoparticle superlattices formed from anisotropic building blocks

    Science.gov (United States)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  14. Lateral structure of (TiSe2)n(NbSe2)m superlattices

    International Nuclear Information System (INIS)

    Noh, M.; Shin, H.; Jeong, K.; Spear, J.; Johnson, D.C.; Kevan, S.D.; Warwick, T.

    1997-01-01

    The structures of a series of (TiSe 2 ) n (NbSe 2 ) m superlattices grown through controlled crystallization of designed multilayer reactants have been studied. X-ray diffraction of the data of the superlattices after crystallization show considerable preferred orientation, with the basal plane of the dichalcogenide structure parallel to the substrate to within 0.1 degree. Lattice refinement using the observed (00scr(l)) diffraction maxima yields lattice parameters along the c axis that are consistent with those expected based on the target superlattices and lattice parameters of the binary constituents. These (00scr(l)) diffraction data, however, contain no information about the crystalline structure in the ab plane of the superlattice associated with the preferred c-axis orientation. Off-specular x-ray diffraction (XRD), scanning electron microscopy, and scanning transmission x-ray microscopy (STXM) were used to explore the structure and homogeneity of the superlattices in the ab plane. XRD results rule out preferred long-range orientational order of the ab plane. Between grains, both the backscattered electron images and STXM images show grain domain structure in the ab plane with a characteristic grain domain size of approximately 50 μm. X-ray absorption microscopy in the STXM mode obtained at the Ti L 2,3 edge shows that the titanium in the superlattices is present as both octahedral Ti consistent with the TiSe 2 structure and metallic Ti. A comparison of the data obtained from these techniques highlights chemical information, which can be deduced on a submicrometer range from the space resolved spectra obtained using STXM. copyright 1997 American Institute of Physics

  15. Partial maxillectomy

    International Nuclear Information System (INIS)

    Nishino, Hiroshi; Kawada, Kazuki

    2010-01-01

    Current goals for the treatment of maxillary sinus carcinoma include preservation of vision, eating, communication, and appearance as well as cure. 121 Japanese patients who presented with maxillary sinus carcinoma between 1979 and 2005 were analyzed retrospectively. There were 77 males and 44 females, with a median age of 63 years. All patients underwent multimodality therapy including surgery through a sublabial incision, radiotherapy, and intra-arterial chemotherapy. The regional lymph nodes were treated only in patients with neck involvement. Mean follow-up period was 79 months. The 5-year overall survival rate and local control rate were 73% and 72%, respectively. The 5-year local control rate was 70% for patients with T2 lesions, 86% for patients with T3 lesions, 55% for patients with T4a lesions, and 52% for patients with T4b lesions. In patients with squamous cell carcinoma, the 5-year local control rate was 76%. In patients with non-squamous cell carcinoma, the 5-year local control rate was 54%. There was a significant difference in local control rates among these groups. Control of the primary site is important in the curative treatment of maxillary sinus carcinoma. Combined therapy with conservative surgery, radiotherapy, and regional chemotherapy is effective for this carcinoma. (author)

  16. Positron probing of electron momentum density in GaAs-AlAs superlattices and related materials

    International Nuclear Information System (INIS)

    Arutyunov, N.Y.; Sekkal, N.

    2008-08-01

    The band structure calculations based on the method proposed by Jaros et al. (Phys. Rev. B 31, 1205 (1985)) have been performed for the defect-free GaAs-AlAs superlattice and related AlAs and GaAs single crystals; the electron-positron momentum density distributions have been computed and analyzed. The results of calculations are in good agreement with the experimental data obtained ad hoc for GaAs and AlAs bulk materials by measuring the angular correlation of the annihilation radiation (ACAR). Small (but marked) features of the electron-positron momentum density of the valence band have been revealed both for constituent materials and GaAs-AlAs superlattice. The delocalization of positron in 'perfect' defect-'free' AlAs and GaAs single crystals to be observed experimentally is borne out by the results of pseudo-potential band calculations performed on the basis of method proposed by Sekkal et al. (Superlattices and Microstructures, 33, 63 (2003)). The prediction of the possibility of a certain confinement of positron in the interstitial area of GaAs- AlAs superlattice is confirmed by the agreement between the results of calculations and relevant experimental data obtained for GaAs and AlAs single crystals. No considerable effect of the enhancement of the annihilation rate (due to electron-positron interaction) upon the electron-positron momentum density distribution both in the superlattice and its constituent bulk materials has been found. The results of ACAR measurements and calculations performed suggest that a tangible improvement of the sensitivity of existing positron annihilation techniques is necessary for studying details of the electron-positron momentum density distributions in defect-'free' superlattices to be created on the basis of the diamond-like semiconductors possessing close values of the electron momentum densities. On the contrary, the positron-sensitive vacancy-type defects of various types in the superlattice may become a source of the

  17. Design of band pass filter in a modulated magnetic graphene superlattice

    International Nuclear Information System (INIS)

    Lu, Wei-Tao; Li, Wen

    2015-01-01

    Electronic transport of graphene through a modulated magnetic superlattice where the barrier heights present Gaussian profile is studied. It is found that the incident electron could be completely transmitted in the miniband regions and be completely reflected in the bandgap regions. The results suggest an application of the structure as an effectively band pass filter, which can be controlled by the structural parameters. It is concluded that the positions of miniband and bandgap are robust to the Gaussian variation of barrier heights. The effect of this modulated magnetic superlattice is also available for the conventional electrons described by Schrödinger equation

  18. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    Science.gov (United States)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  19. Critical properties of a ferroelectric superlattice described by a transverse spin-1/2 Ising model

    International Nuclear Information System (INIS)

    Tabyaoui, A; Saber, M; Baerner, K; Ainane, A

    2007-01-01

    The phase transition properties of a ferroelectric superlattice with two alternating layers A and B described by a transverse spin-1/2 Ising model have been investigated using the effective field theory within a probability distribution technique that accounts for the self spin correlation functions. The Curie temperature T c , polarization and susceptibility have been obtained. The effects of the transverse field and the ferroelectric and antiferroelectric interfacial coupling strength between two ferroelectric materials are discussed. They relate to the physical properties of antiferroelectric/ferroelectric superlattices

  20. InGaAs/InAlAs superlattice detector for THz radiation

    CERN Document Server

    Schomburg, E; Kratschmer, M; Vollnhals, A; Scheuerer, R; Renk, K F; Ustinov, V; Zhukov, A; Kovsh, A

    2002-01-01

    We report the use of an InGaAs/InAlAs superlattice for detection of THz radiation pulses generated by a free-electron-laser (FELIX). The detector showed a response corresponding to a reduction of the direct current through the superlattice. The current reduction is attributed to the THz-field induced modulation of Bloch oscillations performed by miniband electrons. The detector response was measured in a frequency range between 4 and 12 THz and showed strong minima at the frequencies of infrared active transverse optic phonons. (10 refs).

  1. The Luttinger liquid in superlattice structures: atomic gases, quantum dots and the classical Ising chain

    International Nuclear Information System (INIS)

    Bhattacherjee, Aranya B; Jha, Pradip; Kumar, Tarun; Mohan, Man

    2011-01-01

    We study the physical properties of a Luttinger liquid in a superlattice that is characterized by alternating two tunneling parameters. Using the bosonization approach, we describe the corresponding Hubbard model by the equivalent Tomonaga-Luttinger model. We analyze the spin-charge separation and transport properties of the superlattice system. We suggest that cold Fermi gases trapped in a bichromatic optical lattice and coupled quantum dots offer the opportunity to measure these effects in a convenient manner. We also study the classical Ising chain with two tunneling parameters. We find that the classical two-point correlator decreases as the difference between the two tunneling parameters increases.

  2. Effect of retardation on the reflectance properties of the metallic Fibonacci quasi-superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Yao Hesheng; Xu Xiang

    1989-12-01

    Based on the hydrodynamic model theory and the transfer matrix method, we have re-examined the reflection properties by taking account of the retardation effect to the system of the metallic Fibonacci quasi-superlattice. For the normal incident S-polarized Soft X-rays and extreme ultraviolet, we find that the self-similar reflecting spectrum will be restrained with the increasing of the retardation, but for the higher frequency region or at the smaller grazing angle, the self similarity will still exist for the lower generation quasi-superlattice. (author). 19 refs, 2 figs, 1 tab

  3. Formation of uniform magnetic structures and epitaxial hydride phases in Nd/Pr superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Bryn-Jacobsen, C.; McMorrow, D.F.

    1997-01-01

    , and that the stacking sequence is coherent over many bilayer repeats. The neutron measurements show that for the hexagonal sites of the dhcp structure, the Nd magnetic order propagates coherently through the Pr, whereas the order on the cubic sites is either suppressed or confined to single Nd blocks. It is also shown...... that the singlet ground state of Pr is perturbed to produce a local moment on the hexagonal sites, so that in some cases there is a uniform magnetic structure throughout the superlattice. These results cast new light on the theory of magnetic interactions in rare-earth superlattices. Within a few months of growth...

  4. Propagation and generation of Josephson radiation in superconductor/insulator superlattices

    International Nuclear Information System (INIS)

    Auvil, P.R.; Ketterson, J.B.

    1987-01-01

    The wave propagation and generation characteristics of a metal-insulator superlattice are calculated in a low-field Landau--Ginzburg model, including Josephson coupling through the insulating layers. It is shown that a significant increase in the phase velocity of the electromagnetic waves propagating in the superlattice occurs when the thickness of the superconducting layers becomes much less than the London penetration depth, suggesting that increased output of Josephson radiation may be achieved from such structures. Wave generation via the ac Josephson effect (in the presence of applied dc electric and magnetic fields) is studied for both parallel and series driven multilayer structures

  5. Atomic structure of CaF2/MnF2-Si(1 1 1) superlattices from X-ray diffraction

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nicklin, C.L.; Howes, P.B.; Norris, C.A.; Kyutt, R.N.; Sokolov, N.S.; Yakovlev, N.L.

    2007-01-01

    X-ray reflectivity and non-specular crystal truncation rod scans have been used to determine the three-dimensional atomic structure of the buried CaF 2 -Si(1 1 1) interface and ultrathin films of MnF 2 and CaF 2 within a superlattice. We show that ultrathin films of MnF 2 , below a critical thickness of approximately four monolayers, are crystalline, pseudomorphic, and adopt the fluorite structure of CaF 2 . High temperature deposition of the CaF 2 buffer layer produces a fully reacted, CaF 2 -Si(1 1 1) type-B interface. The mature, 'long' interface is shown to consist of a partially occupied layer of CaF bonded to the Si substrate, followed by a distorted CaF layer. Our atomistic, semi-kinematical scattering method extends the slab reflectivity method by providing in-plane structural information

  6. Quenched Magnon excitations by oxygen sublattice reconstruction in (SrCuO2)n/(SrTiO3)2 superlattices.

    Science.gov (United States)

    Dantz, M; Pelliciari, J; Samal, D; Bisogni, V; Huang, Y; Olalde-Velasco, P; Strocov, V N; Koster, G; Schmitt, T

    2016-09-12

    The recently discovered structural reconstruction in the cuprate superlattice (SrCuO2)n/(SrTiO3)2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the bulk-like two-dimensional structure with a minority of Cu plaquettes being reconstructed. The partial reconstruction leads to quenching of the magnons starting at the Γ-point due to the minority plaquettes acting as scattering points. Although comparable in relative abundance, the doped charge impurities in electron-doped cuprate superconductors do not show this quenching of magnetic excitations.

  7. Unconventional superconductivity in magic-angle graphene superlattices

    Science.gov (United States)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  8. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  9. Transport properties of YBa2Cu3O7/PrBa2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Jakob, G.; Hahn, T.; Stoelzel, C.; Tome-Rosa, C.; Adrian, H.

    1992-01-01

    We investigated the transport properties of high-quality YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 superlattices. The exceptional structural order of the superlattices resulted in satellite peaks up to the ninth order in X-ray diffraction diagrams and high Tc values. We find high superconducting critical transport current densities j c even for ultrafine modulated superlattices which proves the existence of nearly continuous YBa 2 Cu 3 O 7 layers. The activation energy U is found to be constant or to have a linear temperatures dependence over a wide temperature range. (orig.)

  10. Photogenic partial seizures.

    Science.gov (United States)

    Hennessy, M J; Binnie, C D

    2000-01-01

    To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.

  11. Arthroscopic partial medial meniscectomy

    Directory of Open Access Journals (Sweden)

    Dašić Žarko

    2011-01-01

    Full Text Available Background/Aim. Meniscal injuries are common in professional or recreational sports as well as in daily activities. If meniscal lesions lead to physical impairment they usually require surgical treatment. Arthroscopic treatment of meniscal injuries is one of the most often performed orthopedic operative procedures. Methods. The study analyzed the results of arthroscopic partial medial meniscectomy in 213 patients in a 24-month period, from 2006, to 2008. Results. In our series of arthroscopically treated medial meniscus tears we noted 78 (36.62% vertical complete bucket handle lesions, 19 (8.92% vertical incomplete lesions, 18 (8.45% longitudinal tears, 35 (16.43% oblique tears, 18 (8.45% complex degenerative lesions, 17 (7.98% radial lesions and 28 (13.14% horisontal lesions. Mean preoperative International Knee Documentation Committee (IKDC score was 49.81%, 1 month after the arthroscopic partial medial meniscectomy the mean IKDC score was 84.08%, and 6 months after mean IKDC score was 90.36%. Six months after the procedure 197 (92.49% of patients had good or excellent subjective postoperative clinical outcomes, while 14 (6.57% patients subjectively did not notice a significant improvement after the intervention, and 2 (0.93% patients had no subjective improvement after the partial medial meniscectomy at all. Conclusion. Arthroscopic partial medial meniscetomy is minimally invasive diagnostic and therapeutic procedure and in well selected cases is a method of choice for treatment of medial meniscus injuries when repair techniques are not a viable option. It has small rate of complications, low morbidity and fast rehabilitation.

  12. Cast Partial Denture versus Acrylic Partial Denture for Replacement of Missing Teeth in Partially Edentulous Patients

    Directory of Open Access Journals (Sweden)

    Pramita Suwal

    2017-03-01

    Full Text Available Aim: To compare the effects of cast partial denture with conventional all acrylic denture in respect to retention, stability, masticatory efficiency, comfort and periodontal health of abutments. Methods: 50 adult partially edentulous patient seeking for replacement of missing teeth having Kennedy class I and II arches with or without modification areas were selected for the study. Group-A was treated with cast partial denture and Group-B with acrylic partial denture. Data collected during follow-up visit of 3 months, 6 months, and 1 year by evaluating retention, stability, masticatory efficiency, comfort, periodontal health of abutment. Results: Chi-square test was applied to find out differences between the groups at 95% confidence interval where p = 0.05. One year comparison shows that cast partial denture maintained retention and stability better than acrylic partial denture (p< 0.05. The masticatory efficiency was significantly compromising from 3rd month to 1 year in all acrylic partial denture groups (p< 0.05. The comfort of patient with cast partial denture was maintained better during the observation period (p< 0.05. Periodontal health of abutment was gradually deteriorated in all acrylic denture group (p

  13. Experimental investigations of superconductivity in quasi-two-dimensional epitaxial copper oxide superlattices and trilayers

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.

    1993-01-01

    Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity

  14. Characterization of band structure for transverse acoustic phonons in Fibonacci superlattices by a bandedge formalism

    International Nuclear Information System (INIS)

    Hsueh, W J; Chen, R F; Tang, K Y

    2008-01-01

    We present a divergence-free method to determine the characteristics of band structures and projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of bandedge equations is formulated to solve the band structures for the phonon instead of using the traditional dispersion relation. Numerical calculations show band structures calculated by the present method for the Fibonacci superlattice without numerical instability, which may occur in traditional methods. Based on the present formalism, the band structure for the acoustic phonons has been characterized by closure points and the projected bandgaps of the forbidden bands. The projected bandgaps are determined by the projected band structure, which is characterized by the cross points of the projected bandedges. We observed that the band structure and projected band structure and their characteristics were quite different for different generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules to determine these characteristics of the band structure and the projected band structure, including the number and the location of closure points of forbidden bands and those of projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers are proposed.

  15. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  16. Passivation of MBE grown InGaSb/InAs superlattice photodiodes

    Science.gov (United States)

    Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.

    2005-01-01

    We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.

  17. Theory of coherent time-dependent transport in one-dimensional multiband semiconductor super-lattices

    DEFF Research Database (Denmark)

    Rotvig, J.; Smith, H.; Jauho, Antti-Pekka

    1996-01-01

    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...

  18. Illumination-induced changes of the Fermi surface topology in three-dimensional superlattices

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Svoboda, Pavel; Vašek, Petr; Kučera, Jan; Krupko, Yu.; Wegscheider, W.

    2007-01-01

    Roč. 75, č. 24 (2007), 245322/1-245322/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : persistent photoconductivity * superlattice * Fermi surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  19. Coherent dynamics of interwell excitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, V.; Birkedal, Dan; Langbein, Wolfgang Werner

    1997-01-01

    Coherent exciton dynamics in a GaAs/AlxGa1-xAs narrow-miniband superlattice is studied by spectrally resolved transient four-wave mixing. Coherent optical properties of the investigated structure are found to be strongly affected by the existence of two different heavy-hole excitonic states. One...

  20. Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices

    NARCIS (Netherlands)

    Casarin, Barbara; Caretta, Antonio; Momand, Jamo; Kooi, Bart J.; Verheijen, Marcel A.; Bragaglia, Valeria; Calarco, Raffaella; Chukalina, Marina; Yu, Xiaoming; Robertson, John; Lange, Felix R. L.; Wuttig, Matthias; Redaelli, Andrea; Varesi, Enrico; Parmigiani, Fulvio; Malvestuto, Marco

    2016-01-01

    The technological success of phase-change materials in the field of data storage and functional systems stems from their distinctive electronic and structural peculiarities on the nanoscale. Recently, superlattice structures have been demonstrated to dramatically improve the optical and electrical

  1. Revisiting the local structure in Ge-Sb-Te based chalcogenide superlattices

    NARCIS (Netherlands)

    Casarin, B.; Caretta, A.; Momand, J.; Kooi, B. J.; Verheijen, M.A.; Bragaglia, V.; Calarco, R.; Chukalina, M.; Yu, X.; Robertson, J.; Lange, F.R.L.; Wuttig, M.; Redaelli, A.; Varesi, E.; Parmigiani, F.; Malvestuto, M.

    2016-01-01

    The technological success of phase-change materials in the field of data storage and functional systems stems from their distinctive electronic and structural peculiarities on the nanoscale. Recently, superlattice structures have been demonstrated to dramatically improve the optical and electrical

  2. Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

    Directory of Open Access Journals (Sweden)

    Debashis De

    2011-07-01

    Full Text Available The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1−xCdxTe and InxGa1−xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.

  3. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

    NARCIS (Netherlands)

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-01-01

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to

  4. A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    International Nuclear Information System (INIS)

    Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G

    2015-01-01

    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)

  5. Propagation of Nd magnetic phases in Nd/Sm(001) superlattices

    International Nuclear Information System (INIS)

    Soriano, S; Dufour, C; Dumesnil, K; Stunault, A

    2006-01-01

    The propagation of Nd long range magnetic order in the hexagonal and cubic sublattices has been investigated in double hexagonal compact Nd/Sm(001) superlattices by resonant x-ray magnetic scattering at the Nd L 2 absorption edge. For a superlattice with 3.7 nm thick Sm layers, the magnetic structure of the hexagonal sublattice propagates coherently through several bilayers, whereas the order in the cubic sublattice remains confined to single Nd blocks. For a superlattice with 1.4 nm thick Sm layers, the magnetic structures of both sublattices appear to propagate coherently through the superlattice. This is the first observation (i) of the long range coherent propagation of Nd order on the cubic sites between Nd blocks and (ii) of a different thickness dependence of the propagation of the Nd magnetic phases associated with the hexagonal and cubic sublattices. The propagation of the Nd magnetic order through Sm is interpreted in terms of generalized susceptibility of the Nd conduction electrons

  6. MSM optical detector on the basis of II-type ZnSe/ZnTe superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetzov, P. I., E-mail: pik218@ire216.msk.su; Averin, S. V., E-mail: sva278@ire216.msk.su; Zhitov, V. A.; Zakharov, L. Yu.; Kotov, V. M. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Fryazino Branch) (Russian Federation)

    2017-02-15

    On the basis of a type-II ZnSe/ZnTe superlattice, a MSM (metal—semiconductor–metal) photodetector is fabricated and investigated. The detector features low dark currents and a high sensitivity. The spectral characteristic of the detector provides the possibility of the selective detection of three separate spectral portions of visible and near-infrared radiation.

  7. Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions.

    Science.gov (United States)

    Huang, Juyang

    2002-08-01

    Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.

  8. Charge superlattice effects on the electronic structure of a model acceptor graphite intercalation compound

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-08-01

    In the present attempt we have considered a model ordered situation (a super-superlattice) where starting from a basic stoichiometry C 8 X, a fraction 1/3 of the molecules acquire one electron, the remaining 2/3 being left neutral. We have performed an electronic structure calculation using tight-binding plus electrostatic (Hartree) self-consistency

  9. High resolution imaging of La0.5Ba0.5MnO-LaMnO superlattice

    International Nuclear Information System (INIS)

    Shapoval, O.; Belenchuk, A.; Verbeeck, J.; Moshnyaga, V.

    2013-01-01

    Full text: Artificial low dimensional systems of tailored on atomic layer level manganites is a very promising class of materials for future spintronic applications. The high resolution transmission electron microscopy imaging provides a powerful approach to extract structural, chemical and functional information on atomic level in a real space. Recently, we have reported on the Metalorganic Aerosol Deposition synthesis and properties of superlattices (SL) composed from (LaMnO 3 ) n and (La 0.5 Ba 0.5 MnO 3 ) 2n with n=1-2 of perovskite monolayers. The functional properties of digitally synthesized SL are similar to the optimal doped 'bulk' thin film material. The similarities between their properties can be interpreted in frame of the many-body interactions responsible for the properties of the single-layer and bilayer manganites. This work presents the systematic studies of atomically resolved structure of (LaMnO 3 ) n /(La 0.5 Ba 0.5 MnO 3 ) 2n , n=1 by high angle annular dark field scanning transmission electron microscopy (HAADF STEM) and electron energy loss spectroscopy (EELS). The combination of atomic-resolution Z-contrast and EELS represents a powerful method to link the atomic and electronic structure of solids with macroscopic properties. All images were obtained along orientations and low magnification one shows an overview of a whole 40-nm thick structure, whereas magnified high-resolution images demonstrate an epitaxial growth of LBMO/LMO superlattice on SrTiO 3 substrate. The SL-substrate interface is coherent and free of defects, but reveals a high level of La diffusion into SrTiO 3 . EELS together with STEM are used for probing of a local chemical composition as well as a local electronic state of transition metals and oxygen. Small modulations in the La and Ba EELS signals, which are corresponded to the LBMO and LMO layers, can be observed. The observed features at the substrate interface as well as the SL periodicity in EELS profiles are

  10. Dynamic localization and negative absolute conductance in terahertz driven semiconductor superlattices

    International Nuclear Information System (INIS)

    Keay, B.J.; Allen, S.J.; Campman, K.L.

    1995-01-01

    We report the first observation of Negative Absolute Conductance (NAC), dynamic localization and multiphoton stimulated emission assisted tunneling in terahertz driven semiconductor superlattices. Theories predicting NAC in semiconductor superlattices subjected to AC electric fields have existed for twenty years, but have never been verified experimentally. Most theories are based upon semiclassical arguments and are only valid for superlattices in the miniband or coherent tunneling regime. We are not aware of models predicting NAC in superlattices in the sequential tunneling regime, although there has been recent theoretical work on double-barrier structures. Perhaps the most remarkable result is found in the power dependence of the current-voltage (I-V) characteristics near zero DC bias. As the laser power is increased the current decreases towards zero and then becomes negative. This result implies that the electrons are absorbing energy from the laser field, producing a net current in the direction opposite to the applied voltage. NAC around zero DC bias is a particularly surprising observation considering photon-assisted tunneling is not expected to be observable between the ground states of neighboring quantum wells in a semiconductor superlattice. Contrary to this believe our results are most readily attributable to photon absorption and multiphoton emission between ground states of neighboring wells. The I-V characteristics measured in the presence of terahertz radiation at low DC bias also contain steps and plateaus analogous to photon-assisted steps observed in superconducting junctions. As many as three steps have been clearly resolved corresponding to stimulated emission into the terahertz field by a three-photon process

  11. InAs/GaSb type-II superlattice infrared detectors: three decades of development

    Science.gov (United States)

    Rogalski, A.; Kopytko, M.; Martyniuk, P.

    2017-02-01

    Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.

  12. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  13. Ab initio study of thermoelectric properties of doped SnO_2 superlattices

    International Nuclear Information System (INIS)

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-01-01

    Transparent conductive oxides, such as tin dioxide (SnO_2), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO_2, as well as of Sb and Zn planar (or delta)-doped layers in SnO_2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO_2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO_2-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO_2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  14. Enhancement in figure-of-merit with superlattices structures for thin-film thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Colpitts, T

    1997-07-01

    Thin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper the authors describe experimental results on Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi{sub 2}Te{sub 3} and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. The study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. They present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for the arguments on reduced alloy scattering and impurity scattering in Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-{omega} method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin-Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

  15. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses

    International Nuclear Information System (INIS)

    Lin Jianliang; Moore, John J.; Mishra, Brajendra; Pinkas, Malki; Zhang Xuhai; Sproul, William D.

    2009-01-01

    CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 x 10 -7 mm 3 N -1 m -1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.

  16. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    Science.gov (United States)

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays for Satellite-Based Wildfire Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Infrared focal plane arrays (FPAs) based on Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. In Phase I we...

  18. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays For Satellite-Based Wildfire Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...

  19. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  20. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-11-01

    Full Text Available The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen absorbing alloy (HAA were studied. Addition of Fe increases the lattice constants and abundance of the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage, Fe incorporation does not change the storage capacity or equilibrium pressure, but it does decrease the change in both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased secondary phase abundance and consequent lower synergetic effect and surface electrochemical reaction (caused by the lower volume of the surface metallic Ni inclusions. In a low-temperature environment (−40 °C, although Fe increases the reactive surface area, it also severely hinders the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance. Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a less active surface. Therefore, further surface treatment methods that are able to increase the surface catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions that Fe provides structurally are worth investigating in the future.

  1. Mean-periodic functions

    Directory of Open Access Journals (Sweden)

    Carlos A. Berenstein

    1980-01-01

    Full Text Available We show that any mean-periodic function f can be represented in terms of exponential-polynomial solutions of the same convolution equation f satisfies, i.e., u∗f=0(μ∈E′(ℝn. This extends to n-variables the work of L. Schwartz on mean-periodicity and also extends L. Ehrenpreis' work on partial differential equations with constant coefficients to arbitrary convolutors. We also answer a number of open questions about mean-periodic functions of one variable. The basic ingredient is our work on interpolation by entire functions in one and several complex variables.

  2. Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period strong modulation

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Smrčka, Ludvík

    2002-01-01

    Roč. 66, č. 20 (2002), s. 205318-1 - 205318-8 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * short-period superlattices * two-dimensional electron gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  3. Influence of AlGaN/GaN superlattice inserted structure on the performance of InGaN/GaN multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Wang, C.-L.; Tsai, M.-C.; Gong, J.-R.; Liao, W.-T.; Lin, P.-Y.; Yen, K.-Y.; Chang, C.-C.; Lin, H.-Y.; Hwang, S.-K.

    2007-01-01

    Investigations were conducted to explore the effect of Al 0.3 Ga 0.7 N/GaN short-period superlattice (SPSL)-inserted structures in the GaN under layer on the performance of In 0.2 Ga 0.8 N/GaN multiple quantum well (MQW) light emitting diodes (LEDs). The Al 0.3 Ga 0.7 N/GaN SPSL-inserted LEDs were found to exhibit improved materials and device characteristics including decrements in ideality factor and reverse leakage current. The results of etch pit counts reveal that SPSL-induced threading dislocation density reduction in the SPSL-inserted In 0.2 Ga 0.8 N/GaN MQW LED structures enables the improved LED performance

  4. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Suppression of phase separation in $(AlAs)_{2ML} (InAs)_{2ML}$ superlattices using $Al_{0.48}In_{0.52}$ As monolayer insertions

    CERN Document Server

    Lee, S R; Follstaedt, D M

    2001-01-01

    Al/sub 0.48/In/sub 0.52/As monolayers (ML) are inserted at the binary-compound interfaces of (AlAs)/sub 2/ /sub ML/(InAs)/sub 2/ /sub ML/ short-period superlattices (SPSs) during growth on (001) In P. The insertion of Al/sub 0.48/In/sub 0.52/As interlayers greater than 2 ML thick tends to suppress the phase separation that normally occurs during molecular beam epitaxy of the SPS. The degree of suppression is a sensitive function of both the monolayer-scale thickness, and the intraperiod growth sequence, of the interlayers in the SPS. Given this sensitivity to monolayer-scale variations in the surface-region composition, we propose that cyclical phase transition of the reconstructed surface initiates SPS decomposition. (21 refs).

  6. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  7. Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire

    Science.gov (United States)

    Petukhov, Vladimir; Bakin, Andrey; Tsiaoussis, Ioannis; Rothman, Johan; Ivanov, Sergey; Stoemenos, John; Waag, Andreas

    2011-05-01

    The main challenge in fabrication of ZnO-based devices is the absence of reliable p-type material. This is mostly caused by insufficient crystalline quality of the material and not well-enough-developed native point defect control of ZnO. At present high-quality ZnO wafers are still expensive and ZnO heteroepitaxial layers on sapphire are the most reasonable alternative to homoepitaxial layers. But it is still necessary to improve the crystalline quality of the heteroepitaxial layers. One of the approaches to reduce defect density in heteroepitaxial layers is to introduce a strained-layer superlattice (SL) that could stop dislocation propagation from the substrate-layer interface. In the present paper we have employed fifteen periods of a highly strained SL structure. The structure was grown on a conventional double buffer layer comprising of high-temperature MgO/low-temperature ZnO on sapphire. The influence of the SLs on the properties of the heteroepitaxial ZnO layers is investigated. Electrical measurements of the structure with SL revealed very high values of the carrier mobility up to 210 cm2/Vs at room temperature. Structural characterization of the obtained samples showed that the dislocation density in the following ZnO layer was not reduced. The high mobility signal appears to come from the SL structure or the SL/ZnO interface.

  8. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    International Nuclear Information System (INIS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T.; Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-01-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al_0_._7_0Ga_0_._3_0N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm"2.

  9. Electron drag by solitons in superlattices in an external magnetic field

    International Nuclear Information System (INIS)

    Vyazovskii, M.V.; Syrodoev, G.A.

    1996-01-01

    The soliton-electric effect accompanying the propagation of an electromagnetic soliton along an axis of a superlattice in an external magnetic field directed along the magnetic field of the soliton is studied. It is assumed that the duration γ-1 of the soliton pulse is much shorter than the free flight time of an electron. It is shown that in the absence of a constant magnetic field the drag current varies as sin(αsech2γt) (α is a constant determined by the parameters of the superlattice). In the presence of a constant magnetic field of intensity H0>>Hs, where Hs is the amplitude of the soliton field, the drag current oscillates

  10. Full Polarization Analysis of Resonant Superlattice and Forbidden x-ray Reflections in Magnetite

    International Nuclear Information System (INIS)

    Wilkins, S.B.; Bland, S.R.; Detlefs, B.; Beale, T.A.W.; Mazzoli, C.; Joly, Y.; Hatton, P.D.; Lorenzo, J.E.; Brabers, V.A.M.

    2009-01-01

    Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1) C and superlattice (0, 0, 2n+1/2)C reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.

  11. Silicon carbide whiskers with superlattice structure: A precursor for a new type of nanoreactor

    International Nuclear Information System (INIS)

    Lutsenko, Vadym G.

    2008-01-01

    Silicon carbide whiskers exhibit growth predominantly in the direction. The high level of impurities, stacking faults and nanosized twins govern the formation of homojunctions and heterojunctions in crystals. The structure of the whiskers comprises a hybrid superlattice, i.e. contains elements of doped and composite superlattices. An individual SiC whisker can contain hundreds of quantum wells with anomalous chemical properties. This paper shows that it is possible to selectively etch quantum wells and to construct whiskers with quasi-regularly distributed slit-like nanopores (nanoreactors), which are bordered by polar planes {1 1 1}, {0 0 0 1} or a combination of them, and also to produce flat SiC nanocrystals bordered by polar planes

  12. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  13. Morphological Instability in InAs/GaSb Superlattices due to Interfacial Bonds

    International Nuclear Information System (INIS)

    Li, J.H.; Moss, S.C.; Stokes, D.W.; Caha, O.; Bassler, K.E.; Ammu, S.L.; Bai, J.

    2005-01-01

    Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers

  14. The phase diagrams and the order parameters of the diluted transverse superlattice with antiferromagnetic interface coupling

    International Nuclear Information System (INIS)

    Oubelkacem, A.; El Aouad, N.; Benaboud, A.; Saber, M.

    2004-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a =((1)/(2)) and L b layers of diluted spins S b =1 in an applied transverse field Ω with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams and the total magnetization for the superlattice are studied as a function of the transverse field and the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the transverse field on both the compensation temperature and the magnetization profiles are clarified. Some of them may be related to the experimental works of rare-earth (RE)/transition metal (TM) multilayer films

  15. The phase diagrams and the order parameters of the diluted superlattice with antiferromagnetic interface coupling

    International Nuclear Information System (INIS)

    Oubelkacem, A.; El Aouad, N.; Bentaleb, M.; Laaboudi, B.; Saber, M.

    2004-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the diluted Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a =((1)/(2)) and L b layers of diluted spins S b =1 with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams, the two sublattice magnetizations and the total magnetization for the superlattice with the same spin S a =S b =((1)/(2)) and for S a =((1)/(2)), S b =1 are studied as a function of the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the layer thickness on both the compensation temperature and the magnetization profiles are clarified

  16. Phase diagrams of a spin-1 Ising superlattice with alternating transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ez-Zahraouy, H.; Lo Russo, S.; Mattei, G.; Ainane, A.

    2003-01-01

    The effects of alternating transverse fields Ω a and Ω b on the critical behavior of an alternating spin-1 Ising superlattice are studied within an effective field theory with a probability distribution technique that accounts for the single-site spin correlation. Critical temperatures are calculated as a function of the thickness of the superlattice and the strength of the transverse field. Depending on the values of the transverse fields Ω a and Ω b , the critical temperature can increase or decrease with increasing the thickness of the film, such result is not obtained in the uniform transverse field case (Ω a = Ω b ). Furthermore, for each thickness L of the film, a long range ordered phase persist at low temperature for selected values of the transverse field Ω a and arbitrary values of Ω b . The effects of interlayer and intralayer exchange interactions are also examined

  17. Phase diagrams of a spin-1 Ising superlattice with alternating transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ez-Zahraouy, H.

    2000-09-01

    The effects of alternating transverse fields Ω a and Ω b on the critical behavior of an alternating spin-1 Ising superlattice are studied within an effective field theory with a probability distribution technique that accounts for the single-site spin correlations. Critical temperatures are calculated as a function of the thickness of the superlattice and the strength of the transverse field. Depending on the values of the transverse fields Ω a and Ω b , the critical temperature can increase or decrease with increasing the thickness of the film, such result is not obtained in the uniform transverse field case (Ω a = Ω b ). Furthermore, for each thickness L of the film, a long range ordered phase persists at low temperature for selected values of the transverse field Ω a and arbitrary values of Ω b . The effects of interlayer and intralayer exchange interactions are also examined. (author)

  18. Electronic structure and optical properties of (BeTen/(ZnSem superlattices

    Directory of Open Access Journals (Sweden)

    Caid M.

    2016-03-01

    Full Text Available The structural, electronic and optical properties of (BeTen/(ZnSem superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA. The ground state properties of (BeTen/(ZnSem binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω, the refractive index n(ω and the refractivity R(ω, are calculated for radiation energies up to 35 eV.

  19. Fe/V and Fe/Co (0 0 1) superlattices: growth, anisotropy, magnetisation and magnetoresistance

    International Nuclear Information System (INIS)

    Nordblad, P.; Broddefalk, A.; Mathieu, R.; Blomqvist, P.; Eriksson, O.; Waeppling, R.

    2003-01-01

    Some physical properties of BCC Fe/V and Fe/Co (0 0 1) superlattices are reviewed. The dependence of the magnetic anisotropy on the in-plane strain introduced by the lattice mismatch between Fe and V is measured and compared to a theoretical derivation. The dependence of the magnetic anisotropy (and saturation magnetisation) on the layer thickness ratio Fe/Co is measured and a value for the anisotropy of BCC Co is derived from extrapolation. The interlayer exchange coupling of Fe/V superlattices is studied as a function of the V layer thickness (constant Fe thickness) and layer thickness of Fe (constant V thickness). A region of antiferromagnetic coupling and GMR is found for V thicknesses 12-14 monolayers. However, surprisingly, a 'cutoff' of the antiferromagnetic coupling and GMR is found when the iron layer thickness exceeds about 10 monolayers

  20. Direct observation of two-step crystallization in nanoparticle superlattice formation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  1. Analysis of polariton dispersion in metal nanocomposite based novel superlattice system

    Science.gov (United States)

    DoniPon, V.; Joseph Wilson, K. S.; Malarkodi, A.

    2018-06-01

    The influence of metal nanoparticles in tuning the polaritonic gap in a novel piezoelectric superlattice is studied. Dielectric function of the metal nanoparticles is analyzed using Kawabata-Kubo effect and Drude's theory. The effective dielectric function of the nanocomposite system is studied using Maxwell Garnett approximation. Nanocomposite based LiTaO3 novel superlattice is formed by arranging the nanocomposite systems in such a way that their orientations are in the opposite direction. Hence there are two additional modes of propagation. The top most modes reflect the metal behavior of the nanoparticles. It is found that these modes of propagation vary with the filling factor. These additional modes of propagations can be exploited in the field of communication.

  2. Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)

    2009-05-01

    We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.

  3. Structural simulation of superlattices in lithium aluminates; Simulacion estructural de superredes en aluminatos de litio

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Basurto S, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Among the materials to be used on the tritium generator cover of the future fusion reactors the lithium aluminate ({gamma} - LiAlO{sub 2}) is one of the more studied. In this work it is presented the superlattice structural simulation that presents to {gamma} - LiAlO{sub 2} as main phase and to {alpha} - LiAlO{sub 2} as the secondary phase. The simulation is developed considering that as the two phases present different symmetry ({gamma} - LiAlO{sub 2} is tetrahedral and {alpha} - LiAlO{sub 2} is hexahedral) it is had a superlattice LUCS type (Layered Ultrathin Coherent Structure) that is it presents an structure in coherent ultrathin layers since it is what implicates a lesser energy of formation. (Author)

  4. Investigation of resonant Raman scattering in type II GaAs/AlAs superlattices

    International Nuclear Information System (INIS)

    Choi, H.

    2001-01-01

    As a consequence of the band alignment in GaAs/AIAs superlattices (SLs) and the indirect nature of bulk AIAs, quantum confinement can be used to engineer a Type II system. This produces an electron population in the AIAs longitudinal (X z ) or transverse (X xy ) zone-edge states, which is separated in both direct and reciprocal space from the hole population in the GaAs zone-centre (Γ) states. This thesis is an investigation of the electronic and vibrational structure of Type II GaAs/AIAs SLs using theoretical models and spectroscopic techniques, with special emphasis on Type II resonant Raman (RR) scattering. The majority of this thesis concerns short-period GaAs/AIAs SLs with X z as the lowest conduction band state. A model of the SL electronic band structure is presented, including the effects of interband Γ-X z mixing and the X-point camel's back structure. Interband mixing makes Γ-X z radiative transitions observable in photoluminescence (PL) and RR experiments. Phonon-assisted transitions from the X z state are also observed in PL experiments. Several of the participating phonon modes are unambiguously identified, in good agreement with recent reports. This thesis presents the first detailed experimental and theoretical study of Type II RR scattering from the incoming channel of the X z -related Type II bandgap. The X z - related Type II incoming RR spectra in the GaAs optic phonon region are compared with the Γ-related Type I outgoing RR spectra within several theoretical models. Thereby, the mechanisms of the Type II RR scattering, the origins of the RR lineshape and the polarisation dependence, are fully explained, clarifying the spectral features observed in the GaAs zone-centre optic phonon region. The Type II resonance also allows the observation of zone boundary (X-point) phonons from intervalley (IV) scattering. A model of the IV electron-phonon interaction involving X conduction band electrons and zone boundary phonons in Type II SLs is presented

  5. Zero ischemia laparoscopic partial thulium laser nephrectomy.

    LENUS (Irish Health Repository)

    Thomas, Arun Z

    2013-11-01

    Laser technology presents a promising alternative to achieve tumor excision and renal hemostasis with or without hilar occlusion, yet its use in partial nephrectomy has not been significantly evaluated. We prospectively evaluated the thulium:yttrium-aluminum-garnet laser in laparoscopic partial nephrectomy (LPN) in our institution over a 1-year period.

  6. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  7. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  8. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  9. Novel Si-Ge-C Superlattices for More than Moore CMOS

    Science.gov (United States)

    2016-03-31

    Keywords: Silicon ; Germanium; Carbon; Superlattices; Direct Band-Gaps; Silicon - Photonics ; Image Sensors. Introduction Materials with direct band-gaps and...Wang Z., B. Tian, M. Pantouvaki, et al., “Room- temperature InP distributed feedback laser array directly grown on silicon ”, Nature Photonics 9, 2015...Creek Blvd. Suite 284 San Jose, CA 95129 Contact author: Lynn.Forester@Quantumsemi.com Abstract: The search for Silicon -based direct band-gap

  10. Light-hole conduction in InGaAs/GaAs strained-layer superlattices

    International Nuclear Information System (INIS)

    Schirber, J.E.; Fritz, I.J.; Dawson, L.R.

    1985-01-01

    We report the first observation of light-hole band carriers in In/sub 0.2/Ga/sub 0.8/As/GaAs strained-layer superlattices by direct measurements of their effective mass (m*m/sub o/ = 0.14) using oscillatory magnetoresistance data. Preferential population of light-hole states, due to splitting of the degenerate bulk valence bands by built-in strain, allows this direct observation

  11. Optical characterization of nanocrystals in silicon rich oxide superlattices and porous silicon

    International Nuclear Information System (INIS)

    Agocs, E.; Petrik, P.; Milita, S.; Vanzetti, L.; Gardelis, S.; Nassiopoulou, A.G.; Pucker, G.; Balboni, R.; Fried, M.

    2011-01-01

    We propose to analyze ellipsometry data by using effective medium approximation (EMA) models. Thanks to EMA, having nanocrystalline reference dielectric functions and generalized critical point (GCP) model the physical parameters of two series of samples containing silicon nanocrystals, i.e. silicon rich oxide (SRO) superlattices and porous silicon layers (PSL), have been determined. The superlattices, consisting of ten SRO/SiO 2 layer pairs, have been prepared using plasma enhanced chemical vapor deposition. The porous silicon layers have been prepared using short monopulses of anodization current in the transition regime between porous silicon formation and electropolishing, in a mixture of hydrofluoric acid and ethanol. The optical modeling of both structures is similar. The effective dielectric function of the layer is calculated by EMA using nanocrystalline components (nc-Si and GCP) in a dielectric matrix (SRO) or voids (PSL). We discuss the two major problems occurring when modeling such structures: (1) the modeling of the vertically non-uniform layer structures (including the interface properties like nanoroughness at the layer boundaries) and (2) the parameterization of the dielectric function of nanocrystals. We used several techniques to reduce the large number of fit parameters of the GCP models. The obtained results are in good agreement with those obtained by X-ray diffraction and electron microscopy. We investigated the correlation of the broadening parameter and characteristic EMA components with the nanocrystal size and the sample preparation conditions, such as the annealing temperatures of the SRO superlattices and the anodization current density of the porous silicon samples. We found that the broadening parameter is a sensitive measure of the nanocrystallinity of the samples, even in cases, where the nanocrystals are too small to be visible for X-ray scattering. Major processes like sintering, phase separation, and intermixing have been

  12. Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors.

    Science.gov (United States)

    Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong

    2015-11-24

    Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.

  13. New spintronic superlattices composed of half-metallic compounds with zinc-blende structure

    International Nuclear Information System (INIS)

    Fong, C Y; Qian, M C

    2004-01-01

    The successful growth of zinc-blende half-metallic compounds, namely CrAs and CrSb, in thin film forms offers a new direction to search for novel spintronic materials. By using a well documented first-principles algorithm, the VASP code, we predict the electronic and magnetic properties of superlattices made of these exciting half-metallic materials. Not only are the superlattices constructed with two of the half-metallic compounds (CrAs/MnAs) but also they are modelled to combine with both a III-V (GaAs-MnAs/CrAs/GaAs) and a IV-IV (MnC/SiC) semiconductor. We investigate variable thicknesses for the combinations. For every case, we find the equilibrium lattice constant as well as the lattice constant at which the superlattice exhibits the half-metallic properties. For CrAs/MnAs, the half-metallic properties are presented and the magnetic moments are shown to be the sum of the moments for MnAs and CrAs. The half-metallic properties of GaAs-MnAs/CrAs/GaAs are found to be crucially dependent on the completion of the d-p hybridization. The magnetic properties of MnC/SiC are discussed with respect to the properties of MnC

  14. InGaNAs/GaAs multi-quantum wells and superlattices solar cells

    International Nuclear Information System (INIS)

    Courel Piedrahita, Maykel; Rimada Herrera, Julio Cesar; Hernandez Garcia, Luis

    2011-01-01

    A theoretical study of the GaAs/InGaNAs solar cells based on a multi-quantum wells (MQWSC) and superlattices (SLSC) configuration is presented for the first time. The conversion efficiency as a function of wells width and depth is modeled. The photon absorption increases with the well levels incorporation and therefore the photocurrent as well. It is shown that the MQWSC efficiency overcomes the solar cells without wells about 25%. A study of the SLSC viability is also presented. The conditions for resonant tunneling are established by the matrix transfer method for a superlattice with variable quantum wells width. The effective density of states and the absorption coefficients for SL structure are calculated in order to determinate the JV characteristic. The influence of the superlattice or cluster width in the cell efficiency is researched showing a better performance when width and the number of cluster are increased. The SLSC efficiency is compared with the optimum efficiency obtained for the MQWSC showing that it is reached an amazing increment of 27%. (author)

  15. Interface-Induced Nucleation, Orientational Alignment and Symmetry Transformations in Nanocube Superlattices

    KAUST Repository

    Choi, Joshua J.

    2012-09-12

    The self-assembly of colloidal nanocrystals into ordered superstructures depends critically on the shape of the nanocrystal building blocks. We investigated the self-assembly of cubic PbSe nanocrystals from colloidal suspensions in real-time using in situ synchrotron-based X-ray scattering. We combined small-angle and wide-angle scattering to investigate the translational ordering of nanocrystals and their orientational ordering in the lattice sites, respectively. We found that cubic PbSe nanocrystals assembled into a face-up (i.e., 〈100〉 normal to the interface) configuration at the liquid/substrate interface whereas nanocubes at the liquid/air interface assume a corner-up (i.e., 〈111〉 normal to the interface) configuration. The latter nanocrystal superlattice displays polymorphism as a function inter-NC separation distance. We explain the observed superlattice structure polymorphs in terms of the interactions directing the self-assembly. Insights into the directed self-assembly of superlattices gained from this study have important implication on the future development of nanocrystals as building blocks in artificial solids. © 2012 American Chemical Society.

  16. Sodium effect on self-organization of amphiphilic carboxylates: formation of structured micelles and superlattices.

    Science.gov (United States)

    Rosenlehner, Karin; Schade, Boris; Böttcher, Christoph; Jäger, Christof M; Clark, Timothy; Heinemann, Frank W; Hirsch, Andreas

    2010-08-16

    Not only the self-aggregation of dendritic polycarboxylates into structurally persistent micelles, but also that of the micelles themselves into superlattices is controlled by alkali-metal counterions and shows a pronounced sodium effect. Our combined experimental and computational work has revealed the formation of superlattices for the first time. The behavior of a variety of amphiphilic carboxylates and the different effects of the alkali cations Li(+), Na(+), and K(+) have been investigated by conductivity measurements, cryogenic transmission electron microscopy (cryo-TEM), and molecular-dynamics (MD) simulations. Together, these show that sodium salts of the amphiphiles give the most stable micelles, followed by lithium and potassium. Our results suggest that ion multiplets in bridging positions, rather than contact ion pairs, are responsible for the enhanced stability and the formation of hexagonally ordered superlattices with sodium counterions. Potassium ions do not form such ion multiplets and cannot therefore induce aggregation of the micelles. This sodium effect has far-reaching consequences for a large number of biological and technical systems and sheds new light on the origin of specific-ion effects.

  17. Single-crystal FCC and DHCP phases in Ce/Pr superlattices

    International Nuclear Information System (INIS)

    Lee, S.; Goff, J.P.; Ward, R.C.C.; Wells, M.R.; McIntyre, G.J.

    2002-01-01

    Cerium usually comprises a mixture of polycrystalline FCC and DHCP allotropes. Single-crystal Ce has been stabilised in Ce/Pr superlattices grown using molecular beam epitaxy. It is found that FCC or DHCP phases can be obtained depending on superlattice composition and growth conditions. Low-temperature neutron scattering was performed on Ce/Pr samples using the triple-axis spectrometer D10 at the ILL. Such measurements revealed one sample, [Ce 20 Pr 20 ] 60 , to be a single crystal with a DHCP unit cell; while another, [Ce 30 Pr 10 ] 56 , was a mixture of FCC and DHCP phases. Antiferromagnetic ordering of magnetic moments was observed in the DHCP sample (T N =11.1 K) with a magnetic structure similar to that found in bulk β-Ce. Surprisingly, the magnetic ordering was found to be confined to single Ce blocks. Furthermore, it was found that, at low temperatures, the lattice contraction observed for bulk FCC Ce was suppressed in Ce/Pr superlattices. (orig.)

  18. Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys. Ph.D Thesis

    Science.gov (United States)

    Kahen, K. B.

    1986-01-01

    The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.

  19. Strain distribution and band structure of InAs/GaAs quantum ring superlattice

    Science.gov (United States)

    Mughnetsyan, Vram; Kirakosyan, Albert

    2017-12-01

    The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.

  20. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  1. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie [University of Pennsylvania; Murray, Christopher [University of Pennsylvania; Kikkawa, James [University of Pennsylvania; Engheta, Nader [University of Pennsylvania

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemical methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.

  2. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  3. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.

    2012-01-01

    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  4. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices

    International Nuclear Information System (INIS)

    Ohta, Hiromichi

    2008-01-01

    This review provides the origin of the unusually large thermoelectric Seebeck coefficient vertical stroke S vertical stroke of a two-dimensional electron gas confined within a unit cell layer thickness (∝0.4 nm) of a SrTi 0.8 Nb 0.2 O 3 layer of artificial superlattices of SrTiO 3 /SrTi 0.8 Nb 0.2 O 3 [H. Ohta et al., Nature Mater. 6, 129 (2007)]. The vertical stroke S vertical stroke 2D values of the[(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) y ] 20 superlattice increase proportional to y -0.5 , and reach 290 μV K -1 (y=1) at room temperature, which is ∝5 times larger than that of the SrTi 0.8 Nb 0.2 O 3 bulk (vertical stroke S vertical stroke 3D =61 μVK -1 ), proving that the density of states in the ground state for SrTiO 3 increases in inverse proportion to y. The critical barrier thickness for quantum electron confinement is also clarified to be 6.25 nm (16 unit cells of SrTiO 3 ). Significant structural changes are not observed in the superlattice after annealing at 900 K in a vacuum. The value of vertical stroke S vertical stroke 2D of the superlattice gradually increases with temperature and reaches 450 μVK -1 at 900 K, which is ∝3 times larger than that of bulk SrTi 0.8 Nb 0.2 O 3 . These observations provide clear evidence that the [(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) 1 ] 20 superlattice is stable and exhibits a giant vertical stroke S vertical stroke even at high temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Structure and properties of (Sr, Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Verbist, Karen; Rijnders, Augustinus J.H.M.; Rogalla, Horst; van Tendeloo, Gustaav; Blank, David H.A.

    2001-01-01

    We report on the preparation of CuBa2(SrxCa1¿x)nCun¿1Oy compounds by fabrication of (Ba,Sr,Ca)CuO2 superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the

  6. Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

    NARCIS (Netherlands)

    Cecchi, Stefano; Zallo, Eugenio; Momand, Jamo; Wang, Ruining; Kooi, Bart J.; Verheijen, Marcel A.; Calarco, Raffaella

    Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers.

  7. Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

    NARCIS (Netherlands)

    Cecchi, S.; Zallo, E.; Momand, J.; Wang, R.; Kooi, B.J.; Verheijen, M.A.; Calarco, R.

    Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers. Here

  8. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  9. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Science.gov (United States)

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  10. Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr0.52Ti0.48)O3

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Singh, Akhilesh Kumar; Ragini; Pandey, Dhananjai

    2005-01-01

    Recent controversy about the space group of the low temperature superlattice phase of Pb(Zr 0.52 Ti 0.48 )O 3 is settled. It is shown that the R3c space group for the superlattice phase cannot correctly account for the peak positions of the superlattice reflections present in the neutron diffraction patterns. The correct space group is reconfirmed to be Cc. A comparison of the atomic coordinates of Cc and Cm space groups is also presented to show that in the absence of superlattice reflections, as is the case with x-ray diffraction data, one would land up in the Cm space group. This superlattice phase is found to coexist with another monoclinic phase of the Cm space group

  11. FY1995 ultrafast photonic devices using dielectric domain superlattice; 1995 nendo yudentai domain chokoshi wo mochiita chokosoku photonic device

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-31

    All optical wavelength conversion around 1550nm is of great importance for the wavelength division multiplexing optical communication system. A dielectric domain superlattice, which has a periodically domain inverted structure, has a wide potential for the various nonlinear interactions such as second harmonic generation (SHG) and difference frequency generation (DFG). The purpose of our research is to establish the theoretical bases and fabrication processes of the guided-wave wavelength converter based on the DFG by domain-inverted LiTaO{sub 3}. We have investigated basic characteristics of guided-wave DFG devices and developed the domain-inversion process by an electric field poling utilizing a liquid electrolyte consisting of LiCI in deionized water as a electrode for applying the electric field to LiTaO{sub 3} substrate. By controlling the injection current for the domain inversion precisely, we fabricated successfully uniform domain-inverted structures. 0.5mm-thick domain-inverted LiTaO{sub 3} of 7.8, 17.2 and 21.3 {mu}m periods and 0.5 duty ratio were obtained by optimizing electrode structure and the domain-inversion process. Waveguide structures can increase the conversion efficiency of DFG by several orders of magnitude over bulk interactions. We have also developed waveguide fabrication process for the domain-inverted LiTaO{sub 3} substrate. Low loss proton-exchanged waveguides were formed by annealed proton exchange technique without a degradation of the domain inversion structure. Domain-controlled nonlinear optics by designing the ferroelectric domain structure of LiTaO{sub 3} and LiNbO{sub 3} make it possible to extend all the spectral range from ultra-violet to far-infrared and THz wave region. (NEDO)

  12. Structure and transport properties of coherently strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/SrTiO{sub 3} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yafeng [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner Str. 8, 85748 Garching (Germany); Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xi' an, Shaanxi 710016 (China); Klein, J.; Herbstritt, F.; Philipp, J.B.; Marx, A.; Alff, L.; Gross, R. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner Str. 8, 85748 Garching (Germany); Zhang, H. [Engineering Center of Electronic Information Materials and Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

    2005-07-01

    We have prepared high quality, coherently strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/SrTiO{sub 3} superlattices with different modulation periods by laser molecular beam epitaxy on (001) SrTiO{sub 3} and NdGaO{sub 3} substrates. A detailed structural characterization was performed by high-angle X-ray diffraction (HAXRD) and low-angle X-ray reflectivity (LAXRR). All superlattices are very flat, show excellent structural coherence and very small mosaic spread (0.02 ). The in-plane coherency strain was varied by changing the thickness ratio of the constituent layers allowing for a systematic variation of the resulting tetragonal distortion of LCMO. The c-axis lattice parameter of LCMO could be continuously changed from 3.87 Aa to 3.79 Aa. The interface roughness was analyzed by offset low-angle X-ray reflectivity and low-angle rocking curve measurements. It was found to be of the order of one unit cell with a significant part of the roughness being vertically correlated. The strain induced tetragonal distortion of LCMO was found to cause strong reduction of the paramagnetic to ferromagnetic transition temperature from about 260 to 120 K and an increase of resistivity. The transport properties in the paramagnetic regime could be well described by a small polaron hopping model. The lattice distortions were found to result in a significant increase of the polaron trapping energy. Our results show that coherently strain superlattices are an interesting model system for the systematic study of the effect of lattice distortions on the magnetic and electronic properties of the doped manganites. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Microwave properties of YBa2Cu3O7-δ/PrBa2Cu3O7-δ superlattices

    International Nuclear Information System (INIS)

    Carlos, W.E.; Kaplan, R.; Lowndes, D.H.; Norton, D.P.

    1992-01-01

    We have used non-resonant microwave absorption to study c-axis YBa 2 Cu 3 O 7-δ /PrBa 2 Cu 3 O 7-δ superlattices and compare the response to a film of similarly grown YBa 2 Cu 3 O 7-δ (YBCO). Near the respective transition temperatures, the response of the superlattice samples and the YBCO film have similar amplitudes and orientation dependences. This is consistent with the microwave loss being related to magnetic flux penetration at (110) slip planes. At lower temperatures, the response of the superlattices is much stronger than that of the YBCO film and, while both responses are hysteretic at low temperatures, the widths of the hysteresis have opposite orientation dependences, which we attribute to the role of the PrBa 2 Cu 3 O 7-δ layers. (orig.)

  14. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  15. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  16. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio

    2017-08-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\\\text{LaMnO}_3)_{6-x}\\\\vert(\\\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  17. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio; Tahini, Hassan Ali; Singh, Nirpendra; Schwingenschlö gl, Udo

    2017-01-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\text{LaMnO}_3)_{6-x}\\vert(\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  18. Problem Periods

    Science.gov (United States)

    ... ovary syndrome. Read our information on PCOS for teens , and see your doctor if you think you may have PCOS. Major weight loss. Girls who have anorexia will often stop having periods. When to see ...

  19. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  20. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD.

    Science.gov (United States)

    Xu, Peiqiang; Jiang, Yang; Chen, Yao; Ma, Ziguang; Wang, Xiaoli; Deng, Zhen; Li, Yan; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2012-02-20

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier.

  1. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  2. Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice

    International Nuclear Information System (INIS)

    Yu, Y. B.; Xie, Z. D.; Yu, X. Q.; Li, H. X.; Xu, P.; Yao, H. M.; Zhu, S. N.

    2006-01-01

    The generation of three-mode continuous-variable entanglement in a quasiperiodically optical superlattice is studied theoretically in this paper. This work is based on the previous experiment result in which three-color light generated from a quasiperiodically optical superlattice through a stimulated parametric down-conversion cascaded with a sum-frequency process. The degree of quadrature phase amplitude correlations, a nonclassical characteristic, among the three mode was discussed by a sufficient inseparability criterion for continuous-variable entanglement, which was proposed by van Loock and Furusawa

  3. A proposed GaAs-based superlattice solar cell structure with high efficiency and high radiation tolerance

    Science.gov (United States)

    Goradia, Chandra; Clark, Ralph; Brinker, David

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their being across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  4. Synchrotron spectroscopy of confined carriers in CdF{sub 2}-CaF{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskikh, K. V. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Hughes-Currie, R. B. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Reid, M. F.; Reeves, R. J. [MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand); Dodd-Walls Centre for Photonic and Quantum Technologies and Department of Physics and Astronomy, University of Canterbury, PB4800, Christchurch 8140 (New Zealand); Wells, J.-P. R., E-mail: jon-paul.wells@canterbury.ac.nz [Dodd-Walls Centre for Photonic and Quantum Technologies and Department of Physics and Astronomy, University of Canterbury, PB4800, Christchurch 8140 (New Zealand); Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-03-14

    Luminescence spectroscopic and temporal dynamic properties of high energy elementary excitations in CdF{sub 2}-CaF{sub 2} superlattices have been studied utilising excitation with vacuum ultraviolet and X-ray synchrotron radiation while comparing the results with those obtained for CdF{sub 2} and CaF{sub 2} bulk crystals. It is shown that the optical properties of the superlattice structures are determined by exciton emission in the CdF{sub 2} monolayers. The experimental manifestations of exciton confinement phenomena are discussed.

  5. Automating Partial Period Bond Valuation with Excel's Day Counting Functions

    Science.gov (United States)

    Vicknair, David; Spruell, James

    2009-01-01

    An Excel model for calculating the actual price of bonds under a 30 day/month, 360 day/year day counting assumption by nesting the DAYS360 function within the PV function is developed. When programmed into an Excel spreadsheet, the model can accommodate annual and semiannual payment bonds sold on or between interest dates using six fundamental…

  6. Graphene nanoribbon superlattices fabricated via He ion lithography

    International Nuclear Information System (INIS)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-01-01

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He + -beam lithography can texture graphene with less damage

  7. Graphene nanoribbon superlattices fabricated via He ion lithography

    Energy Technology Data Exchange (ETDEWEB)

    Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  8. Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices

    Science.gov (United States)

    Hung, Chen-Jen

    This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.

  9. Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage

    International Nuclear Information System (INIS)

    Zhang Yu-Ping; Yin Yi-Heng; Lü Huan-Huan; Zhang Hui-Yun

    2014-01-01

    We study the electronic properties for the graphene-based one-dimensional superlattices, whose potential voltages vary according to the envelope of a Gaussian function. It is found that an unusual Dirac point exists and its location is exactly associated with a zero-averaged wave number (zero-k-bar ) gap. This zero-k-bar gap is less sensitive to incident angle and lattice constants, properties opposing those of Bragg gap. The defect mode appearing inside the zero-k-bar gap has an effect on transmission, conductance, and shot noise, which will be useful for further investigation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Effect of ionization of impurity centres by electric field on the conductivity of superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Clement, A.

    1994-11-01

    The study of the effect of ionization of impurity centres by electric field E 0 on the conductivity of superlattice (SL) has been studied theoretically. It is observed that as the field E 0 increases the current rises reaches a maximum then falls off i.e. show a negative differential conductivity (NDC). Further increase in E 0 leads to an exponential rise of the current. This occur around E 0 = 3 x 10 4 V cm -1 . Hence the current density field shows a ''N'' shape characteristics as against the ''n'' shape characteristics in the absence of impurity. (author). 23 refs, 3 figs

  11. Design of a terahertz CW photomixer based on PIN and superlattice PIN devices

    DEFF Research Database (Denmark)

    Krozer, Viktor; Eichhorn, Finn

    2006-01-01

    We present the design of a photomixer LO based on standard and superlattice PIN diodes, operating at 1 THz. The design is based on a direct integration of a double slot antenna with the PIN device and a suitable matching circuit. The antenna has been designed together with a dielectric lens using...... Ansoft HFSS EM simulation. The large-signal PIN diode model employed in the work has been improved compared to our previously developed model presented earlier in a 3 THz design. We demonstrate that the antenna characteristic changes drastically with the device in place....

  12. The ferromagnet spin-1/2 Ising superlattice in a transverse field

    International Nuclear Information System (INIS)

    Bouziane, T.; Saber, M.; Belaaraj, A.; Ainane, A.

    1998-09-01

    The phase transitions of a ferromagnet spin-1/2 Ising superlattice consisting of two different materials in a transverse field is examined with the use of effective field theory that accounts for the self-spin function correlation. The critical temperature of the system is studied as a function of the thickness of the constituents in a unit cell and of exchange interactions in each material. A critical interface exchange interaction above which the interface magnetism appears is found. The effects of a uniform transverse field and the interface exchange interaction on the parameters of the system are also investigated. (author)

  13. Theory of photoresistors on the base of trapezoidal δ-doped superlattices

    International Nuclear Information System (INIS)

    Osipov, V.V.; Selyakov, A.Yu.; Foygel, M.

    1999-01-01

    A theory of far infrared photoresistors that is based on trapezoidal δ-doped superlattices (TSL) has been developed. It is shown that photoconductivity of TSL in monopolar despite the interband absorption and generation of electron - hole pairs. In this way, photoelectric gain and responsivity of TSL photoresistor can reach gigantic values. It is established that tunneling-radiative lifetime of electron-hole pairs determines the kinetics of photoconductivity decay. It is shown that a surprising effect takes place: voltage responsivity does not depend virtually on lifetime of nonequilibrium carriers and on the doping level of TSL photoresistor and can reach gigantic values [ru

  14. Implanted muon study of superlattice ordering in palladium hydride PdH/sub 0. 64/

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S F.J.; Ross, D K; Witchell, D; Hartmann, O; Hempelmann, R; Richter, D; Stoneham, A M

    1986-12-01

    The superlattice ordering transition in PdH/sub 0.64/ is detected by implanted muon spectroscopy. The temperature dependence around 50 K of the static ..mu..SR depolarisation rate, measured in low transverse magnetic field in a polycrystalline sample, indicates appropriate changes in the average number of nearest neighbour protons. These measurements establish the similarity of the proton-proton and muon-proton interactions within the interstitial lattice. The implanted muons reveal the onset of short range order as the transition is approached and, to the extent that vacancy sites are available, participate in the predicted structure below the critical temperature.

  15. Formation of superlattice with aligned plane orientation of colloidal PbS quantum dots

    Science.gov (United States)

    Mukai, Kohki; Fujimoto, Satoshi; Suetsugu, Fumimasa

    2018-04-01

    We investigated a method of forming a perfect quantum dot (QD) superlattice, in which each QD has the same plane orientation, by depositing colloidal PbS QDs with clear facets in solution. QD facets were controlled by adjusting the synthesis temperature. X-ray evaluation showed that the crystal orientations of the film with QDs having clear facets were aligned. The slow deposition promoted this crystal alignment. The red shift of photoluminescence wavelength caused by the film formation was larger with QDs having facets than with spherical QDs, suggesting that the connection of the wave function between QDs was better so that the quantum size effect was further reduced.

  16. Negative magnetoresistance in perpendicular of the superlattices axis weak magnetic field at scattering of impurity ions

    International Nuclear Information System (INIS)

    Askerov, B. M.; Figarova, R.; Guseynov, G.I.

    2012-01-01

    Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass

  17. The phase diagrams of the site-diluted spin-1/2 Ising superlattice

    International Nuclear Information System (INIS)

    Saber, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Saber, M.; Stebe, B.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the single-site spin correlations, the critical behavior of a diluted spin-1/2 Ising superlattice consisting of two different ferromagnet materials is examined. The critical temperature of the system is studied as a function of the thickness of the constituents in a unit cell, the concentration of magnetic atoms, and the exchange interactions in each material. It is shown that the properties of the diluted system are different from those of the corresponding pure system. (author)

  18. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  19. Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials. Bulk, thin films, and superlattices

    International Nuclear Information System (INIS)

    Peranio, Nicola

    2008-01-01

    In this work, the nature of the natural nanostructure (nns) was analysed and the correlations to the transport coefficients, particularly the lattice thermal conductivity, is discussed. Experimental methods are presented for the first time, yielding an accurate quantitative analysis of the chemical composition and of stress fields in Bi 2 Te 3 and in compounds with similar structural and chemical microstructures. This work can be subdivided as follows: (I) N-type Bi 2 (Te 0.91 Se 0.09 ) 3 and p-type (Bi 0.26 Sb 0.74 ) 1.98 (Te 0.99 Se 0.01 ) 3.02 bulk materials synthesised by the Bridgman technique. (II) Bi 2 Te 3 thin films and Bi 2 Te 3 /Bi 2 (Te 0.88 Se 0.12 ) 3 superlattices epitaxially grown by molecular beam epitaxy (MBE) on BaF 2 substrates with periods of δ-12 nm at the Fraunhofer-Institut fuer Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image simulations of dislocations and the nns according to the two-beam dynamical diffraction theory. The nns was analysed in detail by stereomicroscopy and by image simulation and was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to and an amplitude of about 10 pm and (ii) a wave vector parallel to {1,0,10} and a wavelength of 10 nm. The results obtained here showed a significant amount of stress in the samples, induced by the nns which was still not noticed and identified. Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in thermoelectric materials a low lattice thermal conductivity which was beneficial for the thermoelectric figure of merit ZT. (orig.)

  20. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Xingtong [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2017-05-15

    We investigated effects of V-pits embedded InGaN/GaN superlattices (SL) on optical and electrical properties of high power green LEDs by changing the number of SL period and SL growth temperature. Surface morphology of V-pits embedded InGaN/GaN SL with various periods and growth temperatures was evaluated by using atomic force microscopy (AFM). It was found that density and size of V-pit increase with decreasing SL growth temperature and increasing SL periods. Experimental studies using scanning electron microscopy (SEM) equipped with cathodoluminescence (CL) indicated that SL with larger V-pits appear to be more effective in suppressing the lateral diffusion of carriers into threading dislocations (TD). Compared to c-plane quantum wells, narrower quantum wells on the V-pit sidewall were clearly observed by performing high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The external quantum efficiency (EQE) and the efficiency droop of green LEDs grown on underlying SL with larger V-pits are improved at high injection current regime, which is attributed to a more efficient hole injection into multiple quantum well, and also to a higher V-pit potential barrier height that could more effectively suppress the lateral diffusion of carriers into non-radiative recombination centers of TDs. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers

    KAUST Repository

    Zhang, Chendong

    2017-01-07

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice.

  2. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  3. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.

    2014-04-14

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  4. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.; Lebedev, O. I.; Roddatis, V. V.; Lin, W. N.; Ding, J. F.; Hu, S. J.; Yan, S. S.; Wu, Tao

    2014-01-01

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  5. Successful removable partial dentures.

    Science.gov (United States)

    Lynch, Christopher D

    2012-03-01

    Removable partial dentures (RPDs) remain a mainstay of prosthodontic care for partially dentate patients. Appropriately designed, they can restore masticatory efficiency, improve aesthetics and speech, and help secure overall oral health. However, challenges remain in providing such treatments, including maintaining adequate plaque control, achieving adequate retention, and facilitating patient tolerance. The aim of this paper is to review the successful provision of RPDs. Removable partial dentures are a successful form of treatment for replacing missing teeth, and can be successfully provided with appropriate design and fabrication concepts in mind.

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  7. Atomic stacking and van-der-Waals bonding in GeTe-Sb2Te3 superlattices

    NARCIS (Netherlands)

    Momand, J.; Lange, F.R.L.; Wang, R.; Boschker, J.E.; Verheijen, M.A.; Calarco, R.; Wuttig, M.; Kooi, B.J.

    2016-01-01

    GeTe–Sb2Te3 superlattices have attracted major interest in the field of phase-change memories due to their improved properties compared with their mixed counterparts. However, their crystal structure and resistance-switching mechanism are currently not clearly understood. In this work epitaxial

  8. Magnetoresistance oscillations in GaAs/AlGaAs superlattices subject to in-plane magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Smrčka, Ludvík; Vašek, Petr; Svoboda, Pavel; Goncharuk, Natalya; Pacherová, Oliva; Krupko, Yuriy; Sheikin, Y.; Wegscheider, W.

    2006-01-01

    Roč. 34, - (2006), s. 632-635 ISSN 1386-9477 R&D Projects: GA AV ČR(CZ) IAA1010408 Institutional research plan: CEZ:AV0Z10100521 Keywords : superlattice * Fermi surface * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.084, year: 2006

  9. Trends in (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses

    KAUST Repository

    Jilili, J.; Cossu, Fabrizio; Schwingenschlö gl, Udo

    2015-01-01

    We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive

  10. Almost 'magnetic dead' of the Co layer in Co/Zr sub 3 superlattice

    CERN Document Server

    Kwon, Y S; Hong, S C; Lee, Y P

    1999-01-01

    The magnetic and electronic properties of Co/Zr sub 3 (0001) superlattice and unsupported Co and Zr monolayers (ML) with the hcp bulk Zr two dimensional lattice parameters have been calculated by employing the full potential linearized augmented plane wave (FLAPW) method with general gradient approximation (GGA) for exchange-correlation potential. The unsupported Zr and Co ML were calculated to be stable in paramagnetic and ferromagnetic states, respectively. The magnetic moment of the unsupported Co ML was 2.08 mu B. The Co-Zr interlayer spacing of the Co/Zr sub 3 superlattice was calculated to be reduced significantly by 9.80 % compared to that expected from Co and Zr bulk assuming preservation of the atomic volumes. On the other hand, the Zr-Zr interlayer spacing was calculated to be enhanced by 3.35 % compared to that of bulk Zr. Both of the reduced Zr-Co and the enhanced Zr-Zr interlayer spacings decreased the magnetic moment of Co and eventually led to almost 'magnetic dead' (0.33 mu B). Surprisingly, t...

  11. Intrinsic to extrinsic phonon lifetime transition in a GaAs–AlAs superlattice

    International Nuclear Information System (INIS)

    Hofmann, F; Garg, J; Chen, G; Maznev, A A; Nelson, K A; Jandl, A; Bulsara, M; Fitzgerald, E A

    2013-01-01

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon–phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the ‘interfacial atomic disorder’ model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness. (paper)

  12. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    Science.gov (United States)

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  13. Ionic Potential and Band Narrowing as a Source of Orbital Polarization in Nickelate/Insulator Superlattices

    Science.gov (United States)

    Georgescu, Alexandru B.; Disa, Ankit S.; Kumah, Divine P.; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    Nickelate interfaces display complex, interacting electronic properties such as thickness dependent metal-insulator transitions. One large body of effort involving nickelates has aimed to split the energies of the Ni 3d orbitals (orbital polarization) to make the resulting band structure resemble that of cuprate superconductors. The most commonly studied interfacial system involves superlattices of alternating nickelate and insulating perovksite-structure layers; the resulting orbital polarization at the nickelate-insulator interface is understood as being due to confinement or structural symmetry breaking. By using first principles theory on the NdNiO3/NdAlO3 superlattice, we show that another important source of orbital polarization stems from electrostatic effects: the more ionic nature of the cations in the insulator (when compared to the nickelate) can shift the relative orbital energies of the Ni. We use density functional theory (DFT) and add electronic correlations via slave-bosons to describe the effect of correlation-induced band narrowing on the orbital polarization. Work supported by NSF Grant MRSEC DMR-1119826.

  14. Misfit Strain in Superlattices Controlling the Electron-Lattice Interaction via Micro strain in Active Layers

    International Nuclear Information System (INIS)

    Poccia, N.; Ricci, A.; Bianconi, N.

    2010-01-01

    High-temperature superconductivity (HTS) emerges in quite different electronic materials: cuprates, diborides, and iron-pnictide superconductors. Looking for unity in the diversity we find in all these materials a common lattice architecture: they are practical realizations of heterostructures at atomic limit made of superlattices of metallic active layers intercalated by spacers as predicted in 1993 by one of us. The multilayer architecture is the key feature for the presence of electronic topological transitions where the Fermi surface of one of the subbands changes dimensionality. The superlattice misfit strain η between the active and spacer layers is shown to be a key variable to drive the system to the highest critical temperature Tc that occurs at a particular point of the 3D phase diagram Tc(θ, η) where d is the charge transfer or doping. The plots of Tc as a function of misfit strain at constant charge transfer in cuprates show a first-order quantum critical phase transition where an itinerant striped magnetic phase competes with superconductivity in the proximity of a structural phase transition, that is, associated with an electronic topological transition. The shape resonances in these multi gap superconductors is associated with the maximum Tc.

  15. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  16. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  17. Effect of disorders on topological phases in one-dimensional optical superlattices

    International Nuclear Information System (INIS)

    Wang Zhizhou; Wu Yidong; Du Huijing; Jing Xili

    2016-01-01

    In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems. (paper)

  18. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  19. Electron Backscatter Diffraction Studies on the Formation of Superlattice Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Shuli Yan

    2017-12-01

    Full Text Available Microstructures of a series of La-Mg-Ni-based superlattice metal hydride alloys produced by a novel method of interaction of a LaNi5 alloy and Mg vapor were studied using a combination of X-ray energy dispersive spectroscopy and electron backscatter diffraction. The conversion rate of LaNi5 increased from 86.8% into 98.2%, and the A2B7 phase abundance increased from 42.5 to 45.8 wt % and reduced to 39.2 wt % with the increase in process time from four to 32 h. During the first stage of reaction, Mg formed discrete grains with the same orientation, which was closely related to the orientation of the host LaNi5 alloy. Mg then diffused through the ab-phase of LaNi5 and formed the AB2, AB3, and A2B7 phases. Diffusion of Mg stalled at the grain boundary of the host LaNi5 alloy. Good alignments in the c-axis between the newly formed superlattice phases and LaNi5 were observed. The density of high-angle grain boundary decreased with the increase in process time and was an indication of lattice cracking.

  20. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.