WorldWideScience

Sample records for superlattice nanowire pattern

  1. Passive high-frequency devices based on superlattice ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Ye, B.; Li, F.; Cimpoesu, D.; Wiley, J.B.; Jung, J.-S.; Stancu, A.; Spinu, L.

    2007-01-01

    In this paper we propose to tailor the bandwidth of a microwave filter by exploitation of shape anisotropy of nanowires. In order to achieve this control of shape anisotropy, we considered superlattice wires containing varying-sized ferromagnetic regions separated by nonferromagnetic regions. Superlattice wires of Ni and Au with a nominal diameter of 200 nm were grown using standard electrodeposition techniques. The microwave properties were probed using X-band (9.8 GHz) ferromagnetic resonance (FMR) experiments performed at room temperature. In order to investigate the effectiveness of the shape anisotropy on the superlattice nanowire based filter the FMR spectrum of superlattice structure is compared to the FMR spectra of nanowires samples with constant length

  2. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    YANG; Juekuan(杨决宽); CHEN; Yunfei(陈云飞); YAN; Jingping(颜景平)

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  3. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering....

  4. Dopant-free twinning superlattice formation in InSb and InP nanowires

    International Nuclear Information System (INIS)

    Yuan, Xiaoming; Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati; He, Jun

    2017-01-01

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Dopant-free twinning superlattice formation in InSb and InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaoming [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); He, Jun [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China)

    2017-11-15

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices

    Science.gov (United States)

    Zheng, Nan; Ahrenkiel, S. Phillip

    2017-07-01

    Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and lattice images.

  7. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.

    Science.gov (United States)

    Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C; Luo, Tengfei

    2015-11-16

    Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.

  8. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; Rich, Matthew B.; Zhang, Qingteng; Chen, Pice; Yusuf, Mohammed H.; Wen, Haidan; Dawber, Matthew; Evans, Paul G.

    2017-07-01

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  9. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Hong, M.H. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)], E-mail: HONG_Minghui@dsi.a-star.edu.sg; Tan, L.S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Zhou, Y. [Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Chen, G.X. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2008-01-31

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices.

  10. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    International Nuclear Information System (INIS)

    Ng, D.K.T.; Hong, M.H.; Tan, L.S.; Zhou, Y.; Chen, G.X.

    2008-01-01

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices

  11. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  12. A nanowire magnetic memory cell based on a periodic magnetic superlattice

    International Nuclear Information System (INIS)

    Song, J-F; Bird, J P; Ochiai, Y

    2005-01-01

    We analyse the operation of a semiconductor nanowire-based memory cell. Large changes in the nanowire conductance result when the magnetization of a periodic array of nanoscale magnetic gates, which comprise the other key component of the memory cell, is switched between distinct configurations by an external magnetic field. The resulting conductance change provides the basis for a robust memory effect, which can be implemented in a semiconductor structure compatible with conventional semiconductor integrated circuits

  13. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...... charge prediction, we show how ligand induced changes in conformation of two model proteins, both being ligand binding domains from glutamate receptors, can lead to changes in electrostatic potential predicted to be sufficient for NW sensing. Finally we, demonstrate how InAs nanowires can....... In part I - “Surface Patterning” - glass and gold surfaces serve as spatially encoded immobilization supports for patterning of recombinant proteins and organic monolayers. First, we combine micro-contact printing with a reactive SNAP-tag protein to establish a general platform for templated protein...

  14. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  15. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    Science.gov (United States)

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  16. Spatio-temporal dynamics of the white-eye square superlattice pattern in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Wei, Lingyan; Dong, Lifang; Feng, Jianyu; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-01-01

    We report on the first investigation of the white-eye square superlattice pattern (WESSP) in a dielectric barrier discharge system. The evolution of patterns with increasing voltage is given. A phase diagram of WESSP as functions of gas pressure p and argon concentration φ is presented. The spatio-temporal dynamics of the WESSP is studied by using an intensified charge-coupled device camera and photomultipliers. Results show that the WESSP consists of four different transient sublattices, whose discharge sequence is small spots—spots on the line—halos—central spots in each half voltage cycle. The discharge moment and position of each sublattice are dependent upon the field of the wall charges produced by all sublattices discharged previously. (paper)

  17. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  18. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays

    International Nuclear Information System (INIS)

    Mumm, F; Sikorski, P

    2011-01-01

    We report a simple and fast approach to fabricate large, non-flaking arrays of CuO nanowires by oxidizing thin copper substrates in air. Oxidative CuO nanowire growth is commonly accompanied by oxide layer flaking due to stress at the copper-copper oxide interface. Using thin substrates is shown to prevent this flaking by introducing favourable material thickness ratios in the samples after oxidation. Additionally, thin foils allow larger scale topographic patterns to be transferred from an underlying mould to realize non-flat, nanowire-decorated surfaces. Further patterning is possible by electrodeposition of a nickel layer, which restricts nanowire growth to specific areas of the sample.

  19. Controlling growth density and patterning of single crystalline silicon nanowires

    International Nuclear Information System (INIS)

    Chang, Tung-Hao; Chang, Yu-Cheng; Liu, Fu-Ken; Chu, Tieh-Chi

    2010-01-01

    This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.

  20. Electrically robust silver nanowire patterns transferrable onto various substrates

    Science.gov (United States)

    Liu, Gui-Shi; Liu, Chuan; Chen, Hui-Jiuan; Cao, Wu; Qiu, Jing-Shen; Shieh, Han-Ping D.; Yang, Bo-Ru

    2016-03-01

    We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene glycol terephthalate (PET) exhibits remarkable durability under the bending test, tape test, ultrasonic treatment in water, and immersion of chemical solvents. In addition, we demonstrate that the AgNW-EPR composite work well as conductive patterns on the oxidized PDMS, polyvinyl alcohol (PVA), paper, and curved glass. The facile technique extends the applicability of AgNWs in the field of electronics, and it is potentially applicable to other nanomaterials.We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene

  1. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N., E-mail: msbnd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  2. Focused ion beam patterning to dielectrophoretically assemble single nanowire based devices

    International Nuclear Information System (INIS)

    La Ferrara, V; Massera, E; Francia, G Di; Alfano, B

    2010-01-01

    Direct-write processing is increasingly taking place in nanodevice fabrication. In this work, Focused Ion Beam (FIB), a powerful tool in maskless micromachining, is used for electrode patterning onto a silicon/silicon nitride substrate. Then a single palladium nanowire is assembled between electrodes by means of dielectrophoresis (DEP). The nanowire morphology depends on the electrode pattern when DEP conditions are fixed. FIB/DEP combination overcomes the problem of nanowire electrical contamination due to gallium ion bombardment and the as-grown nanowire retains its basic electrical properties. Single nanowire based devices have been fabricated with this novel approach and have been tested as hydrogen sensors, confirming the reliability of this technology.

  3. A lithographically patterned capacitor with horizontal nanowires of length 2.5 mm.

    Science.gov (United States)

    Yan, Wenbo; Thai, Mya Le; Dutta, Rajen; Li, Xiaowei; Xing, Wendong; Penner, Reginald M

    2014-04-09

    A symmetrical hybrid capacitor consisting of interdigitated, horizontal nanowires is described. Each of the 750 nanowires within the capacitor is 2.5 mm in length, consisting of a gold nanowire core (40 × ≈200 nm) encapsulated within a hemicylindrical shell of δ-phase MnO2 (thickness = 60-220 nm). These Au@δ-MnO2 nanowires are patterned onto a planar glass surface using lithographically patterned nanowire electrodeposition (LPNE). A power density of 165 kW/kg and energy density of 24 Wh/kg were obtained for a typical nanowire array in which the MnO2 shell thickness was 68 ± 8 nm. Capacitors incorporating these ultralong nanowires lost ≈10% of their capacity rapidly, during the first 20 discharge cycles, and then retained 90% of their maximum capacity for the ensuing 6000 cycles. The ability of capacitors consisting of ultralong Au@δ-MnO2 nanowires to simultaneously deliver high power and high capacity with acceptable cycle life is demonstrated.

  4. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  5. Pattern analysis of aligned nanowires in a microchannel

    International Nuclear Information System (INIS)

    Jeon, Young Jin; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2013-01-01

    An image processing method for evaluating the quality of nanowire alignment in a microchannel is described. A solution containing nanowires flowing into a microchannel will tend to deposit the nanowires on the bottom surface of the channel via near-wall shear flows. The deposited nanowires generally form complex directional structures along the direction of flow, and the physical properties of these structures depend on the structural morphology, including the alignment quality. A quantitative analysis approach to characterizing the nanowire alignment is needed to estimate the useful features of the nanowire structures. This analysis consists of several image processing methods, including ridge detection, texton analysis and autocorrelation function (ACF) calculation. The ridge detection method improved the ACF by extracting nanowire frames 1–2 pixels in width. Dilation filters were introduced to permit a comparison of the ACF results calculated from different images, regardless of the nanowire orientation. An ACF based on the FFT was then calculated over a square interrogation window. The alignment angle probability distribution was obtained using texton analysis. Monte Carlo simulations of artificially generated images were carried out, and the new algorithm was applied to images collected using two types of microscopy. (paper)

  6. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  7. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  8. Pattern formation of nanoflowers during the vapor-liquid-solid growth of silicon nanowires

    International Nuclear Information System (INIS)

    Bae, Joonho; Thompson-Flagg, Rebecca; Ekerdt, John G.; Shih, C.-K.

    2008-01-01

    Pattern formation of nanoflowers during the vapor-liquid-solid growth of Si nanowires is reported. Using transmission electron microscopy, scanning electron microscopy, and energy dispersive spectrometer analysis, we show that the flower consists of an Au/SiO x core-shell structure. Moreover, the growth of flower starts at the interface between the gold catalyst and the silicon nanowire, presumably by enhanced oxidation at this interface. The pattern formation can be classified as dense branching morphology (DBM). It is the first observation of DBM in a spherical geometry and at the nanoscale. The analysis of the average branching distance of this pattern shows that the pattern is most likely formed during the growth process, not the cooling process, and that the curvature of the gold droplet plays a crucial role in the frequency of branching

  9. Magnetic superlattices

    International Nuclear Information System (INIS)

    Kwo, J.; Hong, M.; McWhan, D.B.; Yafet, Y.; Fleming, R.M.; DiSalvo, F.J.; Waszczak, J.V.; Majkrzak, C.F.; Gibbs, D.; Goldmann, A.I.; Boni, P.; Bohr, J.; Grimm, H.; Bohr, J.; Chien, C.L.; Grimm, H.; Cable, J.W.

    1988-01-01

    Single crystal magnetic rare earth superlattices were synthesized by molecular beam epitaxy. The studies include four rare earth systems: Gd-Y, Dy-Y, Ho-Y, and Gd-Dy. The magnetic properties and the long-range spin order are reviewed in terms of the interfacial behavior, and the interlayer exchange coupling across Y medium

  10. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth

    2009-05-25

    A study was conducted to fabricate wafer-level patterned and aligned polymer nanowire (PNW), micro- and nanotube arrays (PNT), which were created by exposing the polymer material to plasma etching. The approach for producing wafer-level aligned PNWs involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber as etchants at flow rates of 15 sccm, 10 sccm, and 40 sccm. Inert gasses, such as Ar-form positive ions were incorporated to serve as a physical component to assist in the material degradation process. One power source (400 W) was used to generate dense plasma from the input gases, while another power source applied a voltage of approximately 600V to accelerate the plasma toward the substrate.

  11. PLD synthesis of GaN nanowires and nanodots on patterned catalyst surface for field emission study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T.; Hong, M.H. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Data Storage Institute, Singapore (Singapore); Tan, L.S. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Zhu, Y.W.; Sow, C.H. [National University of Singapore (Singapore). Nanoscience and Nanotechnology Initiative; National University of Singapore (Singapore). Department of Physics

    2008-11-15

    Patterned gallium nitride nanowires and nanodots have been grown on n-Si(100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/{mu}m to achieve a current density of 0.01 mA/cm{sup 2} and an enhanced field emission current density as high as 0.156 mA/cm{sup 2} at an applied field of 11 V/{mu}m. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties. (orig.)

  12. Comparative analysis of serial and parallel laser patterning of Ag nanowire thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Harim; Lee, Myeongkyu, E-mail: myeong@yonsei.ac.kr

    2017-03-31

    Highlights: • Serial and parallel laser patterning of Ag nanowire thin films is comparatively analyzed. • AgNW film can be directly patterned by a spatially-modulated pulsed Nd:YAG laser beam. • An area of 2.24 cm{sup 2} can be simultaneously patterned by a single pulse with energy of 350 mJ. - Abstract: Ag nanowire (AgNW) films solution-coated on a glass substrate were laser-patterned in two different ways. For the conventional serial process, a pulsed ultraviolet laser of 30 kHz repetition rate and ∼20 ns pulse width was employed as the laser source. For parallel patterning, the film was directly irradiated by a spatially-modulated Nd:YAG laser beam that has a low repetition rate of 10 kHz and a shorter pulse width of 5 ns. While multiple pulses with energy density ranging from 3 to 9 J/cm{sup 2} were required to pattern the film in the serial process, a single pulse with energy density of 0.16 J/cm{sup 2} completely removed AgNWs in the parallel patterning. This may be explained by the difference in patterning mechanism. In the parallel process using short pulses of 5 ns width, AgNWs can be removed in their solid state by the laser-induced thermo-elastic force, while they should be evaporated in the serial process utilizing a high-repetition rate laser. Important process parameters such as threshold energy density, speed, and available feature sizes are comparatively discussed for the two patterning.

  13. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens

    International Nuclear Information System (INIS)

    Madaria, Anuj R; Kumar, Akshay; Zhou Chongwu

    2011-01-01

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ DC /σ Op , for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ TE . Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  14. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.

    Science.gov (United States)

    Madaria, Anuj R; Kumar, Akshay; Zhou, Chongwu

    2011-06-17

    The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ(DC)/σ(Op), for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ(TE). Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.

  15. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning

    International Nuclear Information System (INIS)

    Basu, Nandita; Cross, Graham L W

    2015-01-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries. (paper)

  16. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    International Nuclear Information System (INIS)

    Kiefer, Karin; Haidar, Ayman; Abdul-Khaliq, Hashim; Lee, Juseok; Martinez Miró, Marina; Kaan Akkan, Cagri; Cenk Aktas, Oral; Veith, Michael

    2014-01-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future. (paper)

  17. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  18. Optimal spin current pattern for fast domain wall propagation in nanowires

    Science.gov (United States)

    Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong

    2011-03-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.

  19. [Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao

    2016-02-01

    The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and

  20. Magnetic modes in superlattices

    International Nuclear Information System (INIS)

    Oliveira, F.A.

    1990-04-01

    A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt

  1. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers

    KAUST Repository

    Zhang, Chendong

    2017-01-07

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice.

  2. Superlattices in thermoelectric applications

    International Nuclear Information System (INIS)

    Sofo, J.O.; Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1994-08-01

    The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure

  3. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth; Wang, Xudong; Liu, Jin; Snyder, Robert L.; Wang, Zhong Lin

    2009-01-01

    involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber

  4. Novel electronic structures of superlattice composed of graphene and silicene

    International Nuclear Information System (INIS)

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-01-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction

  5. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  6. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  7. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  8. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  9. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  10. Morphological Instability in InAs/GaSb Superlattices due to Interfacial Bonds

    International Nuclear Information System (INIS)

    Li, J.H.; Moss, S.C.; Stokes, D.W.; Caha, O.; Bassler, K.E.; Ammu, S.L.; Bai, J.

    2005-01-01

    Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers

  11. Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation

    KAUST Repository

    Yuan, Dajun

    2010-08-23

    A simple two-step method of fabricating vertically aligned and periodically distributed ZnO nanowires on gallium nitride (GaN) substrates is described. The method combines laser interference ablation (LIA) and low temperature hydrothermal decomposition. The ZnO nanowires grow heteroepitaxially on unablated regions of GaN over areas spanning 1 cm2, with a high degree of control over size, orientation, uniformity, and periodicity. High resolution transmission electron microscopy and scanning electron microscopy are utilized to study the structural characteristics of the LIA-patterned GaN substrate in detail. These studies reveal the possible mechanism for the preferential, site-selective growth of the ZnO nanowires. The method demonstrates high application potential for wafer-scale integration into sensor arrays, piezoelectric devices, and optoelectronic devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electronic structure of superlattices

    International Nuclear Information System (INIS)

    Altarelli, M.

    1987-01-01

    Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt

  13. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  14. Superlattice to nanoelectronics

    CERN Document Server

    Tsu, Raphael

    2005-01-01

    Superlattice to Nanoelectronics provides a historical overview of the early work performed by Tsu and Esaki, to orient those who want to enter into this nanoscience. It describes the fundamental concepts and goes on to answer many questions about todays 'Nanoelectronics'. It covers the applications and types of devices which have been produced, many of which are still in use today. This historical perspective is important as a guide to what and how technology and new fundamental ideas are introduced and developed. The author communicates a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials. Topics covered include * Introductory materials * Superlattice, Bloch oscillations and transport * Tunneling in QWs to QDs * Optical properties: optical transitions, size dependent dielectric constant, capacitance and doping * Quantum devices: New approaches without doping and heterojunctions - quantum confinement...

  15. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  16. Thermoelectric transport in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T L; Broido, D A

    1997-07-01

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  17. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.

    Science.gov (United States)

    Choi, Tae Young; Hwang, Byeong-Ung; Kim, Bo-Yeong; Trung, Tran Quang; Nam, Yun Hyoung; Kim, Do-Nyun; Eom, Kilho; Lee, Nae-Eung

    2017-05-31

    Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

  18. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    Science.gov (United States)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  19. Electrochemically grown rough-textured nanowires

    International Nuclear Information System (INIS)

    Tyagi, Pawan; Postetter, David; Saragnese, Daniel; Papadakis, Stergios J.; Gracias, David H.

    2010-01-01

    Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)-Au plating solution mixture that precipitates an Ag-Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.

  20. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    International Nuclear Information System (INIS)

    Wang, C.; Wang, F.; Cao, J. C.

    2014-01-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation

  1. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.

    Science.gov (United States)

    Wang, C; Wang, F; Cao, J C

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  2. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  3. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shen, Jiancang; Pan, Lijia; Shi, Yi, E-mail: yshi@nju.edu.cn [Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210093 (China)

    2015-01-26

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  4. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... are presented. In the Gd‐Y system, an antiphase domain structure develops for certain Y layer spacings, whereas modified helical moment configurations are found to occur in the other systems, some of which are commensurate with the chemical superlattice wavelength. References are made to theoretical interaction...

  5. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  6. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  7. Characterization of the Nb-B superlattice system

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.G.; Sarmiento-Chavez, A.; Schenone, N.; Llacsahuanga Allcca, A.E.; Gómez Berisso, M.; Fasano, Y.; Guimpel, J., E-mail: jguimpel@cab.cnea.gov.ar

    2016-12-15

    Highlights: • In this manuscript we study the crystalline and superconducting properties of this system, as a possible material to be used in solid state neutron detector sensors. • The results show that this superlattice system can be grown even for very thin layers, in spite of the Nb-B binary system showing many possible compounds, which could enhance interdifussion at the interfaces. • Also, the superconducting properties are not degraded, and they are even enhanced with respect to those of single Nb films of the same thickness. • In conclusion, we find that this system is a good potential candidate for the design and construction of solid state neutron Transition Edge Sensors. - Abstract: We study the growth, stacking and superconducting properties of Nb and B thin films and superlattices. The interest in these resides in their possible use in transition edge neutron sensors. The samples were grown by magnetron sputtering over Si (1  0  0) substrates. The X-ray diffraction patterns for all Nb containing samples show a Nb (1  1  0) preferential orientation. From the low-angle X-ray reflectivity we obtain information on the superlattice structure. The superconducting transition temperatures of the superlattices, obtained from the temperature dependence of the magnetization, are higher than those of single Nb films of similar thickness. The temperature dependence of the perpendicular and parallel upper critical fields indicate that the superlattices behave as an array of decoupled superconducting Nb layers.

  8. Characterization of the Nb-B superlattice system

    International Nuclear Information System (INIS)

    Franco, D.G.; Sarmiento-Chavez, A.; Schenone, N.; Llacsahuanga Allcca, A.E.; Gómez Berisso, M.; Fasano, Y.; Guimpel, J.

    2016-01-01

    Highlights: • In this manuscript we study the crystalline and superconducting properties of this system, as a possible material to be used in solid state neutron detector sensors. • The results show that this superlattice system can be grown even for very thin layers, in spite of the Nb-B binary system showing many possible compounds, which could enhance interdifussion at the interfaces. • Also, the superconducting properties are not degraded, and they are even enhanced with respect to those of single Nb films of the same thickness. • In conclusion, we find that this system is a good potential candidate for the design and construction of solid state neutron Transition Edge Sensors. - Abstract: We study the growth, stacking and superconducting properties of Nb and B thin films and superlattices. The interest in these resides in their possible use in transition edge neutron sensors. The samples were grown by magnetron sputtering over Si (1  0  0) substrates. The X-ray diffraction patterns for all Nb containing samples show a Nb (1  1  0) preferential orientation. From the low-angle X-ray reflectivity we obtain information on the superlattice structure. The superconducting transition temperatures of the superlattices, obtained from the temperature dependence of the magnetization, are higher than those of single Nb films of similar thickness. The temperature dependence of the perpendicular and parallel upper critical fields indicate that the superlattices behave as an array of decoupled superconducting Nb layers.

  9. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  10. Sm cluster superlattice on graphene/Ir(111)

    Science.gov (United States)

    Mousadakos, Dimitris; Pivetta, Marina; Brune, Harald; Rusponi, Stefano

    2017-12-01

    We report on the first example of a self-assembled rare earth cluster superlattice. As a template, we use the moiré pattern formed by graphene on Ir(111); its lattice constant of 2.52 nm defines the interparticle distance. The samarium cluster superlattice forms for substrate temperatures during deposition ranging from 80 to 110 K, and it is stable upon annealing to 140 K. By varying the samarium coverage, the mean cluster size can be increased up to 50 atoms, without affecting the long-range order. The spatial order and the width of the cluster size distribution match the best examples of metal cluster superlattices grown by atomic beam epitaxy on template surfaces.

  11. A silicon nanowire heater and thermometer

    Science.gov (United States)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  12. Dissipative chaos in semiconductor superlattices

    Directory of Open Access Journals (Sweden)

    F. Moghadam

    2008-03-01

    Full Text Available In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of chaotic behaviors.

  13. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  14. Laser patterned polymer/nanotube composite electrodes for nanowire transistors on flexible substrates

    DEFF Research Database (Denmark)

    Beliatis, Michail

    2017-01-01

    Fabrication techniques such as laser patterning offer excellent potential for low cost and large area device fabrication. Conductive polymers can be used to replace expensive metallic inks such as silver and gold nanoparticles for printing technology. Electrical conductivity of the polymers can...

  15. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  16. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  17. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  18. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...... atomic force microscopy and from polarized far-field optical microscopy for various prototypical molecules are reproduced by electrostatic and Monte Carlo calculations. Based on the crystal structure, predictions on the growth habit from other conjugated molecules become in reach....

  19. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  20. Topotactic interconversion of nanoparticle superlattices.

    Science.gov (United States)

    Macfarlane, Robert J; Jones, Matthew R; Lee, Byeongdu; Auyeung, Evelyn; Mirkin, Chad A

    2013-09-13

    The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.

  1. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  2. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  3. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers

    KAUST Repository

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function

  4. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  5. Phonon-induced optical superlattice.

    Science.gov (United States)

    de Lima, M M; Hey, R; Santos, P V; Cantarero, A

    2005-04-01

    We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

  6. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  7. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  8. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  9. Thermal conductivity and heat transfer in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G; Neagu, M; Borca-Tasciuc, T

    1997-07-01

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  10. Magnetostatic Interaction in Fe-Co Nanowires

    Directory of Open Access Journals (Sweden)

    Laura Elbaile

    2012-01-01

    Full Text Available Arrays of Fe-Co alloy nanowires with diameter around 35 nm and several micrometers in length have been synthesized by codepositing Fe and Co into porous anodic alumina. The morphology, structure, and magnetic properties of the nanowires (hysteresis loops and remanence curves were characterized by SEM, TEM, X-ray diffraction (XRD, and VSM, respectively. The XRD patterns indicate that the Fe-Co nanowires present a body-centered cubic (bcc structure and a preferred (110 orientation perpendicular to the template surface. From the hysteresis loops obtained with the magnetic field applied in the axis direction of the nanowires, we can observe that the coercive field slightly decreases when the nanowire length increases. This magnetic behaviour is analyzed considering the shape anisotropy and the dipolar interactions among nanowires.

  11. Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy

    Science.gov (United States)

    Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue

    2018-02-01

    The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.

  12. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing

    2018-05-04

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states for both superlattices are found due to epitaxial strain. At the interfaces, however, the V spins couple antiferromagnetically for m = 5 and ferromagnetically for m = 6 (m‐dependence of the magnetization). Electronic reconstruction in form of charge ordering is predicted to occur with V3+ and V4+ states arranged in a checkerboard pattern on both sides of the SrO layer. As compared to bulk LaVO3, the presence of V4+ ions introduces in‐gap states that strongly reduce the bandgap and influence the orbital occupation and ordering.

  13. Tunneling of electrons through semiconductor superlattices

    Indian Academy of Sciences (India)

    Unknown

    Tunneling of electrons through semiconductor superlattices. C L ROY. Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. The purpose of the present paper is to report a study of tunneling of electrons through semicon- ductor superlattices (SSL); specially, we have ...

  14. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  15. Photostimulated attenuation of hypersound in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.; Adjepong, S.K.

    1992-10-01

    Photostimulated attenuation of hypersound in semiconductor superlattice has been investigated. It is shown that the attenuation coefficient depends on the phonon wave vector q in an oscillatory manner and that from this oscillation the band width Δ of superlattice can be found. (author). 14 refs, 1 fig

  16. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    Se nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at 300 K. In addition, using a field-effect gated device, the Seebeck coefficient of single PbSe nanowires could be tuned from 64 to 193 muV˙K-1. This direct electrical field control of the electrical conductivity and Seebeck coefficient suggests a powerful strategy for optimizing ZT in thermoelectric devices and these results represent the first demonstration of field-effect modulation of the thermoelectric figure of merit in a single semiconductor nanowire. This novel strategy for thermoelectric property modulation could prove especially important in optimizing the thermoelectric properties of semiconductors where reproducible doping is difficult to achieve. Recent theoretical work has shown large enhancements in ZT for single-crystal nanowires containing nanoscale interfaces along their lengths. M2O3(ZnO) n ( M = In, Ga, Fe) superlattice nanowires were synthesized via a novel solid-state diffusion approach to investigate this possible enhancement. Using atomic resolution Z-contrast STEM imaging a detailed structural analysis was performed on In2-xGaxO3(ZnO) n nanowires, leading to the discovery that octahedral inclusions within the superlattice structure are likely generated through a defect-assisted process. Single-nanowire thermal and electrical measurements on In2-x GaxO3(ZnO)n reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, giving an order of magnitude enhancement over similar bulk materials at room temperature. This is the first report of enhancement of all three thermoelectric parameters (Seebeck coefficient, electrical conductivity, and thermal resistivity) for a nanowire system. Photoelectrochemical water splitting is another exciting renewable energy application that can

  17. Preparation and Characterization of Tin Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    A. Kabiri

    2013-12-01

    Full Text Available The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM, EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have been grown in the form of tetragonal crystal structures with the lattice parameter of a=b=0.440 nm, and c=0.370 nm. The SEM images reveal that SnO2 nanowires have successfully been grown on the Si substrate. The EDS patterns show that only elements of Sn, O and Au are detected. Prior to the VLS process the substrate is coated by a thin layer of Au. The diameter of nanowires is measured to be something between 20-100 nm.

  18. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions

    International Nuclear Information System (INIS)

    McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; Lee, Byeongdu; Olvera de la Cruz, Monica; Mirkin, Chad A.

    2017-01-01

    Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB 2 packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.

  19. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  20. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  1. Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr0.52Ti0.48)O3

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Singh, Akhilesh Kumar; Ragini; Pandey, Dhananjai

    2005-01-01

    Recent controversy about the space group of the low temperature superlattice phase of Pb(Zr 0.52 Ti 0.48 )O 3 is settled. It is shown that the R3c space group for the superlattice phase cannot correctly account for the peak positions of the superlattice reflections present in the neutron diffraction patterns. The correct space group is reconfirmed to be Cc. A comparison of the atomic coordinates of Cc and Cm space groups is also presented to show that in the absence of superlattice reflections, as is the case with x-ray diffraction data, one would land up in the Cm space group. This superlattice phase is found to coexist with another monoclinic phase of the Cm space group

  2. Inkjet-printed transparent nanowire thin film features for UV photodetectors

    KAUST Repository

    Chen, Shih Pin; Duran Retamal, Jose Ramon; Lien, Der Hsien; He, Jr-Hau; Liao, Ying Chih

    2015-01-01

    In this study, a simple and effective direct printing method was developed to print patterned nanowire thin films for UV detection. Inks containing silver or titanium dioxide (TiO2) nanowires were first formulated adequately to form stable

  3. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  4. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  5. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  6. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  7. Moessbauer study of Fe-Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou (China)]. E-mail: chenzy@lzu.edu.cn; Zhan Qingfeng; Xue Desheng; Li Fashen [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou (China); Zhou Xuezhi; Kunkel, Henry; Williams, Gwyn [Department of Physics and Astronomy, the University of Manitoba (Canada)

    2002-01-28

    Arrays of Fe{sub 1-x}Co{sub x} (0.0{<=}x{<=}0.92) nanowires have been prepared by an electrochemical process, co-depositing Fe and Co atoms into the pores of anodic aluminium; their compositions were determined by atomic absorption spectroscopy. Transmission electron microscope results show that the nanowires are regularly spaced and uniform in shape with lengths of about 7.5 {mu}m and diameters of 20 nm. The x-ray diffraction indicates a texture in the deposited nanowires. For the composition below 82 at.% cobalt, the nanowires had a body-centred-cubic structure with a [110] preferred orientation. For the 92 at.% cobalt sample, the alloy exhibited a mixture of bcc and face-centred-cubic structure. The room temperature {sup 57}Fe Moessbauer spectra of the arrays of Fe{sub 1-x}Co{sub x} nanowires have second and fifth absorption lines of the six-line pattern with almost zero intensity, indicating that the internal magnetic field in the nanowires lies along the long axis of the nanowire. The maximum values of the hyperfine field (B{sub hf} 36.6{+-}0.1 T) and isomer shift (IS=0.06{+-}0.01 mm s-1) occur for 44 at.% cobalt. The variations of the isomer shift and the linewidths with composition indicate that the Fe{sub 1-x}Co{sub x} alloy nanowires around the equiatomic composition are in an atomistic disordered state. (author)

  8. Preparation and characterization of CuO nanowire arrays

    International Nuclear Information System (INIS)

    Yu Dongliang; Ge Chuannan; Du Youwei

    2009-01-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 0 C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  9. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  10. Theory of transmission through disordered superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Hu, Ben Yu-Kuang

    1999-01-01

    We derive a theory for transmission through disordered finite superlattices in which the interface roughness scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission through samples with large cross sections. These calculations can be performed...

  11. Structure of highly perfect semiconductor strained-layer superlattices

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1989-01-01

    High-resolution x-ray diffraction (HRXRD) measurements of strained-layer superlattices (SLS's) have been carried out using a four-crystal monochromator. A wide asymmetric range of sharp higher-order x-ray satellite peaks is observed indicating well-defined periodic structures. Using a kinematical diffraction step model very good agreement between measured and simulated x-ray satellite patterns could be achieved. These results show that this x- ray method is a powerful tool to evaluate the crystal quality of SLS's

  12. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  13. Enhancement of dielectric and ferroelectric properties of PbZrO3/PbTiO3 artificial superlattices

    International Nuclear Information System (INIS)

    Choi, Taekjib; Lee, Jaichan

    2005-01-01

    PbZrO 3 (PZO)/PbTiO 3 (PTO) artificial superlattices have been grown on La 0.5 Sr 0.5 CoO 3 (LSCO) (100)/MgO (100) substrate by pulsed laser deposition with various stacking periods from 1 to 100 unit cells. The PZO/PTO artificial lattice exhibited a diffraction pattern characteristic of a superlattice structure, i.e., a main diffraction peak with satellite peaks. The electrical properties of the superlattices were investigated as a function of the stacking period. The dielectric constant and remnant polarization improved on decreasing the stacking periodicity. The dielectric constant of the superlattice reached 800 at a stacking period of 1unit cell/1unit cell (PZO 1 /PTO 1 ), which is larger than that of the single PZT solid-solution film. Moreover, the remnant polarization reached a maximum, 2Pr = 38.7 μC/cm 2 , at a 2-unit-cell stacking period. Progressive enhancement of dielectric constant and remnant polarization in artificial PZO/PTO superlattice was accompanied by expansion of the (100)-plane spacing on decreasing the stacking periodicity. These results suggest that the lattice strain developed in the PZO/PTO superlattice may have influence on dielectric constant and ferroelectric behavior.

  14. Optical properties of graphene superlattices.

    Science.gov (United States)

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  15. Optical properties of graphene superlattices

    International Nuclear Information System (INIS)

    Le, H Anh; Do, V Nam; Ho, S Ta; Nguyen, D Chien

    2014-01-01

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, U b ), where U b is the potential barrier height. In the higher photon energy range, i.e. Ω > U b , the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism. (paper)

  16. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    Science.gov (United States)

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  17. Platinum boride nanowires: Synthesis and characterization

    International Nuclear Information System (INIS)

    Ding Zhanhui; Qiu Lixia; Zhang Jian; Yao Bin; Cui Tian; Guan Weiming; Zheng Weitao; Wang Wenquan; Zhao Xudong; Liu Xiaoyang

    2012-01-01

    Highlights: ► Platinum boride nanowires have been synthesized via the direct current arc discharge method. ► XRD, TEM and SAED indicate that the nanowires are single-crystal PtB. ► Two broad photoluminescence emission peaks at about 586 nm and 626 nm have been observed in the PL spectroscopy of PtB nanowires. - Abstract: Platinum boride (PtB) nanowires have been successfully fabricated with direct current arc discharge method using a milled mixture of platinum (Pt) and boron nitride (BN) powders. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the compositions, morphology, and structures of the samples. The results show that PtB nanowires are 30–50 nm thick and 20–30 μm long. TEM and selected area electron diffraction (SAED) patterns identify that the PtB nanowires are single-crystalline in nature. A growth mechanism based on vapor–liquid–solid (VLS) process is proposed for the formation of nanowires.

  18. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    Science.gov (United States)

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  19. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    OpenAIRE

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-?m line width, 9-?m pitch, and 6-?m height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed...

  20. Superlattice design for optimal thermoelectric generator performance

    Science.gov (United States)

    Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran

    2018-05-01

    We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el   =  6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.

  1. Magneto-transport measurements of domain wall propagation in individual multi segmented cylindrical nanowires

    KAUST Repository

    Mohammed, Hanan; Vidal, Enrique Vilanova; Ivanov, Yurii P.; Kosel, Jü rgen

    2016-01-01

    Magnetotransport measurements were performed on multisegmented Co/Ni nanowires fabricated by template-assisted electrodeposition. Individual nanowires were isolated and electrodes patterned to study their magnetization reversal process. The magnetoresistance reversal curve of the multisegmented nanowire exhibits a step in the switching field. Micromagnetic simulations of the magnetization reversal process are in agreement with the experimental findings and attribute the step at the switching field to the pinning of a domain wall at the interface of the Co/Ni nanowire.

  2. Magneto-transport measurements of domain wall propagation in individual multi segmented cylindrical nanowires

    KAUST Repository

    Mohammed, Hanan

    2016-03-01

    Magnetotransport measurements were performed on multisegmented Co/Ni nanowires fabricated by template-assisted electrodeposition. Individual nanowires were isolated and electrodes patterned to study their magnetization reversal process. The magnetoresistance reversal curve of the multisegmented nanowire exhibits a step in the switching field. Micromagnetic simulations of the magnetization reversal process are in agreement with the experimental findings and attribute the step at the switching field to the pinning of a domain wall at the interface of the Co/Ni nanowire.

  3. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    pattern (SAED) of SnO2/WO2.9 heterojunction for case 7. TEM (Fig. 14(a)) reveals that the coating on the tungsten- oxide nanowires is actually a...tungsten oxide nanowire,s resulting in radial growth of Zn2SnO4 nanocube/WO2.9 nanowire heterojunction . Furthermore, the combined flame and solution...SECURITY CLASSIFICATION OF: Progress for the project has been made in various areas. Specifically, we report on: (i) flame synthesis of metal- oxide

  4. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  5. Design and Characterisation of III-V Semiconductor Nanowire Lasers

    Science.gov (United States)

    Saxena, Dhruv

    -quantum well (MQW) gain regions are investigated. The TE01 mode, due to its polarisation and excellent overlap with the gain region, is predicted to lase in these nanowire heterostructures. Through gain/loss calculations, important design criteria, such as the optimal well thickness to minimise the threshold carrier density and the optimal number of QWs to minimise the threshold fluence are determined. Based on the design, MQW nanowire heterostructures containing eight uniform coaxial GaAs/AlGaAs MQWs are grown. Room-temperature lasing is demonstrated from individual nanowires at a threshold fluence that is two times lower compared to the bulk GaAs nanowire lasers. Lasing is also verified to be from TE01 mode by polarisation measurements. Lastly, a mode characterisation technique based on imaging the polarisation dependent far-field emission pattern of nanowire lasers is presented. To demonstrate this technique, InP nanowire lasers are used, because of their excellent structural characteristics. The InP nanowire lasers are designed to lase from different guided modes by varying the nanowire diameter. The experimentally obtained polarisation dependent far-field profiles match very well with numerical simulations and enable unambiguous identification of the lasing mode(s) in nanowire lasers. Overall, this thesis presents extensive modelling of nanowire lasers, which is supported by experimental results. The modelling will provide a useful reference for developing novel nanoscale lasers and improving the performance of current nanowire lasers.

  6. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  7. InP nanowire array solar cell with cleaned sidewalls

    NARCIS (Netherlands)

    Cui, Y.; Plissard, S.; Wang, J.; Vu, T.T.T.; Smalbrugge, E.; Geluk, E.J.; de Vries, T.; Bolk, J.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We have fabricated InP nanowire array solar cells with an axial p-n junction. Catalyst gold nanoparticles were first patterned into an array by nanoimprint lithography. The nanowire array was grown in 19 minutes by vapor-liquid-solid growth. The sidewalls were in-situ etched by HCl and ex-situ

  8. Electron emission from individual indium arsenide semiconductor nanowires

    NARCIS (Netherlands)

    Heeres, E.C.; Bakkers, E.P.A.M.; Roest, A.L.; Kaiser, M.A.; Oosterkamp, T.H.; Jonge, de N.

    2007-01-01

    A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve,

  9. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  10. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  11. Tunneling in quantum superlattices with variable lacunarity

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro, Francisco R. [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)], E-mail: jmonsori@fis.upv.es

    2008-05-19

    Fractal superlattices are composite, aperiodic structures comprised of alternating layers of two semiconductors following the rules of a fractal set. The scattering properties of polyadic Cantor fractal superlattices with variable lacunarity are determined. The reflection coefficient as a function of the particle energy and the lacunarity parameter present tunneling curves, which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for such curves are derived using the transfer matrix method. Comparison with numerical results shows good accuracy. The new results may be useful in the development of band-pass energy filters for electrons, semiconductor solar cells, and solid-state radiation sources up to THz frequencies.

  12. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    Science.gov (United States)

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-05-09

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  13. Superlattice structure of Ce{sup 3+}-doped BaMgF{sub 4} fluoride crystals - x-ray diffraction, electron spin-resonance, and optical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M.; Hattori, K. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Kodama, N. [Department of Materials Science and Engineering, Faculty of Engineering and Resource Science, Akita University, Akita (Japan); Ishizawa, N. [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Honda, M. [Faculty of Science, Naruto University of Education, Naruto (Japan); Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-09-14

    The x-ray diffraction patterns for Ce{sup 3+}-doped BaMgF{sub 4} (BMF) crystals suggest the existence of superlattice structure. The superlattice model is consistent with the characterization of the 4f{sup 1} ground state of Ce{sup 3+} as a probe ion using the electron spin-resonance (ESR) technique. The distinct Ce{sup 3+} luminescence spectra with different peak energies and lifetimes also support the superlattice model. Although the detailed superlattice structure could not be analysed using the diffraction spots, a model has been proposed, taking into account the eight Ce{sup 3+} polyhedra with different anion coordinations in the unit cell of the BMF crystal obtained from the ESR experiments. (author)

  14. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  15. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  16. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...... cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... the light. The concentration and light trapping means that single junction nanowire solar cells have a higher theoretical maximum efficiency than equivalent planar solar cells. We have demonstrated the built-in light concentration of nanowires, by growing, contacting and characterizing a solar cell...

  17. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    Science.gov (United States)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  18. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  19. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  20. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  1. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  2. Quantitative x-ray structure determination of superlattices and interfaces

    International Nuclear Information System (INIS)

    Schuller, I.K.; Fullerton, E.E.

    1990-01-01

    This paper presents a general procedure for quantitative structural refinement of superlattice structures. To analyze a wide range of superlattices, the authors have derived a general kinematical diffraction formula that includes random, continuous and discrete fluctuations from the average structure. By implementing a non-linear fitting algorithm to fit the entire x-ray diffraction profile, refined parameters that describe the average superlattice structure, and deviations from this average are obtained. The structural refinement procedure is applied to a crystalline/crystalline Mo/Ni superlattices and crystalline/amorphous Pb/Ge superlattices. Roughness introduced artificially during growth in Mo/Ni superlattices is shown to be accurately reproduced by the refinement

  3. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.

    1999-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains

  4. Exchange bias in Fe/Cr double superlattices

    International Nuclear Information System (INIS)

    Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C. S.; Bader, S. D.

    2000-01-01

    Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains. (c) 2000 American Vacuum Society

  5. The solitary electromagnetic waves in the graphene superlattice

    International Nuclear Information System (INIS)

    Kryuchkov, Sergey V.; Kukhar', Egor I.

    2013-01-01

    d’Alembert equation written for the electromagnetic waves propagating in the graphene superlattice is analyzed. The possibility of the propagation of the solitary electromagnetic waves in the graphene superlattice is discussed. The amplitude and the width of the electromagnetic pulse are calculated. The drag current induced by such wave across the superlattice axis is investigated. The numerical estimate of the charge dragged by the solitary wave is made.

  6. Optical properties of metallic Fibonacci quasi-superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Liu Nianhua; Wu Xiang

    1990-06-01

    Within the approximation of hydrodynamic model, the optical properties of the metallic Fibonacci quasi-superlattice have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the transfer-matrix method and taking account of damping effects, we have discussed the electromagnetic normal modes for the quasisuperlattice in the rational approximation. The related dispersion curves explain the reflection spectra well, and we found that similar to the reflectivities, both real part and imagine part of the dispersion relation pattern has a rich structure of self-similarity. With the increasing of the generation number, the electromagnetic modes all become critical. (author). 13 refs, 3 figs

  7. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  8. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  9. From nanodiamond to nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  10. Probe based manipulation and assembly of nanowires into organized mesostructures

    Science.gov (United States)

    Reynolds, K.; Komulainen, J.; Kivijakola, J.; Lovera, P.; Iacopino, D.; Pudas, M.; Vähäkangas, J.; Röning, J.; Redmond, G.

    2008-12-01

    A convenient approach to patterning inorganic and organic nanowires using a novel probe manipulator is presented. The system utilizes an electrochemically etched tungsten wire probe mounted onto a 3D actuator that is directed by a 3D controller. When it is engaged by the user, the movement of the probe and the forces experienced by the tip are simultaneously reported in real time. Platinum nanowires are manipulated into organized mesostructures on silicon chip substrates. In particular, individual nanowires are systematically removed from aggregates, transferred to a chosen location, and manipulated into complex structures in which selected wires occupy specific positions with defined orientations. Rapid prototyping of complex mesostructures, by pushing, rotating and bending conjugated polymer, i.e., polyfluorene, nanowires into various configurations, is also achieved. By exploiting the strong internal axial alignment of polymer chains within the polyfluorene nanowires, mesostructures tailored to exhibit distinctly anisotropic optical properties, such as birefringence and photoluminescence dichroism, are successfully assembled on fused silica substrates.

  11. Probe based manipulation and assembly of nanowires into organized mesostructures

    International Nuclear Information System (INIS)

    Reynolds, K; Lovera, P; Iacopino, D; Redmond, G; Komulainen, J; Pudas, M; Vaehaekangas, J; Kivijakola, J; Roening, J

    2008-01-01

    A convenient approach to patterning inorganic and organic nanowires using a novel probe manipulator is presented. The system utilizes an electrochemically etched tungsten wire probe mounted onto a 3D actuator that is directed by a 3D controller. When it is engaged by the user, the movement of the probe and the forces experienced by the tip are simultaneously reported in real time. Platinum nanowires are manipulated into organized mesostructures on silicon chip substrates. In particular, individual nanowires are systematically removed from aggregates, transferred to a chosen location, and manipulated into complex structures in which selected wires occupy specific positions with defined orientations. Rapid prototyping of complex mesostructures, by pushing, rotating and bending conjugated polymer, i.e., polyfluorene, nanowires into various configurations, is also achieved. By exploiting the strong internal axial alignment of polymer chains within the polyfluorene nanowires, mesostructures tailored to exhibit distinctly anisotropic optical properties, such as birefringence and photoluminescence dichroism, are successfully assembled on fused silica substrates.

  12. Generic nano-imprint process for fabrication of nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurelie; Hocevar, Moira; Algra, Rienk E; Timmering, Eugene C; Verschuuren, Marc A; Immink, George W G; Verheijen, Marcel A; Bakkers, Erik P A M [Philips Research Laboratories Eindhoven, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Diedenhofen, Silke L [FOM Institute for Atomic and Molecular Physics c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Vlieg, E, E-mail: e.p.a.m.bakkers@tue.nl [IMM, Solid State Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-02-10

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 deg. C for InP and 700 deg. C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.

  13. Superlattices: problems and new opportunities, nanosolids

    Directory of Open Access Journals (Sweden)

    Tsu Raphael

    2011-01-01

    Full Text Available Abstract Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids.

  14. Engineering the oxygen coordination in digital superlattices

    Science.gov (United States)

    Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.

    2017-12-01

    The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.

  15. Superlattices of platinum and palladium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have used a nonionic inverse micelle synthesis technique to form nanoclusters of platinum and palladium. These nanoclusters can be rendered hydrophobic or hydrophilic by the appropriate choice of capping ligand. Unlike Au nanoclusters, Pt nanoclusters show great stability with thiol ligands in aqueous media. Alkane thiols, with alkane chains ranging from C{sub 6} to C{sub 18} were used as hydrophobic ligands, and with some of these they were able to form 2-D and/or 3-D superlattices of Pt nanoclusters as small as 2.7 nm in diameter. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function of the particle centers, from which they can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the gaps between particles within superlattice domains increases, but more slowly than one might expect, possibly indicating thiol chain interdigitation.

  16. Electron dynamics in intentionally disordered semiconductor superlattices

    International Nuclear Information System (INIS)

    Diez, E.; Sanchez, A.; Dominguez-Adame, F.; Berman, G.P.

    1996-01-01

    We study the dynamical behavior of disordered quantum well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Domacute inguez-Adame et al.[Phys. Rev. B 51, 14359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controlling the output band using a dc-electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work. copyright 1996 The American Physical Society

  17. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    structure of bulk CaMnO3 and LaNiO3. An onsite Coulomn interaction term U is tested for both the Mn and Ni atoms. G-type antiferromagnetism and insulating properties of CaMnO3 are reproduced with U = 3 eV and ferromagnetic ordering is favorable when CaMnO3 is strained to the substrate lattice constant. This implies that the CaMnO3 magnetism is sensitive to both strain and the U parameter. Antiparallel orientation of the Mn and Ti moments has been found experimentally in the BiMnO3/SrTiO3 superlattice. By introducing O defects at different layers, we find similar patterns when the defect is located in the BiO layer. The structural, electronic and magnetic properties are analysed. Strong hybridization between the d3z2−r2 orbitals of the Mn and Ti atoms near the O defect is found. The effect of uniaxial strain for the formation of a two-dimensional electron gas and the interfacial Ti magnetic moments of the (LaMnO3)2/(SrTiO3)2 superlattice are investigated. By tuning the strain state from compressive to tensile, we predict under which conditions the spin-polarization of the electron gas is enhanced. Since the thickness ratio of the superlattice correlates with the strain state, we also study the structural, electronic and magnetism trends of (LaMnO3)n/(SrTiO3)m superlattices with varying layer thicknesses. The main finding is that half-metallicity will vanish for n, m > 8. Reduction of the minority band gaps with increasing n and m originates mainly from an energetic downshift of the Ti dxy states. Along with these, the interrelation between the interface geometry and the electronic properties of the antiferromagnetic/ferromagnetic superlattice BiFeO3/ La0.7Sr0.3MnO3 is investigated. The magnetic and optical properties are also analysed by first principles calculations. The half-metallic character of bulk La0.7Sr0.3MnO3 is maintained in the superlattice, which implies potential applications on spintronics and memory devices.

  18. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    Science.gov (United States)

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  19. Formation of crystalline InGaO_3(ZnO)_n nanowires via the solid-phase diffusion process using a solution-based precursor

    International Nuclear Information System (INIS)

    Guo, Yujie; Seo, Jin Won; Bilzen, Bart Van; Locquet, Jean Pierre

    2015-01-01

    One-dimensional single crystalline InGaO_3(ZnO)_n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence. (paper)

  20. Possible THz gain in superlattices at a stable operation point

    DEFF Research Database (Denmark)

    Wacker, Andreas; Allen, S. J.; Scott, J. S.

    1997-01-01

    We demonstrate that semiconductor superlattices may provide gain at THz frequencies at an operation point which is stable against fluctuations at lower frequency. While an explicit experimental demonstration for the sample considered could not be achieved, the underlying principle of quantum resp...... response is quite general and may prove successful for differently designed superlattices....

  1. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  2. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.

    Science.gov (United States)

    Felix, Isaac M; Pereira, Luiz Felipe C

    2018-02-09

    Superlattices are ideal model systems for the realization and understanding of coherent (wave-like) and incoherent (particle-like) phonon thermal transport. Single layer heterostructures of graphene and hexagonal boron nitride have been produced recently with sharp edges and controlled domain sizes. In this study we employ nonequilibrium molecular dynamics simulations to investigate the thermal conductivity of superlattice nanoribbons with equal-sized domains of graphene and hexagonal boron nitride. We analyze the dependence of the conductivity with the domain sizes, and with the total length of the ribbons. We determine that the thermal conductivity reaches a minimum value of 89 W m -1 K -1 for ribbons with a superlattice period of 3.43 nm. The effective phonon mean free path is also determined and shows a minimum value of 32 nm for the same superlattice period. Our results also reveal that a crossover from coherent to incoherent phonon transport is present at room temperature for BNC nanoribbons, as the superlattice period becomes comparable to the phonon coherence length. Analyzing phonon populations relative to the smallest superlattice period, we attribute the minimum thermal conductivity to a reduction in the population of flexural phonons when the superlattice period equals 3.43 nm. The ability to manipulate thermal conductivity using superlattice-based two-dimensional materials, such as graphene-hBN nanoribbons, opens up opportunities for application in future nanostructured thermoelectric devices.

  3. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  4. MBE growth and characterisation of light rare-earth superlattices

    DEFF Research Database (Denmark)

    Ward, R.C.C.; Wells, M.R.; Bryn-Jacobsen, C.

    1996-01-01

    The molecular beam epitaxy growth techniques which have already successfully produced a range of heavy rare-earth superlattices have now been extended to produce superlattices of two light rare-earth elements, Nd/Pr, as well as superlattices and alloy films of a heavy/light system, Ho/Pr. High......-resolution X-ray diffraction analysis shows the Nd/Pr superlattices to be of high structural quality, while the Ho/Pr superlattices are significantly less so. In the Ho/Pr superlattices, Pr is found to retain its bulk dhcp crystal structure even in thin layers (down to 6 atomic planes thick) sandwiched between...... thick layers of hcp Ho. In addition, neutron diffraction studies of the He/Pr superlattices have shown that the helical Ho magnetic order is not coherent through the dhcp Pr layers, in contrast to previous hcp/hcp superlattices Ho/Y, Ho/Lu and Ho/Er. The series of Ho:Pr alloy films has shown structural...

  5. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    Unknown

    Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes. 1. Introduction ... tem and a model of superlattice configuration was proposed4, in terms of .... C18 system,4 the angle with value = 3⋅3° was seen to play an ...

  6. Band structure of superlattice with δ-like potential

    International Nuclear Information System (INIS)

    Gashimzade, N.F.; Gashimzade, F.M.; Hajiev, A.T.

    1993-08-01

    Band structure of superlattice with δ-like potential has been calculated taking into account interaction of carriers of different kinds. Superlattices of semiconductors with degenerated valence band and zero-gap semiconductors have been considered. For the latter semimetal-semiconductor transition has been obtained. (author). 8 refs, 1 fig

  7. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  8. Functionalised Silver Nanowire Structures

    International Nuclear Information System (INIS)

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  9. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via ato...

  10. Investigation of switching region in superlattice phase change memories

    Science.gov (United States)

    Ohyanagi, T.; Takaura, N.

    2016-10-01

    We investigated superlattice phase change memories (PCMs) to clarify which regions were responsible for switching. We observed atomic structures in a superlattice PCM film with a stack of GeTe / Sb2Te3 layers using atomically resolved EDX maps, and we found an intermixed region with three atom species of the Ge, Sb and Te around the top GeTe layer under the top electrode. We also found that a device with a GeTe layer on an Sb2Te3 layer without superlattice structure had the same switching characteristics as a device with a superlattice PCM, that had the same top GeTe layer. We developed and fabricated a modified superlattice PCM that attained ultra low Reset / Set currents under 60 μ A .

  11. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    Science.gov (United States)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  12. Growth of InAs/InP core–shell nanowires with various pure crystal structures

    International Nuclear Information System (INIS)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Lehmann, Sebastian; Dick, Kimberly A; Wernersson, Lars-Erik

    2012-01-01

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal–organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420–460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures. (paper)

  13. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    Science.gov (United States)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  14. Stratigraphy of a diamond epitaxial three-dimensional overgrowth using doping superlattices

    Science.gov (United States)

    Lloret, F.; Fiori, A.; Araujo, D.; Eon, D.; Villar, M. P.; Bustarret, E.

    2016-05-01

    The selective doped overgrowth of 3D mesa patterns and trenches has become an essential fabrication step of advanced monolithic diamond-based power devices. The methodology here proposed combines the overgrowth of plasma-etched cylindrical mesa structures with the sequential growth of doping superlattices. The latter involve thin heavily boron doped epilayers separating thicker undoped epilayers in a periodic fashion. Besides the classical shape analysis under the scanning electron microscope relying on the appearance of facets corresponding to the main crystallographic directions and their evolution toward slow growing facets, the doping superlattices were used as markers in oriented cross-sectional lamellas prepared by focused ion beam and observed by transmission electron microscopy. This stratigraphic approach is shown here to be applicable to overgrown structures where faceting was not detectable. Intermediate growth directions were detected at different times of the growth process and the periodicity of the superlattice allowed to calculate the growth rates and parameters, providing an original insight into the planarization mechanism. Different configurations of the growth front were obtained for different sample orientations, illustrating the anisotropy of the 3D growth. Dislocations were also observed along the lateral growth fronts with two types of Burger vector: b 01 1 ¯ = /1 2 [ 01 1 ¯ ] and b 112 = /1 6 [ 112 ] . Moreover, the clustering of these extended defects in specific regions of the overgrowth prompted a proposal of two different dislocation generation mechanisms.

  15. Structural investigation of GaInP nanowires using X-ray diffraction

    DEFF Research Database (Denmark)

    Kriegner, D.; Persson, Johan Mikael; Etzelstorfer, T.

    2013-01-01

    In this work the structure of ternary GaxIn1−xP nanowires is investigated with respect to the chemical composition and homogeneity. The nanowires were grown by metal–organic vapor-phase epitaxy. For the investigation of ensemble fluctuations on several lateral length scales, X-ray diffraction...... gradients along the sample by recording diffraction patterns at different positions. In addition, compositional variations were found also within single nanowires in X-ray energy dispersive spectroscopy measurements....

  16. Engineering the oxygen coordination in digital superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Seyoung [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Andersen, Tassie K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Hong, Hawoong [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Rosenberg, Richard A. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Marks, Laurence D. [Department of Materials Science, Northwestern University, Evanston, Illinois 60202, USA; Fong, Dillon D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-12-01

    The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.

  17. Anisotropic critical fields in superconducting superlattices

    International Nuclear Information System (INIS)

    Banerjee, I.; Yang, Q.S.; Falco, C.M.; Schuller, I.K.

    1983-01-01

    The temperature and angular dependence of critical fields (H/sub c/) have been studied as a function of layer thickness for superconducting Nb/Cu superlattices. For layer thicknesses between 100 and 300 A, dimensional crossover has been observed in the temperature dependence of H/sub c/. Associated with the crossover we find a change in the angular dependence of H/sub c/ to that given by the effective-mass theory. This is the first time that a relationship has been found between dimensional crossover observed in the temperature dependence and that in the angular dependence of critical fields

  18. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  19. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  20. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features

    Science.gov (United States)

    Samaraweera, Nalaka; Larkin, Jason M.; Chan, Kin L.; Mithraratne, Kumar

    2018-06-01

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard–Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green–Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon–surface scatterings as the nanowire’s cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen–Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  1. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  2. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Science.gov (United States)

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  3. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, R.P., E-mail: chauhanrpc@gmail.com; Rana, Pallavi, E-mail: prana.phy@gmail.com; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-15

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a {sup 60}Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I–V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  4. Microwave absorption in YBCO/PrBCO superlattices

    International Nuclear Information System (INIS)

    Carlos, W.E.; Kaplan, R.; Lowndes, D.H.; Norton, D.P.

    1992-01-01

    In this paper, non-resonant microwave absorption is employed to probe YBCO/PrBCO superlattices and compare the response to that of a YBCO film. Near the transition temperatures, the response of the superlattice samples and the YBCO film have similar amplitudes and orientation dependencies. At lower temperatures, the response of the superlattices is much stronger than that of the YBCO film and, while both responses are hysteretic at low temperatures, the widths of the hysteresis have opposite orientation dependencies, which the authors attribute to the role of the PrBCO layers

  5. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  6. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  7. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  8. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    junction nanotubes by the pyrolysis of appropriate organic precursors. ... By making use of carbon nanotubes, nanowires of metals, metal ..... The use of activated carbon in place of ..... required for the complete removal of the carbon template.

  9. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  10. Excitation on breather (bion) in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.

    1999-09-01

    Soliton breather excitation in superlattice has been studied in this paper. It is observed that under certain conditions, the vector potential equation for the electromagnetic wave propagating through the superlattice assumes the sine-Gordon(sG) equation. The solution of which does not give only a soliton but also a soliton breather. The binding energy of the breather is calculated to be E b = 16γ(1 - sin ν), γ = (1 - u 2 /v 0 2 ) -1/2 where u is the velocity of the breather and v 0 is the velocity of the electromagnetic wave in the absence of electrons. As can be seen, when ν → π/2 the binding energy tends to zero, hence, the breather disintegrates into a soliton and antisoliton. It was further observed that the binding energy decreases with an increase in Δ (the half miniband width) for a given value of d (SL period). Similarly it also decreases with increase in d for a given value of Δ. Comparing the breather's rest energy E b to that of soliton E s i.e E b = 2E s sin ν. We noted that the breather's rest energy is less than that required to excite a soliton. (author)

  11. Magnetic profiles in ferromagnetic/superconducting superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  12. Organic p-n heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Stefan [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Osso, Oriol [MATGAS 2000 A.I.E., Esfera UAB, Barcelona (Spain); Wang, Cheng; Hexemer, Alexander [Advanced Light Source, Berkeley, CA (United States)

    2009-07-01

    For many applications of organic semiconductors two components such as e.g. n and p-type layers are required, and the morphology of such heterostructures is crucial for their performance. Pentacene (PEN) is one of the most promising p-type molecular semiconductors and recently perfluoro-pentacene (PFP) has been identified as a good electron conducting material for complementary circuits with PEN. We use soft and hard X-ray reflectivity measurements, scanning transmission X-ray microscopy (STXM) and atomic force microscopy for structural investigations of PFP-PEN heterostructures. The chemical contrast between PEN and PFP in STXM allows us to determine the lateral length scales of p and n domains in a bilayer. For a superlattice of alternating PFP and PEN layers grown by organic molecular beam deposition, X-ray reflectivity measurements demonstrate good structural order. We find a superlattice reflection that varies strongly when tuning the X-ray energy around the fluorine edge, demonstrating that there are indeed alternating PFP and PEN layers.

  13. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  14. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jü rgen; Ravasi, Timothy; Contreras Gerenas, Maria Fernanda

    2013-01-01

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  15. Well-dispersed gold nanowire suspension for assembly application

    International Nuclear Information System (INIS)

    Xu Cailing; Zhang Li; Zhang Haoli; Li Hulin

    2005-01-01

    A method for fabricating well-dispersed nanowire suspension has been demonstrated in the paper. Thin gold nanowires were prepared by template synthesis, and then functionalized with sulphonate group-terminated thiols before suspended in different solvents. The degree of aggregation of the obtained suspension was evaluated with transmission electron microscopy (TEM) and UV-vis spectroscopy. It was found that the degree of aggregation was predominated by the solvents, and the best degree of dispersion was obtained when isopropyl alcohol (IPA) was used as the solvent. The gold nanowires from the suspension can be selectively assembled onto chemically patterned substrates. This well-dispersed nanowire suspension is potentially useful for fabricating novel nanodevices

  16. Scaling properties of optical reflectance from quasi-periodic superlattices

    International Nuclear Information System (INIS)

    Wu Xiang; Yao Hesheng; Feng Weiguo

    1991-08-01

    The scaling properties of the optical reflectance from two types of quasi-periodic metal-insulator superlattices, one with the structure of Cantor bars and the other with the structure of Cantorian-Fibonaccian train, have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the hydrodynamic model of electron dynamics and transfer-matrix method, and be taking into account retardation effects, we have presented the formalism of the reflectivity for the superlattices. From our numerical results, we found that the reflection spectra of the quasi-superlattices have a rich structure of self-similarity. The interesting scaling indices, which are related to the fractal dimensions, of the spectra are also discussed for the two kinds of the quasi-superlattices. (author). 10 refs, 7 figs

  17. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  18. Participation of mechanical oscillations in thermodynamics of crystals with superlattice

    International Nuclear Information System (INIS)

    Jacjimovski K, S.; Mirjanicj Lj, D.; Shetrajchicj P, J.

    2012-01-01

    The superlattice, consisting of two periodically repeating films, is analyzed in proposal paper. Due to the structural deformations and small thickness, the acoustic phonons do not appear in these structures. The spontaneous appearance of phonons is possible in an ideal structure only. Therefore the thermodynamical analysis of phonon subsystems is the first step in investigations of superlattice properties. Internal energy as well as specific heat will be analyzed, too. Low-temperature behavior of these quantities will be compared to the corresponding quantities of bulk structures and of thin films. The general conclusion is that the main thermodynamic characteristics of superlattices are considerably lower than those of the bulk structure. Consequently, their superconductive characteristics are better than the superconductive characteristics of corresponding bulk structures. Generally considered, the application field of superlattices is wider than that of bulk structures and films. (Author)

  19. Template-assisted fabrication of tin and antimony based nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  20. Printing nanotube/nanowire for flexible microsystems

    Science.gov (United States)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  1. Transmission of electrons with flat passbands in finite superlattices

    International Nuclear Information System (INIS)

    Barajas-Aguilar, A H; Rodríguez-Magdaleno, K A; Martínez-Orozco, J C; Enciso-Muñoz, A; Contreras-Solorio, D A

    2013-01-01

    Using the transfer matrix method and the Ben Daniel-Duke equation for variable mass electrons propagation, we calculate the transmittance for symmetric finite superlattices where the width and the height of the potential barriers follow a linear dependence. The width and height of the barriers decreases from the center to the ends of the superlattice. The transmittance presents intervals of stopbands and quite flat passbands.

  2. Fabrication of C60/amorphous carbon superlattice structures

    International Nuclear Information System (INIS)

    Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2001-01-01

    The nitrogen doping effects in C 60 films by RF plasma source was investigated, and it was found that the nitrogen ion bombardment broke up C 60 molecules and changed them into amorphous carbon. Based on these results, formation of C 60 /amorphous carbon superlattice structure was proposed. The periodic structure of the resulted films was confirmed by XRD measurements, as the preliminary results of fabrication of the superlattice structure

  3. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  4. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  5. Optical localization of quantum dots in tapered nanowires

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; Gregersen, Niels; Fons, Romain

    2017-01-01

    In this work we have measured the far-field emission patterns of In As quantum dots embedded in a GaAs tapered nanowire and used an open-geometry Fourier modal method for determining the radial position of the quantum dots by computing the far-field emission pattern for different quantum dot...

  6. Superconducting superlattices. Les super reseaux de supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Triscone, J M; Fischer, O [Geneva Univ. (Switzerland)

    1993-03-01

    By piling up ultra-thin layers of discrete materials, physicists now have a choice method for the study of superconductivity at high temperature. These superlattices are prepared by successive layers of YBaCuO and PrBaCuO deposited by cathode sputtering to study the variation of superconductivity with layer thickness. The transition temperature decreases rapidly when the distance between two layers increases. Current vortices are created, without a magnetic field, widening the transition temperature. The variation of resistivity near critical temperature in a magnetic field shows that the energy required to displace vortices is increasing with the thickness of the YBaCuO layer, with thin layers anisotropy is high and energy dissipation is important. (G.R.). refs., figs.

  7. Matter-Wave Solitons In Optical Superlattices

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.

    2006-01-01

    In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton

  8. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.; Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized

  9. RAMAN SCATTERING BY ACOUSTIC PHONONS AND STRUCTURAL PROPERTIES OF FIBONACCI, THUE-MORSE AND RANDOM SUPERLATTICES

    OpenAIRE

    Merlin , R.; Bajema , K.; Nagle , J.; Ploog , K.

    1987-01-01

    We report structural studies of incommensurate and random GaAs-AlAs superlattices using Raman scattering by acoustic phonons. Properties of the structure factor of Fibonacci and Thue-Morse superlattices are discussed in some detail.

  10. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    Science.gov (United States)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  11. Control of the ZnO nanowires nucleation site using microfluidic channels.

    Science.gov (United States)

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  12. Strong diameter-dependence of nanowire emission coupled to waveguide modes

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)

    2016-03-21

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.

  13. Tunable superlattice in graphene to control the number of Dirac points.

    Science.gov (United States)

    Dubey, Sudipta; Singh, Vibhor; Bhat, Ajay K; Parikh, Pritesh; Grover, Sameer; Sensarma, Rajdeep; Tripathi, Vikram; Sengupta, K; Deshmukh, Mandar M

    2013-09-11

    Superlattice in graphene generates extra Dirac points in the band structure and their number depends on the superlattice potential strength. Here, we have created a lateral superlattice in a graphene device with a tunable barrier height using a combination of two gates. In this Letter, we demonstrate the use of lateral superlattice to modify the band structure of graphene leading to the emergence of new Dirac cones. This controlled modification of the band structure persists up to 100 K.

  14. Transport properties of YBa2Cu3O7/PrBa2Cu3O7-superlattices

    International Nuclear Information System (INIS)

    El Tahan, Ayman Mohamed Moussa

    2010-01-01

    The understanding of the coupling between superconducting YBa 2 Cu 3 O 7 (YBCO) layers decoupled by non superconducting PrBa 2 Cu 3 O 7 (PBCO) layers in c-axis oriented superlattices was the aim of this thesis. For this purpose two conceptually different kind of transport experiments have been performed. In the first type of transport experiments the current is flowing parallel to the layers. Here the coupling is probed indirectly using magnetic vortex lines, which are penetrating the superlattice. Movement of the vortex segments in neighbouring YBCO layers is more or less coherent depending on the thickness of both the superconducting and non superconducting layers. This in-plane transport was measured either by sending an external current through bridges patterned in the superlattice or by an induced internal current. The vortex-creep activation energy U was determined by analysis of the in-plane resistive transition in an external magnetic field B oriented along the c-axis. The activation energies for two series of superlattices were investigated. In one series the thickness of the YBCO layers was constant (n Y =4 unit cells) and the number of the PBCO unit cells was varied, while in the other the number of PBCO layers was constant (n P =4) and n Y varied. The correlation length of the vortex system was determined to be 80 nm along the c-axis direction. It was found that even a single PBCO unit cell in a superlattice effectively cuts the flux lines into shorter weakly coupled segments, and the coupling of the vortex systems in neighbouring layers is negligible already for a thickness of four unit cells of the PBCO layers. A characteristic variation of the activation energy for the two series of superlattices was found, where U 0 is proportional to the YBCO thickness. A change in the variation of U 0 with the current I in the specimen was observed. The analysis of standard dc magnetization relaxation data obtained for a series superlattices revealed the

  15. Influence of substrate quality on structural properties of AlGaN/GaN superlattices grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); Merkel, U.; Schmult, S. [TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, Nöthnitzer Straße 64, 01187 Dresden (Germany); TU Dresden, Institute of Semiconductors and Microsystems, Nöthnitzer Straße 64, 01187 Dresden (Germany)

    2014-02-28

    Short-period AlGaN/GaN superlattices were established as versatile test structures to investigate the structural properties of molecular beam epitaxy (MBE)-grown GaN and AlGaN layers and their dependence on the GaN substrate quality. X-ray diffractometry data of the investigated superlattices allow access to relevant structural parameters such as aluminum mole fraction and layer thicknesses. The occurrence of theoretically predicted intense high-order satellite peaks and pronounced interface fringes in the diffraction pattern reflects abrupt interfaces and perfect 2-dimensional growth resulting in smooth surfaces. The data unambiguously demonstrate that the structural quality of the MBE grown layers is limited by the structural properties of the GaN substrate.

  16. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing

    2014-01-01

    , we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS...

  17. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    potential; bulk materials; total energy calculations; entropy; strained- layer superlattice (SLS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES

  18. EDITORIAL: Nanowires for energy Nanowires for energy

    Science.gov (United States)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  19. Growth mechanism and elemental distribution of beta-Ga2O3 crystalline nanowires synthesized by cobalt-assisted chemical vapor deposition.

    Science.gov (United States)

    Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng

    2012-04-01

    Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.

  20. Control of the interparticle spacing in gold nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have investigated the formation of 2-D and 3-D superlattices of Au nanoclusters synthesized in nonionic inverse micelles, and capped with alkyl thiol ligands, with alkane chains ranging from C{sub 6} to C1{sub 18}. The thiols are found to play a significant role in the ripening of these nanoclusters, and in the formation of superlattices. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function, from which one can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the nanoclusters become more polydisperse and larger, and the gaps between particles within superlattice domains increases. Annealing studies at elevated temperatures confirm nanocluster ripening. Finally, the effect of the particle gaps on physical properties is illustrated by computing the effective dielectric constant, and it is shown that the gap size now accessible in superlattices is rather large for dielectric applications.

  1. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    Science.gov (United States)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  2. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    Science.gov (United States)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  3. Growth and properties of low-dimensional III-V semiconductor nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Martin

    2010-08-25

    symmetry from cubic zinc-blende to hexagonal wurtzite structure, while the chemical composition of the material remains constant. The GaAs nanowires synthesized with the Au-free technique can be grown under conditions where a statistical wurtzite/zinc-blende polytypism occurs. A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is developed in order to characterize the resulting statistically distributed quantum heterostructures. Nanowires consisting of {approx}100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are studied by photoluminescence spectroscopy and Transmission Electron Microscopy. The photoluminescence of wurtzite GaAs is found to be consistent with a bulk wurtzite band gap of 1.50 eV, slightly smaller compared to the zinc-blende GaAs band gap. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the according bulk band gaps, while regions composed of a non periodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to estimate the band offsets of {delta}E{sub CB}=53{+-}20 meV and {delta}E{sub VB}=76{+-}12 meV between the two crystalline phases. These results are in excellent agreement with recent theoretical band structure calculations. (orig.)

  4. Magnetic structures of holmium-lutetium alloys and superlattices

    DEFF Research Database (Denmark)

    Swaddling, P.P.; Cowley, R.A.; Ward, R.C.C.

    1996-01-01

    Alloys and superlattices of Ho and Lu have been grown using molecular beam epitaxy and their magnetic structures determined using neutron-scattering techniques. The 4f moments in the alloys form a helix at all compositions with the moments aligned in the basal plane perpendicular to the wave vector...... of the helix remaining coherent through the nonmagnetic Lu blocks. The neutron scattering from the superlattices is consistent with a model in which there are different phase advances of the helix turn angle through the Ho and Lu blocks, but with a localized moment on the Ho sites only. A comparison...... of Ho and Lu. At low temperatures, for superlattices with fewer than approximately twenty atomic planes of Ho, the Ho moments within a block undergo a phase transition from helical to ferromagnetic order, with the coupling between successive blocks dependent on the thickness of the Lu spacer....

  5. Stability and dynamic of strain mediated adatom superlattices on Cu

    Science.gov (United States)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  6. Interface disorder and transport properties in HTC/CMR superlattices

    International Nuclear Information System (INIS)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E.

    2004-01-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T c RBa 2 Cu 3 O 7 (RBCO) and colossal magnetoresistance La x A 1-x MnO 3 (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La 2/3 Ca 1/3 MnO 3 and GdBCO/La 0.6 Sr 0.04 MnO 3 superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness

  7. Deep levels in silicon–oxygen superlattices

    International Nuclear Information System (INIS)

    Simoen, E; Jayachandran, S; Delabie, A; Caymax, M; Heyns, M

    2016-01-01

    This work reports on the deep levels observed in Pt/Al 2 O 3 /p-type Si metal-oxide-semiconductor capacitors containing a silicon–oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as-deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance–Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P b dangling bond centers at the Si/SiO 2 interface has been observed as well. (paper)

  8. Exploring graphene superlattices: Magneto-optical properties

    Science.gov (United States)

    Duque, C. A.; Hernández-Bertrán, M. A.; Morales, A. L.; de Dios-Leyva, M.

    2017-02-01

    We present a detailed study of magnetic subbands, wave functions, and transition strengths for graphene superlattices (SLs) subject to a perpendicular magnetic field. It is shown that, for a weak magnetic field, the flat subbands of a SL exhibiting extra Dirac points are grouped into subsets, each of which consists of a singlet subband and a nearly degenerate doublet subband, and one nearly degenerate triplet subband. It was found that the wave functions corresponding to a singlet or to a doublet are always located around the image in real space of the central or extra Dirac points in k-space. The latter properties were explained by assuming that the electron motion is quasi-classical. Our study revealed that, for an intermediate field, the general characteristics of the wave functions are very similar to those of the pristine graphene, while for weak field, their behavior is drastically different. The latter is characterized by rapid oscillations which were understood using the solutions provided by the formalism of Luttinger-Kohn. The study on transition strengths allows us to obtain, for SLs with extra Dirac points in a weak magnetic field and different polarizations, the conditions under which transitions between multiplets are approximately allowed. It was shown that these conditions correspond to an unusual selection rule that is broken when the magnetic field intensity increases from weak to an intermediate value.

  9. Mixing of III-V compound semiconductor superlattices

    International Nuclear Information System (INIS)

    Mei, Ping.

    1989-01-01

    In this work, the methods as well as mechanisms of III-V compound superlattice mixing are discussed, with particular attention on the AlGaAs based superlattice system. Comparative studies of ion-induced mixing showed two distinct effects resulting from ion implantation followed by a thermal anneal; i.e. collisional mixing and impurity induced mixing. It was found that Ga and As ion induced mixing are mainly due to the collisional effect, where the extent of the mixing can be estimated theoretically, with the parameters of ion mass, incident energy and the implant dose. The impurity effect was dominant for Si, Ge, Be, Zn and Te. Quantitative studies of impurity induced mixing have been conducted on samples doped with Si or Te during the growth process. It was discovered that Si induced AlGaAs superlattice mixing yielded an activation energy of approximately 4 eV for the Al diffusion coefficient with a high power law dependence of the prefactor on the Si concentration. In the Te doped AlGaAs superlattice the Al diffusion coefficient exhibited an activation energy of ∼3.0 eV, with a prefactor approximately proportional to the Te concentration. These results are of importance in examining the current diffusion models. Zn and Si induced InP/InGaAs superlattice mixing are examined. It was found that Zn predominantly induces cation interdiffusion, while Si induces comparable cation and anion interdiffusion. In addition, widely dispersed Zn rich islands form with Zn residing in the InP layers in the form of Zn 3 P 2 . With unstrained starting material, the layer bandgap disparity increases due to mixing induced strain, while in the Si diffused sample the mixed region would be expected to exhibit bandgaps intermediate between those of the original layers. Semiconductor superlattice mixing shows technological potential for optoelectronic device fabrication

  10. Transport in a magnetic field modulated graphene superlattice.

    Science.gov (United States)

    Li, Yu-Xian

    2010-01-13

    Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.

  11. Surface phonon polaritons in semi-infinite semiconductor superlattices

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1986-07-01

    Surface phonon polaritons in a semi-infinite semiconductor superlattice bounded by vacuum are studied. The modes associated with the polaritons are obtained and used to obtain the dispersion relation. Numerical results show that polariton bands exist between the TO and LO phonon frequencies, and are found to approach two surface mode frequencies in the limit of large tangential wave vector. Dependency of frequencies on the ratio of layer thicknesses is shown. Results are illustrated by a GaAs-GaP superlattice bounded by vacuum. (author)

  12. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  13. A possible radiation-resistant solar cell geometry using superlattices

    Science.gov (United States)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  14. Interface properties of superlattices with artificially broken symmetry

    International Nuclear Information System (INIS)

    Lottermoser, Th.; Yamada, H.; Matsuno, J.; Arima, T.; Kawasaki, M.; Tokura, Y.

    2007-01-01

    We have used superlattices made of thin layers of transition metal oxides to design the so-called multiferroics, i.e. materials possessing simultaneously an electric polarization and a magnetic ordering. The polarization originates from the asymmetric stacking order accompanied by charge transfer effects, while the latter one also influences the magnetic properties of the interfaces. Due to the breaking of space and time-reversal symmetry by multiple ordering mechanism magnetic second harmonic generation is proven to be an ideal method to investigate the electric and magnetic properties of the superlattices

  15. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  16. Silicon Nanowire Fabrication Using Edge and Corner Lithography

    NARCIS (Netherlands)

    Yagubizade, H.; Berenschot, Johan W.; Jansen, Henricus V.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    This paper presents a wafer scale fabrication method of single-crystalline silicon nanowires (SiNWs) bound by <111> planes using a combination of edge and corner lithography. These are methods of unconventional nanolithography for wafer scale nano-patterning which determine the size of nano-features

  17. Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts

    NARCIS (Netherlands)

    Deelen, J. van; Omar, A.; Barink, M.

    2017-01-01

    The conductivity of transparent front contacts can be improved by patterned metallic nanowires, albeit at the cost of optical loss. The associated optical penalty can be strongly reduced by texturization of the cell stack. Remarkably, the nanowires themselves are not textured and not covered in our

  18. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  19. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    Organic semiconductors formed by epitaxial growth from small molecules such as the para-phenylenes or squaraines promise a vast application potential as the active ingredient in electric and optoelectronic devices. Their self-organization into organic nanowires or "nanofibers" adds a peculiar...... attribute, making them especially interesting for light generation in OLEDs and for light-harvesting devices such as solar cells. Functionalization of the molecules allows the customization of optical and electrical properties. However, aging of the wires might lead to a considerable decrease in device...... performance over time. In this study the morphological stability of organic nanoclusters and nanowires from the methoxy functionalized quaterphenylene, 4,4'''dimethoxy-1,1':4',1''4'',1'''-quaterphenylene (MOP4), is investigated in detail. Aging experiments conducted by atomic force microscopy under ambient...

  20. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  1. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  2. Characterization of Nanowire Photodetectors

    Science.gov (United States)

    2016-11-28

    characterization system and picosecond pulsed laser source will be used to provide deeper insight into the fast charge carrier dynamics in the GaAsSb and...value of the current fluctuations for a particular frequency, f is the effective measurement bandwidth at the discrete frequency point, and IDS is...GaAsSb CS nanowires. The best fit of the spectra with the simulation carried out using Matlab revealed flicker noise at lower frequency having 1/f

  3. Stretchable Conductive Composites from Cu-Ag Nanowire Felt.

    Science.gov (United States)

    Catenacci, Matthew J; Reyes, Christopher; Cruz, Mutya A; Wiley, Benjamin J

    2018-04-24

    Materials that retain a high conductivity under strain are essential for wearable electronics. This article describes a conductive, stretchable composite consisting of a Cu-Ag core-shell nanowire felt infiltrated with a silicone elastomer. This composite exhibits a retention of conductivity under strain that is superior to any composite with a conductivity greater than 1000 S cm -1 . This work also shows how the mechanical properties, conductivity, and deformation mechanism of the composite changes as a function of the stiffness of the silicone matrix. The retention of conductivity under strain was found to decrease as the Young's modulus of the matrix increased. This was attributed to void formation as a result of debonding between the nanowire felt and the elastomer. The nanowire composite was also patterned to create serpentine circuits with a stretchability of 300%.

  4. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  5. Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode

    International Nuclear Information System (INIS)

    Jin, Xiuguang; Matsuba, Shunya; Honda, Yosuke; Miyajima, Tsukasa; Yamamoto, Masahiro; Utiyama, Takashi; Takeda, Yoshikazu

    2013-01-01

    GaAs/GaAsP strained superlattices are excellent candidates for use as spin-polarized electron sources. In the present study, picosecond electron bunches were successfully generated from such a superlattice photocathode. However, electron transport in the superlattice was much slower than in bulk GaAs. Transmission electron microscopy observations revealed that a small amount of variations in the uniformity of the layers was present in the superlattice. These variations lead to fluctuations in the superlattice mini-band structure and can affect electron transport. Thus, it is expected that if the periodicity of the superlattice can be improved, much faster electron bunches can be produced. - Highlights: • GaAs/GaAsP strained superlattices are excellent candidates for spin-polarized electron beam. • Pulse spin-polarized electron beam is required for investigating the magnetic domain change. • Picosecond electron bunches were achieved from GaAs/GaAsP superlattice photocathode. • TEM observation revealed a small disorder of superlattice layers. • Improvement of superlattice periodicity can achieve much faster electron bunches

  6. Localization in superlattices with randomness in layer thickness

    International Nuclear Information System (INIS)

    Yuan Jian; Tsai Chienhua.

    1987-08-01

    The localization length for electrons in superlattices with randomness in layer thickness is studied in both the commensurate and the incommensurate cases. It is demonstrated that disorder limits the electrons to see only structures within the extent of their wave functions and to be hardly effected by any long range correlation. (author). 4 refs, 6 figs

  7. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  8. ) m /SrVO3 ( m = 5, 6) Superlattices

    KAUST Repository

    Dai, Qingqing; Lü ders, Ulrike; Fré sard, Raymond; Eckern, Ulrich; Schwingenschlö gl, Udo

    2018-01-01

    The (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C‐type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A‐type antiferromagnetic states

  9. Second harmonic generation in generalized Thue-Morse ferroelectric superlattices

    International Nuclear Information System (INIS)

    Wang Longxiang; Yang Xiangbo; Chen Tongsheng

    2009-01-01

    In this paper the second harmonic generation (SHG) in generalized Thue-Morse (GTM(m, n)) ferroelectric superlattices is studied. Under the small-signal approximation, the SHG spectra in both real and reciprocal spaces are investigated. It is found that: (1) only when the structure parameters l, l A , and l B are all chosen to be proper, can SHG in GTM(m, n) ferroelectric superlattices be generated; (2) for Family A of generalized Thue-Morse, GTM(m, 1) ferroelectric systems, with the increase of parameter m, the intense peaks of SHG concentrate on the long wavelength 1.4-1.5μm (the fundamental beam (FB) wavelength is within 0.8-1.5μm), but for Family B of generalized Thue-Morse, GTM(1, n) ferroelectric superlattices, with the increase of parameter n, the intense peaks of SHG concentrate on the middle wavelength 1.1-1.2μm; and (3) for GTM(m, 1) ferroelectric superlattices, the bigger the m, the stronger the relative integral intensity (RII) of SHG would be, but for GTM(1, n) ferroelectric systems, the bigger the n, the weaker the RII of SHG would be.

  10. Recent results on heterojunctions and superlattices: transport and optics

    International Nuclear Information System (INIS)

    Voos, M.

    1983-01-01

    Recent experimental results obtained on two-dimensional semiconductor structures, namely heterojunctions and superlattices are presented. This review, which includes both optical and transport experiments, is not exhaustive, but describes briefly some investigations which are thought to be important from the point of view of fundamental physics. (Author) [pt

  11. Phonon dispersion relations in monoatomic superlattices: a transfer matrix theory

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de; Fulco, P.

    1986-01-01

    We present a lattice dynamical theory for monoatomic superlattices consisting of alternating layers of two different materials. Using a transfer matrix method we obtain explicit the equation for dispersion of the phonon's bulk modes, including the well known result in the long wave-length limit which can be obtained by elasticity theory. An illustation is shown and its features discussed. (Author) [pt

  12. Quantum Transport: The Link between Standard Approaches in Superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium G...

  13. A CPA study of the phonon structure of disordered superlattices

    International Nuclear Information System (INIS)

    Shijie Xiong; Gendi Pang; Chienhua Tsai.

    1985-08-01

    The phonon structure of superlattices or modulated alloys with substitutional disorder is studied in the Coherent Phase Approximation (CPA). We consider first the case with diagonal disorder only, by adopting a virtual crystal approximation for the force constants. Then we treat the more complicated case with inclusion of off-diagonal disorder. Numerical examples are also studied in both cases. (author)

  14. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  15. Comparison of the top-down and bottom-up approach to fabricate nanowire-based Silicon/Germanium heterostructures

    International Nuclear Information System (INIS)

    Wolfsteller, A.; Geyer, N.; Nguyen-Duc, T.-K.; Das Kanungo, P.; Zakharov, N.D.; Reiche, M.; Erfurth, W.; Blumtritt, H.; Werner, P.; Goesele, U.

    2010-01-01

    Silicon nanowires (NWs) and vertical nanowire-based Si/Ge heterostructures are expected to be building blocks for future devices, e.g. field-effect transistors or thermoelectric elements. In principle two approaches can be applied to synthesise these NWs: the 'bottom-up' and the 'top-down' approach. The most common method for the former is the vapour-liquid-solid (VLS) mechanism which can also be applied to grow NWs by molecular beam epitaxy (MBE). Although MBE allows a precise growth control under highly reproducible conditions, the general nature of the growth process via a eutectic droplet prevents the synthesis of heterostructures with sharp interfaces and high Ge concentrations. We compare the VLS NW growth with two different top-down methods: The first is a combination of colloidal lithography and metal-assisted wet chemical etching, which is an inexpensive and fast method and results in large arrays of homogenous Si NWs with adjustable diameters down to 50 nm. The second top-down method combines the growth of Si/Ge superlattices by MBE with electron beam lithography and reactive ion etching. Again, large and homogeneous arrays of NWs were created, this time with a diameter of 40 nm and the Si/Ge superlattice inside.

  16. Site-selective fabrication of conducting molecular nanowires based on electrocrystallization

    International Nuclear Information System (INIS)

    Hasegawa, H.; Kubota, T.; Mashiko, S.

    2005-01-01

    We have grown nanowires in a selective position by using an electrochemical process and alternating current. Nanoscale electrocrystallization was carried out in an axially substituted phthalocyanine solution using substrates with two electrodes formed by photolithography. The growth area was limited to the narrowest part of the gap between the tips of the electrodes by using tapered electrodes. The nanowires obtained had a width of approximately 100 nm and a length of more than 1 μm. Analysis of the selected-area electron diffraction pattern showed that the nanowire structure was identical to that of bulk crystal

  17. Morphology and optical properties of ternary Zn-Sn-O semiconductor nanowires with catalyst-free growth

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yuan-Chang, E-mail: yuanvictory@gmail.com [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Chiem-Lum; Hu, Chia-Yen; Deng, Xian-Shi; Zhong, Hua [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Zn{sub 2}SnO{sub 4} nanowires with various morphologies were successfully synthesized by thermal evaporation. Black-Right-Pointing-Pointer The as-synthesized Zn{sub 2}SnO{sub 4} nanowires have a face-centered cubic crystal structure. Black-Right-Pointing-Pointer Thermal annealing of Zn{sub 2}SnO{sub 4} nanowires changes the properties of the visible emission band. - Abstract: This study reports the synthesis of Zn{sub 2}SnO{sub 4} (ZTO) nanowires with various morphologies using thermal evaporation without a metal catalyst. X-ray diffraction patterns show that the structure of the as-synthesized ZTO nanowires is a face-centered cubic spinel phase. Scanning electron microscopy images exhibit that the as-synthesized nanowires have various morphologies, and homogeneously cover the area of interest. High-resolution transmittance electron microscopy reveals that these ZTO nanowires have single crystalline microstructures with four morphologies. The results of low-temperature cathodoluminescence (CL) measurements show the crystal defects of oxygen vacancies and interstitials may contribute to blue-green and yellow-orange emissions, respectively, for the as-synthesized single nanowire. This study also discusses the effects of thermal annealing under oxygen-rich and reducing ambient on the CL properties of the single ZTO nanowire.

  18. Dynamic localization in finite quantum dot superlattices

    International Nuclear Information System (INIS)

    Madureira, Justino R.; Schulz, Peter A.; Maialle, Marcelo Z.

    2004-01-01

    Full text: The dynamic properties of electrons and holes in low dimensional systems, driven by ac fields, reveal exciting emergent phenomena in the time span around the turn of the century. Such a rich scenario has been established by the concurrent development of powerful theoretical analysis tools, design and realization of high quality nano structured devices, as well as of tunable microwave and T Hz ac field sources. These striking developments made possible the exploration of the interaction of T Hz fields with condensed matter, leading even to biological tissue imaging. Therefore, a microscopic understanding of the T Hz field effects on designed nano structures constitute an important framework for further developments. A very interesting example in this context is the prediction of dynamic localization, which has been a subject of intense research in the past few years, from both theoretical and experimental point of views. The initial prediction states that, within a single band tight-binding approximation, an initially localized particle will return to its initial state following the periodical evolution of a driving pure sinusoidal field. This phenomenon can be simply visualized by the related collapse of the quasi energy mini bands, i.e., the localization of electronic states of a periodic unidimensional structure in real space driven by a field periodic in time. Such collapses occur whenever the field intensity/frequency ratio, eaF/(h/2π)ω, is a root of the zero-order Bessel function of the first kind. The quest for experimental signatures of dynamic localization is an involved task, since a variety of perturbations to an ideal situation is always present in real systems. The question that has to be answered is how the dynamic localization, related to the quasi-energy mini band collapses, may be identified in a context where concurring effects also tend to modify the quasi-energy spectra. For semiconductor superlattices, dynamic localization has been

  19. Stability and Dynamic of strain mediated Adatom Superlattices on Cu<111>

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    Substrate strain mediated adatom density distributions have been calculated for Cu surfaces. Complemented by Monte Carlo calculations a hexagonal close packaged adatom superlattice in a coverage range up to 0.045 ML is derived. Conditions for the stability of the superlattice against nucleation and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusi...

  20. Plasma-wave effect on the optical properties of multilayered metallic Fibonacci superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Liu Nianhua; Wu Xiang

    1990-06-01

    Within the hydrodynamic model of electron dynamics, the optical properties of the metallic Fibonacci superlattice have been studied for the region of p-polarized soft x-rays and extreme ultraviolet. By using the 4 x 4 transfer-matrix formalism and taking into account retardation effects, and the coupling between transverse and longitudinal waves at the metal boundaries, we have discussed the electromagnetic normal modes for the quasisuperlattice in the rational approximation. We found that the dispersion curves are mainly of two types, and similar to the reflectivities, both real part and imaginary parts of the dispersion relation pattern has a rich structure of self-similarity. With the increasing of the generation number, all the electromagnetic modes become critical. (author). 13 refs, 6 figs

  1. Optical absorption in planar graphene superlattice: The role of structural parameters

    Science.gov (United States)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  2. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  3. Optical Binding of Nanowires

    Czech Academy of Sciences Publication Activity Database

    Simpson, Stephen Hugh; Zemánek, Pavel; Marago, O.M.; Jones, P.H.; Hanna, S.

    2017-01-01

    Roč. 17, č. 6 (2017), s. 3485-3492 ISSN 1530-6984 R&D Projects: GA ČR GB14-36681G Grant - others:AV ČR(CZ) CNR-16-12 Program:Bilaterální spolupráce Institutional support: RVO:68081731 Keywords : optical binding nanowires * Brownian motion * self-organization * non-equilibrium thermodynamics * non-equilibrium steady state * spin-orbit coupling * emergent phenomena Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 12.712, year: 2016

  4. Computer simulation of the anomalous elastic behavior of thin films and superlattices

    International Nuclear Information System (INIS)

    Wolf, D.

    1992-10-01

    Atomistic simulations are reviewed that elucidate the causes of the anomalous elastic behavior of thin films and superlattices (the so-called supermodulus effect). The investigation of free-standing thin films and of superlattices of grain boundaries shows that the supermodulus effect is not an electronic but a structural interface effect intricately connected with the local atomic disorder at the interfaces. The consequent predictions that (1) coherent strained-layer superlattices should show the smallest elastic anomalies and (2) the introduction of incoherency at the interfaces should enhance all anomalies are validated by simulations of dissimilar-material superlattices. 38 refs, 10 figs

  5. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  6. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  7. Piezoelectricity in the dielectric component of nanoscale dielectric-ferroelectric superlattices.

    Science.gov (United States)

    Jo, Ji Young; Sichel, Rebecca J; Lee, Ho Nyung; Nakhmanson, Serge M; Dufresne, Eric M; Evans, Paul G

    2010-05-21

    The origin of the functional properties of complex oxide superlattices can be resolved using time-resolved synchrotron x-ray diffraction into contributions from the component layers making up the repeating unit. The CaTiO3 layers of a CaTiO3/BaTiO3 superlattice have a piezoelectric response to an applied electric field, consistent with a large continuous polarization throughout the superlattice. The overall piezoelectric coefficient at large strains, 54  pm/V, agrees with first-principles predictions in which a tetragonal symmetry is imposed on the superlattice by the SrTiO3 substrate.

  8. Binding of biexcitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, Vygantas; Birkedal, Dan; Langbein, Wolfgang Werner

    1997-01-01

    Properties of the heavy-hole excitons and biexcitons in GaAs/Al0.3Ga0.7As superlattices are studied using linear and nonlinear optical techniques. In superlattices with miniband halfwidths less than the exciton binding energy, the biexciton binding energy is found to be the same as in the noninte......Properties of the heavy-hole excitons and biexcitons in GaAs/Al0.3Ga0.7As superlattices are studied using linear and nonlinear optical techniques. In superlattices with miniband halfwidths less than the exciton binding energy, the biexciton binding energy is found to be the same...

  9. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  10. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  11. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K. V., E-mail: malyshev@bmstu.ru [Electronics and Laser Technology Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  12. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  13. Growth and properties of In(Ga)As nanowires on silicon

    International Nuclear Information System (INIS)

    Hertenberger, Simon

    2012-01-01

    In this thesis the integration of III-V semiconductor nanowires on silicon (Si) platform by molecular beam epitaxy (MBE) is investigated. All nanowires are grown without the use of foreign catalysts such as Au to achieve high purity material. First, InAs nanowires are grown in a self-assembled manner on SiO x -masked Si(111) where pinholes in the silicon oxide serve as nucleation spots for the nanowires. This leads to the growth of vertically aligned, (111)-oriented nanowires with hexagonal cross-section. Based on this simple process, the entire growth parameter window is investigated for InAs nanowires, revealing an extremely large growth temperature range from 380 C to 580 C and growth rates as large as 6 μ/h. Complex quantitative in-situ line-of-sight quadrupole mass spectrometry experiments during nanowire growth and post-growth thermal decomposition studies support these findings and indicate a very high thermal stability up to >540 C for InAs nanowires. Furthermore, the influence of the As/In ratio on the nanowire growth is studied revealing two distinct growth regimes, i.e., an In-rich regime for lower As fluxes and an As-rich regime for larger As fluxes, where the latter shows characteristic saturation of the nanowire aspect ratio. For the catalyst-free growth, detailed investigation of the growth mechanism is performed via a combination of in-situ reflection high-energy electron diffraction (RHEED) and ex-situ scanning and transmission electron microscopy (SEM,TEM). An abrupt onset of nanowire growth is observed in RHEED intensity and in-plane lattice parameter evolution. Furthermore, completely droplet-free nanowires, continuous radial growth, constant vertical growth rate and growth interruption experiments suggest a vapor-solid growth mode for all investigated nanowire samples. Moreover, site-selective (positioned) growth of InAs nanowires on pre-patterned SiO 2 masked Si(111) substrates is demonstrated which is needed for ultimate control of nanowire

  14. Growth and properties of In(Ga)As nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hertenberger, Simon

    2012-10-15

    In this thesis the integration of III-V semiconductor nanowires on silicon (Si) platform by molecular beam epitaxy (MBE) is investigated. All nanowires are grown without the use of foreign catalysts such as Au to achieve high purity material. First, InAs nanowires are grown in a self-assembled manner on SiO{sub x}-masked Si(111) where pinholes in the silicon oxide serve as nucleation spots for the nanowires. This leads to the growth of vertically aligned, (111)-oriented nanowires with hexagonal cross-section. Based on this simple process, the entire growth parameter window is investigated for InAs nanowires, revealing an extremely large growth temperature range from 380 C to 580 C and growth rates as large as 6 μ/h. Complex quantitative in-situ line-of-sight quadrupole mass spectrometry experiments during nanowire growth and post-growth thermal decomposition studies support these findings and indicate a very high thermal stability up to >540 C for InAs nanowires. Furthermore, the influence of the As/In ratio on the nanowire growth is studied revealing two distinct growth regimes, i.e., an In-rich regime for lower As fluxes and an As-rich regime for larger As fluxes, where the latter shows characteristic saturation of the nanowire aspect ratio. For the catalyst-free growth, detailed investigation of the growth mechanism is performed via a combination of in-situ reflection high-energy electron diffraction (RHEED) and ex-situ scanning and transmission electron microscopy (SEM,TEM). An abrupt onset of nanowire growth is observed in RHEED intensity and in-plane lattice parameter evolution. Furthermore, completely droplet-free nanowires, continuous radial growth, constant vertical growth rate and growth interruption experiments suggest a vapor-solid growth mode for all investigated nanowire samples. Moreover, site-selective (positioned) growth of InAs nanowires on pre-patterned SiO{sub 2} masked Si(111) substrates is demonstrated which is needed for ultimate control of

  15. Inkjet-printed transparent nanowire thin film features for UV photodetectors

    KAUST Repository

    Chen, Shih Pin

    2015-01-01

    In this study, a simple and effective direct printing method was developed to print patterned nanowire thin films for UV detection. Inks containing silver or titanium dioxide (TiO2) nanowires were first formulated adequately to form stable suspension for inkjet printing applications. Sedimentation tests were also carried out to characterize the terminal velocity and dispersion stability of nanowires to avoid potential nozzle clogging problems. The well-dispersed silver nanowire ink was then inkjet printed on PET films to form patterned electrodes. Above the electrodes, another layer of TiO2 nanowires was also printed to create a highly transparent photodetector with >80% visible transmittance. The printed photodetector showed a fairly low dark current of 10-12-10-14 A with a high on/off ratio of 2000 to UV radiation. Under a bias voltage of 2 V, the detector showed fast responses to UV illumination with a rise time of 0.4 s and a recovery time of 0.1 s. More photo currents can also be collected with a larger printed electrode area. In summary, this study shows the feasibility of applying inkjet printing technology to create nanowire thin films with specific patterns, and can be further employed for photoelectric applications. © The Royal Society of Chemistry 2015.

  16. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  17. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  18. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  19. Anodic Aluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jung

    2009-01-01

    Full Text Available Abstract In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the β-In2S3nanowire is tetragonal polycrystalline. The direct band gap energy (Eg is 2.40 eV from the optical measurement, and it is reasonable with literature.

  20. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    Science.gov (United States)

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 InP nanowire-based solar cells and photodetectors.

  1. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    DEFF Research Database (Denmark)

    Ullah, A. R.; Gluschke, J. G.; Jeppesen, Peter Krogstrup

    2017-01-01

    -gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good......GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating...... our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top...

  2. Anodic Aluminum Oxide Membrane-Assisted Fabrication of beta-In(2)S(3) Nanowires.

    Science.gov (United States)

    Shi, Jen-Bin; Chen, Chih-Jung; Lin, Ya-Ting; Hsu, Wen-Chia; Chen, Yu-Cheng; Wu, Po-Feng

    2009-06-06

    In this study, beta-In(2)S(3) nanowires were first synthesized by sulfurizing the pure Indium (In) nanowires in an AAO membrane. As FE-SEM results, beta-In(2)S(3) nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the beta-In(2)S(3) nanowires is about 60 nm with the length of about 6-8 mum. Moreover, the aspect ratio of beta-In(2)S(3) nanowires is up to 117. An EDS analysis revealed the beta-In(2)S(3) nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the beta-In(2)S(3) nanowire is tetragonal polycrystalline. The direct band gap energy (E(g)) is 2.40 eV from the optical measurement, and it is reasonable with literature.

  3. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires

    International Nuclear Information System (INIS)

    Tian Jinghua; Hu Jie; Li Sisi; Zhang Fan; Liu Jun; Shi Jian; Li Xin; Chen Yong; Tian Zhongqun

    2011-01-01

    Seedless hydrothermal synthesis has been improved by introducing an adequate content of ammonia into the nutrient solution, allowing the fabrication of dense and ultralong ZnO nanowire arrays over large areas on a substrate. The presence of ammonia in the nutrient solution facilitates the high density nucleation of ZnO on the substrate which is critical for the nanowire growth. In order to achieve an optimal growth, the growth conditions have been studied systematically as a function of ammonia content, growth temperature and incubation time. The effect of polyethyleneimine (PEI) has also been studied but shown to be of no benefit to the nucleation of ZnO. Ultradense and ultralong ZnO nanowires could be obtained under optimal growth conditions, showing no fused structure at the foot of the nanowire arrays. Due to different reaction kinetics, four growth regimes could be attributed, including the first fast growth, equilibrium phase, second fast growth and final erosion. Combining this simple method with optical lithography, ZnO nanowires could be grown selectively on patterned areas. In addition, the as-grown ZnO nanowires could be used for the fabrication of a piezoelectric nanogenerator. Compared to the device of ZnO nanowires made by other methods, a more than twice voltage output has been obtained, thereby proving an improved performance of our growth method.

  4. Tunneling time and Hartman effect in a ferromagnetic graphene superlattice

    Directory of Open Access Journals (Sweden)

    Farhad Sattari

    2012-03-01

    Full Text Available Using transfer-matrix and stationary phase methods, we study the tunneling time (group delay time in a ferromagnetic monolayer graphene superlattice. The system we peruse consists of a sequence of rectangular barriers and wells, which can be realized by putting a series of electronic gates on the top of ferromagnetic graphene. The magnetization in the two ferromagnetic layers is aligned parallel. We find out that the tunneling time for normal incident is independent of spin state of electron as well as the barrier height and electron Fermi energy while for the oblique incident angles the tunneling time depends on the spin state of electron and has an oscillatory behavior. Also the effect of barrier width on tunneling time is also investigated and shown that, for normal incident, the Hartman effect disappears in a ferromagnetic graphene superlattice but it appears for oblique incident angles when the x component of the electron wave vector in the barrier is imaginary.

  5. Photoacoustic transformation of Bessel light beams in magnetoactive superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Mityurich, G. S., E-mail: George-mityurich@mail.ru [Belarusian Trade and Economics University of Consumer Cooperatives (Belarus); Chernenok, E. V.; Sviridova, V. V.; Serdyukov, A. N. [Gomel State University (Belarus)

    2015-03-15

    Photoacoustic transformation of the TE mode of a Bessel light beam (BLB) has been studied for piezoelectric detection in short-period superlattices formed by magnetoactive crystals of bismuth germanate (Bi{sub 12}GeO{sub 20}) and bismuth silicate (Bi{sub 12}SiO{sub 20}) types. It is shown that the resulting signal amplitude can be controlled using optical schemes of BLB formation with a tunable cone angle. A resonant increase in the signal amplitude has been found in the megahertz range of modulation frequencies and its dependences on the BLB modulation frequency, geometric sizes of the two-layer structure and piezoelectric transducer, radial coordinate of the polarization BLB mode, and dissipative superlattice parameters are analyzed.

  6. Large negative differential resistance in graphene nanoribbon superlattices

    Science.gov (United States)

    Tseng, P.; Chen, C. H.; Hsu, S. A.; Hsueh, W. J.

    2018-05-01

    A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90-220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier-Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

  7. Magnetism and superconductivity in neodymium/lanthanum superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, Desmond Francis

    1997-01-01

    bilayers. Magnetization studies reveal the onset of superconductivity at a temperature comparable to bulk DHCP La, and the results suggest coupling across the antiferromagnetic Nd layers. The magnetic structures, investigated using neutron diffraction techniques, resemble those found in bulk Nd....... For the cubic sites of the DHCP structure the magnetic order is confined to individual Nd blocks. However, the magnetic order on the Nd hexagonal sites propagates coherently through the La, even when it becomes superconducting. (C) 1998 Elsevier Science B.V. All rights reserved.......A single-crystal Nd30La10 superlattice grown using molecular beam epitaxy is found to consist of alternating antiferromagnetic and superconducting layers at low temperature. The superlattice has the DHCP crystal structure, and the stacking sequence of close-packed planes is coherent over many...

  8. Surface magnetic phase transitions in Dy/Lu superlattices

    International Nuclear Information System (INIS)

    Goff, J.P.; Sarthour, R.S.; Micheletti, C.; Langridge, S.; Wilkins, C.J.T.; Ward, R.C.C.; Wells, M.R.

    1999-01-01

    Dy/Lu superlattices comprising ferromagnetic Dy blocks coupled antiferromagnetically across the Lu blocks may be modelled as a chain of XY spins with antiferromagnetic exchange and six-fold anisotropy. We have calculated the stable magnetic phases for the cases of large anisotropy and a field applied along an easy direction. For an infinite chain an intermediate phase (1, 5,...) is predicted, where the notation gives the angle between the moment and the applied field in units of π/3. Furthermore, the effects of surface reconstruction are determined for finite chains. A [Dy 20 Lu 12 ] 20 superlattice has been studied using bulk magnetization and polarized neutron reflectivity. The (1, 5,...) phase has been identified and the results provide direct evidence in support of the theoretical predictions. Dipolar forces are shown to account for the magnitude of the observed exchange coupling. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Quantum ratchets for quantum communication with optical superlattices

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose

    2007-01-01

    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments

  10. Electronic structure of a graphene superlattice with massive Dirac fermions

    International Nuclear Information System (INIS)

    Lima, Jonas R. F.

    2015-01-01

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g  ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems

  11. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  12. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñ oz, Enrique; Rungger, I.; Sanvito, S.; Schwingenschlö gl, Udo

    2016-01-01

    for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we

  13. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    MWNTs, their vibration spectra was more extensively studied. The thermal vibration spectra of Ag{sub 2}Ga nanoneedles was measured under both ambient and low-vacuum conditions. The operational deflection shapes of the vibrating Ag{sub 2}Ga nanoneedles was also measured, allowing confirmation of the eigenmodes of vibration. The modulus of the crystalline nanoneedles was 84.3 {+-} 1.0 GPa. Gas damping is the dominate mechanism of energy loss for nanowires oscillating under ambient conditions. The measured quality factors, Q, of oscillation are in line with theoretical predictions of air damping in the free molecular gas damping regime. In the free molecular regime, Q{sub gas} is linearly proportional to the density and diameter of the nanowire and inversely proportional to the air pressure. Since the density of the Ag{sub 2}Ga nanoneedles is three times that of the MWNTs, the Ag{sub 2}Ga nanoneedles have greater Q at atmospheric pressures. Our initial measurements of Q for Ag{sub 2}Ga nanoneedles in low-vacuum (10 Torr) suggest that the intrinsic Q of these nanoneedles may be on the order of 1000. The epitaxial carbon that grows after heating (000{bar 1}) silicon carbide (SiC) to high temperatures (1450-1600) in vacuum was also studied. At these high temperatures, the surface Si atoms sublime and the remaining C atoms reconstruct to form graphene. X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the quality of the few-layer graphene (FLG) surface. The XPS studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples. STM studies revealed a wide variety of nanometer-scale features that include sharp carbon-rich ridges, moire superlattices, one-dimensional line defects, and grain boundaries. By imaging these features with atomic scale resolution, considerable insight into the growth mechanisms of FLG on the carbon-face of SiC is obtained.

  14. Advances in the characterization of InAs/GaSb superlattice infrared photodetectors

    Science.gov (United States)

    Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.

    2016-10-01

    This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.

  15. Transport and spin effects in homogeneous magnetic superlattice

    International Nuclear Information System (INIS)

    Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.

    2000-09-01

    Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)

  16. Capacitance-Voltage (CV) Measurement of Type-2 Superlattice Photodiodes

    Science.gov (United States)

    2016-01-05

    Department of Defense position, policy, or decision. CQD Contents 1. Background and Motivation ...1. Background and Motivation 1.1. Development of Type-II superalttice Type-II InAs/GaSb superlattices (T2SLs) were first proposed by Sai-Halasz et...equals the ionized impurity concentration. In such case, the semiconductor is under extrinsic regime, and the dynamic of mobile carriers depends on

  17. Structural study of multilayered vanadium/nickel superlattices

    International Nuclear Information System (INIS)

    Homma, H.; Lepetre, Y.; Murduck, J.M.; Schuller, I.K.; Majkrzak, C.F.

    1985-07-01

    We have studied the microstructure of V/Ni metallic superlattice, using x-ray and neutron diffraction. We find a sharp and broad rocking curves around the first-order Bragg peak, and attribute them to a columnar structure which gives rise to two modulation structures; one the ordinary layered structure within the columns and the other the averaged modulation structure which produces the sharp rocking peak

  18. Phase transitions of a spin-one Ising ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Saber, A.

    2001-09-01

    Using the effective field theory with a probability distribution technique, the magnetic properties in an infinite superlattice consisting of two different ferromagnets are studied in a spin-one Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs in one period and as a function of the intra- and interlayer exchange interactions. A critical value of the exchange reduced interaction above which the interface magnetism appears is found. (author)

  19. Biotemplated Synthesis of PZT Nanowires

    Science.gov (United States)

    2013-11-25

    electromechanical coupling coefficient , Y is the Young’s modulus, and Ri is intrinsic resistance. The PZT nanowire- based film is taken to have negligible...robotic actuation, and bioMEMS. Lead zirconate titanate ( PZT ), in particular, has attracted significant attention, owing to its superior...electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with reproducible and well-controlled properties remains a

  20. Silicon nanowires: structure and properties

    International Nuclear Information System (INIS)

    Nezhdanov, A.V.; Mashin, A.I.; Razuvaev, A.G.; Ershov, A.V.; Ignatov, S.K.

    2006-01-01

    An attempt to grow silicon nanowires has been made by electron beam evaporation on highly oriented pyrolytic substrate. Needle-like objects are located along the normal to a substrate (density 2 x 10 11 cm -2 ). For modeling quasi-one-dimensional objects calculations of nuclear structure and energy spectra have been accomplished. A fullerene-like structure Si 24 is proposed as a basic atomic configuration of silicon nanowires [ru

  1. Band structure of ABC-trilayer graphene superlattice

    International Nuclear Information System (INIS)

    Uddin, Salah; Chan, K. S.

    2014-01-01

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k y direction for k x  = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case

  2. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu; Choi, Joshua J.; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M.; Hanrath, Tobias

    2011-01-01

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  3. X-ray diffraction of multilayers and superlattices

    International Nuclear Information System (INIS)

    Bartels, W.J.; Hornstra, J.; Lobeek, D.J.W.

    1986-01-01

    Recursion formulae for calculating the reflected amplitude ratio of multilayers and superlattices have been derived from the Takagi-Taupin differential equations, which describe the dynamical diffraction of X-rays in deformed crystals. Calculated rocking curves of complicated layered structures, such as non-ideal superlattices on perfect crystals, are shown to be in good agreement with observed diffraction profiles. The kinematical theory can save computing time only in the case of an ideal superlattice, for which a geometric series can be used, but the reflections must be below 10% so that multiple reflections can be neglected. For a perfect crystal of arbitrary thickness the absorption at the center of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter-deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-ray diffraction calculations give results very similar to those of a macroscopic optical description in terms of the complex index of refraction and Fresnel reflection coefficients. (orig.)

  4. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.; Hedhili, Mohamed N.; Cha, Dong Kyu; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  5. Waves in man-made materials: superlattice to metamaterials

    Science.gov (United States)

    Tsu, Raphael; Fiddy, Michael A.

    2014-07-01

    While artificial or man-made structures date back to Lord Rayleigh, the work started by Lewin in 1947, placing spheres onto cubic lattices, greatly enriched microwave materials and devices. It was very suggestive of both metamaterials and photonics crystals. Effective medium models were used to describe bulk properties with some success. The concept of metamaterials followed photonic crystals, and these both were introduced after the introduction of the man-made superlattices designed to enrich the class of materials for electronic devices. The work on serrated ridged waveguides by Kirschbaum and Tsu for the control of the refractive index of microwave lenses as well as microwave matching devices in 1959 used a combination of theory, such as Floquet's theory, Bloch theory in one dimension, as well as periodic lumped loading. There is much in common between metamaterials and superlattices, but in this paper, we discuss some practical limitations to both. It is pointed out that unlike superlattices where kl > 1 is the most important criterion, metamaterials try to avoid involve such restrictions. However, the natural random fluctuations that limit the properties of naturally occurring materials are shown to take a toll on the theoretical predictions of metamaterials. The question is how great that toll, i.e. how significant those fluctuations will be, in diminishing the unusual properties that metamaterials can exhibit.

  6. pi-phase magnetism in ferromagnetic-superconductor superlattices

    CERN Document Server

    Khusainov, M G; Proshin, Y N

    2001-01-01

    The Larkin-Ovchinnikov-Fylde-Ferrel new 0 pi- and pi pi-states are forecasted for the ferromagnetic metal/superconductor superlattices with antiferromagnetic magnetization orientation in the neighbouring layers. The above-mentioned states are characterized under certain conditions by higher critical temperature T sub c as compared to the earlier known LOFF 00- and pi 0-states with the FM-layers ferromagnetic ordering. It is shown that the nonmonotonous behavior of the T sub c of the FM/S superlattices by the thickness of the S-layers lower than the d sub s suppi value is connected with the cascades of the 0 pi-pi pi-0 pi phase transitions. The character of the T sub c oscillations by the d sub s > d sub s suppi is related to the 00-pi 0-00 transitions. The logical elements of the new type, combining the advantages of the superconducting and magnetic information recording in one sample are proposed on the basis of the FM/S superlattices

  7. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  8. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  9. Interface disorder and transport properties in HTC/CMR superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E

    2004-08-01

    The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.

  10. Lateral surface superlattices in strained InGaAs layers

    International Nuclear Information System (INIS)

    Milton, B.

    2000-08-01

    Lateral Surface Superlattices were fabricated by etching in strained InGaAs layers above a GaAs/AlGaAs 2DEG channel. These were etched both by dry plasma wet chemical etching to produce periods of 100nm, 200nm and 300nm. These superlattices were fabricated on Hall bars to allow four terminal measurement and a blanket gate was placed on top, to allow variations in the carrier concentration. The magnetoresistance effects of these superlattices were studied at varying values of gate voltage, which varies the carrier concentration and the electrostatic periodic potential and at temperatures down to 45mK in a dilution refrigerator. From the oscillations observed in the magnetoresistance trace's it is possible to calculate the magnitude of the periodic potential. This showed that the etched, strained InGaAs was producing an anisotropic piezoelectric potential, along with an isotropic electrostatic potential. The variation in period allowed a study of the change of this piezoelectric potential with the period as well as a study of the interactions between the electrostatic and piezoelectric potentials. Further, at the lowest temperatures a strong interaction was observed between the Commensurability Oscillations, caused by the periodic potential, and the Shubnikov-de Haas Oscillations due to the Landau. Levels. This interaction was studied as it varied with temperature and carrier concentration. (author)

  11. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass

    KAUST Repository

    Ding, Junfeng

    2016-05-04

    Emerging physical phenomena at the unit-cell-controlled interfaces of transition-metal oxides have attracted lots of interest because of the rich physics and application opportunities. This work reports a reentrant spin glass behavior with strong magnetic memory effect discovered in oxide heterostructures composed of ultrathin manganite La0.7Sr0.3MnO3 (LSMO) and cuprate La2CuO4 (LCO) layers. These heterostructures are featured with enhanced ferromagnetism before entering the spin glass state: a Curie temperature of 246 K is observed in the superlattice with six-unit-cell LSMO layers, while the reference LSMO film with the same thickness shows much weaker magnetism. Furthermore, an insulator-metal transition emerges at the Curie temperature, and below the freezing temperature the superlattices can be considered as a glassy ferromagnetic insulator. These experimental results are closely related to the interfacial spin reconstruction revealed by the first-principles calculations, and the dependence of the reentrant spin glass behavior on the LSMO layer thickness is in line with the general phase diagram of a spin system derived from the infinite-range SK model. The results of this work underscore the manganite/cuprate superlattices as a versatile platform of creating artificial materials with tailored interfacial spin coupling and physical properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers

    KAUST Repository

    Sarath Kumar, S. R.

    2014-04-22

    A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.

  13. Growth of GaAs-nanowires on GaAs (111)B substrates induced by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schott, Ruediger; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    Semiconductor nanowires are a promising system for applications in the areas of electronics and photonics and also for exploring phenomena at the nanoscale. There are several approaches to grow nanowires at arbitrary sites on the wafer. We report about growing GaAs-nanowires on GaAs(111)B substrates via the vapour-liquid-solid (VLS) mechanism in an ultra-high-vacuum (UHV)-cluster of a molecular beam epitaxy (MBE) and a focused ion beam (FIB) system. Our idea is to implant metal seeds (especially Au) for the nanowire growth by in situ patterning using FIB. Due to the UHV transfer between the FIB and the MBE chamber, no further cleaning step of the substrate surface is necessary. Formations of organized GaAs-nanowires and high aspect ratios are observed.

  14. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2013-12-06

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green\\'s function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  15. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñ oz, Enrique; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green's function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  16. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  17. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

    Directory of Open Access Journals (Sweden)

    Britta Kämpken

    2012-07-01

    Full Text Available In this work the applicability of neopentasilane (Si(SiH34 as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  18. Mechanical response of CH3NH3PbI3 nanowires

    Science.gov (United States)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  19. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  20. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  1. Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie

    2012-09-12

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.

  2. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  3. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  4. From dopyballs to nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, R E [Rice Quantum Inst. and Depts. of Chemistry and Physics, Rice Univ., Houston, TX (United States)

    1993-04-19

    Consideration of the factors involved in the production of fullerene nanotubes in carbon arcs leads to the notion that a high electric field may be the critical factor that causes the tubes to grow. This thought then leads to a suggestion that it may be possible to grow continuous fullerene fibers many centimeters in length by an electric-field-and-laser induced pyrolysis of gas phase hydrocarbons of fullerenes on the tip of the growing fiber as it extends out from its place of attachment on a high voltage needle. Use of metal- or boron-doped fullerenes (dopyballs) in such an apparatus may lead to the production of doped fullerene fiber nanowires of high strength and conductivity. (orig.)

  5. Indium Arsenide Nanowires

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal

    -ray diffraction. InAs NWs can be used in a broad range of applications, including detectors, high speed electronics and low temperature transport measurements, but in this thesis focus will be put on biological experiments on living cells. Good control of Au-assisted InAs NW growth has been achieved......This thesis is about growth of Au-assisted and self-assisted InAs nanowires (NWs). The wires are synthesized using a solid source molecular beam epitaxy (MBE) system and characterized with several techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x...... by a systematic study to optimize the growth conditions; first the Au deposition, then the growth temperature and finally the beam fluxes. For further control of the growth, Au droplets have been positioned with electron beam lithography and large scale arrays with a > 99 % yield have been made on 2 inch...

  6. Resonance of curved nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Calabri, L [CNR-INFM-National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/a, 41100 Modena (Italy); Pugno, N [Department of Structural Engineering and Geotechnics, Politecnico di Torino, Turin (Italy); Ding, W [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States)

    2006-08-23

    The effects of non-ideal experimental configuration on the mechanical resonance of boron (B) nanowires (NWs) were studied to obtain the corrected value for the Young's modulus. The following effects have been theoretically considered: (i) the presence of intrinsic curvature (ii) non-ideal clamps (iii) spurious masses (iv) coating layer, and (v) large displacements. An energy-based analytical analysis was developed to treat such effects and their interactions. Here, we focus on treating the effect of the intrinsic curvature on the mechanical resonance. The analytical approach has been confirmed by numerical FEM analysis. A parallax method was used to obtain the three-dimensional geometry of the NW.

  7. Corrosion detection of nanowires by magnetic sensors

    KAUST Repository

    Kosel, Jü rgen; Amara, Selma; Ivanov, Iurii; Blanco, Mario

    2017-01-01

    Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.

  8. Corrosion detection of nanowires by magnetic sensors

    KAUST Repository

    Kosel, Jürgen

    2017-10-05

    Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.

  9. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  10. Materials science and technology strained-layer superlattices materials science and technology

    CERN Document Server

    Pearsall, Thomas P; Willardson, R K; Pearsall, Thomas P

    1990-01-01

    The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting ...

  11. Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media

    International Nuclear Information System (INIS)

    Arana, J I; Bonilla, L L; Grahn, H T

    2011-01-01

    Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains. (paper)

  12. Topological insulator nanowires and nanowire hetero-junctions

    Science.gov (United States)

    Deng, Haiming; Zhao, Lukas; Wade, Travis; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2014-03-01

    The existing topological insulator materials (TIs) continue to present a number of challenges to complete understanding of the physics of topological spin-helical Dirac surface conduction channels, owing to a relatively large charge conduction in the bulk. One way to reduce the bulk contribution and to increase surface-to-volume ratio is by nanostructuring. Here we report on the synthesis and characterization of Sb2Te3, Bi2Te3 nanowires and nanotubes and Sb2Te3/Bi2Te3 heterojunctions electrochemically grown in porous anodic aluminum oxide (AAO) membranes with varied (from 50 to 150 nm) pore diameters. Stoichiometric rigid polycrystalline nanowires with controllable cross-sections were obtained using cell voltages in the 30 - 150 mV range. Transport measurements in up to 14 T magnetic fields applied along the nanowires show Aharonov-Bohm (A-B) quantum oscillations with periods corresponding to the nanowire diameters. All nanowires were found to exhibit sharp weak anti-localization (WAL) cusps, a characteristic signature of TIs. In addition to A-B oscillations, new quantization plateaus in magnetoresistance (MR) at low fields (< 0 . 7T) were observed. The analysis of MR as well as I - V characteristics of heterojunctions will be presented. Supported in part by NSF-DMR-1122594, NSF-DMR-1312483-MWN, and DOD-W911NF-13-1-0159.

  13. Turing Patterns in a Reaction-Diffusion System

    International Nuclear Information System (INIS)

    Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang

    2006-01-01

    We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.

  14. Gold nanowires and the effect of impurities

    Directory of Open Access Journals (Sweden)

    Novaes Frederico

    2006-01-01

    Full Text Available AbstractMetal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires.

  15. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  16. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  17. Methods for synthesizing metal oxide nanowires

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  18. Electrically Injected UV-Visible Nanowire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  19. Nanowire failure: long = brittle and short = ductile.

    Science.gov (United States)

    Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J

    2012-02-08

    Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society

  20. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  1. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stacking...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  2. Improving emission uniformity and linearizing band dispersion in nanowire arrays using quasi-aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P. Duke [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Koleske, Daniel D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Povinelli, Michelle L. [Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Subramania, Ganapathi [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    For this study, we experimentally investigate a new class of quasi-aperiodic structures for improving the emission pattern in nanowire arrays. Efficient normal emission, as well as lasing, can be obtained from III-nitride photonic crystal (PhC) nanowire arrays that utilize slow group velocity modes near the Γ-point in reciprocal space. However, due to symmetry considerations, the emitted far-field pattern of such modes are often ‘donut’-like. Many applications, including lighting for displays or lasers, require a more uniform beam profile in the far-field. Previous work has improved far-field beam uniformity of uncoupled modes by changing the shape of the emitting structure. However, in nanowire systems, the shape of nanowires cannot always be arbitrarily changed due to growth or etch considerations. Here, we investigate breaking symmetry by instead changing the position of emitters. Using a quasi-aperiodic geometry, which changes the emitter position within a photonic crystal supercell (2x2), we are able to linearize the photonic bandstructure near the Γ-point and greatly improve emitted far-field uniformity. We realize the III-nitride nanowires structures using a top-down fabrication procedure that produces nanowires with smooth, vertical sidewalls. Comparison of room-temperature micro-photoluminescence (µ-PL) measurements between periodic and quasi-aperiodic nanowire arrays reveal resonances in each structure, with the simple periodic structure producing a donut beam in the emitted far-field and the quasi-aperiodic structure producing a uniform Gaussian-like beam. We investigate the input pump power vs. output intensity in both systems and observe the simple periodic array exhibiting a non-linear relationship, indicative of lasing. We believe that the quasi-aperiodic approach studied here provides an alternate and promising strategy for shaping the emission pattern of nanoemitter systems.

  3. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  4. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    This thesis starts by developing a platform for the organized growth of nanowires directly on a planar substrate. For this, a method to fabricate horizontal porous alumina membranes is studied. The second part of the thesis focuses on the study of nanowires. It starts by the understanding of the growth mechanisms of germanium nanowires and follows by the structural and electrical properties at the single nanowire level. Horizontally aligned porous anodic alumina (PAA) was used as a template for the nanowire synthesis. Three PAA arrangements were studied: - high density membranes - micron-sized fingers - multi-contacts Membranes formed by a high density of nanopores were obtained by anodizing aluminum thin films. Metallic and semiconducting nanowires were synthesized into the PAA structures via DC deposition, pulsed electro-depostion and CVD growth. The presence of gold, copper, indium, nickel, tellurium, and silicon nanowires inside PAA templates was verified by SEM and EDX analysis. Further, room-temperature transport measurements showed that the pores are completely filled till the bottom of the pores. In this dissertation, single crystalline and core-shell germanium nanowires are synthesized using indium and bismuth as catalyst in a chemical vapor deposition procedure with germane (GeH{sub 4}) as growth precursor. A systematic growth study has been performed to obtain high aspect-ratio germanium nanowires. The influence of the growth conditions on the final morphology and the crystalline structure has been determined via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). In the case of indium catalyzed germanium nanowires, two different structures were identified: single crystalline and crystalline core-amorphous shell. The preferential growth axis of both kinds of nanowires is along the [110] direction. The occurrence of the two morphologies was found to only depend on the nanowire dimension. In the case of bismuth

  5. Linearly polarized emission from an embedded quantum dot using nanowire morphology control.

    Science.gov (United States)

    Foster, Andrew P; Bradley, John P; Gardner, Kirsty; Krysa, Andrey B; Royall, Ben; Skolnick, Maurice S; Wilson, Luke R

    2015-03-11

    GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

  6. GISAXS and SAXS studies on the spatial structures of Co nanowire arrays

    International Nuclear Information System (INIS)

    Cheng Weidong; Xing Xueqing; Wang Dehong; Gong Yu; Mo Guang; Cai Quan; Chen Zhongjun; Wu Zhonghua

    2011-01-01

    The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a≈105 nm, b≈95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 μm. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array. (authors)

  7. Synthesis and characterization of single-crystalline zinc tin oxide nanowires

    Science.gov (United States)

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-05-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  8. Transparent arrays of silver nanowire rings driven by evaporation of sessile droplets

    Science.gov (United States)

    Wang, Xiaofeng; Kang, Giho; Seong, Baekhoon; Chae, Illkyeong; Teguh Yudistira, Hadi; Lee, Hyungdong; Kim, Hyunggun; Byun, Doyoung

    2017-11-01

    A coffee-ring pattern can be yielded on the three-phase contact line following evaporation of sessile droplets with suspended insoluble solutes, such as particles, DNA molecules, and mammalian cells. The formation of such coffee-ring, together with their suppression has been applied in printing and coating technologies. We present here an experimental study on the assembly of silver nanowires inside an evaporating droplet of a colloidal suspension. The effects of nanowire length and concentration on coffee-ring formation of the colloidal suspension were investigated. Several sizes of NWs with an aspect ratio between 50 and 1000 were systematically investigated to fabricate coffee-ring patterns. Larger droplets containing shorter nanowires formed clearer ring deposits after evaporation. An order-to-disorder transition of the nanowires’ alignment was found inside the rings. A printing technique with the evaporation process enabled fabrication of arrays of silver nanowire rings. We could manipulate the patterns silver nanowire rings, which might be applied to the transparent and flexible electrode.

  9. Transparent arrays of silver nanowire rings driven by evaporation of sessile droplets

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Kang, Giho; Seong, Baekhoon; Chae, Illkyeong; Yudistira, Hadi Teguh; Lee, Hyungdong; Byun, Doyoung; Kim, Hyunggun

    2017-01-01

    A coffee-ring pattern can be yielded on the three-phase contact line following evaporation of sessile droplets with suspended insoluble solutes, such as particles, DNA molecules, and mammalian cells. The formation of such coffee-ring, together with their suppression has been applied in printing and coating technologies. We present here an experimental study on the assembly of silver nanowires inside an evaporating droplet of a colloidal suspension. The effects of nanowire length and concentration on coffee-ring formation of the colloidal suspension were investigated. Several sizes of NWs with an aspect ratio between 50 and 1000 were systematically investigated to fabricate coffee-ring patterns. Larger droplets containing shorter nanowires formed clearer ring deposits after evaporation. An order-to-disorder transition of the nanowires’ alignment was found inside the rings. A printing technique with the evaporation process enabled fabrication of arrays of silver nanowire rings. We could manipulate the patterns silver nanowire rings, which might be applied to the transparent and flexible electrode. (paper)

  10. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  11. Tunable electronic transmission gaps in a graphene superlattice

    International Nuclear Information System (INIS)

    Lu Weitao; Wang Shunjin; Li Wen; Wang Yonglong; Jiang Hua

    2012-01-01

    The transmission in graphene superlattices with adjustable barrier height is investigated using transfer-matrix method. It is found that one could control the angular range of transmission by changing the ratio of incidence energy and barrier height. The transmission as a function of incidence energy has more than one gaps, due to the appearance of evanescent waves in different barriers. Accordingly, more than one conductivity minimums are induced. The transmission gaps could be controlled by adjusting the incidence angle, the barrier height, and the barrier number, which gives the possibility to construct an energy-dependent wavevector filter.

  12. Theory of the negative differential conductivity effect in semiconductor superlattices

    International Nuclear Information System (INIS)

    Vo Hong Anh; Nguyen Hong Shon; Le Vu Ky

    1990-01-01

    A new mechanism of the negative differential conductivity (NDC) effect in semiconductor superlattices (SL) is proposed and analysed that is due to the conduction electron trapping by donor centers. It is shown that the NDC effect occurs for sufficently high (but reasonable) impurity concentration and not too large value of the τ ε /τ c ratio (where τ ε is the electron energy relaxation time and τ c the electron life time in the conduction band) when the applied d.c. electric field reaches certain critical value defined by the physical parameters of the sample. (author). 8 refs, 2 figs

  13. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  14. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  15. Minority Carrier Lifetime Studies of Narrow Bandgap Antimonide Superlattices

    Science.gov (United States)

    Hoglund, Linda; Ting, David Z.; Khoshakhlagh, Arezou; Soibel, Alexander; Hill, Cory J.; Fisher, Anita; Keo, Sam; Gunapala, Sarath D.

    2014-01-01

    In this study optical modulation response and photoluminescence spectroscopy were used to study mid-wave Ga-free InAs/InAsSb superlattices. The minority carrier lifetimes in the different samples varied from 480 ns to 4700 ns, partly due to different background doping concentrations. It was shown that the photoluminescence intensity can be used as a fast non-destructive tool to predict the material quality. It was also demonstrated that it is crucial to use a low excitation power in the photoluminescence measurements in order to get a good correlation between the photoluminescence intensity and the minority carrier lifetime.

  16. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  17. The hyperfine properties of a hydrogenated Fe/V superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2012-03-15

    We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.

  18. Leaky electronic states for photovoltaic photodetectors based on asymmetric superlattices

    Science.gov (United States)

    Penello, Germano Maioli; Pereira, Pedro Henrique; Pires, Mauricio Pamplona; Sivco, Deborah; Gmachl, Claire; Souza, Patricia Lustoza

    2018-01-01

    The concept of leaky electronic states in the continuum is used to achieve room temperature operation of photovoltaic superlattice infrared photodetectors. A structural asymmetric InGaAs/InAlAs potential profile is designed to create states in the continuum with the preferential direction for electron extraction and, consequently, to obtain photovoltaic operation at room temperature. Due to the photovoltaic operation and virtual increase in the bandoffset, the device presents both low dark current and low noise. The Johnson noise limited specific detectivity reaches values as high as 1.4 × 1011 Jones at 80 K. At 300 K, the detectivity obtained is 7.0 × 105 Jones.

  19. Non-linear spin transport in magnetic semiconductor superlattices

    International Nuclear Information System (INIS)

    Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.

    2004-01-01

    The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field

  20. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  1. Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

    Science.gov (United States)

    Herchig, Ryan Christopher

    Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first

  2. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  3. Growth and applicability of radiation-responsive silica nanowires

    Science.gov (United States)

    Bettge, Martin

    -phase line with 670-850 mJ-m-2. Our analysis further reveals the existence of an additional force at this line that behaves as a negative line tension (or line energy). Its contribution is relatively small, but important for stable and small nanowire growth. The value of the line tension lies in the range of -0.1 to -1.0 nJ-m-1. Spontaneous alignment of these stranded, free-standing wires toward a source of directional ion irradiation is proposed to be driven by local surface area minimization. An intuitive model for this is provided and experimentally verified through post-growth reorientation of nanowire patterns over a wide range of angles with standard focused ion beam instrumentation. Ion-induced orientation control and modification of nanowire arrays might prove to be a powerful method for nanoscale surface engineering, potentially leading to surfaces with well-organized anisotropic topographies. Another potential application of aligned silica nanowires as templates for highly textured electrodes in lithium-ion batteries is also discussed. As textured thin films are expected to provide better cycle life and enhanced charge transport, their electrochemical performance is compared to planar thin films of equal mass using two secondary materials (amorphous silicon and lithium manganese oxide). Both materials are applied directly onto the wire arrays by conventional deposition tools and galvanostatically cycled against metallic lithium. Textured silicon films, for use as negative materials, show improved capacity retention compared to planar thin films. Capacity fade is found to be relatively constant at about 0.8% per cycle over 30 cycles. Significant charge trapping occurred due to massive formation of a solid-electrolyteinterface. Electrochemical cycling and impedance spectroscopy further demonstrate that kinetic and electrochemical behavior of the electrode is qualitatively similar for planar and for highly textured silicon thin films. Textured films of lithium

  4. COMPORTAMENTO A CORROSIONE E TRIBOCORROSIONE DI RIVESTIMENTI CERMET E CERMET/ SUPERLATTICE

    OpenAIRE

    Monticelli, C.; Zucchi, F.

    2009-01-01

    È stato studiato il comportamento a corrosione e tribocorrosione di riporti cermet e cermet/superlattice,applicati su campioni di acciaio. I riporti cermet consistono in riporti termici HVOF a spessore,di tipo WC-12Co o Cr3C2-37WC-18Me. I doppi riporti cermet/superlattice sono ottenuti sovrapponendoai depositi cermet citati un superlattice a base di nitruri, in cui si alternano strati di CrN e di NbN. Unasoluzione al 3.5 % di NaCl costituisce l’ambiente aggressivo. Le condizioni di tribocorro...

  5. Ordered quantum-ring chains grown on a quantum-dot superlattice template

    International Nuclear Information System (INIS)

    Wu Jiang; Wang, Zhiming M.; Holmes, Kyland; Marega, Euclydes; Mazur, Yuriy I.; Salamo, Gregory J.

    2012-01-01

    One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.

  6. Structural and magnetic properties of holmium-scandium alloys and superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top...... of the seed layer; while the superlattices have different a lattice parameters for the Sc seed, and for both the Ho and Sc in the superlattice layers. The structural characteristics are related to the large lattice mismatches (of the order 7%) between the constituent elements. The magnetic moments...

  7. Quantum optics with nanowires (Conference Presentation)

    Science.gov (United States)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  8. Laser-induced single point nanowelding of silver nanowires

    International Nuclear Information System (INIS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-01-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  9. Laser-induced single point nanowelding of silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuowei; Li, Qiang, E-mail: qiangli@zju.edu.cn; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min, E-mail: minqiu@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-03-21

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  10. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2014-11-07

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6.0) during growth. Systematic high resolution transmission electron microscopy imaging and analysis of the electron diffraction patterns reveals a dependence of crystal orientation from electrolyte pH. The tailored modification of the crystalline signature results in the reorientation of the magnetocrystalline anisotropy and increasing experimental coercivity and squareness with decreasing polar angle of the \\'c\\' growth axis. Micromagnetic modeling of the demagnetization process and its angular dependence is in agreement with the experiment and allows us to establish the change in the character of the magnetization reversal: from quasi-curling to vortex domain wall propagation modes when the crystal \\'c\\' axis tilts more than 75° in respect to the nanowire axis.

  11. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  12. Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices

    Directory of Open Access Journals (Sweden)

    Luis L. Bonilla

    2016-07-01

    Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.

  13. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  14. Nanophysics in graphene: neutrino physics in quantum rings and superlattices.

    Science.gov (United States)

    Fertig, H A; Brey, Luis

    2010-12-13

    Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.

  15. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  16. Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices

    Science.gov (United States)

    Yusuf, Mohammed; Du, Xu; Dawber, Matthew

    2013-03-01

    Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)

  17. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  18. Tunneling and Transport in Nanowires

    International Nuclear Information System (INIS)

    Goldman, Allen M.

    2016-01-01

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires driven resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO_3. The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.

  19. Tunneling and Transport in Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Allen M. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-16

    The goal of this program was to study new physical phenomena that might be relevant to the performance of conductive devices and circuits of the smallest realizable feature sizes possible using physical rather than biological techniques. Although the initial scientific work supported involved the use of scanning tunneling microscopy and spectroscopy to ascertain the statistics of the energy level distribution of randomly sized and randomly shaped quantum dots, or nano-crystals, the main focus was on the investigation of selected properties, including superconductivity, of conducting and superconducting nanowires prepared using electron-beam-lithography. We discovered a magnetic-field-restoration of superconductivity in out-of-equilibrium nanowires driven resistive by current. This phenomenon was explained by the existence of a state in which dissipation coexisted with nonvanishing superconducting order. We also produced ultra-small superconducting loops to study a predicted anomalous fluxoid quantization, but instead, found a magnetic-field-dependent, high-resistance state, rather than superconductivity. Finally, we developed a simple and controllable nanowire in an induced charged layer near the surface of a masked single-crystal insulator, SrTiO3. The layer was induced using an electric double layer transistor employing an ionic liquid (IL). The transport properties of the induced nanowire resembled those of collective electronic transport through an array of quantum dots.

  20. Biotemplated synthesis of PZT nanowires.

    Science.gov (United States)

    Cung, Kellye; Han, Booyeon J; Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Xu, Shiyou; Naik, Rajesh R; Poirier, Gerald; Yao, Nan; Purohit, Prashant K; McAlpine, Michael C

    2013-01-01

    Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 μW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.

  1. Nanowire-based gas sensors

    NARCIS (Netherlands)

    Chen, X.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.

    2013-01-01

    Gas sensors fabricated with nanowires as the detecting elements are powerful due to their many improved characteristics such as high surface-to-volume ratios, ultrasensitivity, higher selectivity, low power consumption, and fast response. This paper gives an overview on the recent process of the

  2. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  3. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  4. Effect of layer composition on band spectrum of CdxHg1-xTe - CdyHg1-yTe-type superlattices

    International Nuclear Information System (INIS)

    Gerchikov, L.G.; Subashiev, A.V.; Salman Dalla

    1993-01-01

    Evolution of energy spectrum of Cd x Hg 1-x Te -Cd y Hg 1-y Te superlattices at variation of layer composition is considered. Transition from 3 type superlattice to 1 type superlattice occurring for y=0.16 is studied comprehensively. In this case, dependence of the width of superlattice forbidden zone on layer thickness is shown to become more smooth, than in CdTe - HgTe superlattice and it gives more possibilities to use such superlattices for making IR phototransistors. 10 refs., 4 figs

  5. Intraband dynamics and terahertz emission in biased semiconductor superlattices coupled to double far-infrared pulses

    International Nuclear Information System (INIS)

    Min, Li; Xian-Wu, Mi

    2009-01-01

    This paper studies both the intraband polarization and terahertz emission of a semiconductor superlattice in combined dc and ac electric fields by using the superposition of two identical time delayed and phase shifted optical pulses. By adjusting the delay between these two optical pulses, our results show that the intraband polarization is sensitive to the time delay. The peak values appear again for the terahertz emission intensity due to the superposition of two optical pulses. The emission lines of terahertz blueshift and redshift in different ac electric fields and dynamic localization appears. The emission lines of THz only appear to blueshift when the biased superlattice is driven by a single optical pulse. Due to excitonic dynamic localization, the terahertz emission intensity decays with time in different dc and ac electric fields. These are features of this superlattice which distinguish it from a superlattice generated by a single optical pulse to drive it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Hydrogenation of Very Long Wavelength Infrared Focal Plane Arrays Based on Type II Superlattices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to advance the Ga-free InAs/InAsSb type II superlattice (T2SL) materials technology for very long wavelength infrared (VLWIR) focal plane arrays (FPAs) by...

  7. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    Science.gov (United States)

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1987-06-08

    A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.

  8. GeTe sequences in superlattice phase change memories and their electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ohyanagi, T., E-mail: ohyanagi@leap.or.jp; Kitamura, M.; Takaura, N. [Low-Power Electronics Association and Projects (LEAP), Onogawa 16-1, Tsukuba, Ibaraki 305-8569 (Japan); Araidai, M. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kato, S. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Shiraishi, K. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2014-06-23

    We studied GeTe structures in superlattice phase change memories (superlattice PCMs) with a [GeTe/Sb{sub 2}Te{sub 3}] stacked structure by X-ray diffraction (XRD) analysis. We examined the electrical characteristics of superlattice PCMs with films deposited at different temperatures. It was found that XRD spectra differed between the films deposited at 200 °C and 240 °C; the differences corresponded to the differences in the GeTe sequences in the films. We applied first-principles calculations to calculate the total energy of three different GeTe sequences. The results showed the Ge-Te-Ge-Te sequence had the lowest total energy of the three and it was found that with this sequence the superlattice PCMs did not run.

  9. Solvent-driven symmetry of self-assembled nanocrystal superlattices-A computational study

    KAUST Repository

    Kaushik, Ananth P.; Clancy, Paulette

    2012-01-01

    used solvents, toluene and hexane. System sizes in the 400,000-500,000-atom scale followed for nanoseconds are required for this computationally intensive study. The key questions addressed here concern the thermodynamic stability of the superlattice

  10. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu; Hughes, Kevin J.; Zhang, Wenyu; Smilgies, Detlef-M.; Hennig, Richard G.; Engstrom, James R.; Hanrath, Tobias

    2011-01-01

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  11. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  12. Interwell and intrawell magnetoexcitons in GaAs/AlGaAs superlattices

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Filin, A. I.; Tartakovskii, A. I.

    1997-01-01

    The formation of spatially indirect (interwell) excitons in superlattices (SLs) with different barrier widths (different tunneling coupling) is experimentally investigated in a strong enough magnetic field with the use of photoluminescence (PL), photoluminescence excitation (PLE), reflectance spec...

  13. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  14. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  15. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice

    Science.gov (United States)

    Li, X. J.; Yu, J. H.; Luo, K.; Wu, Z. H.; Yang, W.

    2018-04-01

    We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin-orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron-hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.

  16. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    Science.gov (United States)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  17. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  18. Disorder influence on the magnetic properties of La0.55Sr0.45MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Haberkorn, N.; Sirena, M.; Guimpel, J.; Steren, L.B.

    2004-01-01

    The structural and physical properties of La 0.55 Sr 0.45 MnO 3 /SrTiO 3 superlattices grown by magnetron sputtering are studied. Two deposition temperatures and different mismatched substrates and buffer layers were used. The structure was determined by refinement through X-ray diffraction pattern fitting. The results indicate 1 unit cell (u.c.) interdiffusion at the interfaces and a 1 u.c. layer thickness fluctuation, i.e. roughness. In-plane hysteresis loops show the expected ferromagnetic behavior, while the perpendicular-to-plane hysteresis loops show anomalies which could evidence magnetic domain size inhomogeneities and stress

  19. X-ray diffraction analysis of InAs nanowires

    International Nuclear Information System (INIS)

    Davydok, Anton

    2013-01-01

    Si substrate. MBE provides the opportunity to combine a group III-V material with nearly any semiconductor substrate independent from lattice mismatch. Vertically aligned nanowire ensembles were studied performing X-ray diffraction experiments in different scattering geometries. Considering the nanowires are composed by structural units of zinc-blende and wurtzite the latter one was found to be affected by a high density of stacking faults already at nanowires with short growth time. The stacking faults density was estimated by Monte-Carlo simulations based on model of ensemble average. A strong signal of unique zinc-blende reflection was observed as well. Coherent X-ray diffraction experiments with the use of a nano-focus setup have shown 'bar-code' patterning due to stacking fault arrangement within the nanowire. The found highly defective structure cannot be attributed to wurtzite or zinc-blende phases alone. Also parasitic islands were found on the samples surfaces and characterized as pure zinc-blende objects.

  20. Enhanced ionized impurity scattering in nanowires

    Science.gov (United States)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  1. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    Science.gov (United States)

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  2. Alternating current-driven graphene superlattices: Kinks, dissipative solitons, dynamic chaotization

    International Nuclear Information System (INIS)

    Kryuchkov, S. V.; Kukhar', E. I.

    2015-01-01

    The possibility of the solitary electromagnetic wave formation in graphene superlattice subjected to the electromagnetic radiation is discussed. The chaotic behavior of the electron subsystem in graphene superlattice is studied by Melnikov method. Dynamic chaos of electrons is shown to appear for certain intervals of frequencies of incident electromagnetic radiation. The frequency dependence of the radiation critical amplitude which determines the bound of chaos appearance is investigated. The values of radiation frequency at which the critical amplitude increases indefinitely were found

  3. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  5. Spectral properties of waves in superlattices with 2D and 3D inhomogeneities

    International Nuclear Information System (INIS)

    Ignatchenko, V. A.; Tsikalov, D. S.

    2011-01-01

    We investigate the dynamic susceptibility and one-dimensional density of states in an initially sinusoidal superlattice containing simultaneously 2D phase inhomogeneities simulating correlated rough-nesses of superlattice interfaces and 3D amplitude inhomogeneities of the superlattice layer materials. The analytic expression for the averaged Green’s function of the sinusoidal superlattice with two phase inhomogeneities is derived in the Bourret approximation. It is shown that the effect of increasing asymmetry in the peak heights of dynamic susceptibility at the Brillouin zone boundary of the superlattice, which was discovered earlier [15] upon an increase in root-mean-square (rms) fluctuations, also takes place upon an increase in the correlation wavenumber of inhomogeneities. However, the peaks in this case also become closer, and the width and depth of the gap in the density of states decrease thereby. It is shown that the enhancement of rms fluctuations of 3D amplitude inhomogeneities in a superlattice containing 2D phase inhomogeneities suppresses the effect of dynamic susceptibility asymmetry and leads to a slight broadening of the gap in the density of states and a decrease in its depth. Targeted experiments aimed at detecting the effects studied here would facilitate the development of radio-spectroscopic and optical methods for identifying the presence of inhomogeneities of various dimensions in multilayer magnetic and optical structures.

  6. Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques

    International Nuclear Information System (INIS)

    Secco, Eleonora; Minj, Albert; Garro, Núria; Cantarero, Andrés; Colchero, Jaime; Urban, Arne; Oppo, Carla Ivana; Malindretos, Joerg; Rizzi, Angela

    2015-01-01

    The growth selectivity and structural quality of GaN nanowires obtained by plasma-assisted molecular beam epitaxy on pre-patterned GaN(0001) templates are investigated by means of non-destructive techniques. Optimum control over the nanowire arrangement and size requires a pitch between the mask apertures below twice the diffusion length of Ga atoms. Lower pitches, however, seem to slightly diminish the structural quality of the material, as revealed by the increase of the Raman peak linewidths. The photoluminescence spectra of the nanowires show a considerable presence of basal plane stacking faults, whose density increases for decreasing nanowire diameter. The capabilities of Kelvin probe force microscopy for imaging these kind of defects are also demonstrated. (paper)

  7. Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques

    Science.gov (United States)

    Secco, Eleonora; Minj, Albert; Garro, Núria; Cantarero, Andrés; Colchero, Jaime; Urban, Arne; Ivana Oppo, Carla; Malindretos, Joerg; Rizzi, Angela

    2015-08-01

    The growth selectivity and structural quality of GaN nanowires obtained by plasma-assisted molecular beam epitaxy on pre-patterned GaN(0001) templates are investigated by means of non-destructive techniques. Optimum control over the nanowire arrangement and size requires a pitch between the mask apertures below twice the diffusion length of Ga atoms. Lower pitches, however, seem to slightly diminish the structural quality of the material, as revealed by the increase of the Raman peak linewidths. The photoluminescence spectra of the nanowires show a considerable presence of basal plane stacking faults, whose density increases for decreasing nanowire diameter. The capabilities of Kelvin probe force microscopy for imaging these kind of defects are also demonstrated.

  8. Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie

    2012-01-01

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063

  9. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  10. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong; Yang, Rusen; Wang, Zhong Lin

    2008-01-01

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically

  11. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet-...

  12. Magnetization reversal modes in fourfold Co nano-wire systems

    International Nuclear Information System (INIS)

    Blachowicz, T; Ehrmann, A

    2015-01-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities. (paper)

  13. Magnetization reversal modes in fourfold Co nano-wire systems

    Science.gov (United States)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  14. Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates

    Directory of Open Access Journals (Sweden)

    Alexander J. Knowles

    2018-04-01

    Full Text Available The data presented in this article are related to the research article entitled “a new beta titanium alloy system reinforced with superlattice intermetallic precipitates” (Knowles et al., 2018 [1]. This includes data from the as-cast alloy obtained using scanning electron microscopy (SEM and x-ray diffraction (XRD as well as SEM data in the solution heat treated condition. Transmission electron microscopy (TEM selected area diffraction patterns (SADPs are included from the alloy in the solution heat treated condition, as well as the aged condition that contained < 100 nm B2 TiFe precipitates [1], the latter of which was found to exhibit double diffraction owing to the precipitate and matrix channels being of a similar width to the foil thickness (Williams and Carter, 2009 [2]. Further details are provided on the macroscopic compression testing of small scale cylinders. Of the micropillar deformation experiment performed in [1], SEM micrographs of focused ion beam (FIB prepared 2 µm micropillars are presented alongside those obtained at the end of the in-situ SEM deformation as well as videos of the in-situ deformation. Further, a table is included that lists the Schmidt factors of all the possible slip systems given the crystal orientations and loading axis of the deformed micropillars in the solution heat treated and aged conditions.

  15. Laser induced structural transformation in chalcogenide based superlattices

    International Nuclear Information System (INIS)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-01-01

    Superlattices made of alternating layers of nominal GeTe and Sb 2 Te 3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  16. Laser induced structural transformation in chalcogenide based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zallo, Eugenio, E-mail: zallo@pdi-berlin.de; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-05-30

    Superlattices made of alternating layers of nominal GeTe and Sb{sub 2}Te{sub 3} have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  17. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  18. Superlattices assembled through shape-induced directional binding

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  19. Sequential magnetic switching in Fe/MgO(001) superlattices

    Science.gov (United States)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  20. Growth of ZnO nanowire arrays directly onto Si via substrate topographical adjustments using both wet chemical and dry etching methods

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nathan A., E-mail: 523615@swansea.ac.uk [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom); Evans, Jon E.; Jones, Daniel R. [Multidisciplinary Nanotechnology Centre, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Lord, Alex M. [Centre for Nanohealth, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Wilks, S.P. [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom)

    2015-03-15

    Highlights: • Arrays of catalyst-free ZnO NWs have been grown by CVD without seed layers on Si. • Si surface topography was altered by substrate etching, resulting in NW growth. • XPS analysis shows growth is related to topography and not surface contamination. • Using e-beam lithography with etching, selective nanowire growth is demonstrated. • Electrical measurements on the arrays show improved conduction through the Si. - Abstract: Arrays of CVD catalyst-free ZnO nanowires have been successfully grown without the use of seed layers, using both wet chemical and dry plasma etching methods to alter surface topography. XPS analysis indicates that the NW growth cannot be attributed to a substrate surface chemistry and is therefore directly related to the substrate topography. These nanowires demonstrate structural and optical properties typical of CVD ZnO nanowires. Moreover, the NW arrays exhibit a degree of vertical alignment of less than 20° from the substrate normal. Electrical measurements suggest an improved conduction path through the substrate over seed layer grown nanowires. Furthermore, the etching technique was combined with e-beam lithography to produce high resolution selective area nanowire growth. The ability to pattern uniform nanowires using mature dry etch technology coupled with the increased charge transport through the substrate demonstrates the potential of this technique in the vertical integration of nanowire arrays.

  1. PREFACE: Synthesis and integration of nanowires

    Science.gov (United States)

    Samuelson, L.

    2006-06-01

    The field of semiconductor nanowires has attracted much attention in recent years, from the areas of basic materials science, advanced characterization and technology, as well as from the perspective of the applications of nanowires. Research on large-sized whiskers and wires had already begun in the 1960s with the pioneering work of Wagner, as well as by other researchers. It was, however, in the early 1990s that Kenji Hiruma at Hitachi Central Research Laboratories in Japan first succeeded in developing methods for the growth of nanowires with dimensions on the scale of 10-100 nm, thereby initiating the field of growth and applications of nanowires, with a strong emphasis on epitaxial nucleation of nanowires on a single-crystalline substrate. Starting from the mid-1990s, the field developed very rapidly with the number of papers on the subject growing from ten per year to several thousand papers on the subject published annually today, although with a rather generous definition of the concept of nanowires. With this rapid development we have seen many new and different approaches to the growth of nanowires, technological advances leading to a more well-controlled formation of nanowires, new innovative methods for the characterization of structures, as well as a wealth of approaches towards the use of nanowires in electronics, photonics and sensor applications. This issue contains contributions from many different laboratories, each adding significant detail to the development of the field of research. The contributions cover issues such as basic growth, advanced characterization and technology, and application of nanowires. I would like to acknowledge the shared responsibilities for this special issue of Nanotechnology on the synthesis and integration of nanowires with my co-Editors, S Tong Lee and M Sunkara, as well as the highly professional support from Dr Nina Couzin, Dr Ian Forbes and the Nanotechnology team from the Institute of Physics Publishing.

  2. Effect of e-beam dose on the fractional density of Au-catalyzed GaAs nanowire growth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Hun, E-mail: jeunghunpark@gmail.com [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Gambin, Vincent [Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Kodambaka, Suneel, E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-05-31

    Using Au/GaAs as a model system, the effect of initial catalyst patterning conditions on the growth of nanowire was studied. Resulting morphologies and fractional surface densities are determined as a function of e-beam dose, dot size, and inter-dot spacing using scanning and transmission electron microscopies. The majority of resulting nanowires grow randomly oriented with respect to the substrate. The nanowires are tapered with narrow tops, wider bases, and catalysts at the wire tips — characteristics of vapor–liquid–solid process. The base diameters of the wires are larger than the dot size, which is likely due to the non-catalyzed vapor–solid deposition along the sidewalls. The higher dose rate used in pattering leads to the formation of higher aspect ratio nanowires with narrower bases. The fractional surface density is found to increase linearly with the clearing dose and the critical dose for nanowire growth increases with decreasing catalyst pattern size and spacing. At a given dose, the fractional density increases with increasing Au dot size and with decreasing inter-dot spacing. Our results may provide new insights into the role of catalyst preparing conditions on the high density, wafer-scale growth of nanowires. - Highlights: • Initial Au catalyst layers are prepared using electron beam lithography. • GaAs nanowires are grown on GaAs(111)B using molecular beam epitaxy. • Effect of dose, size and spacing of Au dots on morphology and density is studied. • Density of nanowires is controlled by changing exposed dose on Au catalyst.

  3. Emergent chirality in the electric polarization texture of titanate superlattices.

    Science.gov (United States)

    Shafer, Padraic; García-Fernández, Pablo; Aguado-Puente, Pablo; Damodaran, Anoop R; Yadav, Ajay K; Nelson, Christopher T; Hsu, Shang-Lin; Wojdeł, Jacek C; Íñiguez, Jorge; Martin, Lane W; Arenholz, Elke; Junquera, Javier; Ramesh, Ramamoorthy

    2018-01-30

    Chirality is a geometrical property by which an object is not superimposable onto its mirror image, thereby imparting a handedness. Chirality determines many important properties in nature-from the strength of the weak interactions according to the electroweak theory in particle physics to the binding of enzymes with naturally occurring amino acids or sugars, reactions that are fundamental for life. In condensed matter physics, the prediction of topologically protected magnetic skyrmions and related spin textures in chiral magnets has stimulated significant research. If the magnetic dipoles were replaced by their electrical counterparts, then electrically controllable chiral devices could be designed. Complex oxide BaTiO 3 /SrTiO 3 nanocomposites and PbTiO 3 /SrTiO 3 superlattices are perfect candidates, since "polar vortices," in which a continuous rotation of ferroelectric polarization spontaneously forms, have been recently discovered. Using resonant soft X-ray diffraction, we report the observation of a strong circular dichroism from the interaction between circularly polarized light and the chiral electric polarization texture that emerges in PbTiO 3 /SrTiO 3 superlattices. This hallmark of chirality is explained by a helical rotation of electric polarization that second-principles simulations predict to reside within complex 3D polarization textures comprising ordered topological line defects. The handedness of the texture can be topologically characterized by the sign of the helicity number of the chiral line defects. This coupling between the optical and novel polar properties could be exploited to encode chiral signatures into photon or electron beams for information processing.

  4. Nanowire NMOS Logic Inverter Characterization.

    Science.gov (United States)

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  5. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  6. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  7. Nanowire sensor, sensor array, and method for making the same

    Science.gov (United States)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  8. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan; Corte-Leon, H.; Ivanov, Yurii P.; Moreno, J. A.; Kazakova, O.; Kosel, Jü rgen

    2017-01-01

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  9. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    International Nuclear Information System (INIS)

    Uchida, Takafumi; Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-01-01

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates

  10. Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire

    International Nuclear Information System (INIS)

    Kim, Jeongmin; Lee, Seunghyun; Kim, MinGin; Lee, Wooyoung; Brovman, Yuri M.; Kim, Philip

    2014-01-01

    We present the low temperature transport properties of an individual single-crystalline Bi nanowire grown by the on-film formation of nanowire method. The temperature dependent resistance and magnetoresistance of Bi nanowires were investigated. The phase coherence length was obtained from the fluctuation pattern of the magnetoresistance below 40 K using universal conductance fluctuation theory. The obtained temperature dependence of phase coherence length and the fluctuation amplitude indicates that the transport of electrons shows 2-dimensional characteristics originating from the surface states. The temperature dependence of the coherence length derived from the weak antilocalization effect using the Hikami–Larkin–Nagaoka model is consistent with that from the universal conductance fluctuations theory

  11. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    Science.gov (United States)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  12. Influence of the Hydrothermal Method Growth Parameters on the Zinc Oxide Nanowires Deposited on Several Substrates

    Directory of Open Access Journals (Sweden)

    Concepción Mejía-García

    2014-01-01

    Full Text Available We report the synthesis of ZnO nanowires grown on several substrates (PET, glass, and Si using a two-step process: (a preparation of the seed layer on the substrate by spin coating, from solutions of zinc acetate dihydrate and 1-propanol, and (b growth of the ZnO nanostructures by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. Subsequently, films were thermally treated with a commercial microwave oven (350 and 700 W for 5, 20, and 35 min. The ZnO nanowires obtained were characterized structurally, morphologically, and optically using XRD, SEM, and UV-VIS transmission, respectively. XRD patterns spectra revealed the presence of Zn(OH2 on the films grown on glass and Si substrates. A preferential orientation along c-axis directions for films grown on PET substrate was observed. An analysis by SEM revealed that the growth of the ZnO nanowires on PET and glass is better than the growth on Si when the same growth parameters are used. On glass substrates, ZnO nanowires less than 50 nm in diameter and between 200 nm and 1200 nm in length were obtained. The ZnO nanowires band gap energy for the films grown on PET and glass was obtained from optical transmission spectra.

  13. Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect

    Science.gov (United States)

    Mika, Marek; Wójcik, Paweł

    2017-11-01

    The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.

  14. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Tchernycheva, M; Harmand, J C; Patriarche, G; Travers, L; Cirlin, G E

    2006-01-01

    Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320 deg. C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620 deg. C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires

  15. Epitaxy of advanced nanowire quantum devices

    NARCIS (Netherlands)

    Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S.C.; Logan, J.A.; De Moor, M.W.A.; Cassidy, M.C.; Schmits, R.; Xu, D.; Wang, G.; Krogstrup, P.; Op Het Veld, R.L.M.; Zuo, K.; Vos, Y.; Shen, J.; Bouman, D.; Shojaei, B.; Pennachio, D.; Lee, J.S.; van Veldhoven, P.J.; Koelling, S.; Verheijen, M.A.; Kouwenhoven, L.P.; Palmstrøm, C.J.; Bakkers, E.P.A.M.

    2017-01-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a

  16. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  17. Functionalization of magnetic nanowires by charged biopolymers

    DEFF Research Database (Denmark)

    Magnin, D.; Callegari, V.; Mátéfi-Tempfli, Stefan

    2008-01-01

    We report on a facile method for the preparation of biocompatible and bioactive magnetic nanowires. The method consists of the direct deposition of polysaccharides by layer-by-layer (LbL) assembly onto a brush of metallic nanowires; obtained by electrodeposition of the metal within the nanopores ...

  18. Design nanocrack patterns in heterogeneous films

    International Nuclear Information System (INIS)

    Salac, David; Lu Wei

    2006-01-01

    Nanowires have significant potential in future technologies such as nanomechanical devices and electronics. Recent experiments suggest that nanowires with sub-100 nm diameters may be fabricated by filling cracks with various materials. The geometry of cracks becomes important on such a length scale, and the practical application of the approach requires an understanding of crack evolution in heterogeneous films. This paper proposes a level-set approach to model directed nanocracks on pre-patterned substrates. The approach does not require the explicit tracking of crack fronts and thus allows the simulation of complex crack patterns. Results indicate that pre-patterning a substrate can lead to various well controlled nanocrack patterns, suggesting a possibility to make designed and complex nanowires difficult to obtain with other methods

  19. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  20. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    Science.gov (United States)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  2. Superconductive silicon nanowires using gallium beam lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  3. Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals

    International Nuclear Information System (INIS)

    Xiong Zhengwei; Sun Weiguo; Wang Xuemin; Jiang Fan; Wu Weidong

    2012-01-01

    Highlights: ► The BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs were successfully fabricated by L-MBE. ► The influence with the various concentrations of Ni nanocrystals embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. ► The BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss compared with the pure BaTiO 3 /SrTiO 3 superlattices. ► The dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory. - Abstract: The self-organized Ni nanocrystals (NCs) were embedded in BaTiO 3 /SrTiO 3 superlattices using laser molecular beam epitaxy (L-MBE). The stress of the composite films was increased with the increasing concentration of embedded Ni NCs, as investigation in stress calculation. The influence with the various concentrations of Ni NCs embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. The internal stress of the films was too strong to epitaxial growth of BaTiO 3 /SrTiO 3 superlattices. Compared with the pure BaTiO 3 /SrTiO 3 superlattices, the BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss. Furthermore, the dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory.

  4. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2017-10-01

    Full Text Available Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%. Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit.

  5. Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires

    Science.gov (United States)

    Wu, Dongxu; Huang, Congliang; Zhong, Jinxin; Lin, Zizhen

    2018-05-01

    The inter-nanowire thermal contact resistance is important for tuning the thermal conductivity of a nanocomposite for thermoelectric applications. In this paper, the stacked copper nanowires are applied for studying the thermal contact resistance. The stacked copper nanowires are firstly made by the cold-pressing method, and then the nanowire stacks are treated by sintering treatment. With the effect of the volumetric fraction of nanowires in the stack and the influence of the sintering-temperature on the thermal contact resistance discussed, results show that: The thermal conductivity of the 150-nm copper nanowires can be enlarged almost 2 times with the volumetric fraction increased from 32 to 56% because of the enlarged contact-area and contact number of a copper nanowire. When the sintering temperature increases from 293 to 673 K, the thermal conductivity of the stacked 300-nm nanowires could be enlarged almost 2.5 times by the sintering treatment, because of the improved lattice property of the contact zone. In conclusion, application of a high volumetric fraction or/and a sintering-treatment are effectivity to tune the inter-nanowire thermal contact resistance, and thus to tailor the thermal conductivity of a nanowire network or stack.

  6. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-06-01

    Full Text Available In this work, we employed commercial finite element modeling (FEM software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular, Ag (pentagonal and Si (rectangular using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively. Keywords: Nanowires, Material effects, Mechanical properties, Brittle failure

  7. Magneto-transport studies of InAs/GaSb short period superlattices

    International Nuclear Information System (INIS)

    Broadley, Victoria Jane

    2002-01-01

    This thesis studies the transport properties of short period semiconducting InAs/GaSb superlattices in the presence of strong electric and magnetic fields applied parallel to the growth axis. Electrical transport parallel to the growth axis occurs through the superlattice miniband, which have widths varying from three to 30meV. Resonant scattering between confined Landau levels and Stark levels is observed at low temperatures (4.2K). In addition LO-phonon assisted scattering between Landau levels is observed in both type-I GaAs/AIAs and type-ll inAs/GaSb superlattices, which are enhanced in the type-ll system due to the strong interband coupling. K·p band structure calculations show that the interband coupling causes the superlattice miniband energy dispersion to be strongly dependent on the in-plane wavevector and the applied magnetic field. For large applied electric fields, where the miniband is split into discrete Stark levels, strong stark-cyclotron resonance (SCR) features are observed, which occur when the Landau level separation equals to the stark level separation. These resonances are enhanced when compared to SCR in type-I superlattices due to the suppression of miniband conduction in higher lying Landau levels. At low electric fields electrical transport through the superlattice miniband yields characteristic miniband transport features, which are modelled using the Esaki-Tsu miniband transport model. Strong electron - LO-phonon scattering is also observed in InAs/GaSb superlattices, where we report the first observation of miniband transport assisted via the emission of LO-phonons between stark levels in adjacent wells. Below 50K thermally activated behaviour is reported and at high magnetic fields (in the quantum limit) complete localisation of carriers is observed. In this regime LO-phonon delocalised transport in also observed. (author)

  8. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    Science.gov (United States)

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  9. Optimised quantum hacking of superconducting nanowire single-photon detectors

    Science.gov (United States)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  10. Semitransparent organic photovoltaic modules with Ag nanowire top electrodes

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2014-10-01

    Semitransparent organic photovoltaic (OPV) cells are promising for applications in transparent architectures where their opaque counterparts are not suitable. Manufacturing of large-area modules without performance losses compared to their lab-scale devices is a key step towards practical applications of this PV technology. In this paper, we report the use of solution-processed silver nanowires as top electrodes and fabricate semitransparent OPV modules based on ultra-fast laser scribing. Through a rational choice of device architecture in combination with high-precision laser patterning, we demonstrate efficient semitransparent modules with comparable performance as compared to the reference devices.

  11. Stabilization mechanisms for information stored in magnetic nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cisternas, Eduardo, E-mail: eduardo.cisternas@gmail.com [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Faúndez, Julián [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Vogel, Eugenio E. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile)

    2017-03-15

    The durability of the stored information in magnetic systems is one important feature in firmware applications such as security codes, magnetic keys and other similar products. In the present paper we discuss two different ways of preserving patterns in the set of magnetic wires trapped in the porous membranes used to produce them. One of the techniques is the inscription of an opposite magnetic band of about 1/3 the width of the stored pattern which minimizes the repulsive energy among the ferromagnetic cylinders still leaving a potent magnetic signal to be read. The other technique makes use of segmented nanowires which present a competition of repulsive energy of segments within the same layer while the interaction is attractive with the closer segments of the other layer; such a competition can lead to stabilization if the geometrical parameters are properly controlled. The first technique is cheaper and faster to implement, while the second technique needs a more complete fabrication process but can lead to more durable stored information. - Highlights: • Stability of ferromagnetic patterns inscribed on magnetic nanowires arrays. • Information prevalence and stabilization mechanisms. • Applicability to fimware, security codes and magnetic keys.

  12. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  13. CMOS-compatible fabrication of top-gated field-effect transistor silicon nanowire-based biosensors

    International Nuclear Information System (INIS)

    Ginet, Patrick; Akiyama, Sho; Takama, Nobuyuki; Fujita, Hiroyuki; Kim, Beomjoon

    2011-01-01

    Field-effect transistor (FET) nanowire-based biosensors are very promising tools for medical diagnosis. In this paper, we introduce a simple method to fabricate FET silicon nanowires using only standard microelectromechanical system (MEMS) processes. The key steps of our fabrication process were a local oxidation of silicon (LOCOS) and anisotropic KOH etchings that enabled us to reduce the width of the initial silicon structures from 10 µm to 170 nm. To turn the nanowires into a FET, a top-gate electrode was patterned in gold next to them in order to apply the gate voltage directly through the investigated liquid environment. An electrical characterization demonstrated the p-type behaviour of the nanowires. Preliminary chemical sensing tested the sensitivity to pH of our device. The effect of the binding of streptavidin on biotinylated nanowires was monitored in order to evaluate their biosensing ability. In this way, streptavidin was detected down to a 100 ng mL −1 concentration in phosphate buffered saline by applying a gate voltage less than 1.2 V. The use of a top-gate electrode enabled the detection of biological species with only very low voltages that were compatible with future handheld-requiring applications. We thus demonstrated the potential of our devices and their fabrication as a solution for the mass production of efficient and reliable FET nanowire-based biological sensors

  14. Strain and Defect Engineering for Tailored Electrical Properties in Perovskite Oxide Thin Films and Superlattices

    Science.gov (United States)

    Hsing, Greg Hsiang-Chun

    Functional complex-oxides display a wide spectrum of physical properties, including ferromagnetism, piezoelectricity, ferroelectricity, photocatalytic and metal-insulating transition (MIT) behavior. Within this family, oxides with a perovskite structure have been widely studied, especially in the form of thin films and superlattices (heterostructures), which are strategically and industrially important because they offer a wide range of opportunities for electronic, piezoelectric and sensor applications. The first part of my thesis focuses on understanding and tuning of the built-in electric field found in PbTiO3/SrTiO3 (PTO/STO) ferroelectric superlattices and other ferroelectric films. The artificial layering in ferroelectric superlattices is a potential source of polarization asymmetry, where one polarization state is preferred over another. One manifestation of this asymmetry is a built-in electric field associated with shifted polarization hysteresis. Using off-axis RF-magnetron sputtering, we prepared several compositions of PTO/STO superlattice thin films; and for comparison PbTiO3/SrRuO 3 (PTO/SRO) superlattices, which have an additional intrinsic compositional asymmetry at the interface. Both theoretical modeling and experiments indicate that the layer-by-layer superlattice structure aligns the Pb-O vacancy defect dipoles in the c direction which contributes significantly to the built-in electric field; however the preferred polarization direction is different between the PTO/STO and PTO/SRO interface. By designing a hybrid superlattice that combines PTO/STO and PTO/SRO superlattices, we show the built-in electric field can be tuned to zero by changing the composition of the combo-superlattice. The second part of my thesis focuses on the epitaxial growth of SrCrO 3 (SCO) films. The inconsistent reports regarding its electrical and magnetic properties through the years stem from the compositionally and structurally ill-defined polycrystalline samples, but

  15. Electronic states in tunneling semiconductor superlattices: Technical progress report for the period September 15, 1987-September 14, 1988

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1988-01-01

    This research project funded by DOE has concentrated in the systematic study of the effects of a gate voltage on the electronic structure of a tunneling superlattice system. The effects of strong magnetic fields and other various parameters on energy levels of tunneling superlattices have been investigated

  16. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    Science.gov (United States)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  17. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  18. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  19. InN/GaN Superlattices: Band Structures and Their Pressure Dependence

    DEFF Research Database (Denmark)

    Gorczyca, Iza; Suski, Tadek; Staszczak, Grzegorz

    2013-01-01

    Creation of short-period InN/GaN superlattices is one of the possible ways of conducting band gap engineering in the green-blue range of the spectrum. The present paper reports results of photoluminescence experiments, including pressure effects, on a superlattice sample consisting of unit cells...... with one monolayer of InN and 40 monolayers of GaN. The results are compared with calculations performed for different types of superlattices: InN/GaN, InGaN/GaN, and InN/InGaN/GaN with single monolayers of InN and/or InGaN. The superlattices are simulated by band structure calculations based on the local...... density approximation (LDA) with a semi-empirical correction for the ‘‘LDA gap error’’. A similarity is observed between the results of calculations for an InGaN/GaN superlattice (with one monolayer of InGaN) and the experimental results. This indicates that the fabricated InN quantum wells may contain...

  20. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  1. First-principles modeling of titanate/ruthenate superlattices

    Science.gov (United States)

    Junquera, Javier

    2013-03-01

    The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.

  2. Strained superlattices and magnetic tunnel junctions based on doped manganites

    International Nuclear Information System (INIS)

    Yafeng Lu

    2001-01-01

    In the first part of this work the effect of biaxial strain on the structure and transport properties of doped manganites has been studied to explore the relevance of Jahn-Teller electron-lattice interaction for the CMR phenomenon in these materials. A series of high quality, coherently strained La 2/3 (Ca or Ba) 1/3 MnO 3 /SrTiO 3 superlattices with different modulation periods have been fabricated on (001) SrTiO 3 and NdGaO 3 substrates by laser molecular beam epitaxy. A detailed structural characterization was performed by high-angle X-ray diffraction (HAXRD) and low-angle X-ray reflectivity (LAXRR). The fabricated superlattices are very flat, show excellent structural coherence and very small mosaic spread (0.2 ∝0.03 ). The in-plane coherency strain could be varied by changing the thickness ratio of the constituent layers allowing for a systematic variation of the resulting lattice distortion of La 2/3 (Ca or Ba) 1/3 MnO 3 . By the in-plane coherency strain the out-of-plane lattice constant could be continuously adjusted by varying the relative thickness of the SrTiO 3 and La 2/3 (Ca or Ba) 1/3 MnO 3 layers: the c-axis lattice constant of La 2/3 Ba 1/3 MnO 3 was found to vary from 3.910 A to 3.975 A due to a compressive in-plane strain, whereas the c-axis constant of La 2/3 Ca 1/3 MnO 3 was found to change from 3.87 A to 3.79A due to tensile in-plane strain. The strain results in a biaxial distortion ε bi of La 2/3 (Ca or Ba) 1/3 MnO 3 that strongly affects the electrical transport properties and the magnetoresistance. Our measurements show that there is a clear correlation between ε bi and the temperature T p corresponding to the maximum in the resistivity versus temperature curves as well as the measured magnetoresistance in the two systems. In the second part of this work we have investigated the spin-dependent tunneling in trilayer structures of La 2/3 Ba 1/3 MnO 3 /SrTiO 3 /La 2/3 Ba 1/3 MnO 3 . (orig.)

  3. Epitaxy of advanced nanowire quantum devices

    Science.gov (United States)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  4. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  5. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  6. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    Science.gov (United States)

    Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming

    2018-06-01

    In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.

  7. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rathmall, Aaron [Duke University; Nguyen, Minh [Duke University; Wiley, Benjamin J [Duke University

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  8. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  9. Fabrication of nanowires and nanostructures

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2009-01-01

    We report on different approaches that we have adopted and developed for the fabrication of nanowires and nanostructures. Methods based on template synthesis and on self organization seem to be the most promising for the fabrication of nanomaterials and nanostructures due to their easiness and low...... cost. The development of a supported nanoporous alumina template and the possibility of using this template to combine electrochemical synthesis with lithographic methods open new ways for the fabrication of complex nanostructures. The numerous advantages of the supported template and its compatibility...

  10. Semiconductor Nanowires: What's Next?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peidong; Yan, Ruoxue; Fardy, Melissa

    2010-04-28

    In this perspective, we take a critical look at the research progress within the nanowire community for the past decade. We discuss issues on the discovery of fundamentally new phenomena versus performance benchmarking for many of the nanowire applications. We also notice that both the bottom-up and top-down approaches have played important roles in advancing our fundamental understanding of this new class of nanostructures. Finally we attempt to look into the future and offer our personal opinions on what the future trends will be in nanowire research.

  11. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  12. Perspectives of single cast nanowires technology

    International Nuclear Information System (INIS)

    Ioisher, Anatolii; Badinter, Efim; Postolache, Vitalie; Leporda, Nicolae; Tiginyanu, Ion; Monaico, Eduard

    2011-01-01

    The paper is dedicated to production potential of glass-coated cast nanowire with metal-, semimetal- and semiconductor-based cores by means of Taylor-Ulitovsky method. Criteria of melted core-formative material penetration into a drawing capillary were analyzed. Theoretical preconditions of the reduction of cast microwire diameter up to nano-dimensions of core are reviewed and an improved method of cast nanowire manufacturing is proposed. Correctness of conclusions was experimentally proved and laboratory samples of micro- and nano-wires with core diameter of about 200-300 nanometers were produced, even in case of materials with poor adhesion.

  13. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  14. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  15. Electrospinning synthesis of superconducting BSCCO nanowires

    International Nuclear Information System (INIS)

    Duarte, Edgar A.; Quintero, Pedro A.; Meisel, Mark W.; Nino, Juan C.

    2013-01-01

    Highlights: •Bi 2 Sr 2 CaCu 2 O 8+x nanowires 150 nm to 250 nm thick are synthesized using the electrospinning. •Bi 2 Sr 2 CaCu 2 O 8+x nanowires are obtained after a heat treatment at 850 °C. •Bi 2 Sr 2 CaCu 2 O 8+x nanowires show a T c = 78.7 K consistent with bulk superconductor behavior. -- Abstract: This paper presents the synthesis and characterization of Bi 2 Sr 2 CaCu 2 O 8+x superconducting nanowires. Bi 2 Sr 2 CaCu 2 O 8+x nanowires with a T c = 78.7 K are synthesized using the electrospinning process employing sol–gel precursors. A sol–gel methodology is used to obtain a homogeneous PVP solution containing Bi, Sr, Ca, and Cu acetates. Mats of randomly oriented nanowires and aligned nanowires are also collected. After a heat treatment at 850 °C in ambient atmosphere using heating rates of 100 and 400 °C/h, fully crystallized Bi 2 Sr 2 CaCu 2 O 8+x nanowires are obtained. The morphology, microstructure, and crystal structure of these nanowires are then examined to reveal a rectangular morphology having typical wire thickness in the range of 150–250 nm, and a wire width between 400 and 600 nm. DC magnetization studies are conducted to investigate the critical transition temperature (T c ) of Bi 2 Sr 2 CaCu 2 O 8+x nanowires and to compare their magnetic properties to those of bulk Bi 2 Sr 2 CaCu 2 O 8+x powder. The T c for the commercial powder is observed at 78.6 K, and that of the obtained nanowires at 78.7 K. These results point to the superconducting nature of Bi 2 Sr 2 CaCu 2 O 8+x nanowires, and the potential of the electrospinning process for the synthesis of this superconductor material

  16. Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers

    Directory of Open Access Journals (Sweden)

    Aeberhard Urs

    2011-01-01

    Full Text Available Abstract Si-SiOx superlattices are among the candidates that have been proposed as high band gap absorber material in all-Si tandem solar cell devices. Owing to the large potential barriers for photoexited charge carriers, transport in these devices is restricted to quantum-confined superlattice states. As a consequence of the finite number of wells and large built-in fields, the electronic spectrum can deviate considerably from the minibands of a regular superlattice. In this article, a quantum-kinetic theory based on the non-equilibrium Green's function formalism for an effective mass Hamiltonian is used for investigating photogeneration and transport in such devices for arbitrary geometry and operating conditions. By including the coupling of electrons to both photons and phonons, the theory is able to provide a microscopic picture of indirect generation, carrier relaxation, and inter-well transport mechanisms beyond the ballistic regime.

  17. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  18. Effect of anisotropy on the magnon energy gap in a two-layer ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Qiu Rongke; Liang Jing; Li Qingfeng; Zhang Zhidong; Song Panpan; Hong Xiaomin

    2009-01-01

    The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found that a modulated energy gap exists in the magnon energy band along K x direction perpendicular to the superlattice plane, which is different from the optical magnon gap at K x =0. The anisotropy, the spin quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra of the two-layer ferromagnetic superlattice are lowered with increasing temperature.

  19. Energy minibands degeneration induced by magnetic field effects in graphene superlattices

    Science.gov (United States)

    Reyes-Villagrana, R. A.; Carrera-Escobedo, V. H.; Suárez-López, J. R.; Madrigal-Melchor, J.; Rodríguez-Vargas, I.

    2017-12-01

    Energy minibands are a basic feature of practically any superlattice. In this regard graphene superlattices are not the exception and recently miniband transport has been reported through magneto-transport measurements. In this work, we compute the energy miniband and transport characteristics for graphene superlattices in which the energy barriers are generated by magnetic and electric fields. The transfer matrix approach and the Landauer-Büttiker formalism have been implemented to calculate the energy minibands and the linear-regime conductance. We find that energy minibands are very sensitive to the magnetic field and become degenerate by rising it. We were also able to correlate the evolution of the energy minibands as a function of the magnetic field with the transport characteristics, finding that miniband transport can be destroyed by magnetic field effects. Here, it is important to remark that although magnetic field effects have been a key element to unveil miniband transport, they can also destroy it.

  20. The effect of interfacial charge transfer on ferromagnetism in perovskite oxide superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Gu, M. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Arenholz, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Browning, N. D. [Univ. of California, Davis, CA (United States). Department of Molecular and Cellular Biology; Takamura, Y. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science

    2012-01-05

    We investigate the structural, magnetic, and electrical properties of superlattices composed of the ferromagnetic/metal La0.7Sr0.3MnO3 and non-magnetic/metal La0.5Sr0.5TiO3 grown on (001)-oriented SrTiO3 substrates. Using a combination of bulk magnetometry, soft x-ray magnetic spectroscopy, and scanning transmission electron microscopy, we demonstrate that robust ferromagnetic properties can be maintained in this superlattice system where charge transfer at the interfaces is minimized. Thus, ferromagnetism can be controlled effectively through the chemical identity and the thickness of the individual superlattice layers.

  1. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  2. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain

    Science.gov (United States)

    Xie, Saien; Tu, Lijie; Han, Yimo; Huang, Lujie; Kang, Kibum; Lao, Ka Un; Poddar, Preeti; Park, Chibeom; Muller, David A.; DiStasio, Robert A.; Park, Jiwoong

    2018-03-01

    Epitaxy forms the basis of modern electronics and optoelectronics. We report coherent atomically thin superlattices in which different transition metal dichalcogenide monolayers—despite large lattice mismatches—are repeated and laterally integrated without dislocations within the monolayer plane. Grown by an omnidirectional epitaxy, these superlattices display fully matched lattice constants across heterointerfaces while maintaining an isotropic lattice structure and triangular symmetry. This strong epitaxial strain is precisely engineered via the nanoscale supercell dimensions, thereby enabling broad tuning of the optical properties and producing photoluminescence peak shifts as large as 250 millielectron volts. We present theoretical models to explain this coherent growth and the energetic interplay governing the ripple formation in these strained monolayers. Such coherent superlattices provide building blocks with targeted functionalities at the atomically thin limit.

  3. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  4. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  5. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices.

    Science.gov (United States)

    Ravichandran, Jayakanth; Yadav, Ajay K; Cheaito, Ramez; Rossen, Pim B; Soukiassian, Arsen; Suresha, S J; Duda, John C; Foley, Brian M; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W; Moore, Joel E; Muller, David A; Schlom, Darrell G; Hopkins, Patrick E; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A

    2014-02-01

    Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.

  6. Angular dependence of switching behaviour in template released isolated NiFe nanowires

    Science.gov (United States)

    Sultan, Musaab Salman

    2017-12-01

    In this article, the magnetisation behaviour and magnetisation reversal process of both single and bundles of 3 and 7 closely-packed template released Ni60Fe40 nanowires were investigated using high-sensitivity Magneto-Optical Kerr Effect (MOKE) magnetometry. The nanowires were deposited from a dilute suspension onto gold pre-patterned silicon substrates. They were typically 9 μm in length with a diameter of approximately 200 nm. By increasing the number of clumped wires a reduction in the switching field was observed, suggesting that overall the bundle behaves like a single system and decreasing the effective external field required to switch the magnetisation. Square hysteresis loops with a sharp jump in the Kerr signal were seen for all MOKE measurement angles. This result may reflect the surface magnetisation of the nanowire, compared to their bulk behaviour as compared with the literature that adopted the same and different investigative techniques on comparable compositions and dimensions of wires. The influence of applying the magnetic field at different angles with respect to the long axis of the nanowire on the switching behaviour was analysed and compared with the theoretical calculations of non-uniform rotation of the curling model of domain reversal. An agreement and disagreement with this model was seen, respectively, for low and high angles, indicating the complexity of the magnetic state of such isolated nanowires. To confirm the results presented here, further studies are recommended using a combination of techniques sensitive to surface and bulk magnetisation on similar isolated ferromagnetic nanowires.

  7. Electronic properties of a new structured Sin/O superlattice

    Directory of Open Access Journals (Sweden)

    S. Yu

    2016-11-01

    Full Text Available Silicon is a material which dominants the semiconductor industry and has a well-established processing technology based on it. However, silicon has an indirect-bandgap and is not efficient in light emitting. This limits its applications in optoelectronics. In this paper, we proposed a new structural model for the silicon-based superlattice, i.e., the Sin/O one. The model consists of alternating films of n-layers of Si and a monolayer of oxygen along z-direction, together with a surface cell of Si(001 (2×1 reconstruction in the x-y plane. The importance of employing such a Si(001 (2×1 reconstruction is that all the electrons at interface can be strongly bonded. Our results showed interesting electronic properties, e.g., the band folding and large band gap of bulk Si, when the thickness of the silicon layers was increased (but still thin. Our structure might also offer other interesting properties.

  8. Angle-dependent bandgap engineering in gated graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)

    2016-03-15

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  9. Angle-dependent bandgap engineering in gated graphene superlattices

    International Nuclear Information System (INIS)

    García-Cervantes, H.; Sotolongo-Costa, O.; Gaggero-Sager, L. M.; Naumis, G. G.; Rodríguez-Vargas, I.

    2016-01-01

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

  10. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  11. Full controlling of Fano resonances in metal-slit superlattice.

    Science.gov (United States)

    Deng, Zi-Lan; Yogesh, Natesan; Chen, Xiao-Dong; Chen, Wen-Jie; Dong, Jian-Wen; Ouyang, Zhengbiao; Wang, Guo Ping

    2015-12-18

    Controlling of the lineshape of Fano resonance attracts much attention recently due to its wide capabilities for lasing, biosensing, slow-light applications and so on. However, the controllable Fano resonance always requires stringent alignment of complex symmetry-breaking structures and thus the manipulation could only be performed with limited degrees of freedom and narrow tuning range. Furthermore, there is no report so far on independent controlling of both the bright and dark modes in a single structure. Here, we semi-analytically show that the spectral position and linewidth of both the bright and dark modes can be tuned independently and/or simultaneously in a simple and symmetric metal-slit superlattice, and thus allowing for a free and continuous controlling of the lineshape of both the single and multiple Fano resonances. The independent controlling scheme is applicable for an extremely large electromagnetic spectrum range from optical to microwave frequencies, which is demonstrated by the numerical simulations with real metal and a microwave experiment. Our findings may provide convenient and flexible strategies for future tunable electromagnetic devices.

  12. Ferromagnetic resonance in a Ni-Mo superlattice

    International Nuclear Information System (INIS)

    Pechan, M.J.; Salamon, M.B.; Schuller, I.K.

    1985-01-01

    Ferromagnetic resonance (FMR) measurements, at room temperature and at 4.2 K, have been made on a layered Ni (249 A)-Mo(83 A) superlattice. We have examined the resonance position as a function of the angle between the film normal and the applied field. The measured g value agrees with that of bulk Ni, but the magnetization is lower than that obtained for bulk Ni and also for this sample using both light scattering and direct measurement techniques. This low magnetization contrasts with FMR measurements on compositionally modulated Ni-Cu samples, where the magnetization was reported to be greater than that of bulk Ni. We show that a reduced value of the magnetization is consistent with perpendicular uniaxial anisotropy. When the applied field is less than 20 0 from the surface normal, additional lines appear that move to higher fields than the main resonance. These lines are consistent with the existence of nonuniform regions of distinct magnetization. An observed resonance, which is suggestive of a spin-wave mode, is discussed

  13. A model for temperature dependent resistivity of metallic superlattices

    Directory of Open Access Journals (Sweden)

    J. I. Uba

    2015-11-01

    Full Text Available The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant ε q , ω = 8 . 33 × 10 − 2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

  14. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  15. Mid-wavelength infrared unipolar nBp superlattice photodetector

    Science.gov (United States)

    Kazemi, Alireza; Myers, Stephen; Taghipour, Zahra; Mathews, Sen; Schuler-Sandy, Ted; Lee, Seunghyun; Cowan, Vincent M.; Garduno, Eli; Steenbergen, Elizabeth; Morath, Christian; Ariyawansa, Gamini; Scheihing, John; Krishna, Sanjay

    2018-01-01

    We report a Mid-Wavelength Infrared (MWIR) barrier photodetector based on the InAs/GaSb/AlSb type-II superlattice (T2SL) material system. The nBp design consists of a single unipolar barrier (InAs/AlSb SL) placed between a 4 μm thick p-doped absorber (InAs/GaSb SL) and an n-type contact layer (InAs/GaSb SL). At 80 K, the device exhibited a 50% cut-off wavelength of 5 μm, was fully turned-ON at zero bias and the measured QE was 50% (front side illumination with no AR coating) at 4.5 μm with a dark current density of 4.7 × 10-6 A/cm2 at Vb = 50 mV. At 150 K and Vb = 50 mV, the 50% cut-off wavelength increased to 5.3 μm, and the QE was 54% at 4.5 μm with a dark current of 5.0 × 10-4 A/cm2.

  16. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.

    Science.gov (United States)

    Zhuang, Jincheng; Liu, Chen; Gao, Qian; Liu, Yani; Feng, Haifeng; Xu, Xun; Wang, Jiaou; Zhao, Jijun; Dou, Shi Xue; Hu, Zhenpeng; Du, Yi

    2018-05-22

    Exploring stable two-dimensional materials with appropriate band gaps and high carrier mobility is highly desirable due to the potential applications in optoelectronic devices. Here, the electronic structures of phosphorene on a Au(111) substrate are investigated by scanning tunneling spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. The substrate-induced phosphorene superstructure gives a superlattice potential, leading to a strong band folding effect of the sp band of Au(111) on the band structure. The band gap could be clearly identified in the ARPES results after examining the folded sp band. The value of the energy gap (∼1.1 eV) and the high charge carrier mobility comparable to that of black phosphorus, which is engineered by the tensile strain, are revealed by the combination of ARPES results and DFT calculations. Furthermore, the phosphorene layer on the Au(111) surface displays high surface inertness, leading to the absence of multilayer phosphorene. All these results suggest that the phosphorene on Au(111) could be a promising candidate, not only for fundamental research but also for nanoelectronic and optoelectronic applications.

  17. DNA-nanoparticle superlattices formed from anisotropic building blocks

    Science.gov (United States)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  18. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  19. Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Directory of Open Access Journals (Sweden)

    Rudolph Bettina

    2011-01-01

    Full Text Available Abstract We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device.

  20. Lateral structure of (TiSe2)n(NbSe2)m superlattices

    International Nuclear Information System (INIS)

    Noh, M.; Shin, H.; Jeong, K.; Spear, J.; Johnson, D.C.; Kevan, S.D.; Warwick, T.

    1997-01-01

    The structures of a series of (TiSe 2 ) n (NbSe 2 ) m superlattices grown through controlled crystallization of designed multilayer reactants have been studied. X-ray diffraction of the data of the superlattices after crystallization show considerable preferred orientation, with the basal plane of the dichalcogenide structure parallel to the substrate to within 0.1 degree. Lattice refinement using the observed (00scr(l)) diffraction maxima yields lattice parameters along the c axis that are consistent with those expected based on the target superlattices and lattice parameters of the binary constituents. These (00scr(l)) diffraction data, however, contain no information about the crystalline structure in the ab plane of the superlattice associated with the preferred c-axis orientation. Off-specular x-ray diffraction (XRD), scanning electron microscopy, and scanning transmission x-ray microscopy (STXM) were used to explore the structure and homogeneity of the superlattices in the ab plane. XRD results rule out preferred long-range orientational order of the ab plane. Between grains, both the backscattered electron images and STXM images show grain domain structure in the ab plane with a characteristic grain domain size of approximately 50 μm. X-ray absorption microscopy in the STXM mode obtained at the Ti L 2,3 edge shows that the titanium in the superlattices is present as both octahedral Ti consistent with the TiSe 2 structure and metallic Ti. A comparison of the data obtained from these techniques highlights chemical information, which can be deduced on a submicrometer range from the space resolved spectra obtained using STXM. copyright 1997 American Institute of Physics