WorldWideScience

Sample records for superior thermal cycle

  1. Superior flexibility of a wrinkled carbon shell under electrochemical cycling

    KAUST Repository

    Li, Qianqian

    2014-01-01

    Nanocarbon composites have been extensively employed in engineering alloy-type anodes in order to improve the poor cyclability caused by the enormous volume changes during lithium (Li+) insertion/extraction. The chemical vapor deposited wrinkled carbon shell (WCS) shows high electrical conductivity, excellent thermal stability and remarkable mechanical robustness, which help in retaining the structural integrity around the tin (Sn) anode core despite ∼250% variation in volume during repetitive lithiation and delithiation. In situ transmission electron microscopy reveals no embrittlement in the lithiated WCS, which fully recovers its original shape after severe mechanical deformation with no obvious structural change. Further analysis indicates that the capacity to accommodate large strains is closely related to the construction of the carbon shell, that is, the stacking of wrinkled few-layer graphenes. Both the pre-existing wrinkles and the few-layer thickness render the carbon shell superior flexibility and good elasticity under bending or expansion of the interior volume. Moreover, the WCS possesses fast lithium ion diffusion channels, which have lower activation barriers (∼0.1 eV) than that on a smooth graphene (∼0.3 eV). The results provide an insight into the improvement in cycle performance that can be achieved through carbon coating of anodes of lithium ion batteries. © 2014 The Royal Society of Chemistry.

  2. Thermal Cycle Lifetest of Swaged Cathode Heaters

    Science.gov (United States)

    Polk, Jay; Ramesham, Rajeshuni

    2007-01-01

    This viewgraph presentation reviews the thermal cycling test for the Dawn mission. The flight system, the mission requirements, and the Ion Propulsion System (IPS) are shown. The Dawn mission requires periodic thruster shutdown for data transmission and coast periods. The thermal cycling test is designed to simulate approximately three complete mission profiles. The results of the tests are reviewed.

  3. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  4. Methods and compositions for rapid thermal cycling

    Science.gov (United States)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  5. Methods and compositions for rapid thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  6. Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray

    Science.gov (United States)

    Jordan, E. H.; Xie, L.; Gell, M.; Padture, N. P.; Cetegen, B.; Ozturk, A.; Ma, X.; Roth, J.; Xiao, T. D.; Bryant, P. E. C.

    2004-03-01

    A novel process, solution precursor plasma spray (SPPS), is presented for depositing thermal barrier coatings (TBCs), in which aqueous chemical precursors are injected into a standard direct current plasma spray system. The resulting coatings microstructure has three unique features: (1) ultra fine splats (1 µm), (2) nanometer and micron-sized interconnected porosity, and (3) closely spaced, through-thickness cracks. Coatings over 3 mm thick can be readily deposited using the SPPS process. Coating durability is excellent, with SPPS coatings showing, in furnace cycling tests, 2.5 times the spallation life of air plasma coatings (APS) and 1.5 times the life of electron beam physical vapor deposited (EB-PVD) coatings. The conductivity of SPPS coatings is lower than EB-PVD coatings and higher than the best APS coatings. Manufacturing cost is expected to be similar to APS coatings and much lower than EB-PVD coatings. The SPPS deposition process includes droplet break-up and material arriving at the deposition surface in various physical states ranging from aqueous solution, gel phase, to fully-molten ceramic. The relation between the arrival state of the material and the microstructure is described.

  7. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  8. Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-06-01

    Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.

  9. Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator

    Directory of Open Access Journals (Sweden)

    Yusuke Fuchiwaki

    2014-10-01

    Full Text Available Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.

  10. Effect of thermal cycling on whisker-reinforced dental resin composites.

    Science.gov (United States)

    Xu, Hockin H K; Eichmiller, Frederick C; Smith, Douglas T; Schumacher, Gary E; Giuseppetti, Anthony A; Antonucci, Joseph M

    2002-09-01

    The mechanical properties of dental resin composites need to be improved in order to extend their use to high stress-bearing applications such as crown and bridge restorations. Recent studies used single crystal ceramic whiskers to reinforce dental composites. The aim of this study was to investigate the effects of thermal cycling on whisker-reinforced composites. It was hypothesized that the whisker composites would not show a reduction in mechanical properties or the breakdown of whisker-resin interface after thermal cycling. Silicon carbide whiskers were mixed with silica particles, thermally fused, then silanized and incorporated into resin to make flexural specimens. The filler mass fraction ranged from 0% to 70%. The specimens were thermal cycled in 5 degrees C and 60 degrees C water baths, and then fractured in three-point bending to measure strength. Nano-indentation was used to measure modulus and hardness. No significant loss in composite strength, modulus and hardness was found after 10(5) thermal cycles (family confidence coefficient=0.95; Tukey's multiple comparison test). The strength of whisker composite increased with filler level up to 60%, then plateaued when filler level was further increased to 70%; the modulus and hardness increased monotonically with filler level. The strength and modulus of whisker composite at 70% filler level were significantly higher than the non-whisker controls both before and after thermal cycling. SEM revealed no separation at the whisker-matrix interfaces, and observed resin remnants on the pulled-out whiskers, indicating strong whisker-resin bonding even after 10(5) thermal cycles. In conclusion, novel dental resin composites containing silica-fused whiskers possessed superior strength and modulus compared to non-whisker composites both before and after thermal cycling. The whisker-resin bonding appeared to be resistant to thermal cycling in water, so that no loss in composite strength or stiffness occurred after

  11. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  12. ESTUDIO DEL BULLYING EN EL CICLO SUPERIOR DE PRIMARIA (STUDY ABOUT BULLYING IN THE UPPER CYCLE OF PRIMARY EDUCATION)

    National Research Council Canada - National Science Library

    Rosario Ruiz; María Riuró; Montse Tesouro

    2015-01-01

      Our research is about bullying in the superior cycle of primary education. We have developed a general questionnaire from a bibliographic review of various studies where they have used different tests...

  13. Identifying thermal cycling mechanisms in PWR branch line piping

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [EPRI, Charlotte, NC (United States); Keller, J.D.; Bilanin, A.J. [Continuum Dynamics, Inc., Ewing, NJ (United States)

    2002-07-01

    Predicting the onset and the characteristics of thermal cycling in pressurized water reactor (PWR) branch line piping systems is critical to formulation of thermal fatigue screening tools. The complex nature of the underlying thermal-hydraulic phenomena, however, significantly complicates prediction using analytical models or direct numerical simulations. Instead, it is necessary to perform scaled experiments to identify the physical mechanisms and to gather data for formulation of semi-empirical models for the thermal cycling phenomena. Through the EPRI Materials Reliability Program a test program is underway to identify and develop semi-empirical correlations for the physical thermalhydraulic mechanisms that cause thermal cycling in dead-ended PWR branch line piping systems. Three series of tests are being performed in this test program: configuration tests on a representative up-horizontal (UH) branch line piping geometry, configuration tests on a representative down-horizontal (DH) branch line piping geometry, and high Reynolds number tests to assess penetration of secondary flow structures into a dead-ended branch line. Results from UH and DH configuration tests indicate that random turbulence penetration is not sufficient for thermal cycling to occur. Rather a swirling flow structure, representative of a large, 'corkscrew' vortical structure, is required for thermal cycling. Scale tests on the UH configuration have simulated cycling phenomena observed in full-scale plant data and have been used to determine parametric sensitivities in formulating a predictive model for the thermal cycling. Data indicate that the mechanism for thermal cycling in UH configurations is stochastic but scales with the leak rate from the valve. The critical dependent variables are reduced to several non-dimensional scaling curves, resulting in a semiempirical predictive model. This paper discusses the test program and the results obtained to date. Application of these

  14. Thermal Stress Analysis of Welded Joint in 1420 Al-Li Alloy Induced by Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    Hongbin GENG; Song HE; Dezhuang YANG

    2003-01-01

    A model of double grains under plane stress state has been established. According to the double grain model, thermal stress induced by thermal cycling in welding fusion zone is numerically simulated by finite element method, and the microstructures before

  15. Effects of thermal cycling on magnetic properties of lunar analogs

    Science.gov (United States)

    Barron, A. M.; Shive, P. N.

    1984-01-01

    An experimental study has been performed to determine whether stresses associated with thermal cycling cracks can affect the coercivity of remanence carried by iron in lunar samples. Initially, samples were cycled up to 100 times in a refrigerator over a period of about 30 min per cycle. In a second set of experiments, samples were dipped directly into liquid nitrogen up to 100 times at about 1 min per cycle. Comparison of AF demagnetization curves of weak field anhysteretic remanent magnetization before and after cycling revealed no systematic differences. Calculations based on a model of spherical iron grains within olivine or troilite indicate that it is unlikely that the iron will crack under thermal stress. Thus, thermal cycling does not appear to provide an explanation for increasing the stability of remanence in samples from the lunar surface.

  16. Study on Integrated Thermal Cycle and Vibration Profile for HALT

    Institute of Scientific and Technical Information of China (English)

    TAO Jun-yong; CHU Wei-hua; CHEN Xun

    2009-01-01

    Focusing on electronic products, this paper establishes a finite element model for printed circuit board (PCB) assembling with enhanced ball grid array(EBGA)component under vibration environment. Based on this model, it studies relations between fatigue rate of solder joint and temperature, vibration frequency. Moreover, it analyzes propagation of micro-crack produced by thermal cycle under vibration stress. The results offer a method to optimize the thermal cycle and vibration integrated profile and to combine vibration test and thermal cycling for highly accelerated life test (HALT).

  17. Study on Higher Efficiency Thermal Cycling Profile for HALT

    Institute of Scientific and Technical Information of China (English)

    TAO Jun-yong; CHU Wei-hua; CHEN Xun

    2008-01-01

    HALT (highly accelerated life test) is a new reliability test technique. This paper uses nonlinear finite element method to analyze the stress strain characteristic of solder joints of PQFP (plastic quad flat packaging) and BGA (ball grid array) under thermal cycle test, and studies influences of profile parameters of the thermal cycle, such as hot and cold soak temperature, hot and cold soak time and temperature change rate, on elastic strain range, accumulated plastic strain, fatigue life and test efficiency of two types of solder joints. Based on the above research and experimental verification, this paper presents the method to build an optimal thermal cycling profile for HALT of electronic components.

  18. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  19. Effect of secondary weld thermal cycle on structure and properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper deals with structure and impact energy of weld HAZ of 10CrNi3MoV steel after secondary weld thermal cycle (t8/5=8(¨)s~120(¨)s; peak temperature Tm=750℃~1(¨)300℃). It is demonstrated that the coarse grain and structure produced by first thermal cycle keep unchanged after secondary thermal cycle above Ac1 critical temperature but below 1(¨)050(¨)℃. At the same time the low temperature impact energy decreases obviously with increasing t8/5. By metallurgical microscope and transmission electron microscope(TEM) , it is revealed that the effect of coarse grain and structure caused by secondary thermal cycle on low temperature impact energy.

  20. A Study on Variations of Mechanical Properties of Carbon-epoxy Composites with Thermal Fatigue Cycles or Thermal Shock Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Park, S.M. [Myongji University, Suwon (Korea)

    2000-05-01

    Applications of composites materials have been in progress noticeably in manufacturing areas of automotive, aircraft and in other industries, resulting in ensuing research activities. Carbon-epoxy, one of major composite materials, is investigated for its thermal characteristics. Upon treatments of the composite material with repeated heatings and coolings variation of its elastic constants are monitored to reveal the thermal nature of the composite material. In this study, generally, changes in elastic constants are observed to occur mostly during the first 10{approx}20 thermal cycles. Values of G{sub 13} remain almost unchanged except a minor decrease. However in the observed small changes thermal shocks produce less effect than thermal fatigues. On the other hand, values of E{sub 1} show gradual increases with the number of applied thermal cycles and temperatures. Meanwhile, values of E{sub 2} and G{sub 23} decrease to a certain extent in the early stage during the applications of thermal cycling but are not appreciably affected by frequencies of thermal cycles. Also, thermal shocks are observed to induce different effects depending on treatment temperatures. (author). 13 refs., 17 figs.

  1. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...

  2. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2006-06-15

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.

  3. Study on durability for thermal cycle of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi [Tonen Corp., Saitama (Japan)] [and others

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  4. X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D.W. (Dept. of Materials Science and Engineering, Northwestern Univ., Evanston, IL (United States)); Faber, K.T. (Dept. of Materials Science and Engineering, Northwestern Univ., Evanston, IL (United States))

    1993-11-25

    The residual stress of a ZrO[sub 2]-8%Y[sub 2]O[sub 3] thermal barrier coating was determined as a function of thermal cycling. Samples were thermally cycled from 400 C to 1000 C in air. After a few cycles the samples exhibited a value of compressive residual stress consistent with that determined by considering the thermal expansion coefficients of the coating and substrate. Stress relief occurs in the ZrO[sub 2]-Y[sub 2]O[sub 3] coating, increasing in both frequency and magnitude with increasing number of thermal cycles. This behavior is explained in terms of a model of failure of coatings in compression. (orig.)

  5. Thermal cycling can extend tool life in orthopaedic operating rooms.

    Science.gov (United States)

    Katchky, Ryan N; McLachlin, Stewart D; Wong, Edwin K Y; Finkelstein, Joel; Kreder, Hans J; Whyne, Cari M

    2016-03-01

    Thermal cycling is a temperature modulation process developed to improve the performance, durability and longevity of materials. This process has been successfully utilized in the automotive, aeronautic and manufacturing industries. Surgical cutting tools undergo cyclical loading and generally fail by dulling, suggesting that thermal cycling may improve their performance and longevity. Ten 2.5 mm orthopaedic drill bits were randomized, with five undergoing thermal cycling within their sterile packaging and five serving as untreated controls. Using a servohydraulic testing machine, 100 drilling cycles were performed with each drill bit into the diaphyseal region of bovine femurs. After every 25 cycles, data was collected by performing identical drilling cycles into simulated human cortical bone material. Maximum force, maximum normalized torque and drilling work were measured, and a scanning electron microscope was used to measure outer corner wear. After 100 drilling cycles, the maximum drilling force, maximum normalized torque, drilling work and microscopic outer corner wear were all significantly lower for the treated drill bits (p cutting tools. Application of this technology may also be relevant to surgical cutting tools such as saw blades, burrs and reamers.

  6. Growth of Creamed TNT on Thermal Cycling

    Science.gov (United States)

    1978-07-01

    4 to 59 0 C 0.51 14 to 680C 0.68 4 to 390C I0.].2 14 to 490C 0.22 24 to 590C 0.30 24 to 59 0 C 0.34 The temperatura cycling control unit was...Laboratories P.O. Box 50, Ascot Vale, Victoria 3032, Australia ,t/I 9o0 ? Y-. DOCUMENT CONTROL DATA SHEET S•curity classification of this page. UNCLASS FI]El) I...during storage other thIn in temperature- controlled magazines can cause bare or lightly cased chrarges of TNT-based expl sives to grow beyond tolerance

  7. A search for thermosynthesis: starvation survival in thermally cycled bacteria

    CERN Document Server

    Muller, A W J

    2006-01-01

    In a pioneering study experimental evidence was sought of thermosynthesis, a theoretical biological mechanism for free energy gain from thermal cycling that has been invoked as energy source for the origin of life. A PCR machine applied thermal cycling to the K12 strain of Escherichia coli. The viability of this organism during starvation was determined at cyclic and at constant temperature. The found increase in the viability counts during the first days of starvation is consistent with thermosynthesis. The scattering in the results is however large. Further research is needed to proof that the increase is indeed due to a thermosynthesis process.

  8. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  9. Study on the Thermal Expansion and Thermal Cycling of AlNp/Al Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The AIN particle reinforced aluminum matrix composites with 50% volume fraction were fabricated by squeeze-castingtechnology. The thermal expansion behavior and its response to thermal cycling were studied between 20C and400C. Compared with four theoretical models, the measured CTEs of the composite lie within the elastic boundsat lower temperature and elevated temperature, respectively. Strain hysteresis was observed between heating andcooling curves during cycling. This was attributed primarily to the anelastic behavior of the matrix induced by matrixresidual stresses.

  10. Study on the Role of Thermal Cracking in FCC Cycle

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Wei Xiaoli

    2004-01-01

    A bench-scale fixed fluidized bed reactor was used to study the distribution and quality of products derived from thermal cracking of VGO. Test results had shown that the space velocity has minor effect on thermal cracking reaction. The depth of thermal cracking reaction was mainly affected by the reaction temperature.At different reaction temperatures the form of free radicals thus initiated varied, resulting in different product distribution. At low temperature C10= and C11= olefins dominated in thermally cracked gasoline products,whereas at higher temperature C6=-C9= olefins dominated in thermally cracked gasoline products, among which C6 and C7 olefins were mainly composed of 2M 1 Cs= and 2E1C5=. Difference in olefin structure can lead to different reaction pathways of catalytic cycle.

  11. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  12. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  13. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  14. Hubble Space Telescope solar cell module thermal cycle test

    Science.gov (United States)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  15. FTIR characterization of thermally cycled PMR-15 composites

    Science.gov (United States)

    Young, Philip R.; Chang, A. C.

    1988-01-01

    Chemical characterization results are presented for a variety of PMR-15/graphite composites, differentiated according to prepreg types and cure cycles, which were subjected to 1000 thermal cycles between 0 and 450 F. Fourier transform IR spectroscopy was used in conjunction with diffuse reflectance sampling to examine whether changes in the matrix resin chemistry due to environmental exposure may have contributed to microcracking. Analysis based on compound spectra revealed behavior associated with the oxidation of methylene groups to carbonyl groups on the composite surface; evidence of crosslinking also emerged, although the two phenomena do not appear to be related.

  16. Thermal stability and nova cycles in permanent superhump systems

    CERN Document Server

    Retter, A

    2000-01-01

    Archival data on permanent superhump systems are compiled to test the thermal stability of their accretion discs. We find that their discs are almost certainly thermally stable as expected. This result confirms Osaki's suggestion (1996) that permanent superhump systems form a new subclass of cataclysmic variables (CVs), with relatively short orbital periods and high mass transfer rates. We note that if the high accretion rates estimated in permanent superhump systems represent their mean secular values, then their mass transfer rates cannot be explained by gravitational radiation, therefore, either magnetic braking should be extrapolated to systems below the period gap or they must have mass transfer cycles. Alternatively, a new mechanism that removes angular momentum from CVs below the gap should be invoked. We suggest applying the nova cycle scenarios offered for systems above the period gap to the short orbital period CVs. Permanent superhumps have been observed in the two non-magnetic ex-novae with binary...

  17. Parametric Studies Of Failure Mechanisms In Thermal Barrier Coatings During Thermal Cycling Using FEM

    Directory of Open Access Journals (Sweden)

    Srivathsa B.

    2015-12-01

    Full Text Available Thermal barrier coatings (TBCs are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.

  18. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  19. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  20. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  1. Effects of thermal cycling on microstructure and properties in Nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Pelton, A.R., E-mail: alan.pelton@nitinol.com [Nitinol Devices and Components, Inc. 47533 Westinghouse Dr., Fremont, CA 94539 (United States); Huang, G.H. [HuaZhong University of Science and Technology, Wuhan, Hubei (China); Moine, P. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs, Universite de La Rochelle, 17042 La Rochelle Cedex 01 (France); Sinclair, R., E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Annealed Nitinol was thermally cycled from above A{sub f} to below M{sub f}. Black-Right-Pointing-Pointer We studied the microstructural changes by TEM and transformation behavior by DSC. Black-Right-Pointing-Pointer Increasing cycles decreased the martensite transformation temperatures. Black-Right-Pointing-Pointer There was a concomitant increase in dislocation density. Black-Right-Pointing-Pointer Thermodynamics showed increasing elastic strain energy and irreversible frictional energy. - Abstract: The effects of thermal cycling through the martensite-austenite transformation were investigated in NiTi shape memory alloys with DSC and TEM. Thermal cycling caused a {approx}25 K decrease in M{sub s} with a concomitant increase in dislocation density from {approx}10{sup 12} m{sup -2} to 5 Multiplication-Sign 10{sup 14} m{sup -2} after 100 thermal cycles. Thermodynamic analysis is consistent with increasing elastic strain energy and irreversible frictional energy with cycling. The transformation-induced dislocations were determined to be shear loops with Left-Pointing-Angle-Bracket 0 1 0 Right-Pointing-Angle-Bracket {sub A}{l_brace}1 0 1{r_brace}{sub A} slip system, corresponding to the twinning direction and plane in martensite. It is speculated that the loops form during the movement of the martensite interface and that repeated interfacial movement tends to create bands that consist of highly tangled sessile dislocations. These dislocation bands form along (0.756{sup Macron },0.383{sup Macron },0.192){sub A}, which is 2.3 Degree-Sign from the accepted (0.889{sup Macron },0.404{sup Macron },0.215){sub A} lattice invariant plane. Furthermore, plastically deformed austenitic Nitinol exhibits slip on Left-Pointing-Angle-Bracket 0 1 0 Right-Pointing-Angle-Bracket {sub A}{l_brace}1 0 1{r_brace}{sub A} slip system and forms {l_brace}1 1 0{r_brace} shear bands with several variants of the dislocations within a given region.

  2. Thermal cycling stresses in W-monofilament reinforced copper

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, Michael; Jonke, Johannes; Degischer, H. Peter [Institute of Materials Science and Technology, Vienna University of Technology (Austria); Herrmann, Aurelia; Brendel, Annegret [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wimpory, Robert [Helmholtz Zentrum Berlin, Wannsee (Germany); Buslaps, Thomas [European Synchrotron Radiation Facility, Grenoble (France)

    2011-08-15

    New materials have to be developed for fusion reactor systems to withstand the high thermal load and heavy irradiation under service conditions. The divertor element collects the residuals of the nuclear reaction and withdraws heat from the reaction chamber into a heat sink. A thermal flux of {approx}20 W mK{sup -1} can be expected in such components. A plasma facing W plate is attached to a CuCrZr heat sink suffering CTE mismatch stresses at the interface due to pulsed operation required for the Tokamak reactor design. Fiber reinforced metal matrix composites are applied as an interlayer to reduce macroscopic interfacial stresses in these components. W-wire reinforced copper is a promising material for this application due to a good fiber-matrix bonding strength which is further increased by surface etching or graded interface designs. Thermal stresses in between the matrix and the wires are responsible for thermal fatigue damage within the constituents and at their interface. Neutron and synchrotron diffraction was performed in situ during thermal cycling to determine the micro stress amplitudes and their changes under simulated service conditions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Thermal Cycling Assessment of Steel-Based Thermal Barrier Coatings for Al Protection

    Science.gov (United States)

    Poirier, Dominique; Lamarre, Jean-Michel; Legoux, Jean-Gabriel

    2015-01-01

    There is a strong interest from the transportation industry to achieve vehicle weight reduction through the replacement of steel components by aluminum parts. For some applications, aluminum requires protective coatings due to its limited wear and lower temperature resistance compared to steel. The objective of this study was to assess the potential of amorphous-type plasma-sprayed steel coatings and conventional arc-sprayed steel coatings as thermal barrier coatings, mainly through the evaluation of their spalling resistance under thermal cycling. The microstructures of the different coatings were first compared via SEM. The amorphicity of the coatings produced via plasma spraying of specialized alloyed steel and the crystalline phases of the conventional arc-sprayed steel coatings were confirmed through x-ray diffraction. The thermal diffusivity of all coatings produced was measured to be about a third of that of bulk stainless steel. Conventional arc-sprayed steel coatings typically offered better spalling resistance under thermal cycling than steel-based amorphous coatings due probably to their higher initial bond strength. However, the presence of vertical cracks in the steel-based amorphous coatings was found to have a beneficial effect on their thermal cycling resistance. The amorphous plasma-sprayed steel coatings presented indications of recrystallization after their exposure to high temperature.

  4. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    CERN Document Server

    Rimmer, Robert; Preble, Joseph P; Reece, Charles E

    2005-01-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maint...

  5. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  6. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  7. Changes of Blood Flow Volume in the Superior Mesenteric Artery and Brachial Artery with Abdominal Thermal Stimulation

    Directory of Open Access Journals (Sweden)

    Shin Takayama

    2011-01-01

    Full Text Available In traditional Chinese medicine, moxibustion is a local thermal therapy that is used for several conditions. Quantifying the effects of moxibustion therapy has been difficult because the treatment temperature depends on the physician's experience, and the temperature distribution in the target area is not uniform. This prospective observational study aims to quantify the effect of local thermal stimulation to the abdomen. We developed a heat transfer control device (HTCD for local thermal stimulation. Twenty-four healthy subjects were enrolled and they underwent abdominal thermal stimulation to the para-umbilical region with the device for 20 min. Blood flow volume in the superior mesenteric artery (SMA and brachial artery (BA, the heart rate and the blood pressure were measured at rest, 15 min after starting thermal stimulation and 10, 20, 30 and 40 min after completing thermal stimulation. Blood flow parameters were measured by high-resolution ultrasound. In the SMA, blood flow volume was significantly increased during thermal stimulation (, as well as at 10 min ( and 20 min ( after stimulation. In the BA, blood flow volume decreased at 40 min after stimulation (. In conclusion we could quantify the effect of local thermal stimulation with an HTCD and high-resolution ultrasound. Thermal stimulation of the para-umbilical region increased blood flow in the SMA 20 min after stimulation in healthy subjects.

  8. Thermal cycling characteristics of plasma synthesized mullite films

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, O.R.; Hou, P.Y.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-01

    The authors have developed a plasma-based technique for the synthesis of mullite and mullite-like films on silicon carbide substrate material. The method, which they refer to as MePIIID (for Metal Plasma Immersion Ion Implantation and Deposition), uses two vacuum arc plasma sources and simultaneous pulse biasing of the substrate in a low pressure oxygen atmosphere. The Al:Si ratio can be controlled via the separate plasma guns, and the film adhesion, structure and morphology can be controlled via the ion energy which in turn is controlled by the pulse bias voltage. The films are amorphous as-deposited, and crystalline mullite is formed by subsequent annealing at 1000 C for 2 hours in air. Adhesion between the aluminum-silicon oxide film and the substrate increases after this first annealing. They have tested the behavior of films when subjected to repetitive thermal cycling between room temperature and 1100 C, and found that the films retain their adhesion and quality. Here they review the plasma synthesis technique and the characteristics of the mullite films prepared in this way, and summarize the status of the thermal cycling experiments.

  9. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  10. Study of Physical Properties of SiCw/Al Composites During Unloaded Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; TIAN zhi-gang; CHENG hua; ZHU Xiao-gang; CHEN Wen-li

    2004-01-01

    The thermal expansion coefficient of SiCw/Al composites squeeze cast during unloaded thermal cycling was determined and analyzed. The study had shown that the thermal expansion coefficient of SiCw/Al composites reduced greatly with temperature raising. The thermal expansion coefficient of artificial ageing treatment SiCw/Al composites during unloaded thermal cycling reduced gradually, while the thermal expansion coefficient of squeezing SiCw/Al composites increased gradually. In addition, the thermal expansion coefficient of SiCw/Al composites reduced drastically with fiber fraction increasing.

  11. Volatile cycling and the thermal evolution of planetary mantle

    Science.gov (United States)

    Sandu, Constantin

    The thermal histories of terrestrial planets are investigated using two parameterized mantle convection models for either Earth like planets and planets with no active plate tectonics. Using parameterized models of mantle convection, we performed computer simulations of planetary cooling and volatile cycling. The models estimate the amount of volatile in mantle reservoir, and calculate the outgassing and regassing rates. A linear model of volatile concentration-dependent is assumed for the activation energy of the solid-state creep in the mantle. The kinematic viscosity of the mantle is thus dynamically affected by the activation energy through a variable concentration in volatile. Mantle temperature and heat flux is calculated using a model derived from classic thermal boundary layer theory of a single layered mantle with temperature dependent viscosity. The rate of volatile exchanged between mantle and surface is calculated by balancing the amount of volatiles degassed in the atmosphere by volcanic and spreading related processes and the amount of volatiles recycled back in the mantle by the subduction process. In the cases that lack plate tectonics, the degassing efficiency is dramatically reduced and the regassing process is absent. The degassing effect is dependent on average spreading rate of tectonic plates and on the amount of volatile in the melt extract in the transition zone between mantle and upper boundary laver. The regassing effect is dependent on the subduction rate and on the amount of volatile present on a hydrated layer on top of the subducting slab. The degassing and regassing parameters are all related to the intensity of the convection in the mantle and to the surface temperature of the planet, and they are regulated by the amount of volatiles in reservoir. Comparative study with the previous models display significant differences and improve the versatility of the model. The optimum efficiency factors found are in the range of 0.01--0.06 for

  12. Thermo-mechanical effects of thermal cycled copper through-silicon vias

    Science.gov (United States)

    Marro, James

    The semiconductor industry is currently facing transistor scaling issues due to fabrication thresholds and quantum effects. In this "More-Than-Moore" era, the industry is developing new ways to increase device performance, such as stacking chips for three-dimensional integrated circuits (3D-IC). The 3D-IC's superior performance over their 2D counterparts can be attributed to the use of vertical interconnects, or through silicon vias (TSV). These interconnects are much shorter, reducing signal delay. However TSVs are susceptible to various thermo-mechanical reliability concerns. Heating during fabrication and use, in conjunction with coefficient of thermal expansion mismatch between the copper TSVs and silicon substrate, create harmful stresses in the system. The purpose of this work is to evaluate the signal integrity of Cu-TSVs and determine the major contributing factors of the signal degradation upon in-use conditions. Two series of samples containing blind Cu-TSVs embedded in a Si substrate were studied, each having different types and amounts of voids from manufacturing. The samples were thermally cycled up to 2000 times using three maximum temperatures to simulate three unique in-use conditions. S11 parameter measurements were then conducted to determine the signal integrity of the TSVs. To investigate the internal response from cycling, a protocol was developed for cross-sectioning the copper TSVs. Voids were measured using scanning electron microscope and focused ion beam imaging of the cross-sections, while the microstructural evolution of the copper was monitored with electron backscattering diffraction. An increase in void area was found to occur after cycling. This is thought to be the major contributing factor in the signal degradation of the TSVs, since no microstructural changes were observed in the copper.

  13. Effect of thermal cycling of SiC{sub f}/SiC composites on their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Udayakumar, A., E-mail: audayk@yahoo.com [Materials Science Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, Bangalore-560 017 (India); Stalin, M.; Abhayalakshmi, M.B.; Hariharan, Ramya [Materials Science Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, Bangalore-560 017 (India); Balasubramanian, M., E-mail: mbala@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600 036 (India)

    2013-11-15

    SiC{sub f}/SiC composites are class of high temperature structural materials being developed for use in nuclear fusion and fission reactor systems because of their superior high temperature mechanical properties, low radiation damage and low induced radioactivity. Two types of 2D SiC{sub f}/SiC composites were made through isothermal and isobaric chemical vapor infiltration process using eight harness satin-woven ceramic-grades Nicalon™ fibers with boron nitride (BN) interface, namely: one with lower interface thickness and a second type with higher interface thickness. The BN interface was applied to the fiber prior to SiC matrix addition to modify the interfacial bond strength leading to better toughness and improved oxidation resistance. The density achieved was around 2.6 g/cc. The composite specimens were subjected to thermal cycling treatment using an in-house furnace. The mechanical properties such as tensile strength, fracture toughness and interfacial bond strength were also studied for all the composites before and after thermal cycling. It is seen from the results that both composites withstood thermal shocks and thermal cycling treatment. It was also concluded from the present work that good balance between load transfer and crack arresting was established.

  14. INFLUENCE OF THERMAL CYCLING ON MICROSTRUCTURE AND THERMAL EXPANSION OF CARBON FIBRES/COPPER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Pavol Štefánik

    2009-06-01

    Full Text Available The preparation of copper matrix reinforced by high modulus carbon fibres (Thornel K1100 as well as the microstructure and dilatation changes during thermocycling is presented.Unidirectional composites with two types of matrix - pure copper and/or copper alloy with 0.2 wt. % of chromium - were thermally cycled between 30-600 °C three times.The composite with pure Cu exhibited larger voids and weak interfacial bonding. Due to the chemical reaction with K1100 fibres a reactive interfacial bonding has been formed. During thermocycling the hysteresis, but no large disintegration was observed. The coefficients of thermal expansion (CTEs strongly depend on fibre orientation. In direction parallel to the fibre orientation in the temperature range of 220-500°C CTEs were very low (0.7-1.0x10-6/K, but in perpendicular direction the CTEs were higher than that of pure copper.

  15. Thermal cycling test of few selected inorganic and organic phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anant; Sawhney, R.L. [Thermal Energy Storage Laboratory, School of Energy and Environmental Studies, Devi Ahilya University, Takshashila Campus, Indore 452001, M.P. (India); Buddhi, D. [Green Hi-Tech Energy Pvt. Ltd., Bari Brahmmana, Adda Sarore, Jammu 180011, Jammu and Kashmir (India)

    2008-12-15

    Thermal cycling tests were performed to check the stability in thermal energy storage systems on some selected organic and inorganic phase change materials (PCMs). The possibility of using these PCMs in thermal energy storage systems were examined on the basis of thermal, chemical and kinetic criteria. Organic and inorganic PCMs were selected to check their thermal stability. Inorganic PCMs were not found suitable after some cycles while thermal cycling for organic PCMs were undertaken up to 1000 thermal cycles and has shown a gradual change in melting temperature and latent heat of fusion. The PCMs were then checked with differential scanning calorimeter (DSC) for their latent heat storage capacity and melting temperature change. (author)

  16. Climate Change Expands the Spatial Extent and Duration of Preferred Thermal Habitat for Lake Superior Fishes

    OpenAIRE

    Cline, Timothy J.; Bennington, Val; James F Kitchell

    2013-01-01

    Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distribut...

  17. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    Science.gov (United States)

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  18. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  19. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  20. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to d

  1. The role of graphite morphology and matrix structure on low frequency thermal cycling of cast irons

    Indian Academy of Sciences (India)

    S Y Buni; N Raman; S Seshan

    2004-02-01

    Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.

  2. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings...... thermal response of the power devices is validated through experimental results....

  3. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings......It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... thermal response of the power devices is validated through experimental results....

  4. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  5. Flexible Aerogel as a Superior Thermal Insulation for High Temperature Superconductor Cable Applications

    Science.gov (United States)

    White, S.; Demko, J.; Tomich, A.

    2010-04-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  6. Nanodomain Engineered (K, Na)NbO3 Lead-Free Piezoceramics: Enhanced Thermal and Cycling Reliabilities

    DEFF Research Database (Denmark)

    Yao, Fang-Zhou; Wang, Ke; Cheng, Li-Qian;

    2015-01-01

    The growing environmental concerns have been pushing the development of viable green alternatives for lead-based piezoceramics to be one of the priorities in functional ceramic materials. A polymorphic phase transition has been utilized to enhance piezoelectric properties of lead-free (K, Na)NbO3......- based materials, accepting the drawbacks of high temperature and cycling instabilities. Here, we present that CaZrO3-modified (K, Na)NbO3 piezoceramics not only possess excellent performance at ambient conditions benefiting from nanodomain engineering, but also exhibit superior stability against...... temperature fluctuation and electrical fatigue cycling. It was found that the piezoelectric coefficient d33 is temperature independent under 4 kV/mm, which can be attributed to enhanced thermal stability of electric field engineered domain configuration; whereas the electric field induced strain exhibits...

  7. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.

  8. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  9. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-27

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m(-1)·K(-1) with a bulk density of 453 kg·m(-3) at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m(-1)·K(-1)) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g(-1) at a current density of 100 mA·g(-1), and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  10. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m-1·K-1 with a bulk density of 453 kg·m-3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m-1·K-1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g-1 at a current density of 100 mA·g-1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  11. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.

    Science.gov (United States)

    Stevens, Corey A; Drori, Ran; Zalis, Shiran; Braslavsky, Ido; Davies, Peter L

    2015-09-16

    By binding to ice, antifreeze proteins (AFPs) depress the freezing point of a solution and inhibit ice recrystallization if freezing does occur. Previous work showed that the activity of an AFP was incrementally increased by fusing it to another protein. Even larger increases in activity were achieved by doubling the number of ice-binding sites by dimerization. Here, we have combined the two strategies by linking multiple outward-facing AFPs to a dendrimer to significantly increase both the size of the molecule and the number of ice-binding sites. Using a heterobifunctional cross-linker, we attached between 6 and 11 type III AFPs to a second-generation polyamidoamine (G2-PAMAM) dendrimer with 16 reactive termini. This heterogeneous sample of dendrimer-linked type III constructs showed a greater than 4-fold increase in freezing point depression over that of monomeric type III AFP. This multimerized AFP was particularly effective at ice recrystallization inhibition activity, likely because it can simultaneously bind multiple ice surfaces. Additionally, attachment to the dendrimer has afforded the AFP superior recovery from heat denaturation. Linking AFPs together via polymers can generate novel reagents for controlling ice growth and recrystallization.

  12. Thermal cycling, oxidation behaviour and mechanical properties of graded and duplex PSZ TBC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [SKODA, Plzen (Czech Republic); Alaya, M.; Oberacker, R. [Univ. of Karlsruhe (Germany)

    1995-07-01

    Plasma sprayed duplex and graded ZrO{sub 2} thermal barrier coatings (TBCs) on an Inconel 617 substrate with a NiCrAlY bond coat were investigated and compared with regard to their thermal cycling, oxidation behaviour and mechanical properties. On the basis of FE - calculations the stress distribution within thermally cycled coating systems was analyzed. The calculations show that the graded coating structure relaxes considerably the stresses resulting from the internal constraint due to thermal expansion difference between both metallic and ceramic materials and hence must lead to a better thermal cycling behaviour of the graded TBC systems. Mechanical tests confirm it. However, taking into account their poor oxidation behaviour, the lifetime of duplex TBC systems which are under steady-state thermal load conditions is much higher than that of graded ones.

  13. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    Science.gov (United States)

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl2) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm(3), depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  14. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  15. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  16. Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

    2012-06-14

    N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

  17. [The surface degradation of various light-cured composite resins by thermal cycling].

    Science.gov (United States)

    Hirabayashi, S; Nomoto, R; Harashima, I; Hirasawa, T

    1990-01-01

    The durability of four commercially available light-cured composite resins was investigated by thermal cycling, GR containing inorganic fillers treated with the graft polymerization of acryl ester, LF inorganic fillers treated with a silane coupling agent, PC silanized inorganic fillers and organic composite fillers, and the MFR-type SI containing the organic composite fillers. These materials were given 10,000, 30,000 and 50,000 thermal cycles (4 degrees C-60 degrees C) and the deterioration of materials by thermal cycling was evaluated by the measurement of the mechanical properties and the SEM observations of the surface of the thermocycled materials. Compressive strength and bending elastic moduli for all materials did not change greatly by thermal cycling. However, bending strength, toothbrush abrasion resistance and surface hardness decreased with increasing number of thermal cycles between 0 and 30,000, and changed little after 30,000 cycles. The percentage of bending strength after 50,000 thermal cycles to that of the non-thermocycled sample was 75% for GR, 60% for LF, 50% for PC and 65% for SI, respectively. Deterioration of materials was observed as cracks on the surface, which generated at the interface of the filler and matrix. The cracks generated relatively earlier during thermal cycling for SI and PC which contained the organic composite filler, later for LF which contained the silanized inorganic fillers, and the number of cracks on LF were fewer than SI and PC. On the other hand, for GR, no cracks were observed even after 50,000 thermal cycles. From these results, it can be presumed that the pre-treatment of filler by the graft polymerization is more effective to improve the durability of composite resin.

  18. To What Degree Thermal Cycles Affect Chalk Strength

    DEFF Research Database (Denmark)

    Livada, Tijana; Nermoen, Anders; Korsnes, Reidar Inger;

    Chalk reservoirs could potentially undergo destabilization as the result of repeated cold water injection into a hot reservoir during water flooding. Preliminary results of an ongoing study are presented in this paper, which compare the impact of temperature cycling on mechanical behavior on dry...... triaxial cell experiments. For dry rock, no significant effects of temperature cycling was found on average tensile strength, however the range of the tensile failure stress is doubled for the samples exposed to 50 temperature cycles, as opposed to those to none. For water saturated cores, the temperature...... and water saturated chalk. Sixty disks of dry Kansas chalk exposed to different number of temperature cycles were tested for tensile strength using a Brazilian test. Changes in elastic properties as function of number of temperature cycles of the same chalk, but now saturated in water, were studied using...

  19. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye

    2013-08-14

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes\\' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  20. Quantum Performance of Thermal Machines over Many Cycles

    Science.gov (United States)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter; del Campo, Adolfo

    2017-02-01

    The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.

  1. A general property of non-endoreversible thermal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Brown, F.; Arias-Hernandez, L.A. [Instituto Politecnico Nacional (Mexico). Escuela Superior de Fisica y Matematicas; Paez-Hernandez, R. [Universidad Autonoma Metropolitana-Azcapotzalco (Mexico). Departamento de Ciencias Basicas

    1999-06-21

    In this work it is shown that a general property of endoreversible Curzon-Ahlborn-Novikov (CAN) cycles previously demonstrated can be extended for non-endoreversible CAN-cycles. This general property is based on the fact that at the so-called maximum ecological regime the efficiency is the average of the Carnot and the maximum-power efficiencies, and that in such a regime the power output is 75% of the maximum power of the CAN-cycle and the entropy produced is only 25% of that produced in the maximum power point. This property is independent of the heat transfer law. (author)

  2. Models for optimum thermo-ecological criteria of actual thermal cycles

    Directory of Open Access Journals (Sweden)

    Açikkalp Emin

    2013-01-01

    Full Text Available In this study, the ecological optimization point of irreversible thermal cycles (refrigerator, heat pump and power cycles was investigated. The importance of ecological optimization is to propose a way to use fuels and energy source more efficiently because of an increasing energy need and environmental pollution. It provides this by maximizing obtained (or minimizing supplied work and minimizing entropy generation for irreversible (actual thermal cycles. In this research, ecological optimization was defined for all basic irreversible thermal cycles, by using the first and second laws of thermodynamics. Finally, the ecological optimization was defined in thermodynamic cycles and results were given to show the effects of the cycles’ ecological optimization point, efficiency, COP and power output (or input, and exergy destruction.

  3. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  4. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    Science.gov (United States)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  5. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-01-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m−1·K−1 with a bulk density of 453 kg·m−3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m−1·K−1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g−1 at a current density of 100 mA·g−1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes. PMID:27671848

  6. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert;

    2016-01-01

    This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...

  7. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  8. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  9. A Peltier thermal cycling unit for radiopharmaceutical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, C.J.; Nader, M.W

    2001-01-15

    We have investigated the use of Peltier devices to rapidly cycle the temperature of reaction vessels in a radiopharmaceutical synthesis system. Peltier devices have the advantage that they can be actively cooled as well as heated, allowing precise and rapid control of vessel temperatures. Reaction vessel temperatures of between -6 deg. C and 110 deg. C have been obtained with commercially available devices with reasonable cycle times. Two devices have been used as the basis for a general purpose, two-pot synthesis system for production of [{sup 11}C] compounds such as raclopride.

  10. A Peltier thermal cycling unit for radiopharmaceutical synthesis.

    Science.gov (United States)

    McKinney, C J; Nader, M W

    2001-01-01

    We have investigated the use of Peltier devices to rapidly cycle the temperature of reaction vessels in a radiopharmaceutical synthesis system. Peltier devices have the advantage that they can be actively cooled as well as heated, allowing precise and rapid control of vessel temperatures. Reaction vessel temperatures of between -6 degrees C and 110 degrees C have been obtained with commercially available devices with reasonable cycle times. Two devices have been used as the basis for a general purpose, two-pot synthesis system for production of [11C] compounds such as raclopride.

  11. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia-water...... mixture evaporates and condenses with a temperature glide, thus providing a better match with the heat source/sink temperature profile. This better match results in reduced thermal irreversibility, but at the cost of relatively larger heat exchanger areas. The parabolic trough collector is the most mature...

  12. Thermal cycling effect of dicalcium phosphate-reinforced composites on auto-mineralized dental resin.

    Science.gov (United States)

    Chen, Wen-Cheng; Chang, Kai-Chi; Wu, Hui-Yu; Ko, Chia-Ling; Huang, Chien-Lin

    2014-12-01

    The mineralizing capabilities of surface-modified dicalcium phosphate anhydrous (DCPA), reinforced and treated with nanocrystals and capped with silane, in composite resins were analyzed via thermal cycling. We compared two light-curable composites that were mixed at filler-to-resin mass ratios of 30/70 and 50/50. The strengths, elastic moduli, and topographical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 and 2400 cycles. Silane-capped particles decreased the strength but enhanced the mineralizing capability of the composites. Nanocrystal-treated filler surfaces significantly increased the strength and moduli of the composites after 600 thermal cycles. However, these values declined after 2400 thermal cycles. The nanocrystal-treated filler surfaces prevented the reduction in strength before and after 2400 thermal cycles. Prior to silane capping, the nanocrystal-treated DCPA filler surfaces exhibited good mineralization capability without compromising strength. The potential for barrier generation through mineralization yielded positive effects and prevented micro-leakages. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    Science.gov (United States)

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer.

  14. Durability of Marine Concrete under Thermal Cycling Loads

    NARCIS (Netherlands)

    Taheri, A.

    1998-01-01

    Data on chloride penetration into concrete exposed to a simulated aggressive marine environment are presented. Concrete specimens, large beams and small cubes, are subjected to 90 complete exposure cycles of wetting and drying plus heating and cooling. The applied exposure condition consists of a dr

  15. The Mechanical Behavior of Sn-Ag4 Solder Joints Subjected to Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    CHENGuohai; MAJusheng

    2004-01-01

    The method of mount strain gages is used to measure the stress/strain hysteresis loops of the solder joints under thermal cycling. The results show that different solders have different loops; the shape of the loops will change less, and finally become a line along with the thermal cycle increase. The shear module decreases along with the thermal cycling process. But the creep index of the solder joints is not sensitive to the cycling process,which fluctuates between 5 and 7. Because the elements of the solder and matrix materials diffuse during the process, the voids induced in the solder joints expand. The expansion of the voids will lead to the crystal lattice aberrance of solder crystal.

  16. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  17. Forced thermal cycling of catalytic reactions: experiments and modelling

    DEFF Research Database (Denmark)

    Jensen, Søren; Olsen, Jakob Lind; Thorsteinsson, Sune;

    2007-01-01

    Recent studies of catalytic reactions subjected to fast forced temperature oscillations have revealed a rate enhancement increasing with temperature oscillation frequency. We present detailed studies of the rate enhancement up to frequencies of 2.5 Hz. A maximum in the rate enhancement is observed...... at about 1 Hz. A model for the rate enhancement that includes the surface kinetics and the dynamic partial pressure variations in the reactor is introduced. The model predicts a levelling off of the rate enhancement with frequency at about 1 Hz. The experimentally observed decrease above 1 Hz is explained...... by dynamic thermal limitations of the reactor. (c) 2007 Elsevier B.V. All rights reserved....

  18. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Bikram [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Damodaran, Anoop R. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Cho, Hanna [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Martin, Lane W. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  19. Deep greedy learning under thermal variability in full diurnal cycles

    Science.gov (United States)

    Rauss, Patrick; Rosario, Dalton

    2017-08-01

    We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.

  20. Oxidation behavior of a ferritic stainless steel Crofer22 APU with thermal cycling

    Science.gov (United States)

    Song, MyoungYoup; Duong, Anh T.; Mumm, Daniel R.

    2013-01-01

    Crofer22 APU specimens were prepared by grinding with grit 80 and 120 SiC grinding papers and were thermally cycled. The variation in oxidation behavior with thermal cycling was then investigated. Observation of microstructure, measurement of area specific resistance (ASR), analysis of the atomic percentages of the elements by EDX, and XRD analysis were performed. XRD patterns showed that the (Cr, Mn)3O4 spinel phase grew on the surface of the Crofer22 APU samples ground with grit 120. For the samples ground with grit 80, the ASR increased as the number of thermal cycles increased. Plots of ln (ASR/T) vs. 1/T for the samples ground with grit 80 after n = 4, 20 and 40 exhibited good linearity, and the apparent activation energies were between 63.7 kJ/mole and 76.3 kJ/mole.

  1. DIMENSIONAL INSTABILITY OF LD31 Al ALLOY WELDMENTS AT ROOM TEMPERATURE AND AFTER THERMAL CYCLES

    Institute of Scientific and Technical Information of China (English)

    X.S. Liu; H.Y. Fang; W.L. Xu; X.T. Tian; X.D. Sun

    2004-01-01

    The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and microstructure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LD31 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 200h after welding. The relative elongation of welded specimen is 3.0×10-5; After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.

  2. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Buddhi, D. [Thermal Energy Storage Laboratory, School of Energy and Environmental Studies, Devi Ahilya University, Indore 452017 (India)

    2008-08-15

    In order to study the changes in latent heat of fusion and melting temperature of calcium chloride hexahydrate (CaCl{sub 2}.6H{sub 2}O) inorganic salt as a latent heat storage material, a thousand accelerated thermal cycle tests have been conducted. The effect of thermal cycling and the reliability in terms of the changing of the melting temperature using a differential scanning calorimeter (DSC) is determined. It has been noticed that the CaCl{sub 2}.6H{sub 2}O melts between a stable range of temperature and has shown small variations in the latent heat of fusion during the thermal cycling process. Thus, it can be a promising phase change material (PCM) for heating and cooling applications for various building/storage systems. (author)

  3. Dimensional instability of LF21 aluminum alloy weldments at room temperature and after thermal cycles

    Institute of Scientific and Technical Information of China (English)

    刘雪松; 田锡唐; 徐文立

    2002-01-01

    The unstable dimensional distortion of LF21 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM. At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and microstructure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LF21 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 130 h after welding. The relative elongation of welded specimen is 4.2×10-5. After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.

  4. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  5. Life Prediction of Ball Grid Array Soldered Joints under Thermal Cycling Loading by Fracture Mechanics Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fatigue crack propagation life of ball grid array (BGA) soldered joints during thermal cycling loading was investigated by fracture mechanics approach using finite element analysis. The relationships between the strain energy release rate (G) and crack size (α), thermal cycle numbers (N) can be derived. Based on the relationships, fatigue life of the soldered joints was determined. The results showed that crack propagation life was higher than crack initiation life. Therefore, it appears that it is more appropriate to predict the fatigue life of soldered joints using the fracture mechanics method.

  6. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  7. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  8. Thermal cycling effect in U-10Mo/Zry-4 monolithic nuclear fuel

    Science.gov (United States)

    Lopes, Denise A.; Zimmermann, Angelo J. O.; Silva, Selma L.; Piqueira, J. R. C.

    2016-05-01

    Uranium alloys in a monolithic form have been considered attractive candidates for high density nuclear fuel. However, this high-density fissile material configuration keeps the volume permitted for the retention of fission products at a minimum. Additionally, the monolithic nuclear fuel has a peculiar configuration, whereby the fuel is in direct contact with the cladding. How this fuel configuration will retain fission products and how this will affect its integrity under various physical conditions - such as thermal cycling - are some of the technological problems for this new fuel. In this paper, the effect of out-of-pile thermal cycling is studied for a monolithic fuel plate produced by a hot co-rolling method using U-10Mo (wt %) as the fuel alloy and Zircaloy-4 as the cladding material. After performing 10 thermal cycles from 25 to 400 °C at a rate of 1 °C/min (∼125 h), the fuel alloy presented several fractures that were observed to occur in the last three cycles. These cracks nucleated approximately in the center of the fuel alloy and crossed the interdiffusion zone initiating an internal crack in the cladding. The results suggest that the origin of these fractures is the thermal fatigue of the U-10Mo alloy caused due to the combination of two factors: (i) the high difference in the thermal expansion coefficient of the fuel and of the cladding material, and (ii) the bound condition of fuel/cladding materials in this fuel element configuration.

  9. Numerical Investigation of Stratified Thermal Storage Tank Applied in Adsorption Heat Pump Cycle

    OpenAIRE

    Taheri, Hadi

    2014-01-01

    With the aid of the TES (Thermal Energy Storage) in the adsorption heat pump cycle, the COP of the system can be improved. Different geometrical variations of the TES with stratification device, have been investigated numerically. Furthermore,The effective thermal conductivity has been analyzed. The simulation results of a reference CFD model have been compared with experimental results. Additionally, the porous medium impact on the mixing process and turbulence has been studied numerically.

  10. Residual thermal effects in macro fiber composite actuators exposed to persistent temperature cycling

    Science.gov (United States)

    Hobeck, J. D.; Owen, R. B.; Inman, D. J.

    2016-03-01

    In this letter, the authors present results of an experimental investigation demonstrating how extreme persistent thermal cycling influences the performance of piezoelectric macro fiber composite (MFC) actuators. More specifically, this research shows how repeated temperature cycling ranging from -60 °C to 90 °C and from -50 °C to 150 °C affects an MFCs ability to actuate while being driven at frequencies of 60 Hz to 90 Hz with a voltage of 20 Vpp. Experimental results show that thermal cycling causes MFC actuation characteristics to drift and eventually stabilize after approximately 20 cycles. In two cases presented here, thermal cycling alone caused a residual increase in actuation amplitude that exceeded the initial amplitude by 70%. This apparent thermal memory effect of MFCs may significantly impact the design and analysis of active structures where MFCs are used for vibration or displacement control in transient extreme temperature environments such as those encountered by aerospace structures, industrial equipment, automobiles, and civil infrastructure.

  11. Evaluation of thermal cycling creep-fatigue damage for a molten salt receiver

    Science.gov (United States)

    Grossman, James W.; Jones, Wendell B.; Veers, Paul S.

    1990-01-01

    A molten salt cavity receiver was solar tested at Sandia National Laboratories during a year-long test program. Upon completion of testing, an analysis was performed to determine the effect of thermal cycling on the receiver. The results indicate a substantial fatigue damage accumulation for the receiver when the relatively short test time is considered. This paper describes the methodology used to analyze the cycling, the results as they pertain to this receiver, and how they affect future receiver design.

  12. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.

    Science.gov (United States)

    Butts, Erica L R; Vallone, Peter M

    2014-11-01

    Rapid PCR protocols for the amplification of typing STR multiplexes were evaluated on six different thermal cyclers. Through the use of a faster DNA polymerase coupled with the use of rapid thermal cyclers the amplification cycling times were reduced down to as little as 14 min using PCR primers from the commercially available multiplex STR typing kit Identifiler. Previously described two-step and three-step thermal cycling protocols were evaluated for the six thermal cyclers on 95 unique single-source DNA extracts. CE characterization of the PCR products indicates good peak balance between loci (median values greater than 0.84), and N minus four stutter ratios on averages were 30 to 40% higher than for standard Identifiler PCR conditions. Nonspecific amplification artifacts were observed, but were not observed to migrate within the allele calling bins. With the exception of one locus (D18S51) in a single sample, genotyping results were concordant with manufacturer's recommended amplification conditions utilizing standard thermal cycling procedures. Assay conditions were robust enough to routinely amplify 250 to 500 pg of template DNA. This work describes the protocols for the rapid PCR amplification of STR multiplexes on various PCR thermal cyclers with the future intent to support validation for typing single-source samples in a database laboratory.

  13. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.

    Science.gov (United States)

    Abbiss, Chris R; Karagounis, Leonidas G; Laursen, Paul B; Peiffer, Jeremiah J; Martin, David T; Hawley, John A; Fatehee, Naeem N; Martin, James C

    2011-05-01

    Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.

  14. An active thermal compensator for closed-cycle helium refrigerators

    Science.gov (United States)

    Jennings, D. E.; Hillman, J. J.

    1977-01-01

    A technique was developed for reducing the amplitude of the temperature oscillation in He closed-cyle refrigerators. The device uses a semiconductor diode as a heating element to actively supply a small oscillating input of heat at a point between the laser and the cold-tip to cancel the heat oscillations due to the refrigerator. It was found that the heater diode could drive the temperature of the heat sink more effectively, i.e., with lower current and therefore less heat, if the heat sink was insulated slightly from the rest of the mount. A sine-wave generator was used to drive the programmable supply which provided the offset current to the heater diode. By matching the frequency and phase of the oscillator to that of the refrigerator cycle, and by adjusting the amplitude of the oscillator signal, the temperature fluctuations at the laser could be minimized. Residual fluctuations were about 0.003K peak-to-peak, at an operating temperature of 9.5K.

  15. The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells

    Science.gov (United States)

    Feng, Zhaobin; Yang, Zhanhong; Huang, Jianhang; Xie, Xiaoe; Zhang, Zheng

    2015-02-01

    Carbon-coated ZnO is synthesized by the hydrothermal method. The X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) tests indicate that carbon is uniformly coated on the surface of the ZnO particle. And the crystal form of ZnO isn't changed. The effects of carbon layer on the electrochemical performances of ZnO have also been investigated by the charge/discharge cycling test, cyclic voltammetry (CV), Tafel polarization curves and electrochemical impedance spectroscope (EIS) tests. The CV curves at different scan rates exhibit that carbon-coated ZnO has the superior reversibility at high scan rate. The charge/discharge cycling tests under different charge/discharge rates show, even if at high-rate, the cycling performance and specific discharge capacity of carbon-coated ZnO are also superior to that of bare ZnO. The Tafel polarization curves and electrochemical impedance spectroscope (EIS) verify that the carbon layer can improve the anti-corrosion and charge-transfer performances of ZnO. The different rate experiments indicate that, compared with the increase of the conductivity, the effect of carbon layer on improving the anti-corrosion performance of ZnO plays a more dominating role in improving the electrochemical performances of ZnO at low charge/discharge rate.

  16. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    Science.gov (United States)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  18. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    to 75%. Moreover, a number of technology-specific improvements were identified, for instance by the substitution of stainless steel types in wells, heaters, and liners used in thermal conduction heating, thus reducing the nickel consumption by 45%. The combined effect of introducing all the suggested......In situ thermal remediation technologies provide efficient and reliable cleanup of contaminated soil and groundwater, but at a high cost of environmental impacts and resource depletion due to the large amounts of energy and materials consumed. This study provides a detailed investigation of four...... in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...

  19. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    Science.gov (United States)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  20. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  1. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...

  2. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...

  3. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    2008-01-01

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne pa

  4. Impact energy analysis of HSLA specimens after simulated welding thermal cycle

    Directory of Open Access Journals (Sweden)

    Samarždić, I.

    2008-04-01

    Full Text Available This paper presents impact energy results of specimens made from high strength fine grained steel TStE 420 after thermal cycle simulation. These results are obtained by examining Charpy specimens. Metallographic analysis is performed, hardness is measured and total impact energy is divided into ductile and brittle components.

  5. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne

  6. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    Science.gov (United States)

    Xun, Zhe; Zhao, Xiaoyun; Guan, Yifu

    2013-09-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification.

  7. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects

    Science.gov (United States)

    Li, Chang-Jiu; Dong, Hui; Ding, Hang; Yang, Guan-Jun; Li, Cheng-Xin

    2017-02-01

    Two types of typical thermal cycling tests are used for the evaluation of thermal cycling lifetime of thermal barrier coatings. Those are the burner cycling test with a thermal gradient and the isothermal furnace cycling test. There are diverse explanations to test results up to now. Although certain correlations should exist between the results obtained by two types of the tests, no evident parameters in two tests were directly related, possibly due to large range of difference test conditions. In this investigation, a series of TBC samples with carefully prepared Al2O3-based TGO of different thicknesses were used for both the burner cycling and the furnace cycling tests. The relationships between thermal cycling lifetime and TGO thickness were obtained for two types of the tests. It was found that TGO thickness presents the same influence tendency despite of different types of thermal cycling test. The results reveal the existence of the critical TGO thickness by which the transition of failure mode takes place. Moreover, the values of the critical TGO thickness for two tests are comparable. The results evidently suggest that the lifetimes during different thermal cycling tests can be correlated by TGO effects on failure behavior. However, it is clear that the apparent dominant driving factors to TBC failure are different in two types of tests. Accordingly, the burner cycling test could be used for optimizing the durability of ceramic top coat by separating the effect of individual factors through test condition design, while the furnace cycling test results represent the integrated TBC durable performance of the bond coat and top ceramic coating.

  8. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  9. On the thermal efficiency of power cycles in finite time thermodynamics

    Science.gov (United States)

    Momeni, Farhang; Morad, Mohammad Reza; Mahmoudi, Ashkan

    2016-09-01

    The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to {η }{{Carnot}}\\gt {η }{{Brayton}}\\gt {η }{{Diesel}}\\gt {η }{{Otto}}, which is again very different from the corresponding classical results. The present results benefit a better understanding of the important role of irreversibility on heat engines in classical thermodynamics.

  10. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  11. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  12. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Science.gov (United States)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  13. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  14. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Yang, Jian

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated....

  15. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    Science.gov (United States)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  16. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  17. The effect of thermal cycle on joint of Ti/stainless steel phase transformation diffusion bonding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. With the maximum cyclic temperature of 1173~1223K, the minimum cyclic temperature of 1073~1093K, the heating velocity of 30~50K/s, the cooling velocity of 15~20K/s , the cycle numbers of 15~20 and bonding pressure is 13MPa, the tensile strength of joint is more than 380MPa, exceeding 80% of that of Ti.

  18. Internal thermal origin mechanism of Karstic collapse column with no smoothly extrinsic cycle

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jun; PENG Su-ping; LI Pei-quan; LIU Deng-xian; LIAN Hui-qing

    2008-01-01

    Huainan coal field as main object, investigation of Karstic hydrogeological conditions were developed in Huainan structureal unit, and the basic conditions, features and rules of Karstic growth were summarized. Geology background and causes of Karstic collapse columns were analyzed. Combined with ancient physiognomy, environment and litho-facies features. After studying synthetically Karstic collapse columns, shape of collapse body, filling feature, hydrodynamic condition and agglutinate material in Huainan area, considering mine hydrogeological conditions of Xuhuai coal field and referenced Karstic collapse columns characters of other mines in North China, the internal thermal origin theory is elementarily formed for Karstic collapse columns extrinsic cycle can not operate smoothly. Finaly, three aspects including distributing features of different kinds of Karstic collapse columns in north China type coal field, conditions of Karstic collapse columns origined from internal thermal with no smoothly extrinsic cycle, mechanics of causes were analyzed and demonstrated.

  19. Effects of Wearing a Helmet on Thermal Balance While Cycling in the Heat.

    Science.gov (United States)

    Gisolfi, C V; Rohlf, D P; Navarude, S N; Hayes, C L; Sayeed, S A

    1988-01-01

    In brief: Many cyclists refuse to wear helmets because they produce discomfort and drag. To determine the effects of wearing a helmet on thermal balance and rating of perceived exertion while cycling in the heat, six male competitive cyclists aged 19 to 32 rode a stationary bicycle attached to a road-racing simulator in an environmentally controlled chamber for two hours at 70% V O2 max. Measurements were taken of rectal and skin temperatures, V O2, heart rate, sweat rate, and rating of perceived exertion. The results showed that (under the experimental conditions used) wearing a helmet while cycling in the heat does not alter thermal balance or cardiovascular strain compared with not wearing a helmet.

  20. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  1. Influence of micro-structural parameters and thermal cycling on the properties of CARDIFRC

    Indian Academy of Sciences (India)

    B L Karihaloo

    2012-02-01

    This paper gives an overview of the influence of micro-structural parameters on the mechanical properties of CARDIFRC which is a high-performance fibre-reinforced cement-based material. Since its development in 2002, several investigations have been made with a view to examine how its properties vary when its micro-structure is altered and when it is subjected to thermal cycling.

  2. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  3. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  4. Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi: Simulations vs. Experiment

    Science.gov (United States)

    Manchiraju, Sivom; Gaydosh, Darrell; Benafan, Othmane; Noebe, Ronald; Vaidyanathan, Raj; Anderson, Peter M.

    2011-01-01

    A recent microstructure-based FEM model that couples crystal-based plasticity, the B2 MB190 phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation-plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale.

  5. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  6. Effects of Shot Peening Process on Thermal Cycling Lifetime of TBCs Prepared by EB-PVD

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhao-hui; GONG Sheng-kai; LI He-fei; XU Hui-bin; ZHANG Chun-gang; WANG Lu

    2007-01-01

    Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD)with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based super-alloy. In this paper, three kinds of shot peening process with different lengths of operating time were adopted for bond coating. As a result, changes took place in its surface roughness and the surface micro-hardness. A thermal cycling test at 1 273 K×55 min and another at room temperature for 5 min were performed to study the effects of shot peening process on the thermal cycling lifetime of TBCs. It is found that a moderate shot peening process will be able to prolong the life time. The oxidation dynamic of the as-processed TBCs basically accords with the parabolic rule, and the oxidation test also attests to the spallation between YSZ and thermal growth oxide (TGO) responsible mainly for the failure of TBCs.

  7. A highly efficient electrocatalyst of perovskite LaNiO{sub 3} for nonaqueous Li–O{sub 2} batteries with superior cycle stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qian [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Ding, Fei, E-mail: hilldingfei@163.com [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Zhang, Lei [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Lin [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Liu, Xingjiang [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Xu, Qiang, E-mail: xuqiang@tju.edu.cn [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    A highly efficient catalyst of perovskite LaNiO{sub 3} was synthesized by a simple reverse homogenous precipitation method and adopted as the electrocatalyst in nonaqueous Li–O{sub 2} batteries. The phase structure and morphologies of the as-synthesized LaNiO{sub 3} nanoparticles (NPs) are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrocatalytic activity of porous LaNiO{sub 3} catalysts was investigated by cyclic voltammetry (CV) and charge–discharge measurements using Li–O{sub 2} batteries in aprotic electrolyte. The electrochemical results show that the LaNiO{sub 3}-based electrode exhibits much enhanced cycling ability (>155 cycles) as well as stable discharging plateau (limit > 2.51 V) with a 706 mV smaller charge–discharge voltage gap than that of the pure carbon cathode at a current density of 50 mA g{sup −1}. The superior performance contributes to the high intrinsic electrocatalytic activity of LaNiO{sub 3} with the porous nanostructure. - Highlights: • Mesoporous LaNiO{sub 3} nanoparticles with high dispersibility are simply synthesized. • Better round-trip efficiency and cycle stability with less catalyst consumption. • The LaNiO{sub 3}-based cell shows a low discharge–recharge voltage gap of 878 mV. • More than 155 cycles with stable discharging terrace (limit > 2.51 V) is reported.

  8. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it's up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process.

  9. Numerical Simulation Procedure for Modeling TGO Crack Propagation and TGO Growth in Thermal Barrier Coatings upon Thermal-Mechanical Cycling

    Directory of Open Access Journals (Sweden)

    Ding Jun

    2014-01-01

    Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.

  10. Marginal adaptation of class V composite restorations submitted to thermal and mechanical cycling

    Directory of Open Access Journals (Sweden)

    Denise Sa Maia CASSELLI

    2013-01-01

    Full Text Available Objective This study evaluated the effect of the margin location and an adhesive system on the marginal adaptation of composite restorations. Material and Methods Class V cavities were prepared in bovine teeth with the gingival margin on the dentin and the incisal margin on the enamel. The cavities were restored with a micro-hybrid composite resin using an etch-and-rinse [Single Bond 2 (SB] or a self-etching adhesive [Clearfil SE Bond (CL]. After finishing and polishing the restorations, epoxy replicas were prepared. The marginal adaptation was analyzed using scanning electronic microscopy (SEM, 500 x magnification. The higher gap width in each margin was recorded (T0. After the first evaluation, the samples were submitted to thermal cycling (2,000 cycles of 5°C±2°C followed by 55°C±2°C – T1 and mechanical cycling (100,000 cycles of 50 kN and 2 Hz – T2. Replicas of samples were rebuilt after each cycling and analyzed under SEM. The data were submitted to Mann-Whitney, Wilcoxon and Friedman testing (α=0.05. Results The SB presented higher gaps in the dentin than the enamel, while there was no difference between the substrate for the CL. In the dentin, the CL showed better marginal sealing than the SB. The opposite occurred in the enamel. There were no significant differences between the baseline, thermal and mechanical cycling for any experimental condition. Conclusions The outcomes of the present study showed that the adhesive system and margin location have an important effect on the marginal adaptation of composite restorations.

  11. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    Science.gov (United States)

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al2O3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  12. Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

    Directory of Open Access Journals (Sweden)

    Tin-Tai Chow

    2012-01-01

    Full Text Available While sheet-and-tube absorber is generally recommended for flat-plate photovoltaic/thermal (PV/T collector design because of the simplicity and promising performance, the use of rectangular-channel absorber is also tested to be a good alternative. Before a new energy technology, like PV/T, is fully implemented, its environmental superiority over the competing options should be assessed, for instance, by evaluating its consumption levels throughout its production and service life. Although there have been a plenty of environmental life-cycle assessments on the domestic solar hot water systems and PV systems, the related works on hybrid solar PV/T systems have been very few. So far there is no reported work on the assessment of PV/T collector with channel-type absorber design. This paper reports an evaluation of the energy payback time and the greenhouse gas payback time of free-standing and building-integrated PV/T systems in Hong Kong. This is based on two case studies of PV/T collectors with modular channel-type aluminium absorbers. The results confirm the long-term environmental benefits of PV/T applications.

  13. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin

    2017-02-28

    Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.

  14. Improvement of strength of B/Al composite by thermal-mechanical cycling

    Institute of Scientific and Technical Information of China (English)

    覃耀春; 何世禹; 杨德庄

    2004-01-01

    The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with in creasing the cycles, causing a measurable decrease of stage Ⅰ modulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of im proving the strength of B/Al composites.

  15. Stress evolution in copper-silver thin films during thermal-cycling

    Energy Technology Data Exchange (ETDEWEB)

    Chama, C.C., E-mail: ccchama1@yahoo.com [Department of Metallurgy and Mineral Processing, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Vlassak, J.J. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Soboyejo, W.O. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Stress in Cu and Cu-Ag films determined from -197 to 0 Degree-Sign C and RT to 400 Degree-Sign C. Black-Right-Pointing-Pointer Heating to 400 Degree-Sign C, films elastically and plastically deformed. Black-Right-Pointing-Pointer Cooling, Cu plastically deformed; Cu-Ag films plastic/elastic deformation. Black-Right-Pointing-Pointer At -197 to 0 Degree-Sign C, yielding did not occur in any Cu-6 at% Ag film. Black-Right-Pointing-Pointer Cu and Ag existed; grain growth and Ag coarsening occurred. - Abstract: Stress evolution in Cu, Cu-1.4 at% Ag, Cu-3 at% Ag and Cu-6 at% Ag thin films was determined by substrate curvature measurements from room temperature to 400 Degree-Sign C in two cycles, each involving a heating and a cooling stage. Stress hysteresis curves for the Cu-Ag films changed slope significantly within the temperature range 220-250 Degree-Sign C and stress range 100-200 MPa during the heating stage of the first cycle; this occurred at 175 Degree-Sign C and 100 MPa for the Cu film. This was followed by stress relaxation in all the films at about 300 Degree-Sign C. For the as-deposited, annealed and thermally cycled films exposed to low temperatures (-197 to 0 Degree-Sign C), instances of yielding occurred in Cu, Cu-1.4 at% Ag and Cu-3 at% Ag films. However, the as-deposited, annealed and thermally cycled Cu-6 at% Ag film was always elastic and there was no yielding when exposed to low temperatures. Microstructural analyses revealed the presence of Cu and Ag phases in all the Cu-Ag films, irrespective of the thermal history. Despite electron diffraction revealing their existence, Ag particles were not so apparent in the microstructures of the as-deposited and annealed films probably because of their fine sizes. However, after thermal-cycling Ag particles were observed at grain boundaries and inside grains in addition to significant grain growth.

  16. Thermal Evolution of Terrestrial Planets: Earth, Mars, Size, Temperature, Tectonics, and Deep Volatile Cycling

    Science.gov (United States)

    Lenardic, A.; Hero, J.; McGovern, P. J., Jr.

    2014-12-01

    Recent efforts to constrain the thermal evolution of the Martian lithosphere suggest that the ratio of mantle heat production to heat loss, termed the Urey ratio, on Mars may be greater than unity at present (or in Mars' recent past). For comparison, the present day Earth value is 0.33. These estimates fly in the face of conventional wisdom that a smaller planet like Mars should have cooled faster than the Earth - and certainly should not be heating up at present. We perform a sensitivity analysis, using a thermal history modeling approach, to asses the relative effects of changing planetary size, mode of tectonics, and nature of deep volatile cycling (focussing on water). Our results indicate that differences in the nature of volatile cycling (degassing vs regassing over time) can outweigh the effects of size and tectonic mode in determining the thermal state of a planet. Mars models in which degassing dominates can give Urey ratios that exceed unity. Earth models in which regassing dominates over degassing in the later geologic stages of evolution lead to lower Urey ratio values.

  17. WESF cesium capsule behavior at high temperature or during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive /sup 137/Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800/sup 0/C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs.

  18. Seawater test results of Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) components

    Science.gov (United States)

    Zangrando, F.; Bharathan, D.; Link, H.; Panchal, C. B.

    Key components of open-cycle ocean thermal energy conversion systems- the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages- have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 cu m/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  19. Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles

    CERN Document Server

    Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

    2014-01-01

    Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

  20. Simultaneous dopant diffusion and surface passivation in a single rapid thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lachiq, A.; Slaoui, A.; Georgopoulos, L.; Ventura, L.; Monna, R.; Muller, J.C. [Laboratoire PHASE, 67 - Strasbourg (France)

    1996-09-01

    Results on simultaneous formation of emitter/back-surface field or emitter/surface passivation in a single rapid thermal cycle are presented. We have investigated the diffusion kinetics of dopant elements like phosphorus, boron (from a doped spin-on glass (SOD) film), aluminium (from evaporated films) or aluminium-boron (from an Al-B SOD film). In particular, we have shown that rapid thermal co-diffusion of P and Al (or Al-B) leads to low sheet resistances, optical emitter profiles and a high gettering effect. Furthermore, the possibility of using the remaining SOD films as a surface passivation layer was investigated. Dark saturation current measurements as deduced from the photoconductivity decay technique demonstrate the passivation effect of the remaining SOD film. The highest efficiency of 12.8% obtained was achieved on SOD oxide-coated solar cells. (author)

  1. Environmental cycling of cellulosic thermal insulation and its influence on fire performance

    Science.gov (United States)

    Lawson, J. R.

    1984-08-01

    A study was conducted on climatological data for eleven cities located throughout the United States. Findings from this environmental study were used to develop conditioning cycles for a research project on the influence of environments on the fire performance of loose-fill cellulosic thermal insulation. Six cellulosic insulation materials with different compositions of fire retardant chemicals at an add-on level of 25% by weight were specially manufactured for this study. These materials were tested for fire performance using the smoldering combustion test and the attic flooring radiant panel test to establish a baseline. After the materials were exposed to the various environmental cycles, they were tested for fire performance. Results from these tests show that environmental exposure can have a significant effect on the fire performance of cellulosic insulation materials and indicates that long term fire protection provided by fire retardant compounds may be limited.

  2. Rate equations modeling for hydrogen inventory studies during a real tokamak material thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, X., E-mail: xavier.bonnin@iter.org [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse (France); Hodille, E. [IRFM, CEA-Cadarache, F-13108 St-Paul-Lez-Durance (France); Ning, N. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse (France); Sang, C. [School of Physics and Optoelectronics Technology, Dalian University of Technology, Dalian 116024 (China); Grisolia, Ch. [IRFM, CEA-Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-08-15

    Prediction and control of tritium inventory in plasma-facing components (PFCs) is a critical nuclear safety issue for ITER and future fusion devices. This goal can be achieved through rate equations models as presented here. We calibrate our models with thermal desorption spectrometry results to obtain a validated set of material parameters relevant to hydrogen inventory processes in bulk tungsten. The best fits are obtained with two intrinsic trap types, deep and shallow, and an extrinsic trap created by plasma irradiation and plastic deformation of the tungsten matrix associated with blister formation. We then consider a realistic cycle of plasma discharges consisting of 400 s of plasma exposure followed by a resting period of 1000 s, repeating for several hours. This cycle is then closed by a long “overnight” period, thus providing an estimate of the amount of tritium retained in the PFCs after a full day of standard operation.

  3. Effects of mechanical and thermal load cycling on micro tensile bond strength of clearfil SE bond to superficial dentin

    Directory of Open Access Journals (Sweden)

    Ali Reza Daneshkazemi

    2013-01-01

    Full Text Available Background: Certain studies have been conducted on the effects of mechanical and thermal load cycling on the microtensile bond strength (microTBS of composites to dentin, but the results were different. The authors therefore decided to evaluate these effects on the bonding of Clearfil SE bond to superficial dentin. Materials and Methods: Flat dentinal surface of 42 molar teeth were bonded to Filtek-Z250 resin composite by Clearfil SE bond. The teeth were randomly divided into 7 groups and exposed to different mechanical and thermal load cycling. Thermocycling was at 5-55°C and mechanical load cycling was created with a force of 125 N and 0.5 Hz. Then, the teeth were sectioned and shaped to hour glass form and subjected to microTBS testing at a speed of 0.5 mm/min. The results were statistically analyzed by computer with three-way analysis of variance and T-test at P < 0.05 significant. To evaluate the location and mode of failure, the specimens were observed under the stereomicroscope. Then, one of the specimens in each group was evaluated under Scanning Electron Microscopy (SEM for mode of failure. Results: All of the study groups had a significantly lower microTBS as compared to the control group ( P < 0.001. There was no statistically significant difference between mechanical cycling with 50K (kilo = 1000 cycles, and 50K mechanical cycles plus 1K thermal cycles. Most of the fractures in the control group were of adhesive type and this type of fracture increased after exposure to mechanical and thermal load cycling. Conclusion: Thermal and mechanical load cycling had significant negative effects on microTBS and the significant effects of mechanical load cycling started to be significant at 100K cycles.

  4. Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, V.S. [Institute of Thermophysics SB RAS (Russian Federation); Bakos, G.C. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Energy Economics, 67 100 Xanthi (Greece); Finnikov, K.A. [Siberian Federal University (Russian Federation)

    2009-07-15

    In this paper, the principle of heat energy conversion via Stirling pump into electricity is considered. New scheme of Stirling pump is proposed, that differs from known ones in application of offset heater and cooler and valves controlling the motion of liquid. The mathematical model is implemented to examine the liquid flow and gas heat exchange in cylinders and regenerator. The numerical simulation of engine's working cycle is conducted for the purpose of determining the characteristic parameters of its design. A possibility of achieving high thermal efficiency at acceptable power level is shown. (author)

  5. Kinetic Model of TiN Particle Dissolution and Coarsening during Welding Thermal Cycle

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With carbon extraction replica technique, electron diffraction and EDAX analysis, second particle size distributionin two Ti microalloyed steels and their heat-affected zones were investigated. The results show that the particles inthe Ti microalloyed steels are TiN particles, and the TiN particles in the steel with lower Ti/N ratio exhibit smallersize and lower dissolution and coarsening rate and extent. Based on the investigation results, kinetic models for TiNparticle dissolution and coarsening during welding thermal cycle were developed. The predicted values calculated byusing the models are in good agreement with the experimental ones.

  6. Effect of Incomplete Thermal Cycle on Transformation Behavior of Deformed TiNi Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with the undeformed TiNi film, the martensite-austenite transformation (M-A) of the deformed one is elevated to a higher temperature on the first heating, but it nearly returns back to the original temperature on the second heating. An incomplete M-A transformation of the deformed TiNi film on the first heating divides the total martensite population into the self-accommodating martensite M2 and the oriented martensite M1. Thus, two transformations corresponding to M1-A and M2-A transition occur on the second heating. However, the forward transformation is not affected by the incomplete thermal cycle.

  7. Effect of Thermal Cycling on the Strength and Texture of Concrete for Nuclear Safety Structures

    Directory of Open Access Journals (Sweden)

    Š. Hošková

    2001-01-01

    Full Text Available The effect of thermal cycling (freezing and thawing on the texture and strength of two types of concrete is studied: 1. Concrete used for a containment structure at NPP Temelín (Czech Republic - so-called TEMELÍN concrete.2. Highly resistant PENLY concrete, which was used as a standard because of its high quality, proved by the research carried out in a European Commission project. The results for the two samples of concrete are compared.

  8. A Literature Review of Shock Sensitivity Changes of TATB Due to Thermal Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Boyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mechanical Engineering

    2016-07-15

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced with respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.

  9. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. (Houston Univ., TX (United States))

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  10. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  11. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  12. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  13. Highly porous ZnS microspheres for superior photoactivity after Au and Pt deposition and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Shilpa; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-11-15

    Graphical abstract: Highly porous ZnS microsphere of size 2–5 μm having large surface area ca. 173.14 m{sup 2} g{sup −1} exhibits superior photocatalytic activity for the oxidation of 4-nitrophenol under UV light irradiation. The rate of photooxidation has been significantly improved by Au and Pt deposition and after sintering, respectively, due to rapid electron acceptance by metal from photoexcited ZnS and growth of crystalline ZnS phase. - Highlights: • Photoactive ZnS microsphere of size 2–5 μm was prepared by hydrothermal route. • Highly porous cubic spherical ZnS crystals possess a large surface area, 173 m{sup 2} g{sup −1}. • 1 wt% Au and Pt photodeposition highly quenched the photoluminescence at 437 nm. • Sintering and metal loading notably improve the photooxidation rate of 4-nitrophenol. • Pt co-catalyst always exhibits superior photoactivity of ZnS microsphere than Au. - Abstract: This work highlights the enhanced photocatalytic activity of porous ZnS microspheres after Au and Pt deposition and heat treatment at 500 °C for 2 h. Microporous ZnS particles of size 2–5 μm with large surface area 173.14 m{sup 2} g{sup −1} and pore volume 0.0212 cm{sup 3} g{sup −1} were prepared by refluxing under an alkaline medium. Photoluminescence of ZnS at 437 nm attributed to sulfur or zinc vacancies were quenched to 30% and 49%, respectively, after 1 wt% Au and Pt loading. SEM images revealed that each ZnS microparticle consist of several smaller ZnS spheres of size 2.13 nm as calculated by Scherrer's equation. The rate of photooxidation of 4-nitrophenol (10 μM) under UV (125 W Hg arc–10.4 mW/cm{sup 2}) irradiation has been significantly improved by Au and Pt deposition followed by sintering due to better electron capturing capacity of deposited metals and growth of crystalline ZnS phase with less surface defects.

  14. The effect of thermal cycling on the shear bond strength of porcelain/Ti-6Al-4V interfaces.

    Science.gov (United States)

    Sendão, Isabel A; Alves, Alexandra C; Galo, Rodrigo; Toptan, Fatih; Silva, Filipe S; Ariza, Edith

    2015-04-01

    The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 ± 1 and 60 ± 2°C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 ± 15.9, 52.2 ± 23.6, and 59.9 ± 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups.

  15. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto

    2015-01-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies ......Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case......-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste...... improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy....

  16. X-ray measurements of the self-organization of martensitic variants during thermal cycling

    Science.gov (United States)

    Perez, Daniel; Sutton, Mark; Rogers, Michael

    The deformation of most types of metals involves an irreversible flow of crystallographic dislocations. This allows for their ductility. The deformation of a metallic shape memory alloy (SMA), on the other hand, is accommodated by a solid-solid phase transition. If deformed in the low-temperature martensitic phase, an SMA can be returned to its original shape by raising its temperature to the point where it changes back to its high-temperature parent phase. When the reverse occurs and the transformation is from parent to martensitic phase, an SMA goes from a high-symmetry to a low-symmetry state in which a number of martensitic variants are produced. We monitored the self-organization of these variants during cycles of periodic thermal driving. This was done using in situ X-ray Photon Correlation Scectroscopy (XPCS), which uses correlation from X-ray speckle to quantify the degree of microstructural change in a material. Our measurements revealed enhanced reversibility in the organization of the martensitic variants as the system evolved during repeated thermal cycling.

  17. Critical current retention of potted and unpotted REBCO Roebel cables under transverse pressure and thermal cycling

    Science.gov (United States)

    Talantsev, E. F.; Badcock, R. A.; Mataira, R.; Chong, S. V.; Bouloukakis, K.; Hamilton, K.; Long, N. J.

    2017-04-01

    Coated conductor Roebel cables are an effective way to create a high current density, fully transposed cable. However, despite REBCO tapes being robust against transverse stress, the Roebel architecture can concentrate transverse stress in non-trivial and random patterns depending on the exact arrangement of strands. If stands are embedded in a solid media which consolidates all strands then a transverse stress concentration will not occur. We tested this idea through mechanical and thermo-cycling tests on 5 strand Roebel cables. For non-impregnated cable irreversible degradation in critical currents is initiated at transverse pressures in a range of 4–34 MPa. Optical examination of the cables shows stress concentration patterns beyond those predicted by thickness variations. For cables impregnated with epoxy filled with SiO2 nanopowder, which has a similar thermal expansion coefficient to the metallic substrate of the strands, the irreversibility point is increased above our highest experimentally available pressure of 270 MPa. Thermo-cycling experiments confirmed a closely matched thermal expansion coefficient between the embedding media and metallic substrate is critical to avoid wire failures.

  18. Thermal Impact of Operating Conditions on the Performance of a Combined Cycle Gas Turbine

    Directory of Open Access Journals (Sweden)

    Thamir K. Ibrahim

    2012-08-01

    Full Text Available The combined cycle gas-turbine (CCGT power plant is a highly developed technology which generates electricalpower at high efficiencies. The first law of thermodynamics is used for energy analysis of the performance of theCCGT plant. The effects of varying the operating conditions (ambient temperature, compression ratio, turbine inlettemperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam on the performance of theCCGT (overall efficiency and total output power were investigated. The programming of the performance model forCCGT was developed utilizing MATLAB software. The simulation results for CCGT show that the overall efficiencyincreases with increases in the compression ratio and turbine inlet temperature and with decreases in ambienttemperature. The total power output increases with increases in the compression ratio, ambient temperature, andturbine inlet temperature. The peak overall efficiency was reached with a higher compression ratio and low ambienttemperature. The overall efficiencies for CCGT were very high compared to the thermal efficiency of GT plants. Theoverall thermal efficiency of the CCGT quoted was around 57%; hence, the compression ratios, ambient temperature,turbine inlet temperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam have a stronginfluence on the overall performance of the CCGT cycle.

  19. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Kong, Xiangwei [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.

  20. DAF optimization using Taguchi methods and the effect of thermal cycling parameters on DNA amplification.

    Science.gov (United States)

    Caetano-Anollés, G

    1998-09-01

    Taguchi methods, which are widely applied in industrial process design, were used to optimize DNA amplification finger-printing (DAF). Quadratic loss functions that penalize deviations from prediction values and L9 (3(4)) and L18 (3(8)) orthogonal arrays revealed effects and interactions of amplification reaction components and thermal cycling parameters. Analysis of variance (ANOVA) decomposed the contribution of individual factors to the experimental response (amplification yield and product number), while verification experiments established that optimum conditions were predictable, verifiable and reproducible. While several amplification components (primer, magnesium and enzyme) conditioned the amplification reaction, annealing temperature and time were the only important thermal cycling contributing factors. The Taguchi strategy defined a robust and transportable amplification protocol based on high annealing temperatures (typically 48 degrees C) and primer concentrations (typically 8 microM), which can be applied to the fingerprinting of a wide range of DNA templates of plant and fungal origin. The general strategy of robust experimental design holds potential as an optimization tool for other methods in molecular biology.

  1. Effect of crystallographic orientation on hillock formation in thermally cycled large grain tin films

    Science.gov (United States)

    Koppes, John Patrick

    Tin whiskers and hillocks grow spontaneously from the surfaces of polycrystalline Sn films at room temperature. Whiskers can grow long enough to cause short circuits in electronic devices. We hypothesized that the anisotropies of the crystal structure lead to locally high strain energies that are relieved by the growth of whiskers and hillocks. This research studies hillock formations on large grain Sn-alloy films relative to the crystallographic orientations of the adjacent grains. Large grain films were produced by solidifying 96.5wt% Sn - 3wt% Ag - 0.5wt% Cu solder alloy on a Cu substrate. These surface defects (hillocks) grew predominately at grain boundaries during thermal cycling. The formation of the surface defects between two grains created a pseudo-bi-crystal sample geometry, making it ideal for studying surface defects relative to the local crystallographic orientations and the grains' corresponding anisotropic properties. The crystallographic orientations of the grains were studied with Electron Backscatter Diffraction (EBSD) and Laue micro-diffraction at the Lawrence Berkeley National Laboratory Advanced Light Source. Local orientation studies of the surface defects and the surrounding grains indicated that the surface defects nucleated and grew with low dislocation densities. In addition, the linear surface defect densities along the grain boundaries were measured and observed to change as a function of orientation. The change in linear defect density with respect to orientation was due, in part, to the anisotropy of the coefficient of thermal expansion of β-Sn. In addition, it was important to account for elastic anisotropies. The elastic stresses, strains, and strain energy densities of the microstructures were determined with Object Oriented Finite element analysis. The simulations indicated that during thermal cycling the local stresses exceeded the yield strength. As a result, the highest linear defect densities did not occur at orientations

  2. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  3. Corrosion and latent heat in thermal cycles for La(Fe,Mn,Si){sub 13} magnetocaloric compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jie; Guan, Lin; Fu, Song; Sun, Yongyang; Long, Yi, E-mail: longy@mater.ustb.edu.cn

    2014-03-15

    Corrosion and latent heat in thermal cycles for LaFe{sub 11.5−x}Mn{sub x}Si{sub 1.5} (x=0.00, 0.10, 0.20, and 0.25) compounds were investigated for practical application. The corrosion resistance of the compounds was tested by means of potentiodynamic polarization and immersion test in the distilled water. The results show that the corrosion resistance of the compounds was improved by Mn doping. The latent heat of the compounds in the thermal cycles was tested by differential scanning calorimetry (DSC). The latent heat decreased with the increase in the number of thermal cycles. The substitution of Mn in the compounds speeded up the decrease of the latent heat in the thermal cycles. But the latent heat of all compounds tended to be stable after eight thermal cycles. The maximum ΔS{sub M} under a low magnetic field (0–1 T) was 12.7, 9.9, 8.2 and 7.6 J/kg K with increasing of Mn content from x=0.00 to 0.25, respectively. The magnetic entropy changes and adiabatic temperature changes for LaFe{sub 11.5−x}Mn{sub x}Si{sub 1.5} compounds decreased with the increase of Mn content. - Highlights: • Mn doping can improve the corrosion resistance of La(Fe,Mn,Si){sub 13} compounds. • Mn doping speeded up the decrease of the latent heat during the thermal cycles. • The latent heat of all compounds tends to be stable after eight thermal cycles. • −ΔS and ΔT{sub ad} decreased with the increase of Mn content.

  4. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F., E-mail: placco@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAV/DCTA) Sao Jose dos Campos, SP (Brazil); Santos, Rubens S. dos, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  5. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  6. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A., E-mail: aasebaii@yahoo.co [Physics Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Al-Heniti, S.; Al-Agel, F.; Al-Ghamdi, A.A.; Al-Marzouki, F. [Physics Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2011-04-15

    Research highlights: {yields} Solar cookers must contain a PCM for cooking indoors. {yields} MgCl{sub 2}.6H{sub 2}O when it cycled in a sealed container. {yields} MgCl{sub 2}.6H{sub 2}O shows maximum of 0.1-3.5 {sup o}C of supercooling. {yields} MgCl{sub 2}.6H{sub 2}O is a promising PCM for thermal energy storage. -- Abstract: Cooking is the major necessity for people all over the world. It accounts for a major share of energy consumption in developing countries. There is a critical need for the development of alternative, appropriate, affordable methods of cooking for use in developing countries. There is a history for solar cooking since 1650 where they are broadly divided into direct or focusing type, box-type and indirect or advanced solar cookers. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this paper is to investigate the influence of the melting/solidification fast thermal cycling of commercial grade magnesium chloride hexahydrate (MgCl{sub 2}.6H{sub 2}O) on its thermo-physical properties; such as melting point and latent heat of fusion, to be used as a storage medium inside solar cookers. One thousand cycles have been performed in a sealed container under the extra water principle. The thermo-physical properties are measured using the differential scanning calorimetric technique. It is indicated that MgCl{sub 2}.6H{sub 2}O with the extra water principle and hermetically sealing of the container is a promising phase change material (PCM) for cooking indoors and during law intensity solar radiation periods. It is also found from the melting/solidification behavior of MgCl{sub 2}.6H{sub 2}O that it is solidify almost

  7. THERMAL CYCLING UNDER LOADING OF SINGLE CRYSTAL Cu-Al-Ni AFTER AGING

    Directory of Open Access Journals (Sweden)

    Ignacio Corro

    2016-06-01

    Full Text Available In this paper, a study of single crystal Cu-14.3Al-4.1Ni (%wt subjected to thermal cycling under loading is presented. Shape memory Cu-Al-Ni has low diffusion at temperatures above room temperature. Therefore, it is interesting to know your answer in working conditions and after being aged in this temperature range. Specimens were characterized before and after aging, using a device designed by the authors. Parameters such as critical temperatures and hysteresis width, the repeatability of the curves and the type of TM induced were analyzed. These parameters have changes then the aging or contribute to that may influence the design of applications.

  8. Numerical analysis of energy piles under different boundary conditions and thermal loading cycles

    Directory of Open Access Journals (Sweden)

    Khosravi Ali

    2016-01-01

    Full Text Available The thermo- mechanical behavior of energy piles has been studied extensively in recent years. In the present study, a numerical model was adapted to study the effect of various parameters (e.g. heating/cooling temperature, head loading condition and soil stiffness on the thermo-mechanical behavior of an energy pile installed in unsaturated sandstone. The results from the simulations were compared with measurements from a thermal response test on a prototype energy pile installed beneath a 1-story building at the US Air Force Academy (USAFA in Colorado Springs, CO. A good agreement was achieved between the results obtained from the prototype and the numerical models. A parametric evaluation were also carried out which indicated the significance of the stiffness of the unsaturated sandstone and pile’s head loading condition on stress-strain response of the energy pile during heating/cooling cycles.

  9. EFFECTS OF THERMAL CYCLE ON MECHANICAL PROPERTIES AND FRACTOGRAPHY IN HAZ OF HQ130 STEEL

    Institute of Scientific and Technical Information of China (English)

    B. Liu; J.X. Qu; W.J. Sun

    2004-01-01

    The effect of different peak temperature (Tp) and cooling time (ts/5) on hardness,impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130steel was studied by using welding thermo-simulation test. Experimental results show that the impact toughness and hardness decrease with the decrease of Tp or increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp=800℃, where the impact toughness is considerably low. There is softened zone in vicinity of Tp=700℃, Where the hardness decreases but the toughness increases. In the practical application of multi-layer and multi-pass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of HQ130 steel.

  10. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  11. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  12. Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method

    Science.gov (United States)

    Merritt, Scott

    2015-03-01

    NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.

  13. Variation with thermal cycling in microstructure and area specific resistance of a ferritic stainless steel having rough surfaces

    Science.gov (United States)

    Song, Myoung Youp; Mumm, Daniel R.; Song, Jiunn

    2013-03-01

    Crofer22 APU specimens were prepared by grinding with grit 120 and 400 SiC grinding papers, and were then thermally cycled. The variation in oxidation behavior with thermal cycling was then investigated. Observation of microstructures, measurement of area-specific resistance (ASR), analysis of the atomic percentages of the elements by EDX, and XRD analysis were performed. XRD patterns showed that the (Cr, Mn)3O4 spinel phase grew on the surface of the Crofer22 APU samples ground using grit 120. For the samples ground with grit 400, ASR increased as the number of thermal cycles ( n) increased. Plots of ln (ASR/T) vs. 1/ T for the samples ground with grit 400 after n = 4, 20, and 40 exhibited good linearity, and the apparent activation energies were between 73.4 kJ/mole and 82.5 kJ/mole.

  14. Carnot cycle for interacting particles in the absence of thermal noise.

    Science.gov (United States)

    Curado, Evaldo M F; Souza, Andre M C; Nobre, Fernando D; Andrade, Roberto F S

    2014-02-01

    A thermodynamic formalism is developed for a system of interacting particles under overdamped motion, which has been recently analyzed within the framework of nonextensive statistical mechanics. It amounts to expressing the interaction energy of the system in terms of a temperature θ, conjugated to a generalized entropy s(q), with q = 2. Since θ assumes much higher values than those of typical room temperatures T ≪ θ, the thermal noise can be neglected for this system (T/θ ≃ 0). This framework is now extended by the introduction of a work term δW which, together with the formerly defined heat contribution (δ Q = θ ds(q)), allows for the statement of a proper energy conservation law that is analogous to the first law of thermodynamics. These definitions lead to the derivation of an equation of state and to the characterization of s(q) adiabatic and θ isothermic transformations. On this basis, a Carnot cycle is constructed, whose efficiency is shown to be η = 1-(θ(2)/θ(1)), where θ(1) and θ(2) are the effective temperatures of the two isothermic transformations, with θ(1)>θ(2). The results for a generalized thermodynamic description of this system open the possibility for further physical consequences, like the realization of a thermal engine based on energy exchanges gauged by the temperature θ.

  15. Evaluation of Electroless-Nickel Plated Polypropylene under Thermal Cycling and Mechanical Tests

    Directory of Open Access Journals (Sweden)

    O.O. Ajibola

    2016-09-01

    Full Text Available The electroless-nickel composite (ENC consisting of bright metallic electroless-nickel (EN and dull electroless-nickel-phosphorus (EN-P were deposited on the polypropylene (PP substrate from the sodium hypophosphite baths. The ENC plated specimens were subjected to abrasive wear-adhesion test of 1750, 3500, 7000 and 14000 cycles; thermal cycle-adhesion tests, and tensile strength and creep tests. The deposition of ENC influenced the strength and creep strain properties of the PP. The maximum stress σ of 118 (MPa was obtained from EN-PP specimen at strain  of 0.1 mm/mm as compared with the PP having stress σ of 36 (MPa at strain  of 0.07 mm/mm before failure The surface appearances and microstructures of ENC film on PP substrates were examined under the higher resolution metallurgical microscope with digital camera and microscopic camera. The composition of ENC film was characterized using Scanning Electron Microscopy and Energy Dispersive X-Ray analyses (Jeol JSM-7600F Field Emission SEM/EDX, The micrographs and spectra lines data generated were used to interpret the results.

  16. Physiological cost and thermal envelope: a novel approach to cycle garment evaluation during a representative protocol.

    Science.gov (United States)

    Corbett, J; Barwood, M J; Tipton, M J

    2015-04-01

    This study aimed to examine thermoregulation in different clothing assemblies during a representative cycling exercise protocol. Six men undertook cycling exercise simulating representative thermal exchange challenges while wearing low (LOW), intermediate (INT1 and INT2), or high (HI) amounts of clothing. Exercise was conducted at 14.5 °C, 46.8% relative humidity and included a "flat" [45 min at 35% peak power output (PPO), wind speed 8.3 m/s], "uphill" (30 min at 55% PPO, wind speed 3.6 m/s), and "downhill" (20 min at 50 W, wind speed 16.7 m/s) stage. Rectal temperature changed with the exercise stage and was independent of clothing assembly. In contrast, an "envelope" was evident for mean body temperature, resulting from differences in mean skin temperature between the LOW and HI conditions. The elevated mean body temperature in HI was associated with increased physiological "cost," in the form of increased sweat production and heart rate. Physiological cost provides a better index of clothing performance than deep body temperature in the "thermoregulatory zone," as a consequence sports clothing should attempt to optimize the balance between comfort and reduced physiological cost.

  17. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    Science.gov (United States)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  18. Effect of thermal cycle on the interfacial antiferromagnetic spin configuration and exchange bias in Ni-Mn-Sb alloy

    Directory of Open Access Journals (Sweden)

    R. L. Wang

    2012-09-01

    Full Text Available Effect of thermal cycle on the interfacial antiferromagnetic (AFM spin configuration and exchange bias in Ni50Mn36Sb14 alloy has been investigated. The results indicate thermal cycle can induce further martensitic transition from part of arrested FM phase to AFM phase, leading to the reconstruction of interfacial antiferromagnetic spin configuration. The shape of hysteresis loops at 5 K after cooling back can be tuned from a single-shifted loop to a nearly symmetric double-shifted loop gradually accompanied with exchange bias field increasing to peak value and then decreasing. The evolutions can be illustrated intuitively by a simple AFM bidomain model.

  19. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  20. Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yuelong [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Shih Hong [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States)], E-mail: hong.shih@lamrc.com; Daugherty, John [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States); Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)], E-mail: mansfeld@usc.edu

    2009-10-15

    The corrosion resistance of anodized Al 6061 produced by two different anodizing and sealing processes was evaluated for 30 days during exposure to 3.5 wt% NaCl using EIS. Thermal cycling treatments at 120, 160 and 200 deg. C have been applied for the two types of samples. The degradation of the properties of the anodized layers has been determined by thorough analysis of the EIS data for control samples and samples that had undergone thermal cycling. Scanning electron microscopy has been used to evaluate the damage to the anodized aluminum layers due to thermal cycling. It was found that the thermal treatment produced considerable damage of both the porous layer and the barrier layer. The EIS data suggest that some cracks extended into the bare metal. The damage of the oxide layers increased with increasing thermal cycling temperature for both types of samples. Self-sealing of the porous layer and the barrier layer occurred during immersion in NaCl.

  1. The Dependence of the Change in the Coefficient of Thermal Expansion of Graphite Fiber Reinforced Polyimide IM7-K3B on Microcracking due to Thermal Cycling

    Science.gov (United States)

    Stewart, Melissa C.

    1995-01-01

    Composite IM7-K3B was subjected to a simulated high speed aircraft thermal environment to determine the effects of microcracking on the change in CTE. IM7-K3B is a graphite fiber reinforced polyimide laminate, manufactured by Dupont. The lay-up for the material was (0.90((Sub 3)(Sub s))). The specimens were placed in a laser-interferometric dilatometer to obtain thermal expansion measurements and were then repeatedly cycled between -65 F and 350 F up to 1000 cycles. After cycling they were scanned for microcracks at a magnification of 400x. The material was expected not to crack and to have a near zero CTE. Some microcracking did occur in all specimens and extensive microcracking occurred in one specimen. Further testing is required to determine how closely the CTE and microcracking are related.

  2. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  3. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 microm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.

  4. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  5. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  6. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  7. Effect of elastic network of ceramic fillers on thermal cycle stability of a solid oxide fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Ho; Kim, Hyoungchul; Kim, Sung Moon; Noh, Tae-Wook; Jung, Hwa-Young; Lim, Hyun-Yup; Jung, Hun-Gi; Son, Ji-Won; Kim, Hae-Ryoung; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon [High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Jae-Chun [Department of Materials Science and Engineering, Myungji University, Yongin, Gyunggi (Korea, Republic of); Song, Huesup [Division of Advanced Materials Engineering, Kongju National University, Chonan, Chungnam (Korea, Republic of)

    2012-04-15

    Glass-based seals for planar solid-oxide fuel-cell (SOFC) stacks are open to uncontrolled deformation and mechanical damages, limiting both sealing integrity and stack reliability, particularly in thermal cycle operations. If the glass-based seals work like an elastomer-based compressive seal, SOFC stacks may survive unprecedented numbers of thermal cycles. A novel composite sealing gasket is successfully developed to mimic the unique features of the elastomer-based compressive seal by controlling the composition and packing behavior of binary ceramic fillers. A single-cell SOFC stack undergoes more than 100 thermal cycles with little performance loss, during which the sealing integrity is lost/recovered repeatedly upon cooling and reheating, corresponding to unloading/loading of the elastomer-based compressive seal. The thermal-cycle responses of the SOFC stack are explained in sequence by the concurrent events of elastic deformation/recovery of ceramic filler network and corresponding redistribution of sealing glass. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  9. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  10. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Billy Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  11. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks

    NARCIS (Netherlands)

    Oyafuso, Denise Kanashiro; Ozcan, Mutlu; Bottino, Marco Antonio; Itinoche, Marcos Koiti

    2008-01-01

    Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or comm

  12. Impact energy analysis of quenched and tempered fine grain structural steel specimens after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available The paper presents impact energy results of thermal cycle simulated specimens of quenched and tempered fine grain structural steel S960QL. These results are obtained by examining notched Charpy specimens. Upon performed metallographic analysis and measured hardness, total impact energy is separated into ductile and brittle components.

  13. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks

    NARCIS (Netherlands)

    Oyafuso, Denise Kanashiro; Ozcan, Mutlu; Bottino, Marco Antonio; Itinoche, Marcos Koiti

    Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or

  14. Evaluation of roughness and micromorphology of epoxy paint on cobalt-chromium alloy before and after thermal cycling.

    Science.gov (United States)

    Nascimento, Alessandra Cardoso da Silva; Muzilli, Carlos Alberto; Miranda, Milton Edson; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    It has been suggested that the epoxy paint used to coat metal substrates in industrial electrostatic painting applications could also be used to mask metal clasps in removable dental prostheses (RDP). The purpose of this study was to evaluate both the influence of thermal cycling and the in vitro roughness of a surface after application of epoxy paint, as well as to assess the micromorphology of a cobalt-chromium (CoCr) based metal structure. Sixty test specimens were fabricated from a CoCr alloy. The specimens were separated into three groups (n = 20) according to surface treatment: Group 1 (Pol) - polished with abrasive stone and rubbers; Group 2 (Pol+Epo) - polished and coated with epoxy paint; Group 3 (Epo) - air-abraded with aluminum oxide particles and coated with epoxy paint. The surface roughness was evaluated before and after 1000 thermal cycles (5°C and 50°C). The surface micromorphology was verified by scanning electron microscopy (SEM). The two-way repeated measures ANOVA showed significant differences among surface treatments (p < 0.0001), but no difference was found before and after thermal cycling (p = 0.6638). The CoCr-based metal alloy surfaces treated with epoxy paint (Groups 2 and 3) were rougher than the surfaces that were only polished (Group 1). Thermal cycling did not influence surface roughness, or lead to chipping or detachment of the epoxy paint.

  15. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  16. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  17. Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells

    Science.gov (United States)

    Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam

    2016-03-01

    This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.

  18. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  19. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    Science.gov (United States)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  20. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  1. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  2. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  3. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Nielsen, Mads Pagh; Elmegaard, Brian

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly......In energy systems with high share of renewable energy sources, like wind and solar power, it is paramount to deal with their intrinsic variability. The interaction between electric and thermal energy (heating and cooling) demands represent a potential area for balancing supply and demand that could...

  4. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    Science.gov (United States)

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm-2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  5. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  6. 热循环下梯度热障涂层热氧化物生长的应力分析%Numerical Analysis of Thermal Stress for Gradient Thermal Barrier Coatings Experienced Thermal Oxidation Growth Under Thermal Cycle

    Institute of Scientific and Technical Information of China (English)

    黄孝庆; 黄护林

    2012-01-01

    A multi-layer numerical model was proposed in order to predict the thermal stress of multi-layer gradient thermal barrier coating system (TBCs). Based on the finite element method, the effects of compositional exponent and the thermal oxidation which grew in thermal cycling process on the thermal stress and the distribution of TBCs were investigated. The results show that it is feasible to mitigate thermal stress and to improve the stress distribution by controlling compositional exponent n of the coatings. When n=l, the thermal stress is low and gentle changes, and the coatings performance is excellent. Compared with non-gradient duplex coatings, functionally gradient coatings are able to alleviate the thermal stress and suppress stress concentration of TBCs significantly. In addition, under the thermal cycling process, the thermal growth oxidation locates in the interface of gradient coatings and the substrates dramatically enhance the interface thermal stress. Complex and concentrated thermal stress have a tremendous damage to the gradient coating system. So a method is proposed to prevent the growth of thermal oxide. The results demonstrate that the method could be contributed to optimize the thermal stress and improve the quality of the coatings.%建立了一种预测多层复合梯度热障涂层热应力的理论模型,并通过有限元方法分析了梯度涂层分布指数n、热循环过程中热氧化物的生长对涂层热应力大小及分布的影响.结果表明,通过控制梯度涂层的成分分布指数可以显著降低热应力和改善应力分布.当n=1时,涂层热应力较小且变化平缓,结合性能优异.与双层非梯度涂层的热应力对比可知,功能梯度涂层能显著地缓和涂层系统的热应力和消除应力集中.另外,热循环过程中梯度热障涂层与基体界面附近生长的热氧化物急剧地提升了界面附近的热应力,复杂而又集中的热应力对梯度涂层有很大的破坏.同时采

  7. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  8. Evidence of Transformation Bursts During Thermal Cycling of a Pu-Ga Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Blobaum, K M; Krenn, C R; Mitchell, J N; Haslam, J J; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    The thermodynamics and kinetics of the fcc (delta) to monoclinic (alpha-prime) phase transformation and its reversion in a plutonium-gallium alloy have been studied using differential scanning calorimetry, resistometry, and dilatometry. Under ambient conditions, the delta phase is metastable in a Pu-2.0 at% Ga alloy. Thermal cycling to below the ambient temperature results in a partial transformation to the alpha-prime phase; this transformation is composition-invariant and exhibits martensitic behavior. Because this transformation results in an unusually invariant large 25% volume contraction that cannot be fully accommodated by purely elastic adjustments, the transformation mode is expected to involve burst formation of individual alpha-prime particles. However, upon cooling, these individual bursts were not resolved by the above techniques, although signals corresponding to the overall accumulation of many alpha-prime particles were observed. On the other hand, upon heating, signals from differential scanning calorimetry, resistometry, and dilatometry showed a series of discrete changes occurring in periodic increments beginning at approximately 32 C. These features correspond to the cooperative reversion of many alpha-prime particles to the delta phase; they appear to be the result of an interplay between the autocatalytically driven reversion of a cascade of individual martensite units, and self-quenching caused by small changes of temperature and/or stress accompanying each individual transformation burst. The heat of the delta/alpha-prime transformation is estimated to be about + 4 kJ/mole.

  9. Fiber-reinforced composite analysis using optical coherence tomography after mechanical and thermal cycling

    Science.gov (United States)

    Kyotoku, B. B. C.; Braz, A. K. S.; Braz, R.; Gomes, A. S. L.

    2007-02-01

    Fiber-reinforced composites are new materials which have been used for a variety of dental applications, including tooth splinting, replacement of missing teeth, treatment of dental emergencies, reinforcement of resin provisional fixed prosthodontic restorations, orthodontic retention, and other clinical applications. Different fiber types are available, but little clinical information has been disseminated. The traditional microscopy investigation, most commonly used to study this material, is a destructive technique, which requires specimen sectioning and are essentially surface measurements. On the basis of these considerations, the aim of this research is to analyze the interior of a dental sample reinforced with fiber after a mechanical and thermal cycling to emulate oral conditions using optical coherence tomography (OCT). The device we are using is a home built Fourier domain OCT working at 800 nm with 6 μm resolution. The results are compared with microscopy images to validate OCT as a working method. In long term, fractures allow bacterial invasion provoking plaque and calculus formation that can cause caries and periodontal disease. Therefore, non invasive imaging of the bridge fiber enables the possibility of periodic clinical evaluation to ensure the patient health. Furthermore, OCT images can provide a powerful method for quantitative analysis of crack propagation, and can potentially be used for in vivo assessment.

  10. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    Science.gov (United States)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  12. Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling

    Data.gov (United States)

    National Aeronautics and Space Administration — A method has been developed for prognostication of accrued prior damage in electronics subjected to overlapping sequential environments of thermal aging and thermal...

  13. Effect of Thermal Cycling under Load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of thermal cycling under loading on martensitictransformation and two-way shape memory effect was investigated for Ti-49.8 at. pct Ni alloy. It is shown that Ms and Mf temperature increase with increasing the number of cycles, while As and Af temperature decrease during thermal cycling. The total strain εt and permanent strain εp increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.

  14. Global Carbon Cycle Perturbations and Implications for Arctic Hydrology during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Cui, Y.; Kump, L.; Diefendorf, A. F.; Freeman, K. H.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; ca. 55.9 Ma) was an interval of geologically abrupt global warming lasting ~200 ka. It has been proposed as an ancient analogue for future climate response to CO2 emission from fossil fuel burning. The onset of this event is fueled by a large release of 13C-depleted carbon into the ocean-atmosphere system. However, there is a large discrepancy in the magnitude of the carbon isotope excursion (CIE) between marine and terrestrial records. Here we present new organic geochemical data and stable carbon isotope records from n-alkanes and pristane extracted from core materials representing the most expanded PETM section yet recovered from a nearshore marine early Cenozoic succession from Spitsbergen. The low hydrogen index and oxygen index indicate that organic matter has been thermally altered, consistent with n-alkanes that do not show a clear odd-over-even predominance as reflected by the low and constant carbon preference index. The δ13C records of long chain n-alkanes from core BH9-05 track the δ13C recorded in total organic carbon, but are ~3% more negative prior to the CIE, ~4.5% more negative during the CIE, and ~4% more negative after the CIE. An orbital age model derived from the same core suggests the CIE from n-alkanes appears more abruptly onset than the bulk organic carbon, indicating possibly climate-induced modification to the observed feature in n-alkanes. In addition, the carbon isotope values of individual long-chain (n-C27 to n-C31) n-alkanes tend to become less negative with increasing chain length resulting in the smallest magnitude CIEs in longer chain lengths (i.e. n-C31) and the largest magnitude CIEs in shorter chain lengths (i.e. n-C27). We are currently considering the effect of plant community and paleoclimate on the observed pattern of CIE in n-alkanes to evaluate carbon cycle perturbations and Arctic hydrology changes during the PETM. One interpretation of these patterns is that there was an

  15. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    Energy Technology Data Exchange (ETDEWEB)

    Akulinkin, Alexandr, E-mail: aaa@ispms.tsc.ru; Shugurov, Artur, E-mail: shugurov@ispms.tsc.ru; Sergeev, Viktor, E-mail: retc@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Panin, Alexey, E-mail: pav@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Cheng, C.-H. [National Cheng Kung University, Tainan, Taiwan (China)

    2015-10-27

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  16. Direct Chromatin PCR (DC-PCR): Hypotonic Conditions Allow Differentiation of Chromatin States during Thermal Cycling

    Science.gov (United States)

    Vatolin, Sergei; Khan, Shahper N.; Reu, Frederic J.

    2012-01-01

    Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90°C, 41 of 61 tested 5′ sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR. PMID:22984542

  17. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  18. Direct chromatin PCR (DC-PCR: hypotonic conditions allow differentiation of chromatin states during thermal cycling.

    Directory of Open Access Journals (Sweden)

    Sergei Vatolin

    Full Text Available Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90 °C, 41 of 61 tested 5' sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34 were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.

  19. Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qi [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China); Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Chen Ping, E-mail: chenping_898@126.com [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China) and Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Gao Yu; Mu Jujie; Chen Yongwu; Lu Chun [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Liu Dong [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China)

    2011-11-01

    Highlights: {yields} The level of cross-links was improved to a certain extent. {yields} The thermal stability was firstly improved and then decreased. {yields} The transverse and longitudinal CTE were both determined by the degree of interfacial debonding. {yields} The mass loss ratio increases firstly and then reaches a plateau value. {yields} The surface morphology was altered and the surface roughness increased firstly and then decreased. {yields} The transverse tensile strength was reduced. {yields} The flexural strength increased firstly and then decreased to a plateau value. {yields} The ILSS increased firstly and then decreased to a plateau value. - Abstract: The aim of this article was to investigate the effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in dynamic mechanical properties and thermal stability were characterized by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The changes in linear coefficient of thermal expansion (CTE) were measured in directions perpendicular and parallel to the fiber direction, respectively. The outgassing behavior of the composites were examined. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). Changes in mechanical properties including transverse tensile strength, flexural strength and interlaminar shear strength (ILSS) were measured. The results indicated that the vacuum thermal cycling could improve the crosslinking degree and the thermal stability of resin matrix to a certain extent, and induce matrix outgassing and thermal stress, thereby leading to the mass loss and the interfacial debonding of the composite. The degradation in transverse tensile strength was caused by joint effects of the matrix outgassing and the interfacial debonding, while the changes in flexural strength and ILSS were affected by a competing

  20. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  1. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  2. Ultraviolet irradiation at elevated temperatures and thermal cycling in vacuum of FEP-A covered silicon solar cells

    Science.gov (United States)

    Broder, J. D.; Marsik, S. J.

    1978-01-01

    Silicon solar cells covered with FEP-A were irradiated in vacuum with ultraviolet light and then subjected to thermal cycling. These accelerated laboratory conditions are believed to be equivalent to those experienced by FEP-A covered cells on the ATS-6 spacecraft and the results indicate a probable mechanism for the faster degradation of the FEP-A covered cells. Heat-bonded FEP-A covers apparently embrittle when exposed to four months of space UV radiation at elevated temperatures, and crack when subjected to thermal cycling during the eclipse period. Low energy proton radiation can then penetrate to the junction of the cell causing degradation of the open circuit voltage and maximum power to occur. An alternate method of application of FEP-A, such as with adhesives, may prevent such cracking.

  3. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use...... without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 C...... direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures...

  4. Thermal cycling effect in Cu-11.9Al-2.5Mn shape memory alloy with high Ms temperature

    Institute of Scientific and Technical Information of China (English)

    曹玲飞; 汪明朴; 李周; 徐贲; 苏玉长

    2002-01-01

    The effects of thermal cycling on martensite transformation in Cu-11. 9Al-2.5Mn(mass fraction, % ) shape memory alloy(SMA) with high Ms temperature were studied by means of electrical tension vs temperature (U-T) measurement, optical microscopy observation and X-ray diffractometry. It shows that with increasing thermal cycles, the transformation temperatures decreased, which are accompanied by changes of martensite structure such as the decline of NNN ordering degree and monoclinic angle β→90°. Compared with traditional Cu-base SMA, the alloy has rather high thermostability and can work at 200 ~ 300 ℃. Its excellent thermostability comes from two factors: 1) its β1 parent structure is stable and difficult to decompose at work temperature; 2) its martensite structure is close to N18R(β = 89.6'), which restrains the process of M18R→N18R and the tendency of martensite stabilization and decomposition.

  5. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real...

  6. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...... power. This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years. Based on the aforementioned model and real...

  7. A thermal model for analysis of hermetic reciprocating compressors under the on-off cycling operating condition

    Science.gov (United States)

    Lohn, S. K.; Diniz, M. C.; Deschamps, C. J.

    2015-08-01

    The on-off cycling operating condition of compressors is very common in low capacity refrigeration systems, being characterized by alternate periods in which the compressor is either operating (on) or idle (off). Thermal interactions between the compressor components affect its performance during the operating period and establish the initial condition for the compressor start up from idle condition. This paper presents a numerical model to predict the temperature field of hermetic reciprocating compressors under on-off cycling conditions. The model adopts a lumped formulation for control volumes formed in the fluid solution domain and the finite volume method to solve heat conduction in the solid components. Some required heat transfer coefficients were experimentally adjusted. Predictions for temperature were compared to measurements and good agreement was observed, especially for the thermal transient during the period in which the compressor is off.

  8. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  9. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M. [Minnesota Geological Survey, St. Paul, MN (United States)

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  10. Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries

    Science.gov (United States)

    Wang, Ruijuan; Yang, Zhanhong; Yang, Bin; Wang, Tingting; Chu, Zhihao

    2014-04-01

    Zn-Al-In layered double hydroxides (LDHs) are synthesized by hydrothermal method and investigated as negative electrode materials for Ni-Zn batteries. The Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show the as-prepared samples are well-crystallized and hexagon structure. The electrochemical performances of Zn-Al-LDHs and Zn-Al-In-LDHs with different Zn/Al/In molar ration are investigated by the cyclic voltammograms (CV), Tafel polarization and galvanostatic charge-discharge measurements. Zn-Al-LDHs shows good stability in the first 300-cycles. However, during the subsequent cycles, the discharge capacity decreases with increasing of the cycles. Compared with Zn-Al-LDHs, Zn-Al-In-LDHs with different Zn/Al/In molar rations, especially the sample of Zn/Al/In = 3:0.75:0.25 (molar ration) have higher discharge capacity and more stable cycling performances. This battery can undergo at least 800 charge-discharge cycles at constant current of 1C without dendrite and short circuits. The discharge capacity of Zn-Al-In-LDHs after the 800th cycle remains about 380 mAh g-1. Zn-Al-In-LDHs possess a high rate capability to meet the needs of high-storage applications.

  11. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    Science.gov (United States)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  12. Structure and thermal cycling stability of a hafnium monocarbide reinforced directionally solidified cobalt-base eutectic alloy

    Science.gov (United States)

    Kim, Y. G.

    1975-01-01

    A nominal composition of Co-15Cr-20Ni-10.5Hf-0.7C was directionally solidified at 0.8 cm/hr growth rate to produce aligned HfC in a cobalt matrix alloy. The aligned HfC fibers were present as rod and plate types. The diameter of the aligned fibers was about 1 micron, with volume fraction in the range of 11 to 15 per cent. The growth direction of the fibers was parallel to the 100 direction. The alloy was subjected to thermal cycling between 425 and 1100 C, using a 2.5 minute cycle. No microstructural degradation of the HfC fibers in the alloy was observed after 2500 cycles.

  13. Fatigue behaviors of Z2CND18.12N stainless steel under thermal-mechanical cycling

    Institute of Scientific and Technical Information of China (English)

    Liubing WANG; Dunji YU; Fei XUE; Weiwei YU; Jian CHEN; Xu CHEN

    2011-01-01

    Tests under mechanical strain control were performed to investigate the TMF behavior of Z2CND18.12N within the temperature range between 150-550 ℃. Differentstrain amplitudes and phase-angles were applied. Total strain controlled low cycle fatigue test was also performed at the peak temperature of TMF cycling. The results show that the cyclic stress response of the material displayed an initial hardening regime followed by a saturation period and then cyclic softening till failure. The TMF cycling leads to the development of significant amounts of mean stress. Some life prediction models were employed to predict the TMF life of Z2CND18.12N, and the results indicate that the energy-based models provide good prediction on the thermal-mechanical fatigue behaviors of this material. An optical microscopic observation shows that the surface crack initiations and crack propagations are typicallytransgranular mode.

  14. Effects of Composition and Thermal Cycle on Transformation Behaviors, Thermal Stability and Mechanical Properties of CuAlAg Alloy

    Institute of Scientific and Technical Information of China (English)

    Yunqing MA; Chengbao JIANG; Lifen DENG; Huibin XU

    2003-01-01

    The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied andminor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was foundthat Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al contentleads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6Al-5.8Ag (wtpct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strainincreased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heatingprocess. Its poor thermal stability still needs to be improved.

  15. Quick Maintenance for High Voltage Equipment with the New Not Toxic Boron Nitride Powder (BN100) Superior Thermal Conductive and Lightweight Filler

    Science.gov (United States)

    2005-07-13

    used for the either mechanical and thermal test campaign is the EQM of a battery discharge regulator (BDR) module used in a Main Bus Regulator Unit...shown in its time sequence: Figure 2-6 Acc.#1 Acc.#2 3 - THERMAL TEST ON THE BDR BREADBOARD The test campaign is aimed at demonstrating...on the thermal test campaign The results resumed in Table 3-1 show a wide difference in terms of thermal dissipation in favour of the case with

  16. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit;

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...

  17. Polyimide-coated carbon electrodes combined with redox mediators for superior Li-O2 cells with excellent cycling performance and decreased overpotential

    Science.gov (United States)

    Yoon, Seon Hye; Park, Yong Joon

    2017-02-01

    We report an air electrode employing polyimide-coated carbon nanotubes (CNTs) combined with a redox mediator for Li-O2 cells with enhanced electrochemical performance. The polyimide coating on the carbon surface suppresses unwanted side reactions, which decreases the amount of accumulated reaction products on the surface of the air electrode during cycling. The redox mediators lower the overpotential of the Li-O2 cells because they can easily transfer electrons from the electrode to the reaction products. The low overpotential can also decrease the side reactions that activate at a high potential range. Specifically, the CsI redox mediator effectively interrupted dendrite growth on the Li anode during cycling due to the shielding effect of its Cs+ ions and acted as a redox mediator due to its I‑ ions. LiNO3 also facilitates the decrease in side reactions and the stabilization of the Li anode. The synergic effect of the polyimide coating and the electrolyte containing the LiNO3/CsI redox mediator leads to a low overpotential and excellent cycling performance (over 250 cycles with a capacity of 1,500 mAh·gelectrode‑1).

  18. Polyimide-coated carbon electrodes combined with redox mediators for superior Li-O2 cells with excellent cycling performance and decreased overpotential

    Science.gov (United States)

    Yoon, Seon Hye; Park, Yong Joon

    2017-01-01

    We report an air electrode employing polyimide-coated carbon nanotubes (CNTs) combined with a redox mediator for Li-O2 cells with enhanced electrochemical performance. The polyimide coating on the carbon surface suppresses unwanted side reactions, which decreases the amount of accumulated reaction products on the surface of the air electrode during cycling. The redox mediators lower the overpotential of the Li-O2 cells because they can easily transfer electrons from the electrode to the reaction products. The low overpotential can also decrease the side reactions that activate at a high potential range. Specifically, the CsI redox mediator effectively interrupted dendrite growth on the Li anode during cycling due to the shielding effect of its Cs+ ions and acted as a redox mediator due to its I− ions. LiNO3 also facilitates the decrease in side reactions and the stabilization of the Li anode. The synergic effect of the polyimide coating and the electrolyte containing the LiNO3/CsI redox mediator leads to a low overpotential and excellent cycling performance (over 250 cycles with a capacity of 1,500 mAh·gelectrode−1). PMID:28198419

  19. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    Science.gov (United States)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  20. Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation.

    Science.gov (United States)

    Choi, Min Joo; Guntur, Sitaramanjaneya Reddy; Lee, Joo Myoung; Paeng, Dong Guk; Lee, Kang I L; Coleman, Andrew

    2011-12-01

    The present work considers the ultrasonic properties of porcine liver tissue in vitro measured during heating concomitant with thermal coagulation followed by natural cooling, so as to provide information about changes in the ultrasonic properties of the tissue after thermal coagulation. The excised liver samples were heated in a degassed water bath up to 75°C and naturally cooled down to 30°C. The tissue was observed to begin thermally coagulating at temperatures lower than 75°C. The ultrasonic parameters considered include the speed of sound, the attenuation coefficient, the backscatter coefficient and the nonlinear parameter of B/A. They were more sensitive to temperature when heating than during natural cooling. All of the parameters were shown to rise significantly on completion of the heating-cooling cycle. At 35°C after thermal coagulation, the B/A value was increased by 96%, the attenuation and backscatter coefficients were increased by 50%∼68% and 33%∼37%, respectively, in the typical frequency ranges of 3 MHz∼5 MHz used for ultrasonic imaging and the speed of sound was increased by 1.4%. The results of this study added to the evidence that tissue characterization, in particular, based on the B/A could be valuable for ultrasonically imaging the thermal lesions following high-intensity focused ultrasound (HIFU) surgery. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  1. Limits and Optimization of Power Input or Output of Actual Thermal Cycles

    Directory of Open Access Journals (Sweden)

    Emin Açıkkalp

    2013-08-01

    Full Text Available In classical thermodynamic, maximum power obtained from system (or minimum power supplied to system defined as availability (exergy, but availability term is only used for reversible systems. In reality, there is no reversible system, all systems are irreversible, because reversible cycles doesn’t include constrains like time or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits of the all basic thermodynamic cycles and to provide finite-time exergy models for irreversible cycles and to obtain the maximum (or minimum available power for irreversible (finite-time exergy cycles. In this study, available power optimization and performance limits were defined all basic irreversible thermodynamic cycles, by using first and second law of thermodynamic. Finally, these results were evaluated in terms of cycles’ first and second law efficiency, COP, power output (or input and exergy destruction.

  2. Heat recovery from a thermal energy storage based on the Ca(OH){sub 2}/CaO cycle

    Energy Technology Data Exchange (ETDEWEB)

    Azpiazu, M.N. [E.T.S. Ingenieros, Bilbao (Spain). Dpto. de Ingenieria Quimica y del Medio Ambiente; Morquillas, J.M. [E.T.S. Ingenieros, Bilbao (Spain). Dpto. de Maquinas y Motores Termicos; Vazquez, A. [E.S. da Marina Civil, La Coruna (Spain). Dpto. de Energia y Propulsion Maritima

    2003-04-01

    Thermal energy storage is very important in many applications related to the use of waste heat from industrial processes, renewable energies or from other sources. Thermochemical storage is very interesting for long-term storage as it can be carried out at room temperature with no energy losses. Dehydration/hydration cycle of Ca(OH){sub 2}/CaO has been applied for thermal energy storage in two types of reactors. One of them was a prototype designed by the authors, and in the other type conventional laboratory glassware was used. Parameters such as specific heats, reaction rate and enthalpy, mass losses and heat release were monitored during cycles. Although in the hydration step water is normally added in vapour phase, liquid water, at 0{sup o}C has been used in these experiences. Results indicated that the energy storage system performance showed no significant differences, when we compared several hydration/dehydration cycles. The selected chemical reaction did not exhibit a complete reversibility because complete Ca(OH){sub 2} dehydration, was not achieved. However the system could be used satisfactorily along 20 cycles at least. Heat recovery experiments showed general system behaviour during the hydration step in both types of reactors. The designed prototype was more efficient in this step. Main conclusions suggested carrying out one complete cycle at a higher dehydration temperature to recover total system reversibility. A modification of the prototype design trying to enhance heat transfer from the Ca(OH){sub 2} bed could also be proposed. (author)

  3. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  4. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...

  5. Damage evolution in an electron beam physical vapor deposited thermal barrier coating as a function of cycle temperature and time

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Swetha [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Xie, Liangde [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269 (United States)]. E-mail: jordan@engr.uconn.edu; Gell, Maurice [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Murphy, K.S. [Howmet Research Corporation, Howmet Castings, Whitehall, MI 49461 (United States)

    2005-02-25

    Failure of thermal barrier coatings (TBCs) deposited on a single-crystal superalloy with a grit-blasted platinum modified nickel aluminide [{beta}-(Ni, Pt) Al] bond coat has been studied as a function of thermal cycling temperature and time. One-hour cyclic furnace tests were conducted at 1100 deg. C, 1121 deg. C and 1151 deg. C, and 24-h tests were run at 1121 deg. C. It was found that all the samples tested in the 1-h cycle failed in the TBC, near the TBC/TGO interface, due to progressive cracking beginning at {approx}20% life fraction. In contrast, the 24-h cyclic test samples failed at the TGO/bond coat interface. Thus, a life prediction for this TBC will ultimately require the use of two independent damage mechanisms and failure will be predicted on the basis of whichever occurs first during the TBC cyclic life. A single-valued relation was found between the rumpling amplitudes and the oxide thickness, independent of temperature and cycle time, consistent with oxidation being rate controlling.

  6. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David

    2011-09-28

    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  7. Time- and Site-Dependent Life Cycle Assessment of Thermal Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hellweg, Stefanie; Hofstetter, Thomas B.; Hungerbuehler, Konrad [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland). Chemical Engineering Dept.

    2002-12-01

    The high living standard of many industrial countries has directly lead to an increase in the amount of municipal solid waste generated. Parallel to this increase in waste, there has been a raising demand for environmentally benign waste treatment processes. In Switzerland, the predominant way of treatment is incineration. Since the environmental impact of waste incineration depends on the technology used, a comprehensive assessment of the different thermal processes is necessary. In order to determine the environmental impact, we propose a model that quantifies the emissions and resource use resulting from the incineration of waste using different technologies, the landfills for the incineration residues, the transport of waste, related infrastructure, as well as the production of ancillary products. Using the Life-Cycle Assessment (LCA) methodology, we performed a case study that compared the conventional grate technology to new high temperature processes recovering metals and vitrifying the incineration residues. The results show that if the plant is equipped with a modern gas purification system the incineration process itself is not a key environmental problem of the system considered. Using the energy gained from waste incineration as the functional unit, the environmental impacts of incineration plants are comparable to that of a conventional power plant. If long-term time horizons are considered, the critical aspect is the release of heavy metals from the landfilled incineration residues. Due to the better quality of the solid outputs new technologies have a lower potential for environmental impact than the conventional grate technology. This, however, depends on the time horizon considered. With a temporal system boundary of 100 years, the grate technology appears better, because new technologies generally use more energy and short-term emissions are of minor importance no matter what technology is used. The evaluation of waste incineration technologies

  8. Observations on thermal-mechanical performance of the first cycle of irradiation in IFA-681.1

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, Pekka; Andres, Jose R.

    2005-07-01

    Aiming to respond to the demand for more profound knowledge on Gd fuel performance, the OECD Halden Reactor Project has been conducting a series of Gd experiments for over ten years, beginning from the special Gd fuel experiment IFA-515.10 from 1994 to 2000 aimed to study the thermal conductivity of non-absorbing low diameter Gd fuel pellets up to an average burnup of 76 MWd/kgUO{sub 2}. From 1998 to 2004 it was followed by a comparative integral Gd/UO{sub 2} fuel performance experiment IFA-636.1 loaded with production line pellets fabricated by ENUSA, generating data on key thermal-mechanical performance characteristics, such as fuel densification and swelling as well as fission gas release, up to a maximum burnup of approx25 MWd/kgUO{sub 2} in Gd fuel. Some of the rods will be subjected to post irradiation examinations (PIE) at the Kjeller hot cell laboratory, and there are options being discussed to load selected rods into other experiment rigs for further irradiation studies. A new improved experiment on production line Gd pellets IFA-681.1, focused on integral thermal-mechanical performance of Gd bearing fuel pellets, began operation in early 2005 to address open questions and to verify the results obtained from the previous Gd fuel integral performance experiment IFA-636.1. As of writing this paper, the experiment has operated through the first cycle of irradiation in HBWR and the second cycle operation is under way. The present paper includes the fuel performance analysis on the first cycle in order to complement the detailed analysis on in-pile data, presented in the Halden Work Report HWR-815. The comparison of thermal performance suggests that the fuel relocation occurs during the first cycle for UO{sub 2} and 2% Gd{sub 2}O{sub 3} pellets, whereas the 8% Gd{sub 2}O{sub 3} fuel data shows only partially developed fuel relocation at the end of the cycle. This conclusion is as expected, because the relocation is a thermally driven mechanism that occurs

  9. Characterization of the Ni–Mo–Cr superalloy subjected to simulated heat-affected zone thermal cycle treatment

    Energy Technology Data Exchange (ETDEWEB)

    He, Yanming, E-mail: heyanming@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Yang, Jianguo, E-mail: yangjg@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Qin, Chunjie [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Chen, Shuangjian [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014 (China)

    2015-09-15

    Highlights: • The constitution of Ni–17Mo–7Cr alloy was convincingly ascertained by TEM analysis. • The Ni–17Mo–7Cr alloy was thermally cycled with a peak temperature up to 1350 °C. • The lamellar-like phases in the alloy were firstly determined by TEM and HRTEM. • The formation mechanism for the lamellar-like phases was unveiled rigorously. • Effect of lamellar-like phases on the alloy’s performances was evaluated in depth. - Abstract: A representative Ni–Mo–Cr superalloy with basic composition of Ni–17Mo–7Cr (wt.%) was fabricated in the work and the relationship between the microstructure and mechanical properties while it went through simulated heat-affected zone (HAZ) thermal cycle treatment was investigated. The results reveal that the Ni–Mo–Cr alloy mainly consisted of Ni matrix and MoC carbides. The critical peak temperature that a lamellar-like structure occurred in the alloy was found to be 1300 °C. These products were firstly characterized by transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) analysis, and they were essentially Ni matrix and carbides (MoC and chromium carbides) generated through local melting. The equivalent mechanical properties of the alloy relative to that of un-treated alloy were received owing to its unique architecture even the peak temperature during thermal cycle was up to 1350 °C. The results obtained suggests these lamellar-like products dispersed near the fusion line in a Ni–Mo–Cr welded joint will not influence the joint’s mechanical strength and stability while the peak temperature in the HAZ was adjusted below 1350 °C, providing valuable guideline in designing and applying the Ni–Mo–Cr system superalloys.

  10. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat.

    Science.gov (United States)

    Barwood, M J; Corbett, J; Thomas, K; Twentyman, P

    2015-06-01

    L-menthol stimulates cutaneous thermoreceptors and induces cool sensations improving thermal comfort, but has been linked to heat storage responses; this could increase risk of heat illness during self-paced exercise in the heat. Therefore, L-menthol application could lead to a discrepancy between behavioral and autonomic thermoregulatory drivers. Eight male participants volunteered. They were familiarized and then completed two trials in hot conditions (33.5 °C, 33% relative humidity) where their t-shirt was sprayed with CONTROL-SPRAY or MENTHOL-SPRAY after 10 km (i.e., when they were hot and uncomfortable) of a 16.1-km cycling time trial (TT). Thermal perception [thermal sensation (TS) and comfort (TC)], thermal responses [rectal temperature (Trec ), skin temperature (Tskin )], perceived exertion (RPE), heart rate, pacing (power output), and TT completion time were measured. MENTHOL-SPRAY made participants feel cooler and more comfortable and resulted in lower RPE (i.e., less exertion) yet performance was unchanged [TT completion: CONTROL-SPRAY 32.4 (2.9) and MENTHOL-SPRAY 32.7 (3.0) min]. Trec rate of increase was 1.40 (0.60) and 1.45 (0.40) °C/h after CONTROL-SPRAY and MENTHOL-SPRAY application, which were not different. Spraying L-menthol toward the end of self-paced exercise in the heat improved perception, but did not alter performance and did not increase heat illness risk.

  11. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  12. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 degrees C

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2001-01-01

    Screening experiments were carried out to determine the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile...... results are described and their salient features discussed. The most significant effect of neutron irradiation is a severe loss of ductility in the case of CuNiBe alloys. (C) 2001 Elsevier Science B.V. All rights reserved....

  13. Effect of Thermal Cycling Treatment on Microstructure and Mechanical Properties of AlNp/2024Al Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The AlNp/2024 composite with a high volume fraction (50%) was fabricated by squeeze casting. Its mechanical properties were investigated by tensile tests at ambient temperature and the microstructure was observed by a transmission electron microscope (TEM). It was indicated that after six thermal cooling cycles treatment the AIN/2024Al composite exhibited higher elastic limit (σ0.01), tensile strength (UTS) and elastic modulus (E). TEM observation showed that there was higher dislocation density both in the matrix and the particle. δ′ phase is the mainly precipitate.

  14. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  15. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh [Primary Contact; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255°C; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly

  16. Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling

    Science.gov (United States)

    Zhou, Quan; Zhou, Bite; Lee, Tae-Kyu; Bieler, Thomas

    2016-06-01

    Four high-strain design wafer level chip scale packages were given accelerated thermal cycling with a 10°C/min ramp rate and 10 min hold times between 0°C and 100°C to examine the effects of continuous and interrupted thermal cycling on the number of cycles to failure. The interruptions given two of the samples were the result of periodic examinations using electron backscattered pattern mapping, leading to room temperature aging of 30 days-2.5 years after increments of about 100 cycles at several stages of the cycling history. The continuous thermal cycling resulted in solder joints with a much larger degree of recrystallization, whereas the interrupted thermal cycling tests led to much less recrystallization, which was more localized near the package side, and the crack was more localized near the interface and had less branching. The failure mode for both conditions was still the same, with cracks nucleating along the high angle grain boundaries formed during recrystallization. In conditions where there were few recrystallized grains, recovery led to formation of subgrains that strengthened the solder, and the higher strength led to a larger driving force for crack growth through the solder, leading to failure after less than half of the cycles in the continuous accelerated thermal cycling condition. This work shows that there is a critical point where sufficient strain energy accumulation will trigger recrystallization, but this point depends on the rate of strain accumulation in each cycle and various recovery processes, which further depends on local crystal orientations, stress state evolution, and specific activated slip and twinning systems.

  17. Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite

    NARCIS (Netherlands)

    Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Cuypers, R.

    2015-01-01

    At this moment, the global energy consumption in buildings is around 40% of the total energy consumption in developed countries. Thermal energy storage (TES) is presented as one way to address this energy-related problem proposing an alternative to reduce the gap between energy supply and energy

  18. Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite

    NARCIS (Netherlands)

    Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Cuypers, R.

    2015-01-01

    At this moment, the global energy consumption in buildings is around 40% of the total energy consumption in developed countries. Thermal energy storage (TES) is presented as one way to address this energy-related problem proposing an alternative to reduce the gap between energy supply and energy dem

  19. The effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 100 C

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.; Toft, P.; Eldrup, M. [Risoe National Lab., Roskilde (Denmark)

    1998-03-01

    This report describes the final irradiation experiment in a series of screening experiments aimed at investigating the effects of bonding and bakeout thermal cycles on irradiated copper alloys. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment. The post-irradiation tests at 100 C revealed the greatest loss of ductility occurred in the CuCrZr alloys, irrespective of the pre-irradiation heat treatment, with the uniform elongation dropping to levels of less than 1.5%. The yield and ultimate strengths for all of the individual heat treated samples increased substantially after irradiation. The same trend was observed for the CuNiBe alloys, which overall exhibited a factor of 3 higher uniform elongation after irradiation with almost double the strength. In both alloys irradiation-induced precipitation lead to a large increase in the strength of the solution annealed specimens with a noticeable decrease in uniform elongation. The Al25 alloy also experienced an increase in the overall strength of the alloy after irradiation, accompanied by approximately a 50% decrease in the uniform and total elongation. The additional bakeout treatments given to the CuCrZr and CuNiBe before irradiation served to increase the strength, but in terms of the ductility no improvement or degradation resulted from the additional thermal exposure. The results of this experiment confirm that the al25 possesses the most resistant microstructure to thermal and irradiation-induced changes, while the competing effects of ballistic dissolution and reprecipitation lead to important changes in the two precipitation strengthened alloys. This study and others have repeatedly shown that these materials can only be used if the very low uniform elongation (1% or less) can be accounted for in the design since pre-irradiation thermal processing cannot mitigate the irradiation embrittlement.

  20. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments

    Science.gov (United States)

    Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong

    2017-09-01

    Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (T g) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.

  1. Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite

    Science.gov (United States)

    Hidalgo, Javier; Santofimia, Maria Jesus

    2016-11-01

    Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by thermal cycling on different microstructural features of as-quenched lath martensite in a 0.3C-1.6Si-3.5Mn (wt pct) steel. The application of thermal cycling is found to lead to a refinement of the martensitic microstructures and to an increase of the density of high misorientation angle boundaries after quenching; these are commonly discussed to be key structural parameters affecting strength. Moreover, results show that as the PAGS is reduced, the volume fraction of retained austenite increases, carbides are refined and the concentration of carbon in solid solution as well as the dislocation density in martensite increase. All these microstructural modifications are related with the manner in which martensite forms from different prior austenite conditions, influenced by the PAGS.

  2. Influence of thermal cycle on trapped flux in high Tc material; Koon chodendo torappu jisoku eno ondo saikuru no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, K. [Keio Univ., Tokyo (Japan); Kang, Y.M.; Fujimoto, S. [Daikin Industries Ltd., Osaka (Japan); Sawa, K.; Iwasa, Y.

    2000-05-29

    Among utilization forms of high-temperature superconductor bulks, that is paid attention is the application as a magnetic field source having a mechanism similar to a permanent magnet while generating a much greater magnetic field by trapping the magnetic field due to a pinning effect. However, when taking into consideration a degree of freedom of carrying or the like, a method called regular cooling has great restriction, thus a new cooling mechanism is desired. Therefore, an apparatus that temporally uses a refrigerating machine for cooling and uses a cold insulating device to keep the temperature below a critical temperature, thus maintaining a super-conductive state is proposed. However, despite the cold insulation, temperature rising is unavoidable, so that the superconductor is re-cooled by the refrigerating machine before it reaches the critical temperature. It has not been clarified yet how the flux trapped to a disk varies due to a thermal cycle caused by the temperature rising and repeated cooling. In this research, the variation of the trapped flux of a superconductor YBCO Disk (molten body) under a thermal cycle of 20K-40K is investigated. (NEDO)

  3. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  4. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short un...

  5. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se batteries with superior storage capacity and perfect cycling stability

    Science.gov (United States)

    Li, Zhaoqiang; Yin, Longwei

    2015-05-01

    Nitrogen-doped carbon sponges (NCS) composed of hierarchical microporous carbon layers are derived from metal organic frameworks (MOFs) via carbonization at high temperatures under Ar and NH3 flow. Se is impregnated into 0.4-0.55 nm micropores by melting-diffusion and infiltration methods. The confinement of Se within small-sized micropores of NCS efficiently prevents Se loss, and mesopores between carbon layers absorb a sufficient amount of electrolyte, as well as serve as cushion spaces for large volume changes during delithiation-lithiation processes. Nitrogen doping improves the electrical conductivity of carbon matrix and facilitates rapid charge transfer, making the carbon sponge a highway for charges involved in redox reactions. When serving as cathode materials for Li-Se batteries, the NCS/Se-50 composite with 50 wt% Se exhibits excellent cycling stability, superior rate capability and high coulombic efficiency. The cathode can exhibit 443.2 mA h g-1 at the 200th cycle with a coulombic efficiency of up to 99.9% at 0.5C (C = 675 mA h g-1), which leads to 0.031% capacity loss per cycle from 5th to 200th cycles. Even at a high rate of 5C, it can still retain 286.6 mA h g-1. The unique, large surface rod-like MOF-derived, N-doped carbon sponges with hierarchical porosity could be potential candidates in the related energy-storage systems.Nitrogen-doped carbon sponges (NCS) composed of hierarchical microporous carbon layers are derived from metal organic frameworks (MOFs) via carbonization at high temperatures under Ar and NH3 flow. Se is impregnated into 0.4-0.55 nm micropores by melting-diffusion and infiltration methods. The confinement of Se within small-sized micropores of NCS efficiently prevents Se loss, and mesopores between carbon layers absorb a sufficient amount of electrolyte, as well as serve as cushion spaces for large volume changes during delithiation-lithiation processes. Nitrogen doping improves the electrical conductivity of carbon matrix and

  6. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    Science.gov (United States)

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David

    2012-02-01

    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55°C/+125°C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  7. Strength Evolution in the Sintering of Bronze Powder Metal Compacts and Application to Thermal Cycle Design

    Science.gov (United States)

    2007-11-02

    similar combination of high illumination ( xenon lamp ) and optical (blue) filters. However, they added a computer work station based video image...temperature and heating rate. At a sintering temperature of approximately 350°C the green strength of 10 MPa decreased 50% due to the annealing of the... Annealing 25 2.5.3 Sinter Strengthening 26 2.5.4 Thermal Softening 29 2.6 Statement of Hypothesis 29 Chapter 3. Experimental Procedures

  8. Work Production and Variation in Shape Memory Effects during Thermal Cycling of Equiatomic TiNi Alloy

    Science.gov (United States)

    Belyaev, S.; Resnina, Natalia; Zhuravlev, R.

    2014-07-01

    The influence of thermal cycling under a symmetric scheme for work performance on the functional properties and work output of equiatomic TiNi shape memory alloys was studied. It was found that the Ti50Ni50 alloy produced an effective work output of 9.7 MJ/m3 and an efficiency of 1.47% in a symmetrical scheme for work production where the stress acting on cooling was 50 MPa, and the stress acting on heating was 200 MPa. It was observed that the Ti50Ni50 alloy demonstrated the monotonic dependence of plastic strain on the number cycle, and 3.1% of the residual strain was accumulated over 30 cycles. The data have shown that using a `symmetric' scheme for work production allows one to reduce a plastic strain 13-fold in comparison with an `asymmetric' scheme. Thus, the symmetric scheme for work production provides for the high stability of the functional properties and work output of TiNi-based shape memory alloys.

  9. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Schweda, Mario; Beck, Tilmann; Singheiser, Lorenz [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Werkstoffstruktur und Eigenschaften (IEK-2)

    2012-01-15

    The influence of roughness profile shape, roughness depth, bond coat creep strength and pre-oxidation on the thermal cycling damage evolution and lifetime of a plasma-sprayed ZrO{sub 2} thermal barrier coating system was investigated. A simplified model system was used where FeCrAlY substrates simulated the bond coat. Substrate creep was varied by using the oxide dispersoid strengthened alloy MA956 and the conventional material Fecralloy. Stochastic 3- and periodic 2-dimensional roughness profiles were produced by sand blasting and high speed turning. Damage evolution is significantly influenced by substrate creep with a trend to higher lifetimes for the fast creeping substrate. Pre-oxidation has no influence. Lifetimes of the periodically profiled samples are up to 100 times lower than these of stochastically profiled samples. In the case of periodically profiled samples, the highest lifetime was reached for the highest roughness depth combined with local undercuttings in the roughness profile. For stochastically profiled samples the influence of roughness depth could not be determined due to the wide lifetime scatter. (orig.)

  10. Design and construction of models of solar thermal facilities in the ''Centro integrado de FP superior de energias renovables de Imarcoain''(Navarra); Maquetas de instalaciones solares termicas para la formacion profesional de grado superior en el centro integrado de formacion profesional superior de energias renovables

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M. A.; Orus, L. M.; Yerro, C.; Aguado, H.; Cambra, T.; Oroz, J.

    2004-07-01

    This article shows how we have approached the solar energy installations in the ''Centro integrado de FP superior de energias renovables de Imarcoain''(Navarra) with the design and construction of models which allow us to teach in this type of installations at different levels. (Author)

  11. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    Science.gov (United States)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  12. Mathematical modelling of the thermal performance of a phase-change material (PCM) store: cooling cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuerklue, A. [Akdeniz University, Faculty of Agriculture, Antalya (Turkey); Wheldon, A.; Hadley, P. [Reading Univ. (United Kingdom). Dept. of Engineering]|[Reading Univ. (United Kingdom). School of Plant Sciences

    1996-07-01

    A mathematical model for the prediction of the thermal performances of a PCM store containing 1 m long and 38 mm diameter polypropylene tube has been developed in this study. Air was utilised in the store as the heat transfer fluid. The model was based on an energy balance or the `conservation of energy principle`. The results indicate that the agreement between the predicted and observed temperature of heat transfer data is generally good. The amount of energy used in increasing the temperature of the PCM at any time during the phase- change process is predicted to be about 3.5% of the total energy stored. (Author)

  13. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  14. Energy balance of the closed oxygen cycle and processes causing thermal runaway in valve-regulated lead/acid batteries

    Science.gov (United States)

    Pavlov, D.

    A model for the reactions involved in the closed oxygen cycle in valve-regulated lead/acid batteries and the associated energy transformations is proposed. When electric current flows through the closed oxygen cycle, a certain amount of electric energy is converted via electrochemical processes into chemical energy, i.e. the products obtained may interact spontaneously as a result of which the system returns to its initial state. During these spontaneous reactions, the chemical energy is converted into heat. Depending on the type of the reactions involved in oxygen reduction on the negative plate, the closed oxygen cycle may proceed in two different electrochemical systems: (i) oxygen is reduced through electrochemical reactions yielding the electrochemical system PbO 2//H 2OO/O 2///O 2//H 2OO/Pb, and (ii) oxygen is reduced through chemical reactions forming the electrochemical system PbO 2//H 2OO/O 2///PbSO 4//Pb. The energy introduced into the system for activation of the closed oxygen cycle is different for the two electrochemical systems. The quantity of this energy is calculated in the present work using thermodynamic data. During the closed oxygen cycle the electric energy is transformed into chemical energy which, in turn, is converted into heat. Part of this heat causes the cell temperature to increase and another part dissipates into the surrounding air. The amount of the former heat depends on the heat capacity of the battery and is influenced most strongly by the quantity of the electrolyte. It has been established that the rate of oxygen evolution on the positive plate depends strongly on the temperature. When the heat exchange between the battery and the surrounding medium is poor, the reactions of the closed oxygen cycle may enter (through the heat and oxygen flows between the positive and the negative plates) into self-accelerating interrelations, which may lead to thermal runaway. To avoid this, an adequate heat exchange should be maintained between

  15. Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Saha, B.B.; El-Sharkawy, I.I.; Chakraborty, A.; Koyama, S.; Srinivasan, K. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Banker, N.D.; Dutta, P. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore (India); Prasad, M. [Thermal Systems Division, ISRO Satellite Centre, Bangalore (India)

    2006-11-15

    The purpose of this paper is to identify the minimum desorption temperatures required to operate thermally driven adsorption beds of a solid sorption refrigeration system. The method is based on the evaluation of uptake efficiency of the adsorption bed and estimating there from conditions under which the compressor ceases to provide any throughput. The difference in the densities of the refrigerant between the inlet and outlet, the adsorption characteristics of the adsorbate-refrigerant pair and the void volume in the thermal compressor are the contributors to the manifestation of the desorption state. Among them, the void volume is a controllable parameter whose role is analogous to the clearance volume in a positive displacement compressor. The methodology has been tested out with three systems, namely, silica gel+water, activated carbon fiber+ethanol and activated carbon+HFC 134a systems. It is shown that waste heat at as low as 60{sup o}C can operate these systems which make them good energy conservation devices through recovery of low grade process waste heat. (author)

  16. Influences of fine pitch solder joint shape parameters on fatigue life under thermal cycle

    Institute of Scientific and Technical Information of China (English)

    HUANG Chun-yue; WU Zhao-hua; HUANG Hong-yan; ZHOU De-jian

    2005-01-01

    The solder joint reliability of a 0. 5 mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25 mm× 0.35 mm, the stand-off of 0.02 mm and the solder volume of 0. 026 mm3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5 mm pitch QFP.

  17. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles; Avaliacao da resistencia ao dano por choque termico por ciclagem de um concreto refratario contendo agregados de andaluzita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S., E-mail: girribeiro@yahoo.com.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  18. The Kepler Light Curve of V344 Lyrae: Constraining the Thermal-viscous Limit Cycle Instability

    Science.gov (United States)

    Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.

    2010-12-01

    We present time-dependent modeling based on the accretion disk limit cycle model for a 270 d light curve of the short-period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long-term light curves. The data encompass two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d mag-1, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. Our modeling using the basic accretion disk limit cycle can produce the main features of the V344 Lyr light curve, including the peak outburst brightness. Nevertheless, there are obvious deficiencies in our model light curves. (1) The rise times we calculate, both for the normal and superoutbursts, are too fast. (2) The superoutbursts are too short. (3) The shoulders on the rise to superoutburst have more structure than the shoulders in the observed superoutbursts and are too slow, comprising about a third to half of the total viscous plateau, rather than the ~10% observed. However, one of the αcold αhot interpolation schemes we investigate (one that is physically motivated) does yield longer superoutbursts with suitably short, less structured shoulders.

  19. The Kepler Light Curve of V344 Lyrae: Constraining the Thermal-Viscous Limit Cycle Instability

    CERN Document Server

    Cannizzo, J K; Howell, S B; Wood, M A; Smale, A P

    2010-01-01

    We present time dependent modeling based on the accretion disk limit cycle model for a 270 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. Our modeling using the basic accretion disk limit cycle can produce the main features of the V344 Lyr light curve, including the peak outburst brightness. Nevertheless there are obvious deficiencies in our model light curves: (1) The rise times we calculate, both for the normal and superoutbursts, are too fast. (2) The superoutbursts are too short. (3) The shoulders on the rise to superoutburst have more structure than the shoulder in the observed superou...

  20. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  1. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  2. Stress-induced deformation at Ap~Mp and thermal cycling behavior of Cu-Al-Ni single crystals

    Institute of Scientific and Technical Information of China (English)

    陈庆福; 蔡伟; 赵连城

    2001-01-01

    Stress-induced deformation in Ap~Mp and concomitant shape recovery behavior of Cu-13.4Al-4.0Ni single crystals were studied. Abnormal high stress-induced deformation exists in Ap~Mp under the conditions of either heating with load or cooling with load. The recovered deformation is successively composed of four parts, the recoveries from superelasticity, normal reverse transformation, thermally activated reverse transformation of partially stabilized martensite and reverse transformation of stabilized martensite by over-heating. With increasing cycling number, the recovery part from normal reverse transformation decreases, while that from reverse transformation of stabilized martensite by over-heating increases, which shows a typical stabilization of martensite.

  3. Exergetical Analysis of Organic Flash Cycle with Two-Phase Expander for Recovery of Finite Thermal Reservoirs

    Institute of Scientific and Technical Information of China (English)

    Chul Ho Han; Kyoung Hoon Kim

    2014-01-01

    In this work exergetical performance analysis is carried out based on the second law of thermodynamics for organic flash cycle (OFC) using a two-phase expander instead of throttle expansion in order to recover efficiently finite thermal reservoirs.The exergy destructions (anergies) at various components of the system are theoretically investigated as well as the exergy efficiency.Results show that the anergy of heat exchanger or two-phase expander decreases while the anergy of throttle valve increases with increasing flash temperature,and the exergy efficiency has an optimum value with respect to the flash temperature.Under the optimal conditions with respect to the flash temperature,exergy efficiency increases with the heating temperature and the component having the largest exergy destruction varies with the flash temperature or heating temperature.

  4. Efficient thermal cycling of solar panels in solar simulation facilities with a multi-panel test rig

    Science.gov (United States)

    Brinkmann, P. W.; Reimann, J.

    1980-06-01

    It is shown that efficient thermal cycling tests under vacuum can be performed at reduced costs to cover the requirements for qualifications and acceptance testing of solar panels. A suitable test rig was developed which allows simultaneous testing of up to 3 solar panels with a dimension of 1.3 m x 1.7 m each. The tests can be performed in an existing solar simulation facility with a beam diameter of only 2.4 m. This means that a close simulation of orbital conditions can be achieved, including severe eclipse conditions with rapid temperature changes. Chamber dimensions, descriptions of suspension devices, and other data needed by potential users are given.

  5. Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process

    Institute of Scientific and Technical Information of China (English)

    Xiangwei Kong; Chunlin Qiu

    2013-01-01

    Continuous cooling transformation of a low carbon microalloyed steel was investigated after it was subjected to the simulation welding thermal cycle process and the interrupted cooling test.Microstructure observation was performed by optical microscopy and transmission electron microscopy.On the basis of the dilatometric data and microstructure observation,the continuous cooling transformation (CCT) diagram was determined,which showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to full granular bainite with the increase in the cooling time t8/5 from 10 to 600 s,accompanied with a decrease in the microhardness.The interrupted cooling test confirmed that the bainitic ferrite can form attached to grain boundaries at the beginning of transformation even if the final microstructure contains a mixture of granular bainite and bainitic ferrite.

  6. Energy losses in thermally cycled optical fibers constrained in small bend radii

    Energy Technology Data Exchange (ETDEWEB)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  7. Combined Refrigeration Cycle for Thermal Power Plant Using Low Grade Waste Steam

    Directory of Open Access Journals (Sweden)

    Satish Maurya*,

    2014-02-01

    Full Text Available Now a days, In most of the thermal power plant, where low-pressure steam is being exhausted to the atmosphere as a waste steam. This waste heat could be use to operate many small preheating or cooling equipments or small scale plants. There are many refrigeration systems present for refrigeration and air condition purpose. Such as air refrigeration, vapour compression, vapour absorption etc. In this paper we have presented the concept of combined vapour absorption and vapour compression refrigeration system. We present about the idea discuss here that how a vapour absorption and vapour compression can be used together as one complete working refrigeration plant. By using such concept of refrigeration we can improve the co-efficient of performance of whole plant by minimizing the input. We can also named the system as waste heat recovery refrigeration system.

  8. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  9. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  10. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  11. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Science.gov (United States)

    Froment, C.; Auchère, F.; Aulanier, G.; Mikić, Z.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  12. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  13. Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil

    Energy Technology Data Exchange (ETDEWEB)

    Arandes, Jose M.; Erena, Javier; Olazar, Martin; Bilbao, Javier [Departamento de Ingenieria Quimica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain); Azkoiti, Miren J. [Departamento de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, Plaza de la Casilla 3, 48012 Bilbao (Spain)

    2003-12-01

    A study has been made of the cracking on a mesoporous silica of polystyrene (PS) and polystyrene-butadiene (PS-BD) dissolved in a light cycle oil (LCO) from a product stream of a commercial fluid catalytic cracking (FCC) unit. This study has been carried out in a reactor of short contact time (3 s) in the 723-823 K range. This strategy for simultaneous valorization of plastics and solvent avoids the technological problems inherent to the treatment of solid postconsumer-plastics and the limitation to heat transfer in the process of pyrolysis. The cracking of plastics has a synergistic effect on the conversion of LCO, as it contributes to increasing the yield of gasoline (C{sub 5}-C{sub 12}). The cracking of the PS/LCO blend produces high yields of styrene, whereas the cracking of the PS-BD/LCO blend produces a stream of products with petrochemical interest.

  14. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gastien, R. [Dto. Ciencia y Tecnica de Materiales, Instituto de Investigaciones Cientificas y Tecnicas de las Fuerzas Armadas (CITEFA), J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)]. E-mail: rgastien@citefa.gov.ar; Corbellani, C.E. [Dto. Ciencia y Tecnica de Materiales, Instituto de Investigaciones Cientificas y Tecnicas de las Fuerzas Armadas (CITEFA), J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Sade, M. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina); Lovey, F.C. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina)

    2005-04-15

    Thermally and stress induced martensitic transformations between {beta} and a mixture of martensitic structures, {beta}' and {gamma}', were studied in Cu-14.1Al-4.2Ni (wt%) single crystals. In this way information on the relative stability between {beta}' and {gamma}' martensites, compared to the {beta} phase, was obtained. The measurement of electrical resistance as a function of temperature was used to follow the evolution of thermally induced transitions. The stress induced transformations were analyzed in the small temperature range at which the pseudoelastic behavior between {beta} and a mixture of both martensites plays the main role. A clear inhibition of the {gamma}' martensite is detected as the number of cycles increases, no matter which thermodynamic coordinate is varied to induce the phase transition, i.e., temperature or stress. An evaluation of the magnitude of the relative stabilization of the {beta}' martensite compared with {gamma}' was obtained by a suitably designed experiment.

  15. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.

    Science.gov (United States)

    Zampori, Luca; Dotelli, Giovanni; Vernelli, Valeria

    2013-07-02

    The aim of this research is to assess the sustainability of a natural fiber, such as hemp (Cannabis sativa), and its use as thermal insulator for building applications. The sustainability of hemp was quantified by life cycle assessment (LCA) and particular attention was given to the amount of CO2eq of the whole process, and the indicator greenhouse gas protocol (GGP) was selected to quantify CO2eq emissions. In this study also CO2 uptake of hemp was considered. Two different allocation procedures (i.e., mass and economic) were adopted. Other indicators, such as Cumulative Energy Demand (CED) and EcoIndicator99 H were calculated. The production of 1 ha yielded 15 ton of hemp, whose global warming potential (GWP100) was equal to about -26.01 ton CO2eq: the amount allocated to the technical fiber (20% of the total amount of hemp biomass) was -5.52 ton CO2eq when mass allocation was used, and -5.54 ton CO2eq when economic allocation was applied. The sustainability for building applications was quantified by considering an insulation panel made by hemp fiber (85%) and polyester fiber (15%) in 1 m(2) of wall having a thermal transmittance (U) equal to 0.2 W/m(2)_K. The environmental performances of the hemp-based panel were compared to those of a rockwool-based one.

  16. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  17. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  18. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  19. Does thermal variability experienced at the egg stage influence life history traits across life cycle stages in a small invertebrate?

    Directory of Open Access Journals (Sweden)

    Kun Xing

    Full Text Available Although effects of thermal stability on eggs have often been considered in vertebrates, there is little data thermal stability in insect eggs even though these eggs are often exposed in nature to widely fluctuating ambient conditions. The modularity of development in invertebrates might lead to compensation across life cycle stages but this remains to be tested particularly within the context of realistic temperature fluctuations encountered in nature. We simulated natural temperate fluctuations on eggs of the worldwide cruciferous insect pest, the diamondback moth (DBM, Plutella xylostella (L., while maintaining the same mean temperature (25°C±0°C, 25±4°C, 25±6°C, 25±8°C, 25±10°C, 25±12°C and assessed egg development, survival and life history traits across developmental stages. Moderate fluctuations (25±4°C, 25±6°C did not influence performance compared to the constant temperature treatment, and none of the treatments influenced egg survival. However the wide fluctuating temperatures (25±10°C, 25±12°C slowed development time and led to an increase in pre-pupal mass, although these changes did not translate into any effects on longevity or fecundity at the adult stage. These findings indicate that environmental effects can extend across developmental stages despite the modularity of moth development but also highlight that there are few fitness consequences of the most variable thermal conditions likely to be experienced by Plutella xylostella.

  20. Cosmic ray heating in cool core clusters - II. Self-regulation cycle and non-thermal emission

    Science.gov (United States)

    Jacob, Svenja; Pfrommer, Christoph

    2017-05-01

    Self-regulated feedback by active galactic nuclei (AGNs) appears to be critical in balancing radiative cooling of the low-entropy gas at the centres of galaxy clusters and in regulating star formation in central galaxies. In a companion paper, we found steady-state solutions of the hydrodynamic equations that are coupled to the cosmic ray (CR) energy equation for a large cluster sample. In those solutions, radiative cooling in the central region is balanced by streaming CRs through the generation and dissipation of resonantly generated Alfvén waves and by thermal conduction at large radii. Here, we demonstrate that the predicted non-thermal emission resulting from hadronic CR interactions in the intracluster medium exceeds observational radio (and gamma-ray) data in a subsample of clusters that host radio mini haloes (RMHs). In contrast, the predicted non-thermal emission is well below observational data in cooling galaxy clusters without RMHs. These are characterized by exceptionally large AGN radio fluxes, indicating high CR yields and associated CR heating rates. We suggest a self-regulation cycle of AGN feedback in which non-RMH clusters are heated by streaming CRs homogeneously throughout the central cooling region. We predict radio micro haloes surrounding the AGNs of these CR-heated clusters in which the primary emission may predominate the hadronically generated emission. Once the CR population has streamed sufficiently far and lost enough energy, the cooling rate increases, which explains the increased star formation rates in clusters hosting RMHs. Those could be powered hadronically by CRs that have previously heated the cluster core.

  1. Cosmic ray heating in cool core clusters II: Self-regulation cycle and non-thermal emission

    Science.gov (United States)

    Jacob, Svenja; Pfrommer, Christoph

    2017-01-01

    Self-regulated feedback by active galactic nuclei (AGNs) appears to be critical in balancing radiative cooling of the low-entropy gas at the centres of galaxy clusters and in regulating star formation in central galaxies. In a companion paper, we found steady state solutions of the hydrodynamic equations that are coupled to the CR energy equation for a large cluster sample. In those solutions, radiative cooling in the central region is balanced by streaming CRs through the generation and dissipation of resonantly generated Alfvén waves and by thermal conduction at large radii. Here we demonstrate that the predicted non-thermal emission resulting from hadronic CR interactions in the intra-cluster medium exceeds observational radio (and gamma-ray) data in a subsample of clusters that host radio mini halos (RMHs). In contrast, the predicted non-thermal emission is well below observational data in cooling galaxy clusters without RMHs. These are characterised by exceptionally large AGN radio fluxes, indicating high CR yields and associated CR heating rates. We suggest a self-regulation cycle of AGN feedback in which non-RMH clusters are heated by streaming CRs homogeneously throughout the central cooling region. We predict radio micro halos surrounding the AGNs of these CR-heated clusters in which the primary emission may predominate the hadronically generated emission. Once the CR population has streamed sufficiently far and lost enough energy, the cooling rate increases, which explains the increased star formation rates in clusters hosting RMHs. Those could be powered hadronically by CRs that have previously heated the cluster core.

  2. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    Science.gov (United States)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  3. Degradation Characterization of Thermal Interface Greases: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-03

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization of several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.

  4. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus;

    2011-01-01

    reliability is investigated regarding IGBT lifetime based on junction temperature cycling for the grid-side press-pack IGBT 3L-NPC-VSC, which is a state-of-the art high reliability solution. In order to acquire IGBT junction temperatures for given wind power profiles and to use them in IGBT lifetime...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...

  5. Performance Degradation of Thermal Parameters during Cycle Ageing of High Energy Density Ni-Mn-Co based Lithium-Ion Battery Cells

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    as well, since the thermal management of the battery is crucial for the safety of the EV driver. Moreover, the thermal management system can significantly lower the degradation rate of the battery pack and thus reduce costs. In this paper, the thermal characterization of a commercially available Nickel......-Manganese-Cobalt (NMC) based Li-ion battery cell was performed under different operating conditions: state-of-charge (SOC) levels, charge/discharge current rates and operating temperatures. Moreover, by carrying out accelerated cycle ageing tests on a total of nine NMC-based Li-ion battery cells, the effect of ageing...

  6. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    Science.gov (United States)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  7. Loss Prediction and Thermal Analysis of Surface-Mounted Brushless AC PM Machines for Electric Vehicle Application Considering Driving Duty Cycle

    Directory of Open Access Journals (Sweden)

    Tianxun Chen

    2016-01-01

    Full Text Available This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC permanent magnet (PM machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA to determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based computationally efficient winding copper and iron loss and permanent magnet (PM power loss models are employed to calculate the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a motor prototype. The calculation and experiment results are compared and discussed.

  8. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...

  9. Thermal cycling behavior of YSZ and La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} as double-ceramic-layer systems EB-PVD TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua, E-mail: zhxuciac@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin; Mu Rende; Lu Feng; He Shimei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. Black-Right-Pointing-Pointer The unique growth modes of columns within DCL coating. Black-Right-Pointing-Pointer The presence of cerium in both Ce{sup 3+} and Ce{sup 4+} oxidation states within the coating surface. Black-Right-Pointing-Pointer The spallation of DCL coating induced by transverse cracks may be the first emergence of delamination followed by spalling layer by layer. Black-Right-Pointing-Pointer The outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1573 K in burner-rig with a coal gas flame indicates the thermal cycling life of DCL coating is not only much longer than that of LZ7C3 coating, but also approximately 27% longer than that of YSZ coating. The superior sintering-resistance of LZ7C3 coating and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the re-crystallization of some LZ7C3 fine grains, the cracks initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t Prime -phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  10. The Thermal Stability of Tertiary Pyridine Resin for the Application to Multi-functional Reprocessing Process - Adv.-ORIENT Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshihiko; Okada, K.; Akiyoshi, M.; Matsunaga, T. [AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Suzuki, T. [Tokyo Tech (Japan); Koyama, S.; Ozawa, M. [Japan Atomic Energy Agency - JAEA (Japan)

    2009-06-15

    As part of 'Adv.-ORIENT' (Advanced Optimization by Recycling Instructive Elements) cycle technologies which aim to develop new fuel cycle based on FBR (Fast Breeder Reactor), the fundamental thermochemical properties of tertiary pyridine resin (TPR) and its mixtures with methanol/HCl and HNO{sub 3} were investigated and heating tests on gram scale with TPR/methanol/HNO{sub 3} were carried out in order to evaluate the thermal stability of TPR and to determine the conditions necessary to avoid runaway reactions. It was found that TPR with HCl was thermally stable. Evident thermal decomposition peaks were identified with TPR in the presence of concentrated HNO{sub 3}. No specific effect was observed for methanol involving. However, it was considered that the rapidly exothermic reaction can be controlled by heating temperature. (authors)

  11. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  12. Surface phenomena associated with thermal cycling of copper and their impact on the service life of particle accelerator structures

    CERN Document Server

    Aicheler, Markus; Theisen, Werner; Sgobba, Stefano

    2010-01-01

    The performance of accelerating structures (AS) in the Compact LInear Collider (CLIC) is sensitive to a variety of parameters, including the surface quality of key elements of the AS. Processes which affect the surface quality are therefore of particular concern. The present work addresses surface modifications associated with thermal cycling during operation. This type of operating condition represents a specific type of fatigue loading. Four fatigue test procedures were used in the present study in order to investigate the fatigue behaviour of oxygen{free{electronic (OFE) copper, the candidate material of the CLIC-AS: conventional fatigue (CVF), ultrasonic swinger (USS), laser fatigue (LAF) and radio{frequency fatigue (RFF). During operation of the accelerator the material of the AS will be subjected to cyclic temperature changes of approx. Delta T = 56 K, from about 40° C to about 100° C. These temperature changes will result in cyclic biaxial strains in the surface of the order of epsilon(biax) = 9.2 x ...

  13. A Technique for Mitigating Thermal Stress and Extending Life Cycle of Power Electronic Converters Used for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2015-11-01

    Full Text Available Over the last two decades, various models have been developed to assess and improve the reliability of power electronic conversion systems (PECs with a focus on those used for wind turbines. However, only few studies have dealt with mitigating the PECs thermo-mechanical effects on their reliability taking into account variations in wind characteristics. This work critically investigates this issue and attempts to offer a mitigating technique by, first, developing realistic full scale (FS and partial scale (PS induction generator models combined with two level back-to-back PECs. Subsequently, deriving a driving algorithm, which reduces PEC’s operating temperature by controlling its switching patterns. The developed switching procedure ensures minimum temperature fluctuations by adapting the variable DC link and system’s frequency of operation. It was found for both FS and PS topologies, that the generator side converters have higher mean junction temperatures where the grid side ones have more fluctuations on their thermal profile. The FS and PS cycling temperatures were reduced by 12 °C and 5 °C, respectively. Moreover, this led to a significant improvement in stress; approximately 27 MPa stress reduction for the FS induction generator PEC.

  14. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  15. EB-PVD热障涂层热循环性能评价方法研究%Evaluation Method of Thermal Cycling Property of EB-PVD Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    陈立强; 宫声凯; 徐惠彬

    2013-01-01

    制备8批次EB-PVD双层结构热障涂层试样,采用循环加热快速冷却实验装置模拟热障涂层服役环境,开展了热障涂层试样在不同热循环保温时间条件下的热循环性能评价实验,采用指数下降的数学模型对热循环实验数据进行拟合分析,获得了表征热障涂层试样静态氧化性能和热疲劳性能的物理量.结果表明,在本实验工艺条件下制备的不同批次热障涂层试样的静态氧化性能和热疲劳性能具有不同的匹配关系,热障涂层试样静态氧化性能总体估计值为(677±194)h,热疲劳性能总体估计值为(6789±1818)次.%Thermal cycling testing to the 8 batches of thermal barrier coating samples for different holding time was carried out by means of cycling heating and cooling apparatus to simulate TBCs service environment. Using a mathematical model of exponential decline to fit thermal cycle experimental data, characterization parameters of static oxidation performance and thermal fatigue performance of thermal barrier coated samples were obtained. The result indicates that static state oxidation performance and thermal fatigue performance of TBCs samples prepared under present experimental technology conditions have different match relation. The estimated value for static state oxidation performance is 677±194 h, and the estimated value for thermal fatigue performance is 6789±1818 times.

  16. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  17. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  18. Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects

    Science.gov (United States)

    Lee, Tae-Kyu; Bieler, Thomas R.; Kim, Choong-Un

    2016-01-01

    The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.

  19. A study about the contribution of the α-β phase transition of quartz to thermal cycle damage of a refractory used in fluidized catalytic cracking units

    Directory of Open Access Journals (Sweden)

    A. H. A. Pereira

    2014-09-01

    Full Text Available The deterioration of refractories used in fluidized catalytic cracking units (FCC-units is responsible for high costs of maintenance for the petrochemical industry. This is commonly associated with coke deposition during the production of light hydrocarbons. However, other mechanisms responsible for causing damage may also occur, such as the generation of cracks by expansive phase transition. The aim of the work herein was to study the contribution of the a-b phase transition of quartz particles to the deterioration of a commercial aluminosilicate refractory used in a riser by the means of slow thermal cycles. Such damage may occur if the working temperature of the equipment fluctuates around the a-b transition temperature (573 °C. The current study considered the material with and without coke impregnation to evaluate the combined effect of coke presence and phase transition. To evaluate the damage, it was used the Young's modulus as a function of temperature by applying the Impulse Excitation Technique under controlled atmosphere. An equipment recently developed by the authors research group was applied. Specimens were prepared and submitted to slow thermal cycles of temperatures up to 500 °C and up to 700 °C, with a heating rate of 2 °C/min. Part of the specimens was previously impregnated with coke by a reactor using propen. To complete the evaluation, characterization by X-ray diffraction, as well as by dilatometry and scanning electron microscopy were performed. The findings of this study showed that the presence of quartz particles determine the thermo-mechanical behaviour of the material, as well as the thermocycling damage resistance. In spite of the fact that the a-b phase transition stiffens the material during the heating stage, it increases the damage by slow thermal cycling. The coke impregnation increases the resistance to slow thermal cycles, however it decreases the resistance to the damage evolution.

  20. Effects of Heat Treatment and Thermal Cycling on Martensitic Transformation Behavior of Ni59Al11Mn30 High Temperature Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    He Zhi-rong; Zhou Jing-en

    2004-01-01

    A reversible martensitic transformation (MT) takes place during cooling and heating in the solution quenched and the solution quenched plus aged Ni59Al11Mn30 alloy The MT temperature increases with increasing solution temperature. The excellent MT characteristics can be obtained from a process of 1000℃ solution quenched plus 400℃aged. Follow this process, the MT start temperature (Ms) and the reverse MT finish temperature (Af) are 469℃ and 548℃,respectively. The martensitic stabilization effect in the solution quenched and aged Ni59Al11Mn30 alloy is observed as an increase in the Af temperature of the first reverse MT during thermal cycles. This stabilization effect vanishes from the second thermal cycle. Thermal cycling can enhance the stability of the reversible MT. The microstructure of the quenched Ni59Al11Mn30 alloy consists of martensite (M) and gamma phase. The volume fraction of gamma phase is about 40%. The substructure of M and gamma phase is twins and dislocations, respectively. The hardness of M is higher than that of gamma phase. After aging treatment the basic phases of alloy do not change, but the hardness of the phases increases.

  1. Making quantum devices with electrical properties that are robust to thermal cycling using AlGaAs/GaAs HIGFET structures

    Science.gov (United States)

    Micolich, Adam; See, Andrew; Klochan, Oleh; Burke, Adam; Hamilton, Alex; Pilgrim, Ian; Scannell, Billy; Montgomery, Rick; Taylor, Richard; Aagesen, Martin; Lindelof, Poul; Farrer, Ian; Ritchie, David

    2013-03-01

    The transport properties of quantum devices on modulation-doped AlGaAs/GaAs heterostructures change after thermal cycling above ~130 K due to charge redistribution in the modulation doping layer. This is particularly evident in a quantum dot's magnetoconductance fluctuations (MCF) which provide a sensitive fingerprint of electron trajectories through the dot. We show that the MCF become reproducible with high-fidelity after thermal cycling to 300 K in quantum dots made using AlGaAs/GaAs heterostructures without modulation doping. This is achieved by populating the dot electrostatically using a Heterostructure Insulated Gate Field Effect Transistor (HIGFET) architecture. Our result demonstrates ionized impurity scattering has a measurable effect on transport in quantum dots, even in the ballistic transport regime. It highlights the potential for HIGFET-based architectures to provide devices with significantly reduced small-angle scattering at equivalent transport mobility, and more thermally robust electrical properties. More broadly, we suggest a quantum dot's MCF may be a useful tool for studying the temporal/thermal stability of disorder in other semiconductor materials.

  2. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  3. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  4. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle comp

  5. Influence of Cycle Temperature on the Wear Resistance of Vermicular Iron Derivatized with Bionic Surfaces

    Science.gov (United States)

    Sui, Qi; Zhang, Peng; Zhou, Hong; Liu, Yan; Ren, Luquan

    2016-11-01

    Depending on their applications, such as in brake discs, camshafts, etc., the wear behavior of vermicular iron is influenced by the thermal cycling regime. The failure of a working part during its service life is a consequence of both thermal fatigue and wear. Previously, the wear and thermal fatigue resistance properties of vermicular iron were separately investigated by researchers, rather than a study combining these two factors. In the present work, the effect of cycle temperature on the wear resistance of specimens with bionic units processed by laser has been investigated experimentally. The wear behavior pre- and post-thermal cycling has also been investigated, and the influence of different cycle temperatures on the wear resistance is discussed. The results indicate that the thermal cycling regime brought about negative influences with varying degrees, on the material properties, such as the microstructures, micro-hardness, cracks, and oxidation resistance properties. All these factors synergistically reduced the wear resistance of vermicular iron. In particular, the negative influence apparently increased with an increase in cycle temperature. Nevertheless, the post-thermal-cycle wear resistance of the specimens with bionic units was superior to those without bionic units. Hence, the laser bionic process is an effective way to improve the performance of vermicular iron in combined thermal cycling and wear service conditions.

  6. The High Performance Shape Memory Effect (HP-SME in Ni Rich NiTi Wires: In Situ X-Ray Diffraction on Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Coduri Mauro

    2015-01-01

    Full Text Available A novel approach for using Shape Memory Alloys (SMA was recently proposed and named highperformance shape memory effect (HP-SME. The HP-SME exploits the thermal cycling of stress-induced martensite for producing extremely high mechanical work with a very stable functional fatigue behaviour in Ni rich NiTi alloy. The latter was found to differ significantly from the functional fatigue behaviour observed for conventional SMA. This study was undertaken in order to elucidate the microstructural modifications at the basis of this particular feature. To this purpose, the functional fatigue was coupled to in situ Synchrotron Radiation X-Ray Diffraction, by recording patterns on wires thermally cycled by Joule effect under a constant applied stress (800 MPa. The accurate analysis the line profile XRD data suggests the accumulation of defects upon functional cycling, while the fibre texture was not observed to change. The functional fatigue exhibits a very similar behaviour as the line broadening of XRD peaks, thus suggesting the accumulation of dislocations as the origin of the mechanism of the permanent deformation.

  7. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    -life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...... that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...

  8. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  9. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  10. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  11. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

    Directory of Open Access Journals (Sweden)

    Juan C. Chimal-Eguía

    2012-12-01

    Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.

  12. Conversion of coal-fired power plants to cogeneration and combined-cycle thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2014-01-01

    This book covers methodology, calculation procedures and tools to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. It examines the optimum selection of the structure of heat exchangers in a 370 MW power block.

  13. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    The increase of renewable sources in the power sector is an important step towards more sustainable electricity production. However, introducing high shares of variable renewables, such as wind and solar, cause dispatchable power plants to vary their output to fulfill the remaining electrical...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load......, as part of LCA of electricity generation, the efficiency reduction would result in large underestimation of emissions, e.g. up to 65% for an oil power plant. Overall, cycling emissions accounted for less than 7% of lifecycle CO2, NOx and SO2 emissions in the five scenarios considered: while...

  14. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  15. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    In energy systems with high share of renewable energy sources, like wind and solar power, it is paramount to deal with their intrinsic variability. The interaction between electric and thermal energy (heating and cooling) demands representa potential area for balancing supply and demand that could...... of the users. Results show that real load control logic can lessen the adverse effects ofcycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...... come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  16. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    Science.gov (United States)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  17. Physical and Structural Characterization of a Monocrystalline Cu-13.7Al-4.2Ni Alloy Subjected to Thermal Cycling Treatments

    Science.gov (United States)

    Pereira, Elaine Cristina; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Shigue, Carlos Yujiro; Monteiro, Sérgio Neves

    2014-04-01

    A monocrystalline alloy with nominal 82wt pctCu-13.7wt pctAl-4.2wt pctNi composition and exhibiting reversible martensitic transformation (RMT) was subjected to multiple heating and cooling cycles within the RMT range of critical temperatures. Both untreated and cyclic treated alloy samples were characterized by X-ray diffraction, optical microscopy, differential scanning calorimetry, and Vickers microhardness. The results indicated that the alloy presents a complex RMT behavior disclosing a sequence of transformation steps: β 1 ↔ R and R ↔ β'1 + γ'1 as well as possible β 1 ↔ β'1 and β'1 ↔ γ'1 direct reactions. The thermal cycling treatment inhibits the development of γ'1 martensite without much change in both the physical and microstructure characteristics. This suggests a good resistance of the alloy to irreversible structural changes.

  18. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    Science.gov (United States)

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  19. Experience on nursing coordination in thermotherapy with pleural thermal cycling perfusion%胸腔热循环灌注热疗的护理配合体会

    Institute of Scientific and Technical Information of China (English)

    易红梅; 胡丽娟; 陈小清; 杜建文; 崔飞

    2013-01-01

    Objective To investigate nursing coordination in thermotherapy with pleural thermal cycling perfusion.Methods The data on 41 patients who had undergone thermotherapy with pleural thermal cycling perfusion in two hospitals during the period of March 2009 to March 2012 were retrospective analyzed.The method for nursing cooperation was summarized.Results All the patients received perfect care and were followed up 2.5 to 5 months,showing an improvement in systemic symptoms.39 patients had disappearance in pleural effusion and improvement in appetite,physical strength,and quality of life of the 31 patients.No serious complications occurred and the side effects of chemotherapy were slighter (P<0.05).Conclusions Thermotherapy with pleural thermal cycling perfusion is a new clinical method for treatment of malignant tumors.It has better efficacy,higher safety,and shorter treatment courses,and can significantly improve quality of life in patients.Nudes should closely coordinate during pleural thermal cycling perfusion to provide better care for patients.%目的 探讨在胸腔热循环灌注热疗中的护理配合.方法 对两家医院2011年3月至2012年8月收治的41例胸腔热循环灌注热疗患者的资料进行回顾性分析,总结患者的护理配合方法.结果 41例患者均得到了两家医院的完善护理工作,术后随访2.5~5个月,全部患者全身症状改善,39例患者胸水症状消失、食欲和体力增加、生活质量提高,患者均未出现严重并发症,化疗副作用轻,P <0.05.结论 胸腔热循环灌注热疗是临床治疗恶性肿瘤的新方法,其疗效好、安全性高、疗效短,能够显著提高患者的生活质量.护士在胸腔热循环灌注热疗中要密切地进行配合,为患者给予更好的护理服务.

  20. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO{sub 4} systems. Final topical report, January 1, 1982--December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. [Houston Univ., TX (United States)

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  1. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    Science.gov (United States)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  2. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  3. PERSISTENT LEFT SUPERIOR VENACAVA

    Directory of Open Access Journals (Sweden)

    Devinder Singh

    2014-05-01

    Full Text Available A Persistent Left Superior Venacava (PLSVC is the most common variation of the thoracic venous system and rare congenital vascular anomaly and is prevalent in 0.3% of the population. It may be associated with other cardiovascular abnormalities including atrial septal defect, bicuspid aortic valve, coarctation of aorta, coronary sinus ostial atresia, and cor triatriatum. Incidental rotation of a dilated coronary sinus on echocardiography should raise the suspicion of PLSVC. The diagnosis should be confirmed by saline contrast echocardiography. Condition is usually asymptomatic. Here we present a rare case of persistent left superior vena cava presented in OPD with dyspnoea & palpitations.

  4. Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method

    Science.gov (United States)

    Guo, Pengfei; Guan, Yong; Liu, Gang; Liang, Zhiting; Liu, Jianhong; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao

    2016-09-01

    This work reports an investigation of the impact of microstructure on the performance of solid oxide fuel cells (SOFC) composed of nickel yttria-stabilized zirconia (Ni YSZ). X-ray nano computed tomography (nano-CT) was used to obtain three-dimensional (3D) models of Ni-YSZ composite anode samples subjected to different thermal cycles. Key parameters, such as triple phase boundary (TPB) density, were calculated using 3D reconstructions. The electrochemical reaction occurring at active-TPB was modeled by the Lattice Boltzmann Method for simulation of multi-component mass transfer in porous anodes. The effect of different electrode geometries on the mass transfer and the electrochemical reaction in anodes was studied by TPB distributions measured by nano CT for samples subjected to different thermal cycles. The concentration polarization and the activation polarization were estimated respectively. The results demonstrate that a combined approach involving nano-CT experiments in conjunction with simulations of gas transport and electrochemical reactions using the Lattice Boltzmann method can be used to better understand the relationship between electrode microstructure and performance of nickel yttria-stabilized zirconia anodes.

  5. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    S. Balaguru

    2016-01-01

    Full Text Available In sodium-cooled fast reactors (SFR, grid plate is a critical component which is made of 316 L(N SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N/304 L(N SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW. This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.

  6. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operatio

  7. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load

  8. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operatio

  9. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  10. Simulation of CO2 Brayton Cycle for Engine Exhaust Heat Recovery under Various Operating Loads

    Institute of Scientific and Technical Information of China (English)

    舒歌群; 张承宇; 田华; 高媛媛; 李团兵; 仇荣赓

    2015-01-01

    A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9%and the system has a better performance at the engine’s high operating load. The thermal efficiency can be as large as 24.83%under 100%operating load, accordingly, the net output power of 14.86 kW is obtained.

  11. A New Solar Thermal Combined Cycle Using Kalina Cycle%太阳能燃气轮机与卡林那循环联合的热发电系统

    Institute of Scientific and Technical Information of China (English)

    彭烁; 洪慧; 金红光

    2012-01-01

    本文提出了一种带间冷回热的太阳能燃气轮机与卡林那循环组成的联合循环发电系统,对其热力性能进行了分析,并研究了关键运行参数对热力性能影响。塔式太阳能接收器将经过间冷压缩的压缩空气加热至1000℃用以驱动燃气轮机做功。卡林那循环用以回收燃气余热发电。基于蔡睿贤的比较法,推导出了该系统太阳能热发电效率的简明解析式。结果表明,当燃气轮机入口温度为1000℃时,该系统的炯效率和太阳能热发电效率分别可达到29%和27.5%,比太阳能燃气蒸汽联合循环分别高1.8%和1.6%。该系统的提出,为提高太阳能热发电系统的太阳能热发电效率提供了一种方法,并且对太阳能热发电耗水大的问题提供了一个解决途径。%A new solar thermal combined cycle using Kalina cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000℃ or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia-water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000℃. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

  12. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  13. Dynamic modeling of thermal systems using a semi-empirical approach and the ThermoCycle Modelica Library

    OpenAIRE

    Altés Buch, Queralt; Dickes, Rémi; Desideri, Adriano; Lemort, Vincent; Quoilin, Sylvain

    2015-01-01

    This paper proposes an innovative approach for the dynamic modeling of heat exchangers without phase transitions. The proposed thermo-flow model is an alternative to the traditional 1D finite-volumes approach and relies on a lumped thermal mass approach to model transient responses. The heat transfer is modeled by the well-known Logarithmic Mean Temperature Difference approach, which is modified to ensure robustness during all possible transient conditions. The lumped parameter models are val...

  14. Cosmic ray heating in cool core clusters II: Self-regulation cycle and non-thermal emission

    CERN Document Server

    Jacob, Svenja

    2016-01-01

    Self-regulated feedback by active galactic nuclei (AGNs) appears to be critical in balancing radiative cooling of the low-entropy gas at the centres of galaxy clusters and in regulating star formation in central galaxies. In a companion paper, we found stable steady-state solutions of the hydrodynamic equations that are coupled to the CR energy equation for a large cluster sample. In those solutions, radiative cooling in the central region is balanced by streaming CRs through the generation and dissipation of resonantly generated Alfv{\\'e}n waves and by thermal conduction at large radii. Here we demonstrate that the predicted non-thermal emission resulting from hadronic CR interactions in the intra-cluster medium exceeds observational radio (and gamma-ray) data in a subsample of clusters that host radio mini halos (RMHs). In contrast, the predicted non-thermal emission is well below observational data in cooling galaxy clusters without RMHs. These are characterised by exceptionally large AGN radio fluxes, ind...

  15. Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material

    Science.gov (United States)

    Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.

    2011-01-01

    Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.

  16. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode

    Science.gov (United States)

    Li, Sijie; Ge, Peng; Zhang, Chenyang; Sun, Wei; Hou, Hongshuai; Ji, Xiaobo

    2017-10-01

    Na3V2(PO4)3 (NVP) is a very promising cathode material in sodium ion battery for rapidly emerging large-scale energy storage with its classical 3D NASCION structure. However, the cycling life and rate performances are restricted its low electronic conductivity. To overcome these, the double carbon-wrapped Na3V2(PO4)3 composite is firstly designed through rheological phase approach, delivering enhanced electrochemical properties. The unique double carbon layers are composed of uniform amorphous carbons as protecting framework for stabilizing the structure, as well as the graphitized carbon sheets playing the role of conductive network for better electronic conductivity. This double carbon-wrapped Na3V2(PO4)3 composite exhibits a high reversible capacity of 99.8 mAh g-1 over 500 cycles at 1 C (110 mA g-1), yielding the coulombic efficiency of ∼99.8%. Meanwhile, it displays an initial capacity of 73 mAh g-1 at 100 C and remains 55 mAh g-1 at an ultra-rate of 200 C. Even after cycling at 200 C over 12 000 cycles, the Na+-storage capacity of 40 mAh g-1 with a retention of 72.7% is still obtained, highlighting its excellent long cycling life and remarkable rate performances.

  17. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  18. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...... due to cell fractures, and the additional series resistance losses observed under illumination. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test and initial and final module flash testing...

  19. Effect of Turf Roof Slabs on Indoor Thermal Performance in Tropical Climates: A Life Cycle Cost Approach

    Directory of Open Access Journals (Sweden)

    R. U. Halwatura

    2013-01-01

    Full Text Available Urbanization related to population growth is one of the burning issues that the world is facing today. Parallel to this, there is visible evidence of a possible energy crisis in the near future. Thus, scientists have paid attention to sustainable development methods, and in the field of building construction also, several innovations have been proposed. For example, green roof concept is one of such which is considered a viable method mainly to reduce urban heat island effect, to regain lost land spaces in cities, and to increase aesthetics in cities. The present study was aimed at investigating the impact of green roofs on indoor temperature of buildings, the effect of different types of roofs on the air conditioning loads, and the life cycle cost of buildings with different types of roofing. The study was conducted in several phases: initial small-scale models to determine the heat flow characteristics of roof top soil layers with different thicknesses, a large-scale model applying the findings of the small-scale models to determine temperature fluctuations within a building with other common roofing systems, a computer simulation to investigate air conditioning loads in a typical building with cement fiber sheets and green roof slabs, a comparative analysis of the effect of traditional type roofs and green roofs on the air conditioning loads, and finally an analysis to predict the influence of traditional type roofs and green roofs on life cycle cost of the buildings. The main findings of the study were that green roofs are able to reduce the indoor temperature of buildings and are able to achieve better heat transfer through the roof, and, thus a lower cooling load is necessary for air conditioning and has the possibility of reducing life cycle cost of a building.

  20. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  1. An initial study on modeling the global thermal and fast reactor fuel cycle mass flow using Vensim

    Energy Technology Data Exchange (ETDEWEB)

    Brinton, Samuel [Kansas State University, Mechanical Engineering, Manhattan, KS 66506 (United States)

    2008-07-01

    This study concentrated on modeling the construction and decommissioning rates of five major facilities comprising the nuclear fuel cycle: (1) current LWRs with a 60-year service life, (2) new LWRs burning MOX fuel, (3) new LWRs to replace units in the current fleet, (4) new FRs to be added to the fleet, and (5) new spent fuel reprocessing facilities. This is a mass flow mode starting from uranium ore and following it to spent forms. The visual dynamic modeling program Vensim was used to create a system of equations and variables to track the mass flows from enrichment, fabrication, burn-up, and the back-end of the fuel cycle. The scenarios considered provide estimates of the uranium ore requirements, quantities of LLW and HLW production, and the number of reprocessing facilities necessary to reduce recently reported levels of spent fuel inventory. Preliminary results indicate that the entire national spent fuel inventory produced in the next 100 years can be reprocessed with a reprocessing plant built every 11 years (small capacity) or even as low as every 23 years (large capacity). (authors)

  2. INFORMATION ASSURANCE - INTELLIGENCE - INFORMATION SUPERIORITY RELATIONSHIP WITHIN NATO OPERATIONS

    Directory of Open Access Journals (Sweden)

    Gheorghe BOARU, Ioan-Mihai ILIEŞ

    2011-01-01

    Full Text Available There is a tight relationship between information assurance, the intelligence cycle and information superiority within NATO operations. The intelligence cycle has a discrete architecture and provides on-time and relevant intelligence products to the joint force commanders and to other authorized users in a specifi c joint area of operations. The intelligence cycle must follow the evolution of the operation. A permanent intelligence estimate will be performed during the military decision making process and operations execution. Information superiority is one of the most powerful intelligence cycle achievements. and decisively infuences the success of NATO joint operations. Information superiority must be preserved and enhanced through information assurance. Information assurance is an information operation that must be planned by the military in charge of operation security or by non-military experts, executed by all personnel during the entire intelligence cycle life time and employed during the planning and execution of NATO joint operations.

  3. The enthalpy change of the hcp {yields} fcc martensitic transformation in Fe-Mn-Co alloys: composition dependence and thermal cycling effects

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, P.; Fernandez Guillermet, A.; Sade, M

    2004-05-25

    Extending a recent calorimetric study of the Fe-Mn system the enthalpy change associated with the fcc{yields}hcp martensitic transformation in the Fe-Mn-Co system has been determined in alloys with 13{<=}at.% Mn{<=}30 and up to 9 at.% Co. The heat effect has been measured by differential scanning calorimetry, whereas the fraction of material that transformed martensitically was determined by combining a dilatometric technique with the known molar volume versus composition relations. A detailed description of the various experimental and data processing procedures is reported. The enthalpy change is discussed as a function of composition and of the number of thermal cycles of transformation and retransformation. The picture of the energetics of the fcc{yields}hcp martensitic transformation emerging from the present study should be useful in future attempts to model the thermodynamics and phase stability relations in the Fe-Mn-Co system.

  4. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    Energy Technology Data Exchange (ETDEWEB)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it [LAR Laboratory, Dipartimento di Ingegneria, Via G. Duranti 93, Perugia (Italy); Micale, Caterina; Morettini, Emanuela [LAR Laboratory, Dipartimento di Ingegneria, Via G. Duranti 93, Perugia (Italy); Sisani, Luciano [TSA spa, Via Case Sparse 107, Magione (Italy); Damiano, Roberto [GESENU spa, Via della Molinella 7, Perugia (Italy)

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  5. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  6. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  7. Does Interaction between the Motor and Regulatory Domains of the Myosin Head Occur during ATPase Cycle? Evidence from Thermal Unfolding Studies on Myosin Subfragment 1.

    Directory of Open Access Journals (Sweden)

    Daria S Logvinova

    Full Text Available Myosin head (myosin subfragment 1, S1 consists of two major structural domains, the motor (or catalytic domain and the regulatory domain. Functioning of the myosin head as a molecular motor is believed to involve a rotation of the regulatory domain (lever arm relative to the motor domain during the ATPase cycle. According to predictions, this rotation can be accompanied by an interaction between the motor domain and the C-terminus of the essential light chain (ELC associated with the regulatory domain. To check this assumption, we applied differential scanning calorimetry (DSC combined with temperature dependences of fluorescence to study changes in thermal unfolding and the domain structure of S1, which occur upon formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx that mimic S1 ATPase intermediate states S1**-ADP-Pi and S1*-ATP, respectively. To identify the thermal transitions on the DSC profiles (i.e. to assign them to the structural domains of S1, we compared the DSC data with temperature-induced changes in fluorescence of either tryptophan residues, located only in the motor domain, or recombinant ELC mutants (light chain 1 isoform, which were first fluorescently labeled at different positions in their C-terminal half and then introduced into the S1 regulatory domain. We show that formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx significantly stabilizes not only the motor domain, but also the regulatory domain of the S1 molecule implying interdomain interaction via ELC. This is consistent with the previously proposed concepts and also adds some new interesting details to the molecular mechanism of the myosin ATPase cycle.

  8. Study of Heliospheric Particle Populations far from Thermal Equilibrium during Three Solar Cycles, Periodicities and q-index

    Science.gov (United States)

    Liolios, Konstantinos; Bergman, Jan; Moussas, Xenophon

    2017-04-01

    Heliospheric energetic particle populations of energies higher than 1 MeV are studied using a 33 year long data record composed of hourly measurements, as extracted from the NASA Goddard Space Flight Center's OMNI data set. Their periodicities are examined by means least-squares spectral analysis and wavelet analysis and found to be in good agreement with periodicities seen in sunspot numbers, which are well-known indicators of variations in solar activity. Hence, the source of this energetic and positively charged gas is mainly the Sun but part of it should be cosmic rays. As derived from the analyses of suprathermal "heavy" tails of the probability distribution, we assume that the gas kinetics is described by a deformed Maxwell-Boltzmann distribution, namely, the kappa distribution. The q-index analogue to the κ-index is computed for every hour in the data record and used to investigate how far away the gas is from being in classical thermal equilibrium (q = 1). We compare the q-index time series with that of sunspot numbers and conclude that the gas is in continously variable states away (q > 1) from the almost always assumed thermal equilibrium. During the first ˜15 years, the q-indices somewhat exceed the theoretically predicted limit but follow a pattern which is very homogeneous. However, just before 1990, the q-indices begin to fluctuate in a periodic manner, creating maxima and minima, as they continuously increase until they peak about 1996-1997, while after these years, they decrease following a similar pattern. As a result, we assume that after 1990, for a period that lasted at least 10 years, something changed in the Sun's behaviour. A higher number of solar bursts could easily affect the gas but further research, for instance an analysis of solar flare timeseries from the same period, is required to draw a more robust conclusion of what may have caused the observed anomaly.

  9. Optimum performance of the small scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, (South Africa)

    2011-07-01

    The energy of the sun can be transformed into mechanical power through the use of concentrated solar power systems. The use of the Brayton cycle with recuperator has significant advantages but also raises issues such as pressure loss and low net power output which are mainly due to irreversibilities of heat transfer and fluid friction. The aim of this study is to optimize the system to generate maximum net power output. Thermodynamic and dynamic trajectory optimizations were performed on a dish concentrator and an off-the-shelf micro-turbine and the effects of wind, solar irradiance and other environmental conditions and constraints on the power output were analyzed. Results showed that the maximum power output is increased when wind decreases and irradiance increases; solar irradiance was found to have a more significant impact than wind. This study highlighted the factors which impact the power generation of concentrated solar power systems so that designers can take them into account.

  10. Enhancement of Thermal Stability and Cycling Performance of Lithium-Ion Battery at High Temperature by Nano-ppy/OMMT-Coated Separator

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2017-01-01

    Full Text Available Nanopolypyrrole/organic montmorillonite- (nano-ppy/OMMT- coated separator is prepared by coating nano-ppy/OMMT on the surface of polyethylene (PE. Nano-ppy/OMMT-coated separator with three-dimensional and multilayered network structure is beneficial to absorb more organic electrolyte, enhancing the ionic conductivity (reach 4.31 mS·cm-1. Meanwhile, the composite separator exhibits excellent thermal stability and mechanical properties. The strong covalent bonds (Si-F are formed by the nucleophilic substitution reaction between F− from the thermal decomposition and hydrolysis of LiPF6 and the covalent bonds (Si-O of nano-ppy/OMMT. The Si-F can effectively prevent the formation of HF, POF3, and LiF, resulting in the inhibition of the disproportionation of Mn3+ in LiNi1/3Co1/3Mn1/3O2 material as well as reducing the internal resistance of the cell. Therefore, the nano-ppy/OMMT-coated separator exhibits outstanding capacity retention and cycling performance at 80°C.

  11. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    Directory of Open Access Journals (Sweden)

    Jinhua Mi

    2014-01-01

    Full Text Available Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA and fine-pitch ball grid array (FBGA interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  12. Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data.

    Science.gov (United States)

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  13. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  14. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  15. 高镍铸铁排气歧管低周热疲劳研究%Low Cycle Thermal Fatigue of High Nickel Cast Iron Exhaust Manifold

    Institute of Scientific and Technical Information of China (English)

    袁守利; 王超; 刘志恩; 李雪妮

    2014-01-01

    针对某新开发的车用高镍铸铁排气歧管进行了低周热疲劳寿命预测研究,为获取准确的热边界条件,采用STAR-CCM+与有限元软件进行基于疲劳寿命试验条件的非稳态耦合传热分析,得到了排气歧管的对流换热系数和温度场,建立了具有真实装配关系并施加螺栓预紧力的排气歧管有限元模型,在对等效塑性应变分析的基础上,结合Coffin-Manson公式进行寿命预测。结果表明,在排气歧管开发过程中,采用该方法可以快速对其热疲劳寿命进行评估。%The low cycle thermal fatigue life of a newly developed high nickel cast iron exhaust manifold for vehicle was pre -dicted.In order to obtain a more accurate thermal boundary condition , STAR-CCM+and FE software were applied to analyze non-steady coupled heat transfer based on fatigue life experiment .The convective heat transfer coefficient and temperature field of exhaust manifold were then obtained .The FE model of the exhaust manifold was established with accurate assembly relation a-mong different components and bolt pre -tightening loads .At last, using Coffin-Manson equation , life prediction was completed based on analysis of equivalent plastic strain .The result indicates that the analysis method could speed up thermal fatigue life prediction of an exhaust manifold during developing process .

  16. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    Science.gov (United States)

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  17. Statistics of superior records

    Science.gov (United States)

    Ben-Naim, E.; Krapivsky, P. L.

    2013-08-01

    We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution ρ. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution ρ. We find that the fraction of superior sequences SN decays algebraically with sequence length N, SN˜N-β in the limit N→∞. Interestingly, the decay exponent β is nontrivial, being the root of an integral equation. For example, when ρ is a uniform distribution with compact support, we find β=0.450265. In general, the tail of the parent distribution governs the exponent β. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences IN decays algebraically, albeit with a different decay exponent, IN˜N-α. We use the above statistical measures to analyze earthquake data.

  18. Frenillo labial superior doble

    Directory of Open Access Journals (Sweden)

    Carlos Albornoz López del Castillo

    Full Text Available El frenillo labial superior doble no sindrómico es una anomalía del desarrollo que no hemos encontrado reportada en la revisión bibliográfica realizada. Se presenta una niña de 11 años de edad que fue remitida al servicio de Cirugía Maxilofacial del Hospital "Eduardo Agramonte Piña", de Camagüey, por presentar un frenillo labial superior doble de baja inserción. Se describen los síntomas clínicos asociados a esta anomalía y el tratamiento quirúrgico utilizado para su solución: una frenectomía y plastia sobre la banda muscular frénica anormal que provocaba exceso de tejido en la mucosa labial. Consideramos muy interesante la descripción de este caso, por no haber encontrado reporte similar en la literatura revisada.

  19. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    Science.gov (United States)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  20. Sobredentadura total superior implantosoportada

    Directory of Open Access Journals (Sweden)

    Luis Orlando Rodríguez García

    2010-06-01

    Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.

  1. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, W.J. [Potlatch Corp., San Francisco, CA (United States)

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  2. Resistance to radiation and concretes thermal cycles for conditioning of spent radioactive sources; Resistencia a la irradiacion y ciclos termicos de concretos para acondicionamiento de fuentes radiactivas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez N, M.; Monroy G, F.; Gonzalez D, R. C.; Corona P, I. J.; Ortiz A, G., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In order to know the concrete type most suitable for use as a matrix of conditioning of spent radioactive sources, concrete test tubes using 4 different types of cement were prepared: CPC 30-Rs Extra, CPC 30-R Impercem, CPC 30-R Rs and CPC 30-R with two gravel sizes >30 mm and <10 mm. The concrete test tubes were subjected to testing compressive strength after 28 days of hardening and after being irradiated and subjected to thermal cycles. Subsequently they were characterized by X-ray diffraction and scanning electron microscopy, in order to evaluate whether these concretes accredited the tests set by the NOM-019-Nucl-1995. The results show that the compressive strength of the hardened concretes to 28 days presents values between 36 and 25 MPa; applying irradiation the resistance may decrease to 30% of its original strength; and if subjected to high and low temperatures the ettringite formation also causes a decrease in resistance. The results show that concretes made from cement Impercem, Cruz Azul with gravel <10 mm comply with the provisions of standard and they can be used for conditioning of spent radioactive sources. (Author)

  3. Comparing the sustainability impacts of solar thermal and natural gas combined cycle for electricity production in Mexico: Accounting for decision makers' priorities

    Science.gov (United States)

    Rodríguez-Serrano, Irene; Caldés, Natalia; Oltra, Christian; Sala, Roser

    2017-06-01

    The aim of this paper is to conduct a comprehensive sustainability assessment of the electricity generation with two alternative electricity generation technologies by estimating its economic, environmental and social impacts through the "Framework for Integrated Sustainability Assessment" (FISA). Based on a Multiregional Input Output (MRIO) model linked to a social risk database (Social Hotspot Database), the framework accounts for up to fifteen impacts across the three sustainability pillars along the supply chain of the electricity production from Solar Thermal Electricity (STE) and Natural Gas Combined Cycle (NGCC) technologies in Mexico. Except for value creation, results show larger negative impacts for NGCC, particularly in the environmental pillar. Next, these impacts are transformed into "Aggregated Sustainability Endpoints" (ASE points) as a way to support the decision making in selecting the best sustainable project. ASE points obtained are later compared to the resulting points weighted by the reported priorities of Mexican decision makers in the energy sector obtained from a questionnaire survey. The comparison shows that NGCC achieves a 1.94 times worse negative score than STE, but after incorporating decision makerś priorities, the ratio increases to 2.06 due to the relevance given to environmental impacts such as photochemical oxidants formation and climate change potential, as well as social risks like human rights risks.

  4. Low temperature thermal cycling as a beneficial treatment of titanium. Waermeermuedung im Tieftemperaraturbereich (77 K r reversible 373 K) als Verguetungsbehandlung (Training) des Titans

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, J. (Politechnika Wroclawska (Poland))

    1990-05-01

    A mechanical (tension tests and fatigue properties in bending) and microstructural investigation was carried out on 99,83%. Titanium specimens subject to low temperature thermal cycling (LTTC) (77 K {r reversible} 373 K). It was found that LTTC gives rise to a wide variety of structural phenomena, to a material density change (+0,12%) and to a 'shrinkage' of cristall lattice (compressive residual stresses). Tension tests carried out at ambient and 77 K temperatures revealed desirable changes in mechanical properties (increased values of YS{sub 0.2}, SS, {psi}, {delta}, W{sub {epsilon}}). Fatigue tests carried out in bending showed that the LTTC treated specimens had higher lives (Factor 5,7 at FS) or fatigue limits (47%), when tested at {sigma}{sub a}<0,62 (YS){sub 0.2}{sup b}, where (YS){sub 0.2}{sup b} is proof yield stress in static bending. It was found that the LTTC had a beneficial effect on mechanical properties of the material (Training of materials). (orig.).

  5. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  6. Packaging Reliability Effect of ENIG and ENEPIG Surface Finishes in Board Level Thermal Test under Long-Term Aging and Cycling.

    Science.gov (United States)

    Shen, Chaobo; Hai, Zhou; Zhao, Cong; Zhang, Jiawei; Evans, John L; Bozack, Michael J; Suhling, Jeffrey C

    2017-04-26

    This study illustrates test results and comparative literature data on the influence of isothermal aging and thermal cycling associated with Sn-1.0Ag-0.5Cu (SAC105) and Sn-3.0Ag-0.5Cu (SAC305) ball grid array (BGA) solder joints finished with ENIG and ENEPIG on the board side and ENIG on the package side compared with ImAg plating on both sides. The resulting degradation data suggests that the main concern for 0.4 mm pitch 10 mm package size BGA is package side surface finish, not board side. That is, ENIG performs better than immersion Ag for applications involving long-term isothermal aging. SAC305, with a higher relative fraction of Ag₃Sn IMC within the solder, performs better than SAC105. SEM and polarized light microscope analysis show cracks propagated from the corners to the center or even to solder bulk, which eventually causes fatigue failure. Three factors are discussed: IMC, grain structure, and Ag₃Sn particle. The continuous growth of Cu-Sn intermetallic compounds (IMC) and grains increase the risk of failure, while Ag₃Sn particles seem helpful in blocking the crack propagation.

  7. Thermal cycling properties of a lead-free positive temperature coefficient thermistor in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system

    Science.gov (United States)

    Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun

    2016-01-01

    A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.

  8. Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel

    Science.gov (United States)

    Shi, Ming-hao; Yuan, Xiao-guang; Huang, Hong-jun; Zhang, Si

    2017-07-01

    Microstructures and toughness of coarse-grained heat-affected zone (CGHAZ) with high-heat input welding thermal cycle in Zr-containing and Zr-free low-carbon steel were investigated by means of welding thermal cycle simulation. The specimens were subjected to a welding thermal cycle with heat inputs of 100, 400, and 800 kJ cm-1 at peak temperature of 1673 K (1400 °C) using a thermal simulator. The results indicate that excellent impact toughness at the CGHAZ was obtained in Zr-containing steel. The Zr oxide is responsible for AF transformation, providing the nucleation site for the formation AF, promoting the nucleation of AF on the multi-component inclusions. High fraction of acicular ferrite (AF) appears in Zr-containing steel, acting as an obstacle to cleavage propagation due to its high-angle grain boundary. The morphology of M-A constituents plays a key role in impact toughness of CGHAZ. Large M-A constituents with lath form can assist the micro-crack initiation and seriously decrease the crack initiation energy. The relationship of AF transformation and M-A constituents was discussed in detail.

  9. CEQATR Thermal Test Overview

    Science.gov (United States)

    Balusek, Alan R.

    2009-01-01

    A thermal test overview of the Constellation Environmental Qualification and Acceptance Test Requirement (CEQATR) is presented. The contents include: 1) CEQATR Thermal Test Overview; 2) CxP Environments; 3) CEQATR Table 1.2-1; 4) Levels of Assembly; 5) Definitions for Levels of Assembly; 6) Hardware Applicability; 7) CEQATR Thermal-Related Definitions; 8) Requirements for unit-level thermal testing; 9) Requirements for major assembly level thermal testing; 10) General thermal testing requirements; 11) General thermal cycle, thermal vacuum profiles; 12) Test tolerances; 13) Vacuum vs Ambient; 14) Thermal Gradient; 15) Sequence of Testing; 16) Alternative Strategies; 17) Protoflight; 18) Halt/Hass; 19) Humidity; and 20) Tailoring.

  10. V. S. O. P. - Computer Code System for Reactor Physics and Fuel Cycle Simulation

    OpenAIRE

    Teuchert, E.; Hansen, U.; Haas, K. A.

    1980-01-01

    V .S .O .P . (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprisesneutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based onneutron flux synthesis with depletion and shut-down features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employe...

  11. The determination of resistance of marble to thermal and moisture cycles: relevance and limits of the recent European natural stone standard

    Science.gov (United States)

    Bellopede, Rossana; Castelletto, Eleonora; Marini, Paola; Zichella, Lorena

    2015-04-01

    The recent European standard EN 16306:2013 specifies laboratory methodology on the determination of the resistance to thermal and moisture cycling of marble for cladding of building façades. In particular measurements of bowing and flexural strength should be performed before and at the end of the ageing cycles. Bowing is measured on specimens of dimension 30*100*400mm exposed to moisture from beneath and heating (gradually till 80°C) on the upper face. The flexural strength should be measured both on reference and on exposed specimens in order to assess the variation of mechanical properties. Additional non-destructive tests are foreseen but are not compulsory for the standard. Moreover, the Annex A of the EN 16306, contains a guidance of the limit values that could be useful for the building planner for façade panels dimensioning. Different varieties of marble (two from Italy, one from Greece and three from Portugal) have been tested by means of this laboratory ageing test. Non-destructive tests such as the measurements of Ultrasonic Pulse Velocity (UPV), porosity, and water absorption have been executed together with the conventional flexural strength test. Image analysis on thin sections soaked with methylene blue have been analysed to further investigate the correlation between porosity and tendency to bowing. Base on the results obtained, some consideration on the decrease of mechanical resistance and the bowing in relation to the variety of marble tested and the limit values indicated the Annex A of EN 16306 can be drawn. Besides, from the data analysed a deepened discussion has been made. It is known that bowing and rapid strength loss occur in some varieties of marble when used as exterior cladding but further considerations can be made: bowing and flexural strength are correlate and in which way? Often the bowing is related to the decrease of flexural strength but it happens that there is a decrease in the mechanical resistance of the stone also

  12. Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling

    Science.gov (United States)

    Sluijs, A.; van Roij, L.; Harrington, G. J.; Schouten, S.; Sessa, J. A.; LeVay, L. J.; Reichart, G.-J.; Slomp, C. P.

    2014-07-01

    The Paleocene-Eocene Thermal Maximum (PETM, ~ 56 Ma) was a ~ 200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean-atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen concentrations and nutrient cycling remain largely unclear. We identify the PETM in a sediment core from the US margin of the Gulf of Mexico. Biomarker-based paleotemperature proxies (methylation of branched tetraether-cyclization of branched tetraether (MBT-CBT) and TEX86) indicate that continental air and sea surface temperatures warmed from 27-29 to ~ 35 °C, although variations in the relative abundances of terrestrial and marine biomarkers may have influenced these estimates. Vegetation changes, as recorded from pollen assemblages, support this warming. The PETM is bracketed by two unconformities. It overlies Paleocene silt- and mudstones and is rich in angular (thus in situ produced; autochthonous) glauconite grains, which indicate sedimentary condensation. A drop in the relative abundance of terrestrial organic matter and changes in the dinoflagellate cyst assemblages suggest that rising sea level shifted the deposition of terrigenous material landward. This is consistent with previous findings of eustatic sea level rise during the PETM. Regionally, the attribution of the glauconite-rich unit to the PETM implicates the dating of a primate fossil, argued to represent the oldest North American specimen on record. The biomarker isorenieratene within the PETM indicates that euxinic photic zone conditions developed, likely seasonally, along the Gulf Coastal Plain. A global data compilation indicates that O2 concentrations dropped in all ocean basins in response to warming, hydrological change, and carbon cycle feedbacks. This culminated in (seasonal) anoxia along many continental margins, analogous to modern trends. Seafloor deoxygenation and widespread (seasonal) anoxia likely

  13. 热循环对锅炉管热喷涂Ni-Cr基纳米涂层的影响%Effect of thermal cycle on Ni-Cr based nanostructured thermal spray coating in boiler tubes

    Institute of Scientific and Technical Information of China (English)

    V.SENTHILKUMAR; B.THIYAGARAJAN; M.DURAISELVAM; K.KARTHICK

    2015-01-01

    采用机械球磨法制备Ni-Cr基纳米原料粉末.粉末颗粒在行星球磨机中反复经历焊合、碎裂和重焊合过程.采用超音速火焰喷涂工艺(HVOF)在碳钢管上喷涂球磨纳米粉末.利用金相显微镜、XRD、扫描电子显微镜(SEM),高分辨透射电子显微镜(HR-TEM)、能谱(EDS)和显微硬度测试对原料粉和HVOF喷涂涂层进行表征.对喷涂和未喷涂试样进行热循环分析,研究相、冶金性能和显微硬度的变化.与传统喷涂试样相比,Ni-Cr纳米涂层试样具有更高的力学和冶金性能.与传统涂层相比,纳米涂层的显微组织更均匀和紧密.%Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline powders were used to coat carbon steel tubes using high velocity oxygen fuel (HVOF) thermal spraying process. The characterization of the feedstock powder and HVOF coated substrates was performed using optical microscope, X-ray diffractometer (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectrometer (EDS) and microhardness tests. The coated and uncoated samples were subjected to different thermal cycles and characterized for their phase changes, metallurgical changes and microhardness variations. Ni-Cr nanostructured coated samples exhibited higher mechanical and metallurgical properties compared to their conventionally coated counter parts. The results showed that the nanostructured coating possessed a more uniform and denser microstructure than the conventional coating.

  14. Influence of homo-buffer layers and post-deposition rapid thermal annealing upon atomic layer deposition grown ZnO at 100 °C with three-pulsed precursors per growth cycle

    Science.gov (United States)

    Cheng, Yung-Chen; Yuan, Kai-Yun; Chen, Miin-Jang

    2017-10-01

    ZnO main epilayers are deposited with three-pulsed precursors in every growth cycle at 100 °C on various thicknesses of 300 °C-grown homo-buffer layers by atomic layer deposition (ALD) on sapphire substrate. Samples are treated without and with post-deposition rapid thermal annealing (RTA). Two different annealing temperatures 300 and 1000 °C are utilized in the ambience of oxygen for 5 min. Extremely low background electron concentration 8.4 × 1014 cm-3, high electron mobility 62.1 cm2/V s, and pronounced enhancement of near bandgap edge photoluminescence (PL) are achieved for ZnO main epilayer with sufficient thickness of buffer layer (200 ALD cycles) and post-deposition RTA at 1000 °C. Effective block and remove of thermally unstable mobile defects and other crystal lattice imperfections are the agents of quality promotion of ZnO thin film.

  15. Evolución microestructural de un acero inoxidable superdúplex bajo ciclos térmicos de corta duración Microstructural evolution of a superduplex stainless steel under short duration thermal cycles

    Directory of Open Access Journals (Sweden)

    Ivan Mendoza Bravo

    2010-09-01

    Full Text Available Este trabajo investiga el efecto de los ciclos térmicos sobre la microestructura de un acero inoxidable superdúplex específicamente sobre la formación de fase sigma. Los ciclos térmicos examinados son similares a los que se producen en la zona afectada térmicamente del acero inoxidable cuando se aplica el proceso de soldadura GTAW. Las temperaturas y tiempo de permanencia para el ciclo térmico se determinan usando un modelo de distribución de temperatura típico. La aplicación de los ciclos térmicos permite conocer la evolución microestructural del acero en el rango de 475ºC a 1100ºC con un tiempo corto de calentamiento y determinar la temperatura de formación y disolución de la fase sigma, pasando por su temperatura de máxima formación. Se examina la formación preferencial y la composición química de la fase sigma.This work investigates the effect of thermal cycling on the microstructure of a stainless steel superduplex, specifically on the sigma phase formation. The examined thermal cycles are similar to those produced in the heat affected zone of stainless steel when applying GTAW welding process. The temperatures and residence time for the cycle was determined using a typical thermal model of temperature distribution. The application of thermal cycles shows the microstructural evolution of steel in the range of 475ºC to 1100ºC with a short heating time and determines the temperature of formation and disolution of the sigma phase, and its maximum temperature of formation. The formation mechanism and chemical composition of the sigma phase is also examined.

  16. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  17. Processing, characterization, and properties of some novel thermal barrier coatings

    Science.gov (United States)

    Jadhav, Amol D.

    The efficacy of ceramic thermal barrier coatings (TBCs) used to protect and to insulate metal components in engines increases with the thickness of the TBCs. However, the durabilities of thick TBCs deposited using conventional ceramic-coating deposition methods have not been adequate. Here the feasibility of depositing highly durable thick TBCs (1.5 to 4 mm thickness) of ZrO 2-7 wt.% Y2O3 (7YSZ) on bond-coated superalloy substrates using the solution-precursor plasma spray (SPPS) method has been demonstrated. Thermal cyclic durabilities of the thick SPPS TBCs have been shown to be much superior compared to TBCs deposited using the conventional air-plasma-spray (APS) process. To evaluate the performance of thick APS and SPPS TBCs, mechanical properties of free-standing coatings and coating/substrate interfaces have been determined experimentally. Additional evaluation of TBC performance has been obtained from studies of damage and development of thermally grown oxide (TGO) at the interface as a result of thermal cycling. The later results are used to suggest mechanisms of chemical failure of TGO in thick plasma-sprayed TBCs. Based on the experimental results and numerical analysis of the TBC residual stresses, the dramatic improvement in the thermal cycling life in the SPPS TBCs is attributed to superior mechanical properties of SPPS coatings. The presence of the strain tolerant vertical cracks in SPPS TBCs reduces the driving force for TBC spallation under mode-II loading. Additionally, high in-plane fracture toughness in the SPPS TBCs under mode-I loading delays the TBC spallation significantly. Finally, thermal conductivity of the SPPS TBCs has been reduced by microstructural tailoring. Analytical and object-oriented finite element (OOF) models have been used to analyze the experimental thermal conductivity data, and to predict thermal conductivities of engineered TBCs.

  18. Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Li, Zhenghui; Huang, Zhikun; Xu, Xingfa [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Li, Yunyong; Shi, Zhicong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China)

    2015-09-25

    Highlights: • G/NiO was synthesized by using alcohols-reduced graphene as substrate. • G/NiO presents a globule-on-sheet structure and reveals a synergistic effect. • G/NiO displays high specific capacitance and superior cycling stability. - Abstract: Graphene/nickel oxide composite (G/NiO) was synthesized through a facile hydrothermal method and subsequently microwave thermal treatment by using alcohols-reduced graphene as substrate. The as-prepared G/NiO was characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The results indicate that the graphene oxide has been successfully reduced to graphene, and NiO nanoparticles are homogeneous anchored on the surface of graphene, forming a globule-on-sheet structure. The loading content of NiO nanoparticles anchoring on the surface of graphene nanosheets can be controlled by adjusting the hydrothermal temperature. The G/NiO displays superior electrochemical performance with a specific capacitance of 530 F g{sup −1} at 1 A g{sup −1} in 2 M of NaOH. After 5000 cycles, the supercapacitor still maintains a specific capacitance of 490 F g{sup −1} (92% retention of the initial capacity), exhibiting excellent cycling stability.

  19. Performance Degradation of Thermal Parameters during Cycle Ageing of High Energy Density Ni-Mn-Co based Lithium-Ion Battery Cells

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    The accelerated demand for electrifying the transportation sector, coupled with the continuous improvement of rechargeable batteries’ characteristics, have made modern high-energy Lithium-ion (Li-ion) batteries the standard choice for hybrid and electric vehicles (EVs). Consequently, Li......-ion batteries’ electrochemical and thermal characteristics are very important topics, putting them at the forefront of the research. Along with the electrical performance of Li-ion battery cells, their thermal behavior needs to be accurately predicted during operation and over the lifespan of the application...... as well, since the thermal management of the battery is crucial for the safety of the EV driver. Moreover, the thermal management system can significantly lower the degradation rate of the battery pack and thus reduce costs. In this paper, the thermal characterization of a commercially available Nickel...

  20. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  1. Numerical study of thermomagnetic cycle

    Science.gov (United States)

    Almanza, Morgan; Pasko, Alexandre; Mazaleyrat, Frédéric; LoBue, Martino

    2017-03-01

    We estimate the efficiency and power of a thermal energy harvesting thermodynamic cycle using a magnetocaloric material as active substance. The thermodynamic cycle is computed using an equation of state, either extrapolated from experimental data or deduced using a phenomenological Landau model. The magnetic work is then compared to the maximum work. Afterwards power is estimated using a simple thermal exchange model. Simulations of different cycles for different working points illustrate the tradeoff between power and efficiency.

  2. 75 FR 28542 - Superior Resource Advisory Committee

    Science.gov (United States)

    2010-05-21

    ... orient the new Superior Resource Advisory Committee members on their roles and responsibilities. DATES... of the roles and responsibilities of the Superior Resource Advisory Committee members; Election of... Forest Service Superior Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice...

  3. [The superior laryngeal nerve and the superior laryngeal artery].

    Science.gov (United States)

    Lang, J; Nachbaur, S; Fischer, K; Vogel, E

    1987-01-01

    Length, diameter and anastomoses of the nervus vagus and its ganglion inferius were measured 44 halved heads. On the average, 8.65 fiber bundles of the vagus nerve leave the retro-olivary area. In the area of the jugular foramen is the near superior ganglion of the 10th cranial nerve. In this area were found 1.48 (mean value) anastomoses with the 9th cranial nerve. 11.34 mm below the margo terminalis sigmoidea branches off the ramus internus of the accessory nerve which has a length of 9.75 mm. Further anastomoses with the 10th cranial nerve were found. The inferior ganglion of the 10th nerve had a length of 25.47 mm and a diameter of 3.46 mm. Five mm below the ganglion the 10th nerve had a width of 2.9 and a thickness of 1.5 mm. The mean length of the superior sympathetic ganglion was 26.6 mm, its width 7.2 and its thickness 3.4 mm. In nearly all specimens anastomoses of the superior sympathetic ganglion with the ansa cervicalis profunda and the inferior ganglion of the 10th cranial nerve were found. The superior laryngeal nerve branches off about 36 mm below the margo terminalis sigmoidea. The width of this nerve was 1.9 mm, its thickness 0.8 mm on the right and 1.0 mm on the left side. The division in the internal and external rami was found about 21 mm below its origin. Between the n. vagus and thyreohyoid membrane the ramus internus had a length of 64 mm, the length of external ramus between the vagal nerve and the inferior pharyngeal constrictor muscle was 89 mm. Its mean length below the thyreopharyngeal part was 10.7 mm, 8.6 branchlets to the cricothyroid muscle were counted. The superior laryngeal artery had its origin in 80% of cases in the superior thyroideal artery, in 6.8% this vessel was a branch of the external carotid artery. Its average outer diameter was 1.23 mm on the right side and 1.39 mm on the left. The length of this vessel between its origin and the thyreohyoid membrane was 34 mm. In 7% on the right side and in 13% on the left, the superior

  4. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  5. STEREO Superior Solar Conjunction Mission Phase

    Science.gov (United States)

    Ossing, Daniel A.; Wilson, Daniel; Balon, Kevin; Hunt, Jack; Dudley, Owen; Chiu, George; Coulter, Timothy; Reese, Angel; Cox, Matthew; Srinivasan, Dipak; hide

    2017-01-01

    With its long duration and high gain antenna (HGA) feed thermal constraint; the NASA Solar-TErestrial RElations Observatory (STEREO) solar conjunction mission phase is quite unique to deep space operations. Originally designed for a two year heliocentric orbit mission to primarily study coronal mass ejection propagation, after 8 years of continuous science data collection, the twin STEREO observatories entered the solar conjunction mission phase, for which they were not designed. Nine months before entering conjunction, an unforeseen thermal constraint threatened to stop daily communications and science data collection for 15months. With a 3.5 month long communication blackout from the superior solar conjunction, without ground commands, each observatory will reset every 3 days, resulting in 35 system resets at an Earth range of 2 AU. As the observatories will be conjoined for the first time in 8 years, a unique opportunity for calibrating the same instruments on identical spacecraft will occur. As each observatory has lost redundancy, and with only a limited fidelity hardware simulator, how can the new observatory configuration be adequately and safely tested on each spacecraft? Without ground commands, how would a 3-axis stabilized spacecraft safely manage the ever accumulating system momentum without using propellant for thrusters? Could science data still be collected for the duration of the solar conjunction mission phase? Would the observatories survive? In its second extended mission, operational resources were limited at best. This paper discusses the solutions to the STEREO superior solar conjunction operational challenges, science data impact, testing, mission operations, results, and lessons learned while implementing.

  6. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  7. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  8. What are Millian Qualitative Superiorities?

    Directory of Open Access Journals (Sweden)

    Jonathan Riley

    2008-04-01

    Full Text Available In an article published in Prolegomena 2006, Christoph Schmidt-Petri has defended his interpretation and attacked mine of Mill’s idea that higher kinds of pleasure are superior in quality to lower kinds, regardless of quantity. Millian qualitative superiorities as I understand them are infinite superiorities. In this paper, I clarify my interpretation and show how Schmidt-Petri has misrepresented it and ignored the obvious textual support for it. As a result, he fails to understand how genuine Millian qualitative superiorities determine the novel structure of Mill’s pluralistic utilitarianism, in which a social code of justice that distributes equal rights and duties takes absolute priority over competing considerations. Schmidt-Petri’s own interpretation is a non-starter, because it does noteven recognize that Mill is talking about different kinds of pleasant feelings, such that the higher kinds are intrinsically more valuable than the lower. I conclude by outlining why my interpretation is free of any metaphysical commitment to the “essence” of pleasure.

  9. Isolated superior mesenteric artery dissection

    Directory of Open Access Journals (Sweden)

    Lalitha Palle

    2010-01-01

    Full Text Available Isolated superior mesenteric artery (SMA dissection without involvement of the aorta and the SMA origin is unusual. We present a case of an elderly gentleman who had chronic abdominal pain, worse after meals. CT angiography, performed on a 64-slice CT scanner, revealed SMA dissection with a thrombus. A large artery of Drummond was also seen. The patient was managed conservatively.

  10. A escrita no Ensino Superior

    Directory of Open Access Journals (Sweden)

    Maria Conceição Pillon Christofoli

    2013-01-01

    Full Text Available http://dx.doi.org/10.5902/198464445865 O presente artigo trata de apresentar resultados oriundos de pesquisa realizada no Ensino Superior, enfocando a escrita em contextos universitários. Depoimentos por parte dos acadêmicos evidenciam certa resistência ao ato de escrever, o que acaba muitas vezes distanciando o sujeito da produção de um texto. Assim sendo, mesmo que parciais, os resultados até então analisados dão conta de que: pressuposto 1 – há ruptura da ideia de coerência entre o que pensamos, o que conseguimos escrever, o que entende nosso interlocutor; pressuposto 2 – a autocorreção de textos como exercício de pesquisa é imprescindível para a qualificação da escrita; pressuposto 3 – os diários de aula representam rico instrumento para a qualificação da escrita no Ensino Superior; pressuposto 4 – há necessidade de que o aluno do Ensino Superior escreva variados tipos de escrita, ainda que a universidade cumpra com seu papel, enfatizando a escrita acadêmica; pressuposto 5 – o trabalho com a escrita no Ensino Superior deve enfatizar os componentes básicos da expressão escrita: o código escrito e a composição da escrita. Palavras-chave: Escrita; Ensino Superior; formação de professores.

  11. Effects of thermal cycling on surface roughness of dental CAD/CAM resin composites%冷热循环老化对可切削复合树脂表面粗糙度的影响

    Institute of Scientific and Technical Information of China (English)

    李欣; 曾剑玉; 司文捷; 张曼曼; 高恺弟

    2016-01-01

    Objective To investigate the influence of thermal cycling on surface roughness of different kinds of dental CAD/CAM resin composites. Methods Three kinds of CAD/CAM resin composite (3M ESPE Lava Ultimate, AMBORINO High-Class,Upcera Hyramic) , Shofu Ceramage and Upcera UP-CAD were included in this study. The surface roughness (Ra) of these five kinds of materials were determined before and after thermal cycling for 5,000 and 10,000 times respectively. The data were statistically analyzed. Results The Ra values of the three kinds of CAD/CAM resin composite and Upcera UP-CAD did not change after thermal cycling(P<0. 05), while the Ra value of Shofu Ceramage increased(P<0. 001). Conclusion The roughness of the CAD/CAM resin composite and ceramic material tested were stable after thermal cycling,while the roughness of light-cured resin composite increased.%目的:研究冷热循环老化对可切削复合树脂材料粗糙度的影响。方法以可切削复合树脂A( Lava Ultimate ,3M ESPE)、B(High-Class, AMBORINO)、C(Hyramic 润瓷, Upcera)为实验组,以光固化复合树脂 D ( Ceramage, Shofu)和二硅酸锂玻璃陶瓷E( UP-CAD, Upcera)为对照组,分别在老化前和经5000及10000次冷热循环后测量表面粗糙度( Ra),并观察表面形貌,进行统计学分析。结果在老化前,D和E组间Ra值差异有统计学意义(P<0.05),其余各组间Ra值差异均无统计学意义。经冷热循环老化实验,A、B、C和E四组材料冷热循环前后材料表面粗糙度Ra值的差异均无统计学意义;D组材料冷热循环前后,材料表面粗糙度Ra值的差异有显著统计学意义(P<0.001)。结论经冷热循环老化后,可切削复合树脂和玻璃陶瓷表面粗糙度较为稳定,而光固化复合树脂粗糙度增加。

  12. Research of construction management on thermal power project based on life cycle theory%基于全寿命周期的火电工程建设管理研究

    Institute of Scientific and Technical Information of China (English)

    张晓鲁

    2011-01-01

    A method of applying life cycle theory into the control and management on thermal power project construction domain was proposed to fit the strong complexity and particularity in the construction process.An integrated control conceptual model on thermal power project construction was established which consists of quality,schedule, investment and safety.And the organization mode of integrated control was set up.Then, the integrated control flow was illustrated in detail.Finally, an information management platform on thermal power project was built up based on life cycle theory.The application result shows that the theory and the platform provide an effective technical support for the construction and management of the thermal power project.%针对火电工程建设具有很强的复杂性和特殊性,将全寿命周期理论应用于火电工程建设的控制和管理领域,建立了集火电工程建设的质量、进度、投资和安全为一体的集成控制概念模型和管理组织模式,论述了火电工程建设过程集成控制流程,并搭建了全寿命周期管理下的火电工程建设信息管理平台.工程应用实例表明,所提出的理论和搭建的平台能有效地提高火电工程建设管理水平,为火电工程建设的控制与管理提供理论与技术支持.

  13. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    Science.gov (United States)

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  14. Elimination of the induced malfunctions and use of dynamic prognosis in a thermodynamic diagnosis system of the thermal cycling; Eliminacao das malfuncoes induzidas e utilizacao do prognostico dinamico em sistemas de diagnostico termodinamico de ciclos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.A.M.; Venturini, O.J.; Lora, E.E.S. [Universidade Federal de Itajuba (NEST/IEM/UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida], Emails: juliomendes@unifei.edu.br, osvaldo@unifei.edu.br, electo@unifei.edu.br

    2009-07-01

    The search for more efficient thermal cycles has led a growing complexity of these cycles and therefore increased the inter-relationships between the thermodynamic components. This complexity is further enhanced with the over time, due to the occurrence of both natural as early degradation in a more or less degree, of all plant components. Several methodologies have been proposed for creating system for diagnostic / prognostic with the objective to detect these degradations (defects) and quantify the gain that can be obtained in the performance indicators of thermal cycles (usually specific fuel consumption and power net) by the elimination of anomalies. Two points have been emphasized as the most difficult in the development of such systems: the distinction between the performance variation of the components due only to the point of operation outside of these project components, caused by the presence of abnormality in another component (induced malfunction) and a decrease in the performance due to the presence of anomalies in the component itself (intrinsic malfunction). The second difficulty is the quantification of the effects induced by the elimination of each of the present anomalies. This work makes use of the method of reconciliation and using individual models of each component to predict unusual behavior of the same design point. The comparison of data from the system plant information, relating to the current state and data from the models, is used to detect anomalies. The methodology is explained in detail and an application of it in a Rankine cycle is used to well understand, especially in parts for the elimination of induced malfunctions, and related to the induced changes by the elimination of each one of the anomalies.

  15. Pensamiento Superior y Desarrollo Territorial

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Racancoj Alonzo

    2015-04-01

    Full Text Available Esta reflexión pretende explicar el papel, fundamental, que juega el pensamiento superior, en la formulación y la práctica de modelos de desarrollo territorial local; para que contribuyan de forma sustantiva, en la transformación de las condiciones socioeconómicas adversas que hoy viven comunidades indígenas y rurales de muchos países, como Guatemala, situación que puede resumirse en altos índices de pobreza y desnutrición. Pero, el pensamiento superior, debe ser competencia de la población con pertenencia a lo local, pues si y solo si esta condición existe, se dará validez y viabilidad al desarrollo territorial. Para alcanzar competencias de pensamiento superior, en los espacios locales, se tiene que superar obstáculos en el modelo de universidad, que hoy estamos familiarizados a ver y pensar; modelos que tienen las características de: herencia colonial, disfunción con la problemática económica, cultural, social y política de la sociedad y la negación de los saberes ancestrales.

  16. Superior sulcus tumors (Pancoast tumors).

    Science.gov (United States)

    Marulli, Giuseppe; Battistella, Lucia; Mammana, Marco; Calabrese, Francesca; Rea, Federico

    2016-06-01

    Superior Sulcus Tumors, frequently termed as Pancoast tumors, are a wide range of tumors invading the apical chest wall. Due to its localization in the apex of the lung, with the potential invasion of the lower part of the brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion, the superior sulcus tumors cause characteristic symptoms, like arm or shoulder pain or Horner's syndrome. The management of superior sulcus tumors has dramatically evolved over the past 50 years. Originally deemed universally fatal, in 1956, Shaw and Paulson introduced a new treatment paradigm with combined radiotherapy and surgery ensuring 5-year survival of approximately 30%. During the 1990s, following the need to improve systemic as well as local control, a trimodality approach including induction concurrent chemoradiotherapy followed by surgical resection was introduced, reaching 5-year survival rates up to 44% and becoming the standard of care. Many efforts have been persecuted, also, to obtain higher complete resection rates using appropriate surgical approaches and involving multidisciplinary team including spine surgeon or vascular surgeon. Other potential treatment options are under consideration like prophylactic cranial irradiation or the addition of other chemotherapy agents or biologic agents to the trimodality approach.

  17. Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling

    NARCIS (Netherlands)

    Sluijs, A.; van Roij, L.; Harrington, G.J.; Schouten, S.; Sessa, J.A.; LeVay, L.J.; Reichart, G.-J.; Slomp, C.P.

    2014-01-01

    The Paleocene–Eocene Thermal Maximum (PETM, ~ 56 Ma) was a ~ 200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean–atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen concentrations

  18. Thermal simulation of operational cycle of a steel ladles. Part 2: model utilization; Simulacao termica do ciclo operacional de uma panela de aciaria. Parte 2: utilizacao do modelo

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Cesar L.; Baptista, Luis A.S. [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil); Dellaretti Filho, Osmario [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenheria Metalurgica

    1986-12-31

    The results of the mathematical model described in part I have been compared with literature and experimental data. A good agreement has been found. The results show that refractory material close to internal surface undergoes a steep thermal gradient around 560 deg C/cm during ladle filling (author). 11 figs., 4 refs

  19. Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling

    NARCIS (Netherlands)

    Sluijs, A.; van Roij, L.; Harrington, G.J.; Schouten, S.; Sessa, J.A.; LeVay, L.J.; Reichart, G.-J.; Slomp, C.P.

    2014-01-01

    The Paleocene–Eocene Thermal Maximum(PETM, ?56 Ma) was a ?200 kyr episode of globalwarming, associated with massive injections of 13C-depletedcarbon into the ocean–atmosphere system. Although climatechange during the PETM is relatively well constrained,effects on marine oxygen concentrations and nut

  20. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.

    Science.gov (United States)

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao; Wei, Yi; Zheng, Jia-Xin; Lin, Ling-Piao; Lu, Jun; Amine, Khalil; Zhuang, Quan-Chao; Pan, Feng

    2015-12-02

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

  1. Weld heat-affected zone in Ti-6Al-4V alloys. Part 1: Computer simulation of the effect of weld variables on the thermal cycles in the HAZ

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.K. [Naval Dockyard, Bombay (India). Naval Chemical and Metallurgical Lab.; Kulkarni, S.D.; Gopinathan, V. [Indian Inst. of Technology, Bombay (India). Dept. of Metallurgical Engineering; Krishnan, R. [Gas Turbine Research Establishment, Bangalore (India)

    1995-09-01

    The weld thermal cycles encountered in the HAZ of titanium alloys have been characterized using modified Rosenthal equations. The results are shown in the form of axonometric plots depicting the effect of two weld variables keeping the other variables fixed. Computer simulation results show that the heat input and the plate thickness are the major variables affecting the thermal cycles in the HAZ. The effects of changes in welding speed are reflecting in the variation in the heat input. The electrode radius has minimal effect and can be termed as the minor variable. Preheat or interpass temperatures have an intermediate effect. An increase in electrode radius or decrease in plate thickness requires large apparent displacement of the heat source above the plate surface to be incorporated in the analytical solutions. The melt pool width increases sharply with an increase in the heat input (a/v) or a decrease in plate thickness (d); however, preheat temperature (T{sub 0}) has negligible effect. The effect of weld variables on the effective heat input is also similar. The t{sub 8/5} parameter increases sharply with reducing plate thickness or increasing heat input.

  2. Modelling and simulation of a thermal electric station with cogeneration and combined cycle; Modelagem e simulacao de uma central termeletrica com cogeracao e ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Kalid, Ricardo [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica; Sales, Emerson [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Kiperstok, Asher [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Ambiental], e-mail: asher@ufba.br; Souza, Leonardo; Freitas, Adriano de Sena [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Faculdade de Engenharia Quimica; Pires, Victor Matta; Almeida, Edgar Nunes de [Braskem S.A., Camacari, BA (Brazil). Unidade de Insumos Basicos], e-mail: victor.mattapires@braskem.com.br

    2008-01-15

    This paper presents a simulator used in the managing of thermoelectric unit of the Petrochemical Complex of Camacari, Bahia, Brazil which disposes of cogeneration and combined cycle. This simulator allows the integrated assessment of different operational configurations giving a visualization of the operational condition with the smaller operational cost, and consequently smaller environmental impact.

  3. Did prolonged two-stage fragmentation of the supercontinent Kenorland lead to arrested orogenesis on the southern margin of the Superior province?

    Institute of Scientific and Technical Information of China (English)

    Grant M. Young

    2015-01-01

    Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleo-proterozoic Huronian Supergroup of Ontario, Canada is present in the Animikie Basin on the south shore of Lake Superior. These rocks, beginning with the glaciogenic Gowganda Formation, are interpreted as passive margin deposits. The absence of the lower Huronian (rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin (Chocolay Group) to deposition on the upper plate of a north-dipping detachment fault, which lacks sediments of the rift phase. Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province, renewed uplift (plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga. Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus–the Great Stratigraphic Gap–which lasted for about 350 Ma. This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean. These events caused regional uplift (the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode, including the Penokean orogeny, belatedly flooded the southern margin of the Superior province with foreland basin deposits, established the limits of the Superior structural province and played an important role in constructing Laurentia.

  4. Did prolonged two-stage fragmentation of the supercontinent Kenorland lead to arrested orogenesis on the southern margin of the Superior province?

    Directory of Open Access Journals (Sweden)

    Grant M. Young

    2015-05-01

    Full Text Available Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario, Canada is present in the Animikie Basin on the south shore of Lake Superior. These rocks, beginning with the glaciogenic Gowganda Formation, are interpreted as passive margin deposits. The absence of the lower Huronian (rift succession from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin (Chocolay Group to deposition on the upper plate of a north-dipping detachment fault, which lacks sediments of the rift phase. Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province, renewed uplift (plume activity caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga. Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus -- the Great Stratigraphic Gap -- which lasted for about 350 Ma. This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean. These events caused regional uplift (the Great Stratigraphic Gap and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode, including the Penokean orogeny, belatedly flooded the southern margin of the Superior province with foreland basin deposits, established the limits of the Superior structural province and played an important role in constructing Laurentia.

  5. Effect of thermal cycling on the surface roughness of various resin composites%温度循环老化对复合树脂表面粗糙度的影响

    Institute of Scientific and Technical Information of China (English)

    宋琨; 李媛; 岳林; 闫鹏; 林红

    2012-01-01

    目的 了解复合树脂经温度循环老化作用后表面粗糙度的变化,分析复合树脂组成成分和工艺对其表面粗糙度的影响,为临床选择和应用复合树脂材料提供指导.方法 选用复合树脂A(Clearfil AP-X,Kurary)、B(Filtek P60,3M ESPE)、C(Filtek P90,3M ESPE)和D(Clearfil MAJESTY,Kurary)制成试样,每组5个样本,在抛光即刻和经10000次及20000次温度循环(55℃和5℃,30s)处理后,用表面粗糙度仪检测试样,获得表面粗糙度Ra值,并进行统计学分析.结果 抛光即刻树脂A的Ra值[(0.16±0.03)μm]显著高于树脂B[(0.09±0.01)μm]、树脂C[(0.09±0.02)μm]和树脂D[(0.08±0.02)μm](P<0.05),树脂B、C、D的Ra值差异无统计学意义(P>0.05);4种树脂在温度循环10 000次后的Ra值均无变化(P >0.05);20 000次温度循环后,树脂A的Ra值显著增高[(0.20±0.02) μm]较抛光后即刻[(0.16±0.03)μm]和10000次温度循环后[(0.17±0.03) μm]显著增高(P<0.05),其他3种树脂Ra值仍无显著变化(P>0.05).结论 短期温度循环老化作用不会导致复合树脂表面粗糙度变化,延长老化时间后大颗粒玻璃填料树脂表面粗糙度增加;纳米工艺可显著改善树脂表面粗糙度;新型硅氧烷类树脂的表面粗糙性表现良好.%Objective To evaluate the effect of thermal cycling on the surface roughness of four resin composites with various matrix and fillers.Methods Two glass hybrid filled composites(Clearfil AP-X and Clearfil MAJESTY,Kurary) and two quartz hybrid filled composites(Filtek P60 and Filtek P90,3M ESPE) were tested.Filtek P90 was silorane-based resin composite,and the others were methacrylate-based resins.A total of 20 cubical specimens (n =5 per material) were obtained.After being polished,the mean surface roughness(Ra) of all of specimens was measured as the baselines.All specimens were thermocycled between 5 ℃ and 55 ℃ in distilled water for 10000 cycles with a dwell time of 30 seconds

  6. Menstrual Cycle

    Science.gov (United States)

    ... Luteal (after egg release) Changes During the Menstrual Cycle The menstrual cycle is regulated by the complex interaction of ... egg release) Luteal (after egg release) The menstrual cycle begins with menstrual bleeding (menstruation), which marks the first day of ...

  7. Entidades fiscalizadoras superiores y accountability

    OpenAIRE

    Estela Moreno, María

    2016-01-01

    OBJETIVOS DE LA TESIS: El objetivo general del trabajo es establecer el nivel de eficacia de las Entidades Fiscalizadoras Superiores (EFS) como agencia asignada y herramienta de accountability horizontal, a través de la valoración de su diseño institucional y de la calidad de sus productos finales, los informes de auditoría, estableciéndose los siguientes objetivos específicos: 1. Relevar las nociones de accountability, actualizando el Estado del Arte de la cuestión. 2. Analizar la ...

  8. Thermal analysis of the heat recuperator of a combined cycle thermoelectric central; Analisis termico del recuperador de calor de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, Hernando; Sanchez, I.; Lazcano, L. C.; Ambriz, Juan Jose; Alvarez, M. [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico); Gonzalez, O. [Comision Federal de Electricidad, Tula (Mexico)

    1996-12-31

    The thermoelectric centrals of the combined cycle type (Brayton Cycle and Rankine Cycle) present a series of opportunities to increase the efficiency of the combined cycle or of the generated power. This paper shows the methodology for the performance of energy balances in a heat recuperator (H. R.), typically employed in the combined cycle stations operating in Mexico, for the assessment of the energy harnessing in the different sections conforming a H. R. The effect of the installation of evaporative coolers and/or an absorption cooling system at the gas turbine compressor intake on the steam generation in the heat recuperator, is evaluated. This extra generation of steam is quantified for its potential use in the same absorption refrigeration system. From the assessment, it follows up that the steam generation in the H.R. is inversely proportional to the ambient temperature and that, although the increased amount of steam generated can not be harnessed in total by the steam turbine, the remaining fraction is good enough to cover the heat demand for the operation of the refrigeration system. [Espanol] Las centrales termoelectricas del tipo ciclo combinado (ciclo Brayton y ciclo Rankine) presentan un conjunto de oportunidades para incrementar la eficiencia del ciclo combinado o bien la potencia generada. En el presente trabajo se expone la metodologia para realizar los balances de energia en un recuperador de calor (R.C.) tipicamente utilizado en las Centrales de Ciclo Combinado (CCC) que operan en Mexico, para evaluar el aprovechamiento de la energia en las diferentes secciones que conforman un R.C. Se evalua el efecto que tiene la instalacion de enfriadores evaporativos y/o un sistema de enfriamiento por absorcion en la succion del compresor de la turbina de gas sobre la generacion de vapor en el recuperador de calor. Se cuantifica esta generacion extra de vapor para su posible utilizacion en el mismo sistema de refrigeracion por absorcion. De la evaluacion se

  9. A short note on Reitlinger thermodynamic cycles

    CERN Document Server

    Sparavigna, Amelia Carolina

    2015-01-01

    It is well known that Carnot cycle is the thermodynamic cycle which has the best thermal efficiency. However, an entire class of cycles exists that can have the same maximum efficiency: this class is that of the regenerative Reitlinger cycles. Here we discuss them.

  10. The sentence superiority effect revisited.

    Science.gov (United States)

    Snell, Joshua; Grainger, Jonathan

    2017-11-01

    A sentence superiority effect was investigated using post-cued word-in-sequence identification with the rapid parallel visual presentation (RPVP) of four horizontally aligned words. The four words were presented for 200ms followed by a post-mask and cue for partial report. They could form a grammatically correct sentence or were formed of the same words in a scrambled agrammatical sequence. Word identification was higher in the syntactically correct sequences, and crucially, this sentence superiority effect did not vary as a function of the target's position in the sequence. Cloze probability measures for words at the final, arguably most predictable position, revealed overall low values that did not interact with the effects of sentence context, suggesting that these effects were not driven by word predictability. The results point to a level of parallel processing across multiple words that enables rapid extraction of their syntactic categories. These generate a sentence-level representation that constrains the recognition process for individual words, thus facilitating parallel word processing when the sequence is grammatically sound. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles%碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟

    Institute of Scientific and Technical Information of China (English)

    于祺; 陈平; 陆春

    2012-01-01

    用有限元分析方法模拟热循环过程中碳纤维/双马树脂基复合材料的热应力分布,采用抛物线屈服准则分析复合材料的潜在破坏区域,并结合有限元生死单元技术揭示复合材料在热应力作用下的微裂纹分布。结果表明,复合材料自由端处的热应力大于其内部区域,其中最大热应力位于自由端处富树脂区的纤维表面;复合材料的潜在破坏区域位于自由端沿纤维与树脂基体间的界面处,主要的损伤形式为热应力引发微裂纹导致自由端处产生界面脱粘破坏。在进一步的热循环过程中,热应力得到一定程度的缓解并重新分布,由复合材料的自由端向内部区域延伸,导致微裂纹的进一步扩展而使复合材料的界面脱粘程度加重.对CF/BMI复合材料在热循环过程中性能演化的实验结果表明,热循环效应能够引发纤维与树脂基体之间的界面处形成微裂纹,导致复合材料的界面粘接性能下降。模拟结果预期了CF/BMI复合材料在实际热循环过程中的潜在破坏区域,并解析了热循环过程中导致复合材料界面粘接性能降低的根本原因,表明模拟结果与实验结果相符。%Finite element analysis was used to analyze thermal stress distribution in CF/BMI com- posite under exposure to thermal cycles. Parabolic failure criterion was used to predict the potential failure zone in composite. Birth and death element technique was used to reveal the microcracks distribution in composite induced by thermal stress. Thermal stress at composite free end zone is higher than that in inner zone, and the maximum stress locates at the fiber surface in resin-rich area of free end zone. The potential failure zones locate at free end zone with the microcracks distributed along the interface, thus leads to interracial debonding failure in composite. During the following thermal cycle, the thermal stress which is

  12. Coldness distribution by stabilized ice slurries. Study of the behaviour under thermal cycling; Distribution du froid par coulis de glace stabilisee. Etude du comportement sous cyclage thermique

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, D.

    2004-10-01

    The purpose of this work is to study a two-phase secondary refrigerant composed of phase-change particles suspended in a carrying liquid. This mixture has been hydraulically and thermally characterised. Moreover, some visualizations of flow patterns have been performed. Measurements of pressure losses have been realised in the case of solid state of the particles and in the case of liquid state. Heat transfer balances allowed us to show an improvement of a 1,9 factor before phase-change, in comparison with the case of a pure carrying liquid (without any particles). Flow patterns, which were theoretically specified, in function of fluid speed, have been observed experimentally. (author)

  13. Thermal simulation of operational cycle of a steel ladles. Part 1: mathematical model; Simulacao termica do ciclo operacional de uma panela de aciaria. Parte 1: modelo matematico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Cesar L.; Baptista, Luis A.S. [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil); Dellaretti Filho, Osmario [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenheria Metalurgica

    1986-12-31

    A bi-dimensional mathematical model of the thermal behavior of steel ladles has been developed. This model can simulate several stages of ladles use, i.e., pre-heating, transport and ladles full of steel. The heat transfer equations has been solved using a finite difference technique and, in order to decrease the computational effort, an alternating directions implicit method has been used. The model shows the temperature profile in the ladle refractory wall as a function of radial and axial positions. The results are compared with the prediction of an unidimensional model. (author). 7 figs., 8 refs

  14. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  15. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan 70101, Taiwan (China)

    2010-11-15

    This study is aimed at development of a numerical model for a beta-type Stirling engine with rhombic-drive mechanism. By taking into account the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Meanwhile, a fully developed flow velocity profile in the regenerative channel, in terms of the reciprocating velocity of the displacer and the instantaneous pressure difference between the expansion and the compression chambers, is derived for calculation of the mass flow rate through the regenerative channel. In this manner, the internal irreversibility caused by pressure difference in the two chambers and the viscous shear effects due to the motion of the reciprocating displacer on the fluid flow in the regenerative channel gap are included. Periodic variation of pressures, volumes, temperatures, masses, and heat transfers in the expansion and the compression chambers are predicted. A parametric study of the dependence of the power output and thermal efficiency on the geometrical and physical parameters, involving regenerative gap, distance between two gears, offset distance from the crank to the center of gear, and the heat source temperature, has been performed. (author)

  16. 78 FR 21116 - Superior Supplier Incentive Program

    Science.gov (United States)

    2013-04-09

    ... Department of the Navy Superior Supplier Incentive Program AGENCY: Department of the Navy, DoD. ACTION... policy that will establish a Superior Supplier Incentive Program (SSIP). Under the SSIP, contractors that..., performance, quality, and business relations would be granted Superior Supplier Status (SSS). Contractors...

  17. superior en México

    Directory of Open Access Journals (Sweden)

    César Mureddu Torres

    2008-01-01

    Full Text Available El presente artículo desarrolla algunos de los retos que ha traído consigo el acceso a la información existente en la red de Internet y lo que ello supone. Se abordan principalmente las consecuencias de la presencia actual de una sociedad llamada del conocimiento, si se mantiene la confusión entre conocimiento e información. Por ello, la sola gestión de la información no puede ser tomada como definitoria respecto a la función de educación superior confiada a las universidades. Hacerlo sería cometer un error aún más grave que la confusión teórica entre los términos mencionados.

  18. Effect of welding thermal cycles on the structure and properties of simulated heat-affected zone areas in X10CrMoVNb9-1 (T91) steel at a state after 100,000 h of operation

    Energy Technology Data Exchange (ETDEWEB)

    Łomozik, Mirosław, E-mail: miroslaw.lomozik@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland); Hernas, Adam, E-mail: adam.hernas@polsl.pl [Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 40-019 Katowice, Krasińskiego 8 str. (Poland); Zeman, Marian L., E-mail: marian.zeman@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland)

    2015-06-18

    The article presents results of structural tests (light, scanning electron and scanning transmission electron microscopy) of X10CrMoVNb9-1 (T91) creep-resisting steel after approximately 100,000 h of operation. It was ascertained that the parent metal of T91 steel is characterized by the microstructure of tempered martensite with M{sub 23}C{sub 6} carbide precipitates and few dispersive precipitates of MX-type niobium and vanadium carbonitrides. The most inconvenient change in T91 steel precipitate morphology due to long-term operation is the appearance of the Laves Fe{sub 2}Mo phase which along with M{sub 23}C{sub 6} carbide particles forms elongated blocks and conglomerates on grain boundaries. The article also presents results of tests related to the effect of simulated welding thermal cycles on selected properties of X10CrMoVNb9-1 (T91) grade steel at a state after approximately 100,000 h of operation. The tests involved the determination of the chemical composition of the steel tested as well as impact tests, hardness measurements and microscopic metallographic examination (based on light microscopy) of simulated heat-affected zone (HAZ) areas for a cooling time (t{sub 8/5}) restricted within a range between 3 s and 120 s, with and without heat treatment. The tests revealed that, among other results, hardness values of simulated HAZ areas in X10CrMoVNb9-1 (T91) steel do not guarantee cold crack safety of the steel at the state without additional heat treatment. It was also observed that simulated welding thermal cycles of cooling times t{sub 8/5}=3, 12, 60 and 120 s do not significantly affect the toughness and hardness of simulated HAZ areas of the steel tested.

  19. Low-temperature Waste Heat Powered Supercritical Thermal Power Generation Cycle Using Low-boiling Point Fluids%低温余热驱动的低沸点工质超临界动力循环

    Institute of Scientific and Technical Information of China (English)

    王辉涛; 王华; 黄晓艳

    2009-01-01

    In order to improve the performance of the thermal power generation cycle driven by low-temperature waste heat, the system should be constructed to make the temnperature of the heated working fluid match the changing temperature of the fluid carrying waste heat, the supercritical Rankine cycle using organic fluid HFC125 as the working fluid is proved to be the best promising system driven by waste heat. The energy efficiency method should be used to evaluate the overall performance of the cyde.%低温余热动力回收热动循环应与余热流的变温特性很好地匹配才能获得较高的转化效率,采用低沸点有机工质HFC125实现超临界动力循环,能很好地逼近变温热源下的理想循环,从而获得较好的效果.采用效率来评价余热回收动力循环时,可以得到相对全面的结论.

  20. Escuela Superior de Palos Verdes

    Directory of Open Access Journals (Sweden)

    Neutra, Richard J.

    1965-02-01

    Full Text Available Before initiating the building operations for the «Palos Verdes» School, the site was divided into two large horizontal surfaces, at different levels. The lower one served to accommodate the playing fields, a car park, the physical training building, and shop and ancillary buildings. On the higher of these two surfaces, and to the West of the access road, there is a car park and also the building and plot of ground devoted to agricultural technology, as well as the literary studies and general purpose buildings. As a complement to these, there is a series of blocks, arranged in parallel rows, which house the administrative offices, the art school, the craft's school, the general classrooms, and those devoted to higher education. The fascinating aspect of this school is the outstanding penetration of the architect's mind into the essential function of the project. Its most evident merit is the sense of comradeship and harmony that permeates the whole architectural manifold.Antes de construir el complejo escolar «Palos Verdes» se comenzó por crear, en el terreno, dos grandes mesetas a niveles diferentes. Sobre el inferior se organizaron: los campos de juegos, de deportes, un aparcamiento, el edificio para educación física y los destinados a tiendas y servicios. Sobre la meseta superior, al oeste de la vía de acceso, se dispuso un aparcamiento y el edificio y campo para adiestramiento agrícola; al este, otro aparcamiento, el edificio dedicado a materias literarias, y el destinado a usos múltiples. Completan las instalaciones de la escuela una serie de bloques paralelos: la administración, la escuela de arte, las clases de trabajos manuales, las aulas de enseñanzas generales, y las de los cursos superiores. Lo fascinante de este complejo escolar es la perfecta y magistral compenetración del arquitecto con el tema proyectado, y su mayor mérito, la sensación de cordialidad y armonía con el ambiente.

  1. In situ SEM thermal fatigue of Al/graphite metal matrix composites

    Science.gov (United States)

    Zong, G. S.; Rabenberg, L.; Marcus, H. L.

    1990-01-01

    Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.

  2. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  3. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1981-03-01

    Two loops making up the facility, using either air or liquid as the thermal transport fluid, are described. These loops will be capable of cycling residential-size thermal energy storage units through conditions simulating solar or off-peak electricity applications to evaluate the unit's performance. Construction of the liquid cycling loop was completed, and testing of thermal stratification techniques for hot and cold water is reported.

  4. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt); Modelado del ciclo de vapor de Laguna Verde con el codigo PEPSE a condiciones de potencia termica actualmente licenciada (2027 MWt)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J., E-mail: miguel.castaneda01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Veracruz (Mexico)

    2011-11-15

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  5. Sobredentadura total superior implantosoportada Superior total overdenture on implants

    Directory of Open Access Journals (Sweden)

    Luis Orlando Rodríguez García

    2010-06-01

    Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.This is the case of a total maxilla edentulous patient seen in consultation of the "Pedro Ortíz" Clinic Implant of Habana del Este municipality in 2009 and con rehabilitation by prosthesis over osteointegration implants added to stomatology practice in Cuba as an alternative to conventional treatment in patients totally edentulous. We follow a protocol including a surgery or surgical phase, technique without or with flap creation and early or immediate load. This is a male patient aged 56 came to our multidisciplinary consultation worried because he had three prostheses in last two years and any fulfilled the requirements of retention to feel safe and comfortable with prostheses. The final result was the total satisfaction of rehabilitated patient improving its aesthetic and functional quality.

  6. An Alternative Approach to Non-Log-Linear Thermal Microbial Inactivation: Modelling the Number of Log Cycles Reduction with Respect to Temperature

    Directory of Open Access Journals (Sweden)

    Vasilis Panagiotis Valdramidis

    2005-01-01

    Full Text Available A mathematical approach incorporating the shoulder effect during the quantification of microbial heat inactivation is being developed based on »the number of log cycles of reduction « concept. Hereto, the heat resistance of Escherichia coli K12 in BHI broth has been quantitatively determined in a generic and accurate way by defining the time t for x log reductions in the microbial population, i.e. txD, as a function of the treatment temperature T. Survival data of the examined microorganism are collected in a range of temperatures between 52–60.6 °C. Shoulder length Sl and specific inactivation rate kmax are derived from a mathematical expression that describes a non-log-linear behaviour. The temperature dependencies of Sl and kmax are used for structuring the txD(T function. Estimation of the txD(T parameters through a global identification procedure permits reliable predictions of the time to achieve a pre-decided microbial reduction. One of the parameters of the txD(T function is proposed as »the reference minimum temperature for inactivation«. For the case study considered, a value of 51.80 °C (with a standard error, SE, of 3.47 was identified. Finally, the time to achieve commercial sterilization and pasteurization for the product at hand, i.e. BHI broth, was found to be 11.70 s (SE=5.22, and 5.10 min (SE=1.22, respectively. Accounting for the uncertainty (based on the 90 % confidence intervals, CI a fail-safe treatment of these two processes takes 20.36 s and 7.12 min, respectively.

  7. Comparison of Gas-Turbine Cycles for Space Applications

    Science.gov (United States)

    English, Robert E.; Slone, Henry O.

    1960-01-01

    On the basis of the radiator area required for rejecting cycle waste heat, Rankine vapor cycles are far superior to the basic Brayton gas cycle for space turbogenerating powerplants. The present analysis considers modifications of the basic Brayton cycle and compares the modified cycles to the basic cycle with radiator area as the criterion of merit. The results indicate that reductions in radiator area attainable by modifying the basic Brayton cycle are small, and thus the competitive position of gasturbine cycles relative to Rankine vapor cycles is unchanged.

  8. Information Superiority generated through proper application of Geoinformatics

    Science.gov (United States)

    Teichmann, F.

    2012-04-01

    Information Superiority generated through proper application of Geoinformatics Information management and especially geoscience information delivery is a very delicate task. If it is carried out successfully, geoscientific data will provide the main foundation of Information Superiority. However, improper implementation of geodata generation, assimilation, distribution or storage will not only waste valuable resources like manpower or money, but could also give rise to crucial deficiency in knowledge and might lead to potentially extremely harmful disasters or wrong decisions. Comprehensive Approach, Effect Based Operations and Network Enabled Capabilities are the current buzz terms in the security regime. However, they also apply to various interdisciplinary tasks like catastrophe relief missions, civil task operations or even in day to day business operations where geo-science data is used. Based on experience in the application of geoscience data for defence applications the following procedure or tool box for generating geodata should lead to the desired information superiority: 1. Understand and analyse the mission, the task and the environment for which the geodata is needed 2. Carry out a Information Exchange Requirement between the user or customer and the geodata provider 3. Implementation of current interoperability standards and a coherent metadata structure 4. Execute innovative data generation, data provision, data assimilation and data storage 5. Apply a cost-effective and reasonable data life cycle 6. Implement IT security by focusing of the three pillar concepts Integrity, Availability and Confidentiality of the critical data 7. Draft and execute a service level agreement or a memorandum of understanding between the involved parties 8. Execute a Continuous Improvement Cycle These ideas from the IT world should be transferred into the geoscience community and applied in a wide set of scenarios. A standardized approach of how to generate, provide

  9. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium Ion Batteries.

    Science.gov (United States)

    Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min

    2017-10-06

    Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO4/Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.

  10. Phase Composition and the Effect of Thermal Cycling for VH(sub x) V(sub 0.995) C(sub 0.005)H(sub x) and V(sub 0.975)Zr(sub 0.020)C(sub 0.005)H(sub x)

    Science.gov (United States)

    Cantrell, J.; Bowman, R.

    1999-01-01

    X-ray diffraction (XRD) studies were performed on hydride phases formed by vanadium and its carbon substituted alloys. It was previously found that thermal cycling of VHx across the B-y mixed phase region changed the reversible hydrogen storage capacity and other properties.

  11. FES cycling.

    Science.gov (United States)

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  12. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  13. Paso superior en una ladera

    Directory of Open Access Journals (Sweden)

    Bender, O.

    1965-07-01

    Full Text Available The Redwood highway, through the Californian forest, runs on a viaduct, as it crosses a mountain slope of about 45° inclination. The firm ground is fairly deep, and as an additional constructional difficulty, it was necessary to respect the natural beauty of the countryside. A structure of portal frames were built, forming a number of short spans. These spans were bridged with metal girders, on which a 19 m wide deck was placed. The columns are hollow and have a transversal cross beam, to join each pair. There was difficulty in excavating the foundations for the columns, as it was necessary to dig through the soft top soil, and also prevent this soil from hurting the trunks of the forest trees. Another significant difficulty in the construction of this viaduct was the access to the working site, since there were no suitable platforms from which to operate the appropriate machinery. This made it necessary to do a lot of the work by manual operation. As one of the edges of the deck is very close to the mountain side, a supporting beam was erected on this side. It was made of concrete, on metal piles. The formwork for the deck structure was placed on the concrete stems of the supporting piles.La autopista denominada Redwood (California salva, con un paso superior, la ladera de un bosque cuya pendiente es del 1/1. El terreno firme se halla a bastante profundidad, añadiéndose, a los naturales problemas de la construcción, el imperativo de respetar la belleza agreste del paraje. La solución adoptada consiste en una estructura porticada, con varios tramos de pequeñas luces, salvados con vigas metálicas, sobre los que se coloca la losa del tablero, de 19 m de anchura total. Los soportes están constituidos por pórticos de dos montantes huecos (con bases de hormigón en masa por debajo del suelo, hasta el firme coronados por un cabezal. La perforación de pozos para el hormigonado de los montantes presentaba la dificultad de atravesar el terreno

  14. Pseudodisplacements of superior vena cava catheter in the persistent left superior vena cava

    Energy Technology Data Exchange (ETDEWEB)

    Jantsch, H.; Draxler, V.; Muhar, U.; Schlemmer, M.; Waneck, R.

    1983-01-01

    Pseudodisplacement of a left sided superior vena cava catheter in a persistent superior vena cava may be expected in adults in 0,37% and in a group of children with congenital heart disease in 2,5%. Embryology, anatomy and clinical implications is discussed on the basis of our own cases. The vena cava superior sinistra persitents is depending on a sufficient calibre a suitable vessel for a superior cava catheter.

  15. Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2 cathode material with improved cycle life and thermal stability via ion diffusion

    Science.gov (United States)

    Zhang, Yongheng; Shi, Hua; Song, Dawei; Zhang, Hongzhou; Shi, Xixi; Zhang, Lianqi

    2016-09-01

    In order to combine the advantages of core-shell and concentration-gradient Li[Ni1-xMx]O2 materials, a novel structured Li[Ni0.66Co0.1Mn0.24]O2 (NSsbnd Li[Ni0.66Co0.1Mn0.24]O2) cathode material is facilely synthesized from core-shell precursor [(Ni0.8Co0.1Mn0.1)0.6(Ni0.45Co0.1Mn0.45)0.4](OH)2 via ion diffusion during high temperature calcination. NSsbnd Li[Ni0.66Co0.1Mn0.24]O2 is constructed by core layer, concentration-gradient layer and shell layer. From the detailed comparative investigations, it is found that NSsbnd Li[Ni0.66Co0.1Mn0.24]O2 delivers remarkably improved cycle life and thermal stability compared with normal Li[Ni0.66Co0.1Mn0.24]O2 (Nsbnd Li[Ni0.66Co0.1Mn0.24]O2).

  16. Adjuvant chemotherapy compliance is not superior after thoracoscopic lobectomy

    DEFF Research Database (Denmark)

    Licht, Peter B; Schytte, Tine; Jakobsen, Erik

    2014-01-01

    BACKGROUND: It is generally assumed that patient compliance with adjuvant chemotherapy is superior after video-assisted thoracoscopic surgery compared with open lobectomy for non-small cell lung cancer (NSCLC). The level of evidence for this assumption, however, is limited to single-institution, ......BACKGROUND: It is generally assumed that patient compliance with adjuvant chemotherapy is superior after video-assisted thoracoscopic surgery compared with open lobectomy for non-small cell lung cancer (NSCLC). The level of evidence for this assumption, however, is limited to single...... histopathology. A clinical oncologist, who was blinded to the surgical approach, reviewed all medical oncology charts for types of adjuvant chemotherapy, reasons for not initiating or stopping treatment, number of cycles delivered, and time interval from surgery to initial chemotherapy. RESULTS: During a 6-year...... adjuvant chemotherapy and 121 (38.7%) completed all four cycles. Ordinal logistic regression revealed that chemotherapy compliance (none, partial, and full chemotherapy) was significantly reduced by the patient's age (p

  17. Superiority in value and the repugnant conclusion

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2007-01-01

    James Griffin has considered a weak form of superiority in value a possible remedy to the Repugnant Conclusion. In this paper, I demonstrate that, in a context where value is additive, this weaker form collapses into a stronger form of superiority. And in a context where value is non-additive, weak...... superiority does not amount to a radical value difference at all. I then spell out the consequences of these results for different interpretations of Griffin's suggestion regarding population ethics. None of them comes out very successful, but perhaps they nevertheless retain some interest....

  18. Business Cycles in Developing Countries

    DEFF Research Database (Denmark)

    Rand, John; Tarp, Finn

    2002-01-01

    This paper demonstrates that developing countries differ considerably from their developed counterparts when focus is on the nature and characteristics of short run macroeconomic fluctuations. Cycles are generally shorter, and the stylized facts of business cycles across countries are more diverse...... than those of the rather uniform industrialized countries. Supply-side models are generally superior in explaining changes in output, but a “one-size fits all” approach in formulating policy is inappropriate. Our results also illustrate the critical importance of understanding business regularities...... as a stepping-stone in the process of designing appropriate stabilization policy and macroeconomic management in developing countries....

  19. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator

    Science.gov (United States)

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F.; Joh, Han-Ik; Jo, Seong Mu

    2016-11-01

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  20. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator.

    Science.gov (United States)

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F; Joh, Han-Ik; Jo, Seong Mu

    2016-11-11

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  1. Millian superiorities and the repugnant conclusion

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2008-01-01

    James Griffin has considered a form of superiority in value that is weaker than lexical priority as a possible remedy to the Repugnant Conclusion. In this article, I demonstrate that, in a context where value is additive, this weaker form collapses into the stronger form of superiority. And in a ......James Griffin has considered a form of superiority in value that is weaker than lexical priority as a possible remedy to the Repugnant Conclusion. In this article, I demonstrate that, in a context where value is additive, this weaker form collapses into the stronger form of superiority...... of these results for different interpretations of Griffin's suggestion regarding population ethics. None of them comes out very successful, but perhaps they nevertheless retain some interest....

  2. Measuring Financial Gains from Genetically Superior Trees

    Science.gov (United States)

    George Dutrow; Clark Row

    1976-01-01

    Planting genetically superior loblolly pines will probably yield high profits.Forest economists have made computer simulations that predict financial gains expected from a tree improvement program under actual field conditions.

  3. Superior mesenteric artery syndrome causing growth retardation

    Directory of Open Access Journals (Sweden)

    Halil İbrahim Taşcı

    2013-03-01

    Full Text Available Superior mesenteric artery syndrome is a rare and lifethreateningclinical condition caused by the compressionof the third portion of the duodenum between the aortaand the superior mesenteric artery’s proximal part. Thiscompression may lead to chronic intermittent, acute totalor partial obstruction. Sudden weight-loss and the relateddecrease in the fat tissue are considered to be the etiologicalreason of acute stenosis. Weight-loss accompaniedby nausea, vomiting, anorexia, epigastric pain, andbloating are the leading complaints. Barium radiographs,computerized tomography, conventional angiography,tomographic and magnetic resonance angiography areused in the diagnosis. There are medical and surgical approachesto treatment. We hereby present the case ofa patient with superior mesenteric artery syndrome withdelayed diagnosis.Key words: superior mesenteric artery syndrome, nausea-vomiting, anorexia

  4. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Yang, Hwi Soo; Kim, Sang-Hyung; Kannan, Aravindaraj G; Kim, Seon Kyung; Park, Cheolho; Kim, Dong-Won

    2016-04-05

    The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al-Fe matrix phases. Poly(amide imide)s, (PAI)s, with different thermal treatments were used as polymer binders in the silicon alloy-based electrodes. A systematic study demonstrated that the thermal treatment of the silicon alloy electrodes at high temperature made the electrodes mechanically strong and remarkably enhanced the cycling stability compared to electrodes without thermal treatment. The silicon alloy electrode thermally treated at 400 °C initially delivered a discharge capacity of 1084 mAh g(-1) with good capacity retention and high Coulombic efficiency. This superior cycling performance was attributed to the strong adhesion of the PAI binder resulting from enhanced secondary interactions, which maintained good electrical contacts between the active materials, electronic conductors, and current collector during cycling. These findings are supported by results from X-ray photoelectron spectroscopy, scanning electron microscopy, and a surface and interfacial cutting analysis system.

  5. Leiomyosarcoma of the superior vena cava.

    Science.gov (United States)

    de Chaumont, Arthus; Pierret, Charles; de Kerangal, Xavier; Le Moulec, Sylvestre; Laborde, François

    2014-08-01

    Leiomyosarcoma of the superior vena cava is a very rare tumor and only a few cases have been reported, with various techniques of vascular reconstruction. We describe a new case of leiomyosarcoma of the superior vena cava in a 61-year-old woman with extension to the brachiocephalic arterial trunk. Resection and vascular reconstruction were performed using, respectively, polytetrafluoroethylene and polyethylene terephtalate vascular grafts.

  6. Superior mesenteric artery compression syndrome - case report

    OpenAIRE

    Paulo Rocha França Neto; Rodrigo de Almeida Paiva; Antônio Lacerda Filho; Fábio Lopes de Queiroz; Teon Noronha

    2011-01-01

    Superior mesenteric artery syndrome is an entity generally caused by the loss of the intervening mesenteric fat pad, resulting in compression of the third portion of the duodenum by the superior mesenteric artery. This article reports the case of a patient with irremovable metastatic adenocarcinoma in the sigmoid colon, that evolved with intense vomiting. Intestinal transit was carried out, which showed important gastric dilation extended until the third portion of the duodenum, compatible wi...

  7. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  8. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  9. Superior oblique surgery: when and how?

    Directory of Open Access Journals (Sweden)

    Taylan Şekeroğlu H

    2013-08-01

    Full Text Available Hande Taylan Şekeroğlu,1 Ali Sefik Sanac,1 Umut Arslan,2 Emin Cumhur Sener11Department of Ophthalmology, 2Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, TurkeyBackground: The purpose of this paper is to review different types of superior oblique muscle surgeries, to describe the main areas in clinical practice where superior oblique surgery is required or preferred, and to discuss the preferred types of superior oblique surgery with respect to their clinical outcomes.Methods: A consecutive nonrandomized retrospective series of patients who had undergone superior oblique muscle surgery as a single procedure were enrolled in the study. The diagnosis, clinical features, preoperative and postoperative vertical deviations in primary position, type of surgery, complications, and clinical outcomes were reviewed. The primary outcome measures were the type of strabismus and the type of superior oblique muscle surgery. The secondary outcome measure was the results of the surgeries.Results: The review identified 40 (20 male, 20 female patients with a median age of 6 (2–45 years. Nineteen patients (47.5% had Brown syndrome, eleven (27.5% had fourth nerve palsy, and ten (25.0% had horizontal deviations with A pattern. The most commonly performed surgery was superior oblique tenotomy in 29 (72.5% patients followed by superior oblique tuck in eleven (27.5% patients. The amount of vertical deviation in the fourth nerve palsy and Brown syndrome groups (P = 0.01 for both and the amount of A pattern in the A pattern group were significantly reduced postoperatively (P = 0.02.Conclusion: Surgery for the superior oblique muscle requires experience and appropriate preoperative evaluation in view of its challenging nature. The main indications are Brown syndrome, fourth nerve palsy, and A pattern deviations. Superior oblique surgery may be effective in terms of pattern collapse and correction of vertical deviations in primary

  10. Thermal Performance Benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin

    2016-06-07

    The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.

  11. Whisker-related afferents in superior colliculus.

    Science.gov (United States)

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. Copyright © 2016 the American Physiological Society.

  12. Thermal barrier coatings of new rare-earth composite oxide by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.H., E-mail: zhxubiam@sina.com; Zhou, X.; Wang, K.; Dai, J.W.; He, L.M.

    2014-02-25

    Highlights: • 3Y-LZ7C3 coating has a cyclic lifetime longer than that of LZ7C3 coating. • Y{sub 2}O{sub 3} helps to moderate the excessive vapor pressure condition during deposition. • 3Y-LZ7C3 coating is a mixture of pyrochlore and fluorite structures. • 3Y-LZ7C3 coating has a low sintering ability as compared with LZ7C3 coating. -- Abstract: Thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) with the addition of 3 wt.% Y{sub 2}O{sub 3} (3Y-LZ7C3) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase structures, surface and cross-sectional morphologies, thermal cycling behaviors of these coatings were studied in detail. The thermal cycling test at 1373 K in an air furnace indicates that the 3Y-LZ7C3 coating has a lifetime of 1134 cycles which is about 18% longer than that of LZ7C3 coating. The improvement of chemical homogeneity of the coating, the superior growth behavior of columns and the favorable mechanical properties are all very helpful to the prolongation of thermal cycling life of 3Y-LZ7C3 coating. The failure of 3Y-LZ7C3 coating is probably a result of the reduction–oxidation of cerium oxide (Ce{sub 2}O{sub 3} and CeO{sub 2}), the solid solution reactions between La{sub 2}O{sub 3} and Y{sub 2}O{sub 3} (or ZrO{sub 2}), the visible cracks initiation, propagation and extension, the abnormal oxidation of bond coat and the thermal expansion mismatch between ceramic coating and bond coat.

  13. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  14. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  15. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  16. Cycling Joule Thomson refrigerator

    Science.gov (United States)

    Tward, E.

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  17. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries.

    Science.gov (United States)

    Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Yang, Qingdan; Li, Yang Yang; Zapien, Juan Antonio

    2013-05-21

    We present a high-yield and low cost thermal evaporation-induced anhydrous strategy to prepare hybrid materials of Fe3O4 nanoparticles and graphene as an advanced anode for high-performance lithium ion batteries. The ~10-20 nm Fe3O4 nanoparticles are densely anchored on conducting graphene sheets and act as spacers to keep the adjacent sheets separated. The Fe3O4-graphene composite displays a superior battery performance with high retained capacity of 868 mA h g(-1) up to 100 cycles at a current density of 200 mA g(-1), and 539 mA h g(-1) up to 200 cycles when cycling at 1000 mA g(-1), high Coulombic efficiency (above 99% after 200 cycles), good rate capability, and excellent cyclic stability. The simple approach offers a promising route to prepare anode materials for practical fabrication of lithium ion batteries.

  18. Superior-subordinate relations as organizational processes

    DEFF Research Database (Denmark)

    Asmuss, Birte; Aggerholm, Helle Kryger; Oshima, Sae

    Since the emergence of the practice turn in social sciences (Golsorkhi et al. 2010), studies have shown a number of institutionally relevant aspects as achievements across time and by means of various resources (human and non-human) (Taylor & van Every 2000, Cooren et al. 2006). Such a process view...... on organizational practices relates closely to an increased focus on communication as being constitutive of the organization in general and the superior-subordinate relationship in specific. The current study aims to contribute to this line of research by investigating micro-practices involved in establishing...... superior-subordinate relations in a specific institutionalized setting: performance appraisal interviews (PAIs). While one main task of PAIs is to manage and integrate organizational and employee performance (Fletcher, 2001:473), PAIs are also organizational practices where superior-subordinate relations...

  19. Lake Superior Aquatic Invasive Species Complete Prevention Plan

    Science.gov (United States)

    The Lake Superior Aquatic Invasive Species Complete Prevention Plan is an expression of the best professional judgment of the members of the Lake Superior Task Force as to what is necessary to protect Lake Superior from new aquatic invasive species.

  20. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...