WorldWideScience

Sample records for superior structural stability

  1. Reduced graphene oxide/silicon nanowire hetero- structures with enhanced photoactivity and superior photoelectrochemical stability

    Institute of Scientific and Technical Information of China (English)

    Xing Zhong[1; Gongming wang[1; Benjamin Papandrea[1; Mufan Li[1; Yuxi Xu[1; Yu Chen[2; Chih-Yen Chen[1; Hailong Zhou[1; Teng Xue[2; Yongjia Li[2; Dehui Li[1; Yu Huang[2,3; Xiangfeng Duan[1,3

    2015-01-01

    Silicon nanowires (SiNWs) have been widely studied as light harvesting antennas in photocatalysts due to their ability to absorb broad-spectrum solar radiation, but they are typically limited by poor photoelectrochemical stability. Here, we report the synthesis of reduced graphene oxide-SiNW (rGO-SiNW) heterostructures to achieve greatly improved photocatalytic activity and stability. The SiNWs were synthesized through a metal-assisted electroless etching process and functionalized with reduced graphene oxide (rGO) flakes through a chemical absorption process. Here, the rGO not only functions as a physical protection layer to isolate the SiNWs from the harsh electrochemical environment but also serves as a charge mediator to facilitate the charge separation and transport processes. Furthermore, the rGO may also function as a redox catalyst to ensure efficient utilization of photo-carriers for the desired chemical reactions. Photocatalytic dye degradation studies show that the photoactivity of the heterostructures can be significantly enhanced with an initial activation process and maintained without apparent decay over repeated reaction cycles. Electrochemical and photo- electrochemical studies indicate that the enhanced photoactivity and photostability can be attributed to the more efficient separation of photoexcited charge carriers in SiNWs and the reduced self-oxidation of the surface of the SiNWs during the photocatalytic dye degradation process. The ability to significantly improve the photocatalytic activity and stability in rGO-SiNW heterostructures can not only lead to more opportunities for the application of silicon-based photocatalysts/ photoelectrodes for solar energy harvesting but also provide new insights into the stabilization of other unstable photocatalytic systems

  2. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells.

    Science.gov (United States)

    Zeng, Jie; Zhou, Yuhua; Li, Lin; Jiang, San Ping

    2011-06-07

    A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are characterized by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), N(2) adsorption/desorption isotherms, thermogravimetric analysis (TGA), water uptake and four-probe conductivity. The results show that the mesoporous structure of silica hosts can be altered by the hydrothermal temperature. Conductivity measurements indicate that meso-silica host with pore diameter of 5.0 nm has the highest proton conductivity of 0.11 S cm(-1) at 80 °C and 100% relative humidity (RH) with an activation energy of ∼14 kJ mol(-1) and better stability as compared to that with large mesopores. The proton conductivity and performance of HPW-meso-silica nanocomposites also increase with the RH, but it is far less sensitive to RH changes as compared to conventional perfluorosulfonic acid (PFSA) polymers such as Nafion. The maximum power density of the cell with HPW-meso-silcia nanocomposite membranes is 221 mW cm(-2) at 80 °C and 100% RH and decreases to 171 mW cm(-2) when RH is reduced to 20%, a 20% decrease in power output. In the case of a cell with Nafion 115 membranes, the decrease in power density is 95% under identical test conditions. The results demonstrate that the HPW-meso-silica nanocomposite has an exceptionally high water retention capability and is a promising proton exchange membrane material for fuel cells operating at reduced humidity and elevated temperatures.

  3. Superhydrophobic paper with superior stability against deformations and humidity

    Science.gov (United States)

    Wang, Nan; Xiong, Dangsheng; Pan, Sai; Deng, Yaling; Shi, Yan; Wang, Kun

    2016-12-01

    Superhydrophobic coatings on paper were achieved by means of incorporating micro-nano hierarchical topography, where the water droplet was repelled and rested in a spherical shape. A silica sol, which was prepared using tetraethylorthosilicate (TEOS) as precursor and trimethylethoxysilane (TMES) as co-precursor, was poured on the paper to form a superhydrophobic surface. The coating was fluorine-free, environmentally friend, and could be easily fabricated on different kinds of papers. Besides, the transmittance of prepared coating reached up to 92% in visible light range, and the words on treated paper showed a good visualization. Moreover, the treated paper showed superior mechanical durability against 100 times of deformation, remarkable stability towards both the acidic and basic solutions. The treated paper could withstand 70 cycles of water condensation test (from 60 °C, 90% relative humidity to 10 °C) without losing superhydrophobicity, suggesting a long-term protection for paper.

  4. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  5. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  6. Molecular hydrogelators of peptoid-peptide conjugates with superior stability against enzyme digestion

    Science.gov (United States)

    Wu, Zhidan; Tan, Ming; Chen, Xuemei; Yang, Zhimou; Wang, Ling

    2012-05-01

    We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion.We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion. Electronic supplementary information (ESI) available: Synthesis and characterization of gelators, dynamic strain sweep, cell viability, and procedure to determine the stability of compounds against proteinase K digestion. See DOI: 10.1039/c2nr30408b

  7. Structural Stability of Asteroids

    Science.gov (United States)

    Hirabayashi, Toshi

    This thesis develops a technique for analyzing the internal structure of an irregularly shaped asteroid. This research focuses on asteroid (216) Kleopatra, a few-hundred-kilometer-sized main belt asteroid spinning about its maximum moment of inertia axis with a rotation period of 5.385 hours, to motivate the techniques. While Ostro et al. [117] reported its dog bone-like shape, estimation of its size has been actively discussed. There are at least three different size estimates: Ostro et al., Descamps et al., and Marchis et al. Descamps et al. reported that (216) Kleopatra has satellites and obtained the mass of this object. This research consists of determination of possible failure modes of (216) Kleopatra and its subsequent detailed stress analysis, with each part including an estimation of the internal structure. The first part of this thesis considers the failure mode of Kleopatra and evaluates the size from it. Possible failure modes are modeled as either material shedding from the surface or plastic failure of the internal structure. The surface shedding condition is met when a zero-velocity curve with the same energy level as one of the dynamical equilibrium points attaches to the surface at the slowest spin period, while the plastic failure condition is characterized by extending the theorem by Holsapple (2008) that the yield condition of the averaged stress over the whole volume is identical to an upper bound for global failure. The prime result shows that while surface shedding does not occur at the current spin period and thus cannot result in the formation of the satellites, the neck may be situated near its plastic deformation state. From the failure condition, we also find that the size estimated by Descamps et al. (2011) is the most structurally stable. The second part of this thesis discusses finite element analyses with an assumption of an elastic-perfectly plastic material and a non-associated flow rule. The yield condition is modeled as the

  8. Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability

    Science.gov (United States)

    Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2014-12-01

    Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.

  9. Nuclear structure far from stability

    CERN Document Server

    Vretenar, D

    2005-01-01

    Modern nuclear structure theory is rapidly evolving towards regions of exotic short-lived nuclei far from stability, nuclear astrophysics applications, and bridging the gap between low-energy QCD and the phenomenology of finite nuclei. The principal objective is to build a consistent microscopic theoretical framework that will provide a unified description of bulk properties, nuclear excitations and reactions. Stringent constraints on the microscopic approach to nuclear dynamics, effective nuclear interactions, and nuclear energy density functionals, are obtained from studies of the structure and stability of exotic nuclei with extreme isospin values, as well as extended asymmetric nucleonic matter. Recent theoretical advances in the description of structure phenomena in exotic nuclei far from stability are reviewed.

  10. Nuclear structure far from stability

    Science.gov (United States)

    Vretenar, D.

    2005-04-01

    Modern nuclear structure theory is rapidly evolving towards regions of exotic shortlived nuclei far from stability, nuclear astrophysics applications, and bridging the gap between low-energy QCD and the phenomenology of finite nuclei. The principal objective is to build a consistent microscopic theoretical framework that will provide a unified description of bulk properties, nuclear excitations and reactions. Stringent constraints on the microscopic approach to nuclear dynamics, effective nuclear interactions, and nuclear energy density functionals, are obtained from studies of the structure and stability of exotic nuclei with extreme isospin values, as well as extended asymmetric nucleonic matter. Recent theoretical advances in the description of structure phenomena in exotic nuclei far from stability are reviewed.

  11. Flat surfaces and stability structures

    OpenAIRE

    2014-01-01

    We identify spaces of half-translation surfaces, equivalently complex curves with quadratic differential, with spaces of stability structures on Fukaya-type categories of punctured surfaces. This is achieved by new methods involving the complete classification of objects in these categories, which are defined in an elementary way. We also introduce a number of tools to deal with surfaces of infinite area, where structures similar to those in cluster algebra appear.

  12. Results from a geophysical investigation of Lake Superior's ring structures

    Science.gov (United States)

    Wattrus, N. J.; Gustafson, D.

    2010-12-01

    Ring shaped depressions are widely developed on the lake floor of Lake Superior. They have not been widely reported elsewhere. The rings are typically between 200 and 300 m across and up to 5 m deep. The width of the depression ranges between 10 to 30 m. They often occur in closely spaced groups or networks but can also occur as isolated features. Several mechanisms have been proposed to explain the formation of these features; they include syneresis of the fine-grained lake floor sediments, polygonal faulting and dewatering of the lake floor sediments. High resolution bathymetric surveying with a multibeam sonar has revealed that they are comprised of pockmarks arranged in irregular polygonal patterns. Sidescan sonar images of the pockmarks often exhibit increased backscatter about the pock which could be interpreted as evidence of a lag-surface. High-resolution CHIRP sub-bottom profiling across the pocks occasionally reveal chimney-like structures below the lake floor pock. This evidence suggests that the rings were produced by the expulsion of fluid from the lake floor. This appears to have been a basin-wide event. The timing, duration and origin of this are not well known. Neither is the structure of the subsurface plumbing below these features. Here we present results from a geophysical survey conducted in northwestern Lake Superior off the western coast of Isle Royale where both isolated and grouped lake floor rings are well developed. The objectives of the survey were to define the geometry of the sub-surface plumbing below the rings and to possibly gain some insight into how these systems develop. The data collected included two high-resolution pseudo-3D single-channel seismic reflection datasets, one acquired with a small airgun and a second acquired with a CHIRP profiler. Multibeam and sidescan sonar data were also acquired as part of the survey. A 9 m piston core was collected in close proximity to a ring feature. This is used to determine the physical

  13. A nonlinear variable structure stabilizer for power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Jiang, L.; Cheng, S.; Chen, D. (Huazhong Univ. of Science and Technology, Wuhan (China). Dept. of Electrical Power Engineering); Malik, O.P.; Hope, G.S. (Univ. of Calgary, Alberta (Canada). Dept. of Electrical and Computer Engineering)

    1994-09-01

    A nonlinear variable structure stabilizer is proposed in this paper. Design of this stabilizer involves the nonlinear transformation technique, the variable structure control technique and the linear system theory. Performance of the proposed nonlinear variable structure controller in a single machine connected to an infinite bus power and a multi-machine system with multi-mode oscillations is simulated. The responses of the system with the proposed stabilizer are compared with those obtained with some other kinds of stabilizers when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure stabilizer gives satisfactory dynamic performance and good robustness.

  14. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    Science.gov (United States)

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  15. Spatiotemporal structure of visual receptive fields in macaque superior colliculus.

    Science.gov (United States)

    Churan, Jan; Guitton, Daniel; Pack, Christopher C

    2012-11-01

    Saccades are useful for directing the high-acuity fovea to visual targets that are of behavioral relevance. The selection of visual targets for eye movements involves the superior colliculus (SC), where many neurons respond to visual stimuli. Many of these neurons are also activated before and during saccades of specific directions and amplitudes. Although the role of the SC in controlling eye movements has been thoroughly examined, far less is known about the nature of the visual responses in this area. We have, therefore, recorded from neurons in the intermediate layers of the macaque SC, while using a sparse-noise mapping procedure to obtain a detailed characterization of the spatiotemporal structure of visual receptive fields. We find that SC responses to flashed visual stimuli start roughly 50 ms after the onset of the stimulus and last for on average ~70 ms. About 50% of these neurons are strongly suppressed by visual stimuli flashed at certain locations flanking the excitatory center, and the spatiotemporal pattern of suppression exerts a predictable influence on the timing of saccades. This suppression may, therefore, contribute to the filtering of distractor stimuli during target selection. We also find that saccades affect the processing of visual stimuli by SC neurons in a manner that is quite similar to the saccadic suppression and postsaccadic enhancement that has been observed in the cortex and in perception. However, in contrast to what has been observed in the cortex, decreased visual sensitivity was generally associated with increased firing rates, while increased sensitivity was associated with decreased firing rates. Overall, these results suggest that the processing of visual stimuli by SC receptive fields can influence oculomotor behavior and that oculomotor signals originating in the SC can shape perisaccadic visual perception.

  16. Dynamic Stability of Superior vs. Inferior Body Segments in Individuals with Transtibial Amputation Walking in Destabilizing Environments✰

    OpenAIRE

    Beurskens, Rainer; Wilken, Jason M.; Dingwell, Jonathan B.

    2014-01-01

    Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body...

  17. Structures and Stabilization Mechanisms in Chemically Stabilized Ceramics

    Science.gov (United States)

    Gai-Boyes, Pratibha L.; Saltzberg, Michael A.; Vega, Alexander

    1993-09-01

    Structural complexities and disorder in chemically stabilized cristobalites (CSC), which are room temperature silica-based ceramics, prepared by a wet chemical route, are described. CSC displays many of the structural characteristics of the high temperature cristobalite, elucidated by HREM and X-ray diffraction. In-situ electron diffraction and NMR results suggest that the disorder is structural and is static.

  18. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins

    Science.gov (United States)

    Su, Xiao-Li; Cheng, Ming-Yu; Fu, Lin; Yang, Jing-He; Zheng, Xiu-Cheng; Guan, Xin-Xin

    2017-09-01

    The hollow activated carbon nanomesh (PCACM) with a hierarchical porous structure is derived from biowaste-poplar catkins by in-situ calcination etching with Ni(NO3)2·6H2O and KOH in N2 flow combined with an acid dissolution technique. This procedure not only inherits the natural tube morphology of poplar catkins, but also generates a fascinating nanomesh structure on the walls. PCACM possesses a large specific surface area (SBET = 1893.0 m2 g-1) and high total pore volume (Vp = 1.495 cm3 g-1), and displays an exciting meso-macoporous structure with a concentrated pore size distribution of 4.53 nm. The specific capacitance of PCACM is as high as 314.6 F g-1 at 1.0 A g-1 when used as the electrode materials for supercapacitor. Furthermore, the symmetric supercapacitor of PCACM with 1.0 M Na2SO4 solution as the electrolyte displays a high energy density of 20.86 Wh kg-1 at a power density of 180.13 W kg-1 within a wide voltage rage of 0-1.8 V, which is comparable or even obviously higher than those of other biomass derived carbon reported. It is noteworthy that PCACM also exhibits superior cycling stability and coulombic efficiency. The excellent electrochemical behaviors enable PCACM to be a promising electrode material for supercapacitors.

  19. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  20. Enhanced structural stability of adenovirus nanocapsule

    Institute of Scientific and Technical Information of China (English)

    Ding Weng; Ziyue Karen Jiang; Jing Jin; Lily Wu; Yunfeng Lu

    2014-01-01

    Application of viral vector in gene therapy and vaccination is still limited by their structural stability, which significantly increased avoidable cost in storage and transportation. Herein a non-covalent conjugated low-pH degradable nanocapsule has been adopted to stabilize viral vectors. By utilizing a luciferase expressing adenovirus, AdCMVLuc, we succeeded in a raise of over 11 folds in AdCMVLuc's structural stability after 12 days storage at 4 1C.

  1. Stability Analysis and Stabilization of Miduk Heap Leaching Structure, Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-06-01

    Full Text Available To construct copper heap leaching structures, a stepped heap of ore is placed over an isolated sloping surface and then washed with sulphuric acid. The isolated bed of such a heap consists of some natural and geosynthetic layers. Shear strength parameters between these layers are low, so they form the possible sliding surfaces of the heaps. Economic and environmental considerations call for studying such slides. In this study, firstly, results of the laboratory tests carried on the materials of the heap leaching structures bed are presented. Then, the instability mechanisms of such structures are investigated and proper approaches are summarized for their stabilization. Finally, stability of the Miduk copper heap is evaluated as a case history, and appropriate approaches and their effects are discussed for its stabilization.

  2. Toe Structure Stability of Sloping Breakwater

    Institute of Scientific and Technical Information of China (English)

    吴中; 嵇才苏

    2003-01-01

    Based on physical model tests, the rubble mound toe structure stability under the action of both regular and irregular waves is studied. Test results show that wave height and water depth at the toe structure are the most important factors affecting the stability of toe berm stone, and that irregular waves cause greater damage to the toe structure than regular waves. Analyses prove that the Gerding formula agrees better with our test results than the Meer formula. Tests on two different types of main armors also indicate that the shape and composition of the main armor have effect on the stability of the toe structure.

  3. Tensegrity structures form, stability, and symmetry

    CERN Document Server

    Zhang, Jing Yao

    2015-01-01

    To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abund...

  4. Plate shell structures - statics and stability

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2008-01-01

    This paper describes the basic structural system, statics and spatial stability of plate shells. The structural system can be considered as a single layer of planar elements, where each element only transfers in-plane (membrane) forces to its neighbouring elements. External out-of-plane loads...... are carried into the structure as in-plane forces by plate action in each element. These in-plane forces are then carried through the plate structure to the supports as in-plane forces by membrane action. The consequence is that the spatial stability of the structure can be simply analysed by considering...... the plate system as only subject to in-plane loads. The stability of such systems is based on the fact that each plane element is held fixed in space by three fixed support lines and that these support lines can be provided by three plane neighbour elements. This means that the spatial stability of a plate...

  5. Theory of Arched Structures Strength, Stability, Vibration

    CERN Document Server

    Karnovsky, Igor A

    2012-01-01

    Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches.

  6. Stability of the Wurtzite Structure

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1972-01-01

    An analysis of available data for 20 wurtzite compounds of the ANB8-N type shows that the stability as compared with zinc blende is closely connected with deviations of the c / a ratio from the ideal value of 1.633. A simple qualitative model is proposed to account for this feature. The variation...... in c / a is then correlated with the charge parameter ZC / ℏωp, where Z is the (effective) valence, C Phillips's electronegativity difference, and ℏωp the plasma energy of the free-valence-electron gas. The results indicate that c / a may be predicted with an uncertainty of 0.1%....

  7. Liquefaction mathematical analysis for improvement structures stability

    Directory of Open Access Journals (Sweden)

    Azam Khodashenas Pelko

    2010-10-01

    Full Text Available The stability of any structure is possible if foundation is appropriately designed. The Bandar abbas is the largest and most important port of Iran, with high seismicity and occurring strong earthquakes in this territory, the soil mechanical properties of different parts of city have been selected as the subject of current research. The data relating to the design of foundation for improvement of structure at different layer of subsoil have been collected and, accordingly, soil mechanical properties have been evaluated. The results of laboratory experiments can be used for evaluation of geotechnical characteristics of urban area for development a region with high level of structural stability. Ultimately, a new method for calculation of liquefaction force is suggested. It is applicable for improving geotechnical and structure codes and also for reanalysis of structure stability of previously constructed buildings.

  8. Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium-sulfur batteries with superior stability.

    Science.gov (United States)

    Qie, Long; Manthiram, Arumugam

    2016-09-21

    A lithium-polysulfide cell with superior stability is reported with N,O-codoped carbon hollow fiber (NCHF) sheets as a current collector. Due to the highly effective chemisorption and physical adsorption of lithium polysulfides on doped NCHF and a uniform Li2S precipitation during cycling, the Li2S6-impregnated NCHF electrodes exhibit high sulfur utilization and superior cycling stability even with a high areal sulfur loading of 6.2 mg cm(-2).

  9. Dynamic stability of superior vs. inferior body segments in individuals with transtibial amputation walking in destabilizing environments.

    Science.gov (United States)

    Beurskens, Rainer; Wilken, Jason M; Dingwell, Jonathan B

    2014-09-22

    Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m × 3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.

  10. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  11. TPGS-Stabilized Curcumin Nanoparticles Exhibit Superior Effect on Carrageenan-Induced Inflammation in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Heni Rachmawati

    2016-08-01

    Full Text Available Curcumin, a hydrophobic polyphenol compound derived from the rhizome of the Curcuma genus, has a wide spectrum of biological and pharmacological applications. Previously, curcumin nanoparticles with different stabilizers had been produced successfully in order to enhance solubility and per oral absorption. In the present study, we tested the anti-inflammatory effect of d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS-stabilized curcumin nanoparticles in vivo. Lambda-carrageenan (λ-carrageenan was used to induce inflammation in rats; it was given by an intraplantar route and intrapelurally through surgery in the pleurisy test. In the λ-carrageenan-induced edema model, TPGS-stabilized curcumin nanoparticles were given orally one hour before induction and at 0.5, 4.5, and 8.5 h after induction with two different doses (1.8 and 0.9 mg/kg body weight (BW. Sodium diclofenac with a dose of 4.5 mg/kg BW was used as a standard drug. A physical mixture of curcumin-TPGS was also used as a comparison with a higher dose of 60 mg/kg BW. The anti-inflammatory effect was assessed on the edema in the carrageenan-induced paw edema model and by the volume of exudate as well as the number of leukocytes reduced in the pleurisy test. TPGS-stabilized curcumin nanoparticles with lower doses showed better anti-inflammatory effects, indicating the greater absorption capability through the gastrointestinal tract.

  12. TPGS-Stabilized Curcumin Nanoparticles Exhibit Superior Effect on Carrageenan-Induced Inflammation in Wistar Rat

    Science.gov (United States)

    Rachmawati, Heni; Safitri, Dewi; Pradana, Aditya Trias; Adnyana, I Ketut

    2016-01-01

    Curcumin, a hydrophobic polyphenol compound derived from the rhizome of the Curcuma genus, has a wide spectrum of biological and pharmacological applications. Previously, curcumin nanoparticles with different stabilizers had been produced successfully in order to enhance solubility and per oral absorption. In the present study, we tested the anti-inflammatory effect of d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS)-stabilized curcumin nanoparticles in vivo. Lambda-carrageenan (λ-carrageenan) was used to induce inflammation in rats; it was given by an intraplantar route and intrapelurally through surgery in the pleurisy test. In the λ-carrageenan-induced edema model, TPGS-stabilized curcumin nanoparticles were given orally one hour before induction and at 0.5, 4.5, and 8.5 h after induction with two different doses (1.8 and 0.9 mg/kg body weight (BW)). Sodium diclofenac with a dose of 4.5 mg/kg BW was used as a standard drug. A physical mixture of curcumin-TPGS was also used as a comparison with a higher dose of 60 mg/kg BW. The anti-inflammatory effect was assessed on the edema in the carrageenan-induced paw edema model and by the volume of exudate as well as the number of leukocytes reduced in the pleurisy test. TPGS-stabilized curcumin nanoparticles with lower doses showed better anti-inflammatory effects, indicating the greater absorption capability through the gastrointestinal tract. PMID:27537907

  13. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  14. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    Science.gov (United States)

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.

  15. The structure and stability of persistence modules

    CERN Document Server

    Chazal, Frédéric; Glisse, Marc; Oudot, Steve

    2016-01-01

    This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.

  16. Core-shell polymeric microcapsules with superior thermal and solvent stability.

    Science.gov (United States)

    Kang, Sen; Baginska, Marta; White, Scott R; Sottos, Nancy R

    2015-05-27

    A protective polydopamine (PDA) coating is applied to core-shell microcapsule surfaces by the polymerization of dopamine monomers. A neutral aqueous solution and the addition of an oxidant (i.e., ammonium persulfate) are crucial for microcapsule survival and the initiation of PDA polymerization, respectively. The resulting PDA coating is a dense and uniform layer approximately 50 nm thick. The PDA protective coating significantly increases capsule stability at an elevated temperature (180 °C) and in a variety of organic solvents and acidic/basic solutions that otherwise lead to deflation and loss of the core content of uncoated microcapsules.

  17. Stability of Vertical, Horizontal and Angular Parameters Following Superior Repositioning of Maxilla by Le Fort I Osteotomy: A Cephalometric Study.

    Science.gov (United States)

    Venkategowda, Pruthvi Raj Hanthur; Prakash, A T; Roy, E T; Shetty, K Sadashiva; Thakkar, Surbhi; Maurya, Rajkumar

    2017-01-01

    The restoration of normal jaw function, optimal facial aesthetics and long term stability are the goals of any orthognathic surgical procedures. During the last two decades, several cephalometric investigations have been reported on the skeletal changes following maxillary surgical procedures. The stability following LeFort I osteotomy and maxillary superior repositioning of the maxilla has not been studied extensively. This study was aimed at determining the surgical changes brought about by superior repositioning of the maxilla by Le Fort I osteotomy and evaluate the stability of the surgical procedure one year following surgery. Presurgical and postsurgical and one year post surgical lateral cephalograms of 10 adult patients (age group - 17 to 40 years, with a mean age of 22.2 years) who had been treated successfully by maxillary Le-Fort I osteotomy and impaction were obtained. The lateral cephalograms were grouped into three categories: T1- Presurgical, T2- Postsurgical, T3- One year postsurgical. Comparisons were made between T1-T2 and T2-T3 to assess the changes following surgery and to evaluate the stability, one year following the surgery using 5 horizontal, 5 vertical linear and 2 angular measurement. Statistical analysis was done with SPSS (Version 17). Results were expressed as mean±standard deviation. A paired t-test was used to analyze the paired observations. The difference between T1 and T2 values of vertical changes showed that they were statistically highly significant whereas from T2 to T3 they were insignificant. The difference between T1 and T2 values of all the horizontal changes showed that they were statistically significant whereas True Vertical Line (TVL) to point Anterior Nasal Spine (ANS) was not statistically significant. The horizontal changes from T2 to T3 were statistically not significant whereas TVL to point Incisal edge of upper incisor (Is) was statistically significant. The angular changes from T1 to T2, T2 to T3 were

  18. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    NARCIS (Netherlands)

    H.L. Castricum; R. Kreiter; H.M. van Veen; D.H.A. Blank; J.F. Vente; J.E. ten Elshof

    2008-01-01

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables sel

  19. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability

    KAUST Repository

    Chen, Ye

    2013-08-14

    Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes\\' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 104 Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable. © 2013 American Chemical Society.

  20. Stability regions of compounds with pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Cherner, Ya.E.; Geguzina, G.A.; Fesenko, E.G. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    1983-02-01

    Half-empirical regularities of pyrochlore type structure formation (Sm/sub 2/Zr/sub 2/O/sub 7/, Sc/sub 2/Hf/sub 2/O/sub 7/, Sm/sub 2/ScNbO/sub 7/, SrHoHfNbO/sub 7/, CdBiNbO/sub 7/ etc.) are determined and regions of its stability in terms of deformations of interatomic bonds are obtained. An analytical method of forecasting a possibility of pyrochlore type structure formation necessary for directed search of new oxides with this structure is developed using them.

  1. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  2. Shell structure of nuclei far from stability

    CERN Document Server

    Grawe, H

    2001-01-01

    The experimental status of shell structure studies in medium-heavy nuclei far off the line of beta-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around sup 4 sup 8 sup , sup 5 sup 6 Ni, sup 1 sup 0 sup 0 Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes.

  3. Structural Stability of Tokamak Equilibrium: Transport Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Solano, E. R.

    2001-07-01

    A generalised theory of structural stability of differential equations is introduced and applied to the Grad-Shafranov equation. It is discussed how the formation and loss of transport barrier could be associated with the appearance/disappearance of equilibria. The equilibrium conjecture is presented: transport barriers are associated with locally diamagnetic regions in the plasma, and affected by the paramagnetism of the bootstrap current. (Author) 18 refs.

  4. Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact

    Energy Technology Data Exchange (ETDEWEB)

    Rimmaudo, Ivan; Salavei, Andrei; Xu, Bing Lei; Di Mare, Simone; Romeo, Alessandro, E-mail: alessandro.romeo@univr.it

    2015-05-01

    Due to its high scalability and low production cost, CdTe has shown a significant potential for high mass production, resulting to be one of the cheapest photovoltaic technologies available. Efficiencies exceeding 20% have been obtained by the application of high temperature CdTe deposition. However tellurium scarcity is a limitation for mass production and one of the possibilities to overcome this is the reduction of absorber thickness. We have already demonstrated efficiencies above 11% for devices with 1.5 μm thick CdTe. Nowadays we have fabricated ultra-thin absorber devices performing more than 13% efficiencies. But what is most interesting is that we have observed a different electrical operation and stability, connected to the fact that the depletion region takes a very large part of the device. In this work many CdTe solar cells with a standard Cu/Au back contact, made with different absorber thicknesses, were prepared, stored in dark and tested at different aging times, showing different reactions to the aging and in particular a remarkable stability as CdTe thickness reduces. - Highlights: • CdTe/CdS devices with 0.7, 1 and 1.8 μm thick absorbers have been prepared. • Superior stability in dark aging of ultra thin CdTe devices has been registered. • Electrical analysis shows different behaviors and nature of defects for thin CdTe samples. • For 6 μm CdTe samples degradation is driven mainly by defect compensation. • For ultra thin CdTe samples, degradation is dominated by impurities from the front contact.

  5. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    B S Murty; M K Datta; S K Pabi

    2003-02-01

    Nanocrystalline materials, which are expected to play a key role in the next generation of human civilization, are assembled with nanometre-sized “building blocks” consisting of the crystalline and large volume fractions of intercrystalline components. In order to predict the unique properties of nanocrystalline materials, which are a combination of the properties of the crystalline and intercrystalline regions, it is essential to understand precisely how the structures of crystalline and intercrystalline regions vary with decrease in crystallite size. In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique properties of nanocrystalline materials. Therefore, extensive interest has been generated in exploring the size effects on the structure of crystalline and intercrystalline region of nanocrystalline materials, and the thermal stability of nanocrystalline materials against significant grain growth. The present article is aimed at understanding the structure and stability of nanocrystalline materials.

  6. Structure, mass and stability of galactic disks

    CERN Document Server

    van der Kruit, P C

    2010-01-01

    In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.

  7. Stabilization and structural adjustment in Mozambique

    DEFF Research Database (Denmark)

    Tarp, Finn; Arndt, Channing; Jensen, Henning Tarp

    2000-01-01

    a suppressed outset. Yet, easy import substitution has now been used up, and structural transformation on the export side remains to be addressed. Moreover, a coherent development strategy geared towards poverty reduction is still to be implemented. The government budget also remains problematic, and aid......This paper outlines the complex historical legacy and structural adjustment efforts in Mozambique in addition to reviewing recent economic developments. An in-depth analysis of new and more reliable national accounts data show that macroeconomic stabilization has occurred through recovery from...... dependency continues. Accordingly, fundamental development challenges lie ahead...

  8. Structural Stability of Planar Bimodal Linear Systems

    Directory of Open Access Journals (Sweden)

    Josep Ferrer

    2014-01-01

    Full Text Available Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real spiral does not appear and when it does we give necessary and sufficient conditions concerning finite periodic orbits and saddle connections. In particular, we study the finite periodic orbits and the homoclinic orbits in the saddle/spiral case.

  9. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis.

    Science.gov (United States)

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-09-21

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.

  10. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    Science.gov (United States)

    Ling, Tao; Yan, Dong-Yang; Jiao, Yan; Wang, Hui; Zheng, Yao; Zheng, Xueli; Mao, Jing; Du, Xi-Wen; Hu, Zhenpeng; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-01-01

    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. PMID:27650485

  11. Local atomic structure in cubic stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Villella, P.; Conradson, S. D.; Espinosa-Faller, F. J.; Foltyn, S. R.; Sickafus, K. E.; Valdez, J. A.; Degueldre, C. A.

    2001-09-01

    X-ray-absorption fine structure measurements have been used to elucidate the local atomic structure of quaternary Zr, Y, Er, Ce/U cubic stabilized zirconia. These compounds display more complicated local environments than those reported for simpler binary systems. While the shortest cation-O distances are similar to those found in the binary cubic stabilized compounds, responding to the different sizes of the cations, we have identified large distortions in the first-shell oxygen distribution involving long, 2.8--3.2 {angstrom} cation-O distances that are similar to those found in the amorphous phase of zirconium. The cation-cation distributions are also found to be quite complicated (non-Gaussian) and element specific. The U-near neighbor distances are expanded relative to the Ce ions for which it substitutes, consistent with the larger size of the actinide, and the U-cation distribution is also more complicated. In terms of the effects of this substitution on the other cation sites, the local environment around Y is altered while the Zr and Er local environments remain unchanged. These results point out the importance of collective and correlated interactions between the different pairs of cations and the host lattice that are mediated by the local strain fields generated by the different cations. The presence of pair-specific couplings has not been commonly included in previous analyses and may have implications for the stabilization mechanisms of cubic zirconia.

  12. Copper Micro-Labyrinth with Graphene Skin: New Transparent Flexible Electrodes with Ultimate Low Sheet Resistivity and Superior Stability

    Directory of Open Access Journals (Sweden)

    Hak Ki Yu

    2016-09-01

    Full Text Available We have developed self-assembled copper (Cu micro-labyrinth (ML with graphene skin for transparent flexible electrodes of optoelectronic devices. The Cu ML is simply formed by heating a thin Cu film with a 100-nm thickness on a SiO2/Si substrate at 950 °C under hydrogen ambient to block the oxidation. Moreover, the Cu ML can have graphene skin at the surface by inserting carbo-hydroxyl molecules (CxHy during heating due to the catalytic decomposition of C–H bonds on the Cu surface. The Cu ML with graphene skin (Cu ML-G has superior sheet resistivity below 5 Ω/sq and mechanical flexibility without cracks at the bending radius of 0.1 cm. Although the transmittance of Cu ML-G is a little lower (70%~80% than that of conventional metallic nanowires electrodes (such as Ag, ~90% at the visible wavelength, it has good thermal stability in conductivity without any damage at 200 °C due to a micro-sized pattern and graphene skin which prohibits the surface migration of Cu atoms.

  13. Structure, stability and folding of the alpha-helix.

    Science.gov (United States)

    Doig, A J; Andrew, C D; Cochran, D A; Hughes, E; Penel, S; Sun, J K; Stapley, B J; Clarke, D T; Jones, G R

    2001-01-01

    Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.

  14. Refinement and stability of grain structure

    Energy Technology Data Exchange (ETDEWEB)

    John Humphreys, F.; Bate, P.S. [Manchester Univ. (United Kingdom). Manchester Materials Science Centre

    2001-07-01

    The various methods of producing fine-grained alloys are discussed and it is concluded that thermomechanical processing routes are most suitable for the economic production of the large quantities of material required for structural applications. The limits of grain refinement by conventional discontinuous recrystallization are considered, and the production of micron-grained alloys by continuous recrystallization processes during or after large strain deformation is discussed. The stability of highly deformed microstructures against recrystallization is analysed, and the effect of second-phase particles on grain growth is discussed. It is shown that perturbations of the Zener drag during high temperature deformation may lead to dynamic grain growth in two-phase alloys. (orig.)

  15. The structural stability of lunar lava tubes

    Science.gov (United States)

    Blair, David M.; Chappaz, Loic; Sood, Rohan; Milbury, Colleen; Bobet, Antonio; Melosh, H. Jay; Howell, Kathleen C.; Freed, Andrew M.

    2017-01-01

    Mounting evidence from the SELENE, LRO, and GRAIL spacecraft suggests the presence of vacant lava tubes under the surface of the Moon. GRAIL evidence, in particular, suggests that some may be more than a kilometer in width. Such large sublunarean structures would be of great benefit to future human exploration of the Moon, providing shelter from the harsh environment at the surface-but could empty lava tubes of this size be stable under lunar conditions? And what is the largest size at which they could remain structurally sound? We address these questions by creating elasto-plastic finite element models of lava tubes using the Abaqus modeling software and examining where there is local material failure in the tube's roof. We assess the strength of the rock body using the Geological Strength Index method with values appropriate to the Moon, assign it a basaltic density derived from a modern re-analysis of lunar samples, and assume a 3:1 width-to-height ratio for the lava tube. Our results show that the stability of a lava tube depends on its width, its roof thickness, and whether the rock comprising the structure begins in a lithostatic or Poisson stress state. With a roof 2 m thick, lava tubes a kilometer or more in width can remain stable, supporting inferences from GRAIL observations. The theoretical maximum size of a lunar lava tube depends on a variety of factors, but given sufficient burial depth (500 m) and an initial lithostatic stress state, our results show that lava tubes up to 5 km wide may be able to remain structurally stable.

  16. Design and stability of a family of deployable structures

    OpenAIRE

    Lessinnes, Thomas; Goriely, Alain

    2016-01-01

    A large family of deployable filamentary structures can be built by connecting two elastic rods along their length. The resulting structure has interesting shapes that can be stabilized by tuning the material properties of each rod. To model this structure and study its stability, we show that the equilibrium equations describing unloaded states can be derived from a variational principle. We then use a novel geometric method to study the stability of the resulting equilibria. As an example w...

  17. Codeword stabilized quantum codes: Algorithm and structure

    Science.gov (United States)

    Chuang, Isaac; Cross, Andrew; Smith, Graeme; Smolin, John; Zeng, Bei

    2009-04-01

    The codeword stabilized (CWS) quantum code formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes [IEEE Trans. Inf. Theory 55, 433 (2009)]. This formalism reduces the problem of constructing such quantum codes to finding a binary classical code correcting an error pattern induced by a graph state. Finding such a classical code can be very difficult. Here, we consider an algorithm which maps the search for CWS codes to a problem of identifying maximum cliques in a graph. While solving this problem is in general very hard, we provide three structure theorems which reduce the search space, specifying certain admissible and optimal ((n,K,d)) additive codes. In particular, we find that the re does not exist any ((7,3,3)) CWS code though the linear programming bound does not rule it out. The complexity of the CWS-search algorithm is compared with the contrasting method introduced by Aggarwal and Calderbank [IEEE Trans. Inf. Theory 54, 1700 (2008)].

  18. Global stabilization of nonlinear systems with uncertain structure

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From the condition,several simply sufficient conditions for the globally asymptotical stability are deduced. A state feedback control law is designed to globally asymptotically stabilize the equilibrium of the closed system. Last, a simulation shows the effectiveness of the method.

  19. Transmastoid Approach for Resurfacing the Superior Semicircular Canal Dehiscence with a Dumpling Structure

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Ma

    2015-01-01

    Full Text Available Background: Superior semicircular canal dehiscence (SSCD is gradually recognized by otologists in recent years. The patients with SSCD have a syndrome comprising a series of vestibular symptoms and hearing function disorders which can be cured by the operation. In this study, we evaluated the characteristics of patients with SSCD and determined the effectiveness of treating this syndrome by resurfacing the canal via the transmastoid approach using a dumpling structure. Methods: Patients with SSCD, confirmed by high-resolution computed tomography and hospitalized at Beijing Tongren Hospital between November 2009 and October 2012, were included in the study. All of the patients underwent the unilateral transmastoid approach for resurfacing the canal, and received regular follow-up after surgery. Data from preoperative medical records and postoperative follow-up were comparatively analyzed to evaluate the effect of surgery. Results: In total, 10 patients and 13 ears (three left ears, four right ears, three bilateral ears were evaluated in the study, which included 7 men and 3 women. Different symptoms and distinctive manifestations of vestibular evoked myogenic potential were found in these patients. After surgery, 4 patients had complete resolution, 5 had partial resolution, and 1 patient, with bilateral SSCD, had aggravation. None of the patients suffered from serious complications such as sensorineural hearing loss, facial paralysis, cerebrospinal fluid leakage, or intracranial hypertension. Conclusions: In patients with unilateral SSCD, resurfacing the canal via the transmastoid approach using a dumpling structure is an effective and safe technique. However, more consideration is needed for patients with bilateral SSCD.

  20. Transmastoid Approach for Resurfacing the Superior Semicircular Canal Dehiscence with a Dumpling Structure

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Ma; Rong Zeng; Guo-Peng Wang; Shu-Sheng Gong

    2015-01-01

    Background:Superior semicircular canal dehiscence (SSCD) is gradually recognized by otologists in recent years.The patients with SSCD have a syndrome comprising a series of vestibular symptoms and hearing function disorders which can be cured by the operation.In this study,we evaluated the characteristics of patients with SSCD and determined the effectiveness of treating this syndrome by resurfacing the canal via the transmastoid approach using a dumpling structure.Methods:Patients with SSCD,confirmed by high-resolution computed tomography and hospitalized at Beijing Tongren Hospital between November 2009 and October 2012,were included in the study.All of the patients underwent the unilateral transmastoid approach for resurfacing the canal,and received regular follow-up after surgery.Data from preoperative medical records and postoperative follow-up were comparatively analyzed to evaluate the effect of surgery.Results:In total,10 patients and 13 ears (three left ears,four right ears,three bilateral ears) were evaluated in the study,which included 7 men and 3 women.Different symptoms and distinctive manifestations of vestibular evoked myogenic potential were found in these patients.After surgery,4 patients had complete resolution,5 had partial resolution,and 1 patient,with bilateral SSCD,had aggravation.None of the patients suffered from serious complications such as sensorineural hearing loss,facial paralysis,cerebrospinal fluid leakage,or intracranial hypertension.Conclusions:In patients with unilateral SSCD,resurfacing the canal via the transmastoid approach using a dumpling structure is an effective and safe technique.However,more consideration is needed for patients with bilateral SSCD.

  1. Robust stabilization of general nonlinear systems with structural uncertainty

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.

  2. Hierarchically Structured Graphene Coupled Microporous Organic Polymers for Superior CO2 Capture.

    Science.gov (United States)

    Liu, Fa-Qian; Wang, Li-Li; Li, Guo-Hua; Li, Wei; Li, Chao-Qin

    2017-10-04

    Hierarchically porous materials containing interconnected macro-/meso-/micropores are promising candidates for energy storage, catalysis, and gas separation. Here, we present an effective approach for synthesizing three-dimensional (3D) sulfonated graphene coupled microporous organic polymers (SG-MOPs). The resulting SG-MOPs possess uniform macropores with an average size of ca. 350 nm, abundant mesopores, and micropores with an average size of ca. 0.6 nm. The SG-supported adsorbents exhibit a high nitrogen content (more than 38.1 wt %), high adsorption capacity (up to 3.37 mmol CO2 g(-1)), high CO2/N2 selectivity from 42 to 51, moderate heat of adsorption, as well as good stability because of the hierarchical porous structure and excellent thermal conductivity of the SG scaffold. Thus, these nitrogen-enriched adsorbents allow the overall CO2 capture process to be promising and sustainable.

  3. The stability and dynamic behaviour of fluid-loaded structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2015-07-01

    Full Text Available ECCOMAS Young Investigators Conference 6th GACM Colloquium, July 20–23, 2015, Aachen, Germany The stability and dynamic behaviour of fluid-loaded structures R. Suliman, N. Peake Abstract. The deformation of slender elastic structures due...

  4. Stabilization flyuorytopodibnoyi structure in oxide vacuum condensate

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2006-01-01

    Full Text Available  The influence of the oxide-stabilizer content, M'-cation radius and film deposition temperature on the stabilization of the fluorite-like solid solutions in the zirconium and hafnium oxides-based vacuum condensates, obtained by Laser-evaporating method, was investigated. The optimum parameters of the coatication of the isotropic thermostable coverings was determined. This results were explained by using of the high-speed condensation in vacuum theory.

  5. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    Science.gov (United States)

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg2 NiH4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg2 NiH4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol(-1) ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A highly efficient electrocatalyst of perovskite LaNiO{sub 3} for nonaqueous Li–O{sub 2} batteries with superior cycle stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qian [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Ding, Fei, E-mail: hilldingfei@163.com [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Zhang, Lei [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Sang, Lin [National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Liu, Xingjiang [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384 (China); Xu, Qiang, E-mail: xuqiang@tju.edu.cn [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    A highly efficient catalyst of perovskite LaNiO{sub 3} was synthesized by a simple reverse homogenous precipitation method and adopted as the electrocatalyst in nonaqueous Li–O{sub 2} batteries. The phase structure and morphologies of the as-synthesized LaNiO{sub 3} nanoparticles (NPs) are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrocatalytic activity of porous LaNiO{sub 3} catalysts was investigated by cyclic voltammetry (CV) and charge–discharge measurements using Li–O{sub 2} batteries in aprotic electrolyte. The electrochemical results show that the LaNiO{sub 3}-based electrode exhibits much enhanced cycling ability (>155 cycles) as well as stable discharging plateau (limit > 2.51 V) with a 706 mV smaller charge–discharge voltage gap than that of the pure carbon cathode at a current density of 50 mA g{sup −1}. The superior performance contributes to the high intrinsic electrocatalytic activity of LaNiO{sub 3} with the porous nanostructure. - Highlights: • Mesoporous LaNiO{sub 3} nanoparticles with high dispersibility are simply synthesized. • Better round-trip efficiency and cycle stability with less catalyst consumption. • The LaNiO{sub 3}-based cell shows a low discharge–recharge voltage gap of 878 mV. • More than 155 cycles with stable discharging terrace (limit > 2.51 V) is reported.

  7. Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability.

    Science.gov (United States)

    An, Byeong Wan; Gwak, Eun-Ji; Kim, Kukjoo; Kim, Young-Cheon; Jang, Jiuk; Kim, Ju-Young; Park, Jang-Ung

    2016-01-13

    Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile

  8. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  9. Structural Stability of Low-Crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten

    A more and more widespread way to protect the coast against ongoing erosion is to build so called Low Crested Structures (LCS’s). Despite a large number of coast parallel LCS’s exist, the structural performance of these structures are not fully clarified. The LCS’s dealt with are coast parallel...

  10. Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun

    2005-01-01

    This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.

  11. Structure and Stability of Monatomic Metallic Chains

    Science.gov (United States)

    Batra, Inder P.; Sen, Prasenjit; Ciraci, S.

    2001-03-01

    We have investigated atomic and electronic structure of Au and Al monatomic chains by using first-principle plane wave method within density-functional theory. Despite their different valencies, Au and Al form planar zigzag chains with each atom having four nearest neighbors. The zigzag structure is stable against linearization and non-planar deformations. We performed an extensive charge density analysis and finite temperature calculations to reveal the origin of the unusual atomic structure in these one dimensional metallic systems. The implications of the zigzag structure on the electronic properties and the balistic electron conduction have been examined.

  12. On One Approach to TSP Structural Stability

    Directory of Open Access Journals (Sweden)

    Evgeny Ivanko

    2014-01-01

    Full Text Available In this paper we study an inverse approach to the traveling salesman reoptimization problem. Namely, we consider the case of the addition of a new vertex to the initial TSP data and fix the simple “adaptation” algorithm: the new vertex is inserted into an edge of the optimal tour. In the paper we consider the conditions describing the vertexes that can be inserted by this algorithm without loss of optimality, study the properties of stability areas, and address several model applications.

  13. Interface stability of granular filter structures under currents

    NARCIS (Netherlands)

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  14. Interface stability of granular filter structures under currents

    NARCIS (Netherlands)

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  15. Diffusion phenomena in chemically stabilized multilayer structures

    NARCIS (Netherlands)

    Bruijn, Saskia

    2011-01-01

    Multilayered thin film structures are widely applied as reflective coatings for optical elements in the extreme ultraviolet wavelength regime. In this thesis we investigate the structural and chemical changes that occur in Mo/Si based multilayers as a result of radiation induced thermal loads and ot

  16. The Structures and Stability of HNOS Isomers

    Institute of Scientific and Technical Information of China (English)

    CHI,Yu-Juan; YU,Hai-Tao; FU,Hong-Gang; XIN,Bai-Fu; LI,Ze-Sheng; SUN,Jia-Zhong

    2003-01-01

    Potential energy surface of HNOS system is investigated by means ofMP2 method with 6-311 ++ G(d, p)basis set. The energyfor each minimum and saddle point on the potential energy surface is corrected at the QCISD(T)/6-311 ++ G(3df, 2p) level of theory with zero-point vibrational energy included. As a result, eighteen isoners are theoretically predicted and cis-HNSO is found to be global minimum on the potential energy surface. Wherein, fourteen isoners are considered as kinetically stable species, and should be experimentally observed. Comparisons are made for HNOS system with its analogues, HNO2 and HNS2. The nature of bonding and isomers' stability of HNOS system are similar to HNS2. The obvious similarities and discrepancies among HNOS, HNO2 and HNS2are attributed to the hypervalent capacity of sulfur, oxygen and nitrogen atoms.

  17. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  18. Studies on structural stability of thermophilic Sulfolobus acidocaldarius ribosomes.

    Science.gov (United States)

    Yangala, Kalavathi; Suryanarayana, Tangirala

    2007-02-01

    Structural stability of thermophilic archaeon Sulfolobus acidocaldarius ribosomes, with respect their susceptibility to pancreatic RNase A and stability to temperature (deltaTm), on treatment with various stabilizing (polyamines) and destabilizing (sulfhydryl and intercalating) agents were studied and compared with mesophilic E. coli ribosomes, to understand the structural differences between thermophilic and mesophilic ribosomes. Thermophilic archaeal ribosomes and their subunits were 10-times less susceptible to pancreatic RNase A, compared to mesophilic ribosomes, showing the presence of strong and compact structural organization in them. Thermophilic ribosomes treated with destabilizing agents, such as sulfhydryl reagents [5,5'-Dithio-bis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercurybenzoate) and intercalating agents (ethidium bromide, EtBr) showed higher stability to RNase A, compared to similarly treated mesophilic ribosomes, indicating the unavailability of thiol-reactive groups and the presence of strong solvent inaccessible inner core. Higher stability of thermophilic ribosomes compared to mesophilic ribosomes to unfolding agents like urea further supported the presence of strong inner core particle. Thermophilic ribosomes treated with intercalating agents, such as EtBr were less susceptible to RNase A, though they bound to more reagent, showing the rigidity or resilience of their macromolecular structure to alterations caused by destabilizing agents. Overall, these results indicated that factors such as presence of strong solvent inaccessible inner core and rigidity of ribosome macromolecular structure contributed stability of thermophilic ribosomes to RNase A and other destabilizing agents, when compared to mesophilic ribosomes.

  19. The Structure of Nuclei Far from Stability

    Energy Technology Data Exchange (ETDEWEB)

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  20. Structural stability estimation of whirling unit

    Institute of Scientific and Technical Information of China (English)

    Son-Jae HWAN; Han-Chang WOO; Lee-Sang RYONG; Lee-Young MOON

    2009-01-01

    Whirling is a cutting process in which a series of cutting edges on whirling ring remove material by turning over a rotating workpiece. In this study static and dynamic stability of whirling unit was estimated by using ADAMS and NASTRAN softwares. Each maximum force acting on the bearing attached to the spindle assembly and the cutting tool attached to the whirling ring with the rotating speed of 6 000 r/min was 235 N and 902 N respectively. The maximum stress of 0.74 Mpa on the base frame is far smaller than the yield strength of 282 Mpa. The calculated natural frequency of 148 Hz of the system is far from the frequency of the driving speed of 6 000 r/min. The experimentally obtained maximum cutting force of 792 N is smaller than that of calculated value. And the experimentally obtained natural frequency of 118 Hz is beyond the driving speed of 6 000 r/min. From above results it can be judged that the whirling system is statically and dynamically stable.

  1. Structures and Stability of HNS2 Isomers

    Institute of Scientific and Technical Information of China (English)

    CHI,Yu-Juan(池玉娟); YU,Hai-Tao(于海涛); Fu,Hong-Gang(傅宏刚); HUANG,Xu-Ri(黄旭日); LI,Ze-Sheng(李泽生); SUN,Jia-Zhong(孙家钟)

    2002-01-01

    Potential energy surface of HNS2 is investigated by means of second-order Moller-Plesset perturbation theory (MP2) and QCISD(T) (single-point) methods. At final QCISD (T)/6-311++ G(3df,2p)//MP2/6-311++ G(d,p) level with zero-point vibrational energies included, cis-HNSS is found to be global minimum on the potential energy surface, followed by low-lying trans-HNSS, HN(S)S(C2v), cis-HSNS, cis-HSSN,rans-HSNS, trans-HSSN, and HN(S)S(Cs) by 13.46,66.92, 78.25, 80.38, 81.22, 81.38 and 86.40 kJ/mol, respectively. A new high-lying HS(N)S isomer with Cs symmetry is located on the potential energy surface. The kinetic stabilities of all isomers are predicted. Comparisons are made for HNS2 with its analogues, HNO2, HPS2 and HPO2. The causes that lead to the differences between HNS2 and its analogues are hypervalent capacity of phosphorus and distinct electronegativities of hydrogen, nitrogen and phosphorus.

  2. Structures and Stability of NHS2 Isomers

    Institute of Scientific and Technical Information of China (English)

    池玉娟; 于海涛; 等

    2002-01-01

    Potential energy surface of HNS2 is investigated by means of second-order Moller-Plesset Perturbation theory(MP2) and QCISD(T) (single-point)methods,At final QCISD (T)/6-311++G(3df,2p)//MP2/6-311+G(d,p),level with zero-point vibrational energies included,cis-NHSS is found to be global minimum on the potential energy sufrace,followed by low-lying trans-HNSS ,HN(S)S(C2v).cis-HSNS,cis-NSSN,trans-HSNS,trans-NSSN,and HN(S)S(Cs) by 13.46,66.92,78.25,80.38,81.22,81.38 and 86.40 kJ/mol,respectively.A new high-lying HS(N)S isomer with Cs symmetry is located on the potential energy surface ,The kinetic stabilities of all isomers are predicted.Comprisons are made for HNS2 with its analogues,NHO2,HPS2 and HPO2,The causes that lead to the differences between HNS2 and its analogues are hypervalent capacity of phosphorus and distinct electronegativities of hydrogen,nitrogen and phosphorus.

  3. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring

    Directory of Open Access Journals (Sweden)

    Wenjia Cai

    2014-03-01

    Full Text Available A series of nickel-containing mesoporous silica samples (Ni-SiO2 with different nickel content (3.1%–13.2% were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO2, with highly dispersed small nickel particles, exhibited excellent catalytic activity and long-term stability. The metallic nickel particle size was significantly affected by the metal anchoring effect between metallic nickel particles and unreduced nickel ions in the silica matrix. A strong anchoring effect was suggested to account for the remaining of small Ni particle size and the improved catalytic performance.

  4. STRUCTURE AND STABILITY OF MAIN ROOF AFTER ITS FRACTURE

    Institute of Scientific and Technical Information of China (English)

    朱德仁; 钱鸣高

    1990-01-01

    A serics of physical modelings in which a main roof is considered as a Kirchhoff plate supported or clammed by Winkler elastic foundation were performed to simulate the fracturing process of the main roof in longwall mining. Based on these modelings spatial structures of the main roof after its fracture are described, blocks of the fractured main roof are classified and their behaviors are analyzed in this paper. Additionally, two stability indexes of the structures are defined, and the factors affecting stability of the structures with different boundaries and geometric conditions are discussed.

  5. Asymptotic stability of solutions to elastic systems with structural damping

    Directory of Open Access Journals (Sweden)

    Hongxia Fan

    2014-11-01

    Full Text Available In this article, we study the asymptotic stability of solutions for the initial value problems of second order evolution equations in Banach spaces, which can model elastic systems with structural damping. The discussion is based on exponentially stable semigroups theory. Applications to the vibration equation of elastic beams with structural damping are also considered.

  6. Slide stability of hydraulic structures on subbed soil

    Institute of Scientific and Technical Information of China (English)

    Zhou Junliang

    2013-01-01

    The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits,the decreased value of bearing capacity on slide after re-bound and repression influence of subbed soil was determined,and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures,different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress σmax of eccentric load to predict structure displacement,slide and creepy slippage of subbed soil,to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method,and the results accorded with the real conditions.

  7. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  8. Structure of Nuclei Far From Stability

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, Jeffery C. [Louisiana State Univ., Baton Rouge, LA (United States); Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Bertulani, Carlos [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and X-ray burst explosions. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are

  9. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    Science.gov (United States)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  10. Competing stability modes in vortex structure formation

    Science.gov (United States)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  11. Structure and stability of Ricinus communis haemagglutinin.

    Science.gov (United States)

    Frénoy, J P; Tran, A T; Bourrillon, R

    1986-01-01

    The molecular properties of the haemagglutinin of Ricinus communis (RCA I or RCA 120) were evaluated by analytical ultracentrifugation, light-scattering, c.d. and fluorescence. The native molecule had a fairly expanded structure (f/f0 = 1.43) and dissociated into two subunits of equal size in 6 M-guanidinium chloride. This native structure was stable in alkali (up to pH 11) and resistant to thermal denaturation at neutrality. A pH-triggered change in the haemagglutinin conformation was observed and characterized by analytical ultracentrifugation, c.d. and fluorescence between pH 7 and 4.5, the range in which its affinity for galactosides decreased [Yamasaki, Absar & Funatsu (1985) Biochim, Biophys. Acta 828, 155-161]. These results are discussed in relation to those reported in the literature for other lectins and more especially ricin, for which a pH-dependent conformation transition has been observed in the same range of low pH. PMID:3827842

  12. Stability for Structures Armored with Core-LocTM

    OpenAIRE

    ÇEVİK, Esin ÖZKAN; CİHAN, Kubilay; YÜKSEL, Yalçın

    2014-01-01

    In conventional two-layer systems various armor units such as tetrapod, dolos, and tribar have been commonly used. Recent developments are accropode and core-locTM, which can be used in a single layer of armoring. The units for one-layer systems have an interlocking response under waves and hence their stability is high. The structure slope, wave conditions and placement methods are other areas of interest related to the stability of breakwater armor units. This study was intended ...

  13. Pressure induced stability: from pneumatic structures to Tensairity(R)

    Institute of Scientific and Technical Information of China (English)

    Rolf H. Luchsinger; Mauro Pedretti; Andreas Reinhard

    2004-01-01

    Structural stabilization by a pressurized fluid is very common in nature, however hardly found in technology. Car tires, hot air balloons, airships and airhouses are among the few technical exceptions, which are stabilized by a compressed medium,typically air. Restricted by simple geometries and a very limited load bearing capacity these pneumatic structures could succeed only in very specialized applications. Nevertheless, prospective concepts ag has systematically investigated pneumatic structures during the last few years. As a major result, it was demonstrated that almost any shape can be made with pneumatic structures and that astonishing structures such as the pneumatic airplane Stingray can be realized even with low air pressure. On top of that,Airlight Ltd. in close collaboration with prospective concepts ag has recently developed the fundamental new structural concept Tensairity. The synergetic combination of an inflated structure with conventional structural elements such as cables and struts yields pneumatic light-weight structures with the load bearing capacity of steel girders. Thus, complex forms and high strength open up many new opportunities for pressure induced stability in technology. An overview of these recent developments is presented and the close relationship of pneumatic structures with biology is outlined.

  14. A Novel Oblique Detonation Structure and Its Stability

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; ZHAO Wei; JIANG Zong-Lin

    2007-01-01

    Oblique detonation structures induced by the wedge in the supersonic combustible gas mixtures are simulated numerically. The results show that the stationary oblique detonation structures are influenced by the gas flow Mach number, and a novel critical oblique detonation structure, which is characterized by a more complicated wave system, appears in the low Mach number cases. By introducing the inflow disturbance, its nonstationary evolution process is illustrated and its stability is verified.

  15. Structural Optimization of Machine Gun Based on Dynamic Stability Concept

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jian; WANG Rui-lin; ZHANG Ben-jun

    2008-01-01

    Improving the firing accuracy is a final goal of structural optimization of machine guns. The main factors which affect the dispersion accuracy of machine gun are analyzed. Based on the concept of dynamic stability, a structural optimization model is built up, and the sensitivity of dispersion accuracy to design variables is analyzed. The optimization results of a type of machine gun show that the method is valid, feasible, and can be used as a guide to the structural optimization of other automatic weapons.

  16. Carotenoid:β-cyclodextrin stability is independent of pigment structure.

    Science.gov (United States)

    Fernández-García, Elisabet; Pérez-Gálvez, Antonio

    2017-04-15

    Carotenoids refer to a wide class of lipophilic pigments synthesized by plants, exert photoprotective and antioxidant properties that are lost upon carotenoid degradation. Their inclusion into hydrophilic host-molecules could improve their stability. Cyclodextrins, provide a hydrophobic cavity in the core of their structure while the outer configuration is suitable with aqueous environments. Carotenoids can accommodate into the hydrophobic core of cyclodextrins and therefore, they are protected from exogenous stress. Literature reported that carotenoid structure could modulate stability of the complexes, however no conclusions can be drawn as the studies performed so far were not completely analogous. We describe the synthesis of several carotenoids/β-CDs inclusion complexes and provide experimental evidences that β-CDs inclusion renders these compounds more stability towards the oxidizing agents (2,2'-azobis, 2-methylpropionamidine dihydrochloride and hydrogen peroxide). Esterified carotenoids were also used in this work to screen the influence of this particular structural configuration of xanthophylls against oxidation.

  17. Study on Floating Properties and Stability of Air Floated Structures

    Institute of Scientific and Technical Information of China (English)

    别社安; 及春宁; 任增金; 李增志

    2002-01-01

    In this paper, the buoyancy, kinetic properties and stability of air floated structures have been studied by theoreticaland experimental methods. The equations for calculation of the buoyancy of the air floated buoy are derived according tothe Boyler law and the equilibrium equations of the air floated structure are established. Through simplification of the airfloated structure as a single freedom rigid body and spring system, the natural period of heaving and some kinetic proper-ties are discussed. In the stability analysis, the formulas for calculation of the meta centric height are presented. The the-oretical results are in good agreement with the data observed from the model test and prototype test. The air buoyancy de-crease coefficient presented in this paper has a large influence on the floating state, stability and dynamic properties of theair floated structure. The stability of the air floated structure can also be judged by the parameter of meta centric height,and calculations show that the air floated structure is less stable than the conventional float.

  18. Structural Bases of Stability-Function Tradeoffs in Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, Beth M; Shoichet, Brian K [NWU, MED

    2010-03-05

    The structures of enzymes reflect two tendencies that appear opposed. On one hand, they fold into compact, stable structures; on the other hand, they bind a ligand and catalyze a reaction. To be stable, enzymes fold to maximize favorable interactions, forming a tightly packed hydrophobic core, exposing hydrophilic groups, and optimizing intramolecular hydrogen-bonding. To be functional, enzymes carve out an active site for ligand binding, exposing hydrophobic surface area, clustering like charges, and providing unfulfilled hydrogen bond donors and acceptors. Using AmpC {beta}-lactamase, an enzyme that is well-characterized structurally and mechanistically, the relationship between enzyme stability and function was investigated by substituting key active-site residues and measuring the changes in stability and activity. Substitutions of catalytic residues Ser64, Lys67, Tyr150, Asn152, and Lys315 decrease the activity of the enzyme by 10{sup 3}-10{sup 5}-fold compared to wild-type. Concomitantly, many of these substitutions increase the stability of the enzyme significantly, by up to 4.7 kcal/mol. To determine the structural origins of stabilization, the crystal structures of four mutant enzymes were determined to between 1.90 {angstrom} and 1.50 {angstrom} resolution. These structures revealed several mechanisms by which stability was increased, including mimicry of the substrate by the substituted residue (S64D), relief of steric strain (S64G), relief of electrostatic strain (K67Q), and improved polar complementarity (N152H). These results suggest that the preorganization of functionality characteristic of active sites has come at a considerable cost to enzyme stability. In proteins of unknown function, the presence of such destabilized regions may indicate the presence of a binding site.

  19. Stability of the fcc structure in block copolymer systems.

    Science.gov (United States)

    Nonomura, Makiko

    2008-11-19

    The stability of the face-centered cubic (fcc) structure in microphase separated copolymers is investigated by a coarse-grained approach. Direct simulations of the equation for the microphase separation in three dimensions indicate that there is a narrow area above a certain degree of segregation in the phase diagram, where the fcc structure is the most stable structure. By employing the mode expansion, we have confirmed that the fcc structure can form as a metastable structure even in the weak segregation regime.

  20. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    Science.gov (United States)

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigmafcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  1. Influence of landfill structures on stabilization of fully recycled leachate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and semi-aerobic landfills separately. The influence of landfill structure on stabilization of fully recycled leachate was studied. The results show that semi-aerobic landfill structure accelerates the stabilization of leachate recycled. The full recycle of leachate in semi-aerobic landfill is a very feasible and effective technology for leachate treatment with low cost and energy saving especially in arid and rare rainfall regions. Meanwhile, the environmental impact of landfill can be greatly minimized.

  2. Stability patterns for a size-structured population model and its stage-structured counterpart

    DEFF Research Database (Denmark)

    Zhang, Lai; Pedersen, Michael; Lin, Zhigui

    2015-01-01

    In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivalent...... delayed system consisting of a renewal equation for the consumer population birth rate and a delayed differential equation for the resource. Results show that the size- and stage-structured models differ considerably with respect to equilibrium stability, although the two models have completely identical...

  3. Relations Between Stabilities and Structures of Closo Borane Dianions

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2006-01-01

    An effective method to investigate the stabilities of a series of new closo-BnHn2-(n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and ▲E per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.

  4. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  5. Differentiable dynamical systems an introduction to structural stability and hyperbolicity

    CERN Document Server

    Wen, Lan

    2016-01-01

    This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...

  6. Exploring the stability of dimers through protein structure topology.

    Science.gov (United States)

    Di Paola, Luisa; Mei, Giampiero; Di Venere, Almerinda; Giuliani, Alessandro

    2016-01-01

    Protein homodimers pose some intriguing questions about the relation between structure and stability. We approached the problem by means of a topological methodology based on protein contact networks. We correlated local interface descriptors with structure and energy global properties of the systems under analysis. We demonstrated that the graph energy, formerly applied to the analysis of unconjugated hydrocarbons structures, is the bridge between the topological and energetic description of protein complexes. This is a first step for the generation of a "protein structural formula", analogous to the molecular graphs in organic chemistry.

  7. Distributed formation stabilization for mobile agents using virtual tensegrity structures

    NARCIS (Netherlands)

    Yang, Qingkai; Cao, Ming; Fang, Hao; Chen, Jie

    2015-01-01

    This paper investigates the distributed formation control problem for a group of mobile Euler-Lagrange agents to achieve global stabilization by using virtual tensegrity structures. Firstly, a systematic approach to design tensegrity frameworks is elaborately explained to confine the interaction rel

  8. The role of adjuvant in mediating antigen structure and stability.

    Science.gov (United States)

    Braun, Latoya Jones; Eldridge, Aimee M; Cummiskey, Jessica; Arthur, Kelly K; Wuttke, Deborah S

    2012-04-01

    The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional (15) N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption.

  9. Structure Stability of Ⅰ-Type Carbon Nanotube Junctions

    Institute of Scientific and Technical Information of China (English)

    夏丹; 袁喆; 李家明

    2002-01-01

    Carbon nanotubes with junctions may play an important role in future ‘nanoelectronics' and future ‘nano devices'.In particular, junctions constructed with metal and semiconducting nanotubes have potential applications. Basedon the orthogonal tight-binding molecular dynamics method, we present our study of the structure stability ofI-type carbon nanotube junctions.

  10. Structural study of emulsions stabilized by charged nanoparticles

    Science.gov (United States)

    El-moudny, S.; Badia, M.; Benhamou, M.

    2017-03-01

    The aim is a quantitative study of the structure of the Pickering emulsionsthat are stabilized by charged nanoparticles. We assume that the interaction potential between droplets is of Sogami type. First, we compute the structural properties using the Integral Equation Method with the so-called hybridized-mean spherical approximation (HMSA). Finally, the validity of this method is tested by confronting the results of the correlation functions found by HMSA integral equation with those from Molecular Dynamics (MD) simulations.

  11. Lyapunov Criteria for Structural Stability of Supply Chain System

    Institute of Scientific and Technical Information of China (English)

    LU Ying-jin; TANG Xiao-wo; ZHOU Zong-fang

    2004-01-01

    In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure,with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.

  12. Differential scanning calorimetry to investigate G-quadruplexes structural stability.

    Science.gov (United States)

    Pagano, Bruno; Randazzo, Antonio; Fotticchia, Iolanda; Novellino, Ettore; Petraccone, Luigi; Giancola, Concetta

    2013-11-01

    Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Vjunov, Aleksei; Burton, Sarah D.; Arslan, Ilke; Lercher, Johannes A.

    2016-03-13

    This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopy (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL.

  14. Stability constraints on large-scale structural brain networks

    Directory of Open Access Journals (Sweden)

    Richard T. Gray

    2013-04-01

    Full Text Available Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behaviour. Based on evidence that some neurological disorders correspond to linear instabilities,we hypothesize that stability constrains the brain’s electrical activity and influences its structure and physiology. Using a physiologically based model of brain electrical activity, we investigated the stability and dispersion solutions of networks of neuronal populations with propagation time delays and dendritic time constants. We find that stability is determined by the spectrum of the network’s matrix of connection strengths and is independent of the temporal damping rate of axonal propagation with stability restricting the spectrum to a region in the complex plane. Time delays and dendritic time constants modify the shape of this region but it always contains the unit disk. Instabilities resulting from changes in connection strength initially have frequencies less than a critical frequency. For physiologically plausible parameter values based on the corticothalamic system, this critical frequency is approximately $10$ Hz. For excitatory networks and networks with randomlydistributed excitatory and inhibitory connections, time delays and nonzero dendritic time constants have no impact on network stability but do effect dispersion frequencies. Random networks with both excitatory and inhibitory connections can have multiple marginally stable modes at low delta frequencies.

  15. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    Science.gov (United States)

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  16. Superior Antireflection Coating for a Silicon Cell with a Micronanohybrid Structure

    Directory of Open Access Journals (Sweden)

    Hsi-Chien Liu

    2014-01-01

    Full Text Available The object of this paper is to develop a high antireflection silicon solar cell. A novel two-stage metal-assisted etching (MAE method is proposed for the fabrication of an antireflective layer of a micronanohybrid structure array. The processing time for the etching on an N-type high-resistance (NH silicon wafer can be controlled to around 5 min. The resulting micronanohybrid structure array can achieve an average reflectivity of 1.21% for a light spectrum of 200–1000 nm. A P-N junction on the fabricated micronanohybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13.1% can be achieved. Compared with a conventional pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The major advantage of the two-stage MAE process is that a high antireflective silicon substrate can be fabricated cost-effectively in a relatively short time. The proposed method is feasible for the mass production of low-cost solar cells.

  17. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshui [ORNL; Bai, Ying [ORNL; Sun, Xiao-Guang [ORNL; Li, Yunchao [ORNL; Guo, Bingkun [ORNL; Chen, Jihua [ORNL; Veith, Gabriel M [ORNL; Hensley, Dale K [ORNL; Paranthaman, Mariappan Parans [ORNL; Goodenough, John B [University of Texas at Austin; Dai, Sheng [ORNL

    2015-01-01

    The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.

  18. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  19. Stabilization of structure-preserving power networks with market dynamics

    CERN Document Server

    Stegink, Tjerk W; van der Schaft, Arjan J

    2016-01-01

    This paper studies the problem of maximizing the social welfare while stabilizing both the physical power network as well as the market dynamics. For the physical power grid a third-order structure-preserving model is considered involving both frequency and voltage dynamics. By applying the primal-dual gradient method to the social welfare problem, a distributed dynamic pricing algorithm in port-Hamiltonian form is obtained. After interconnection with the physical system a closed-loop port-Hamiltonian system of differential-algebraic equations is obtained, whose properties are exploited to prove local asymptotic stability of the optimal points.

  20. CISM International Advanced School on Stability Problems of Steel Structures

    CERN Document Server

    Skaloud, M

    1992-01-01

    This volume strives to give complete information about the main aspect of the stability behaviour of steel structures and their members. In following this objective, the volume presents a complete scientific background (profiting from the fact that the authors of the individual parts of the publication have personally been very active in the corresponding field of research for an extended period of time now), but also establishes recommendations, procedures and formulae for practical design. The significance of the volume may be seen in its challenging current concepts of stability analysis, encouraging progress in the field and thereby establishing an advanced basis for more reliable and economical design.

  1. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.

    Science.gov (United States)

    Feng, Xi-Qiao; Gao, Xuefeng; Wu, Ziniu; Jiang, Lei; Zheng, Quan-Shui

    2007-04-24

    Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.

  2. Evidence of superior ferroelectricity in structurally welded ZnSnO3 nanowire arrays.

    Science.gov (United States)

    Datta, Anuja; Mukherjee, Devajyoti; Kons, Corisa; Witanachchi, Sarath; Mukherjee, Pritish

    2014-10-29

    Highly packed LN-type ZnSnO3 NW arrays are grown on ZnO:Al/Si substrates using a hybrid pulsed laser deposition and solvothermal process. Unique "welding" mechanism structurally joins adjacent ZnSnO3 NWs to form a nearly impervious 20 μm thick nanostructured film that shows high P r of 30 μC/cm(2) at a low E c of 25 kV/cm for the first time.

  3. Thermal stability analysis of the fine structure of solar prominences

    Science.gov (United States)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  4. Broadband superior electromagnetic absorption of a discrete-structure microwave coating

    Science.gov (United States)

    Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin

    2016-10-01

    A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.

  5. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Science.gov (United States)

    Kuo, Cheng-Yu; Liu, Yinghao; Yarotski, Dmitry; Li, Hao; Xu, Ping; Yen, Hung-Ju; Tretiak, Sergei; Wang, Hsing-Lin

    2016-12-01

    Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au-S covalent bond. Our UV-Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered-ordered-disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π-π couplings, hydrophobic interaction and the propensity to form Au-S covalent bond. Such hypothesis has been validated by our computational results suggesting different interaction patterns of oligothiophenes with odd numbered and even numbered thiophene repeat units placed in a dimer configuration. Observed correlations between oligomer geometry and structural order of monolayer assembly elucidate important structure-property relationships and have implications for these molecular structures in organic optoelectronic devices and energy

  6. Superior tribological properties of an amorphous carbon film with a graphite-like structure

    Institute of Scientific and Technical Information of China (English)

    Wang Yong-Jun; Li Hong-Xuan; Ji Li; Liu Xiao-Hong; Wu Yan-Xia; Zhou Hui-Di; Chen Jian-Min

    2012-01-01

    Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs),high resolution transmission electron microscopes (HRTEMs),atomic force microscopes (AFMs),the Raman spectrometers,nanoindentation,and tribometers are subsequently used to characterize the microstructures and the properties of the resulting films.It is found that the present films are dominated by the sp2 sites.However,the films demonstrate a moderate hardness together with a low internal stress.The high hardness of the deposited film originates from the crosslinking of the sp2 clusters by the sp3 sites.The presence of the graphite-like clusters in the film structure may be responsible for the low internal stress.What is more important is that the resulting films show excellent tribological properties with high load capacity and excellent wear resistance in humid atmospheres.The relationship between the microstructure determined by the deposition condition and the film characteristic is discussed in detail.

  7. Structure and Thermal Stability of Copper Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Guangan Zhang

    2013-01-01

    Full Text Available Copper nitride (Cu3N thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.

  8. Structural stability of methane hydrate at high pressures

    Science.gov (United States)

    Shu, J.; Chen, X.; Chou, I.-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure. ?? 2011, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.

  9. Structural stability of soil crusts. Consequences for soil erodibility assessment

    OpenAIRE

    Darboux, Frédéric; Le Bissonnais, Yves

    2006-01-01

    Erosion and sediment transport processes depend on the soil surface properties. Because of water flow and other processes (climate, agricultural practices, biological activity, etc.), the properties of the soil surface can undergo significant changes that affect erosion. As a consequence, understanding of the transport processes and improvement in soil erosion prediction involve a better assessment of soil surface characteristics. Structural stability has been used to evaluate the sensitivity...

  10. Stabilization of helical magnetic structures in thin multilayers

    OpenAIRE

    Dzemiantsova, L. V.; Meier, G.; R. Röhlsberger

    2014-01-01

    Based on micromagnetic simulations, we report on a novel helical magnetic structure in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers. Confined between antiparallel hard magnetic moments, a helix with a turn of 180$^{\\circ}$ is stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal field created by exchange interaction and anisotropy. Since the i...

  11. Feedback can be superior to observational training for both rule-based and information-integration category structures.

    Science.gov (United States)

    Edmunds, C E R; Milton, Fraser; Wills, Andy J

    2015-01-01

    The effects of two different types of training on rule-based and information-integration category learning were investigated in two experiments. In observational training, a category label is presented, followed by an example of that category and the participant's response. In feedback training, the stimulus is presented, and the participant assigns it to a category and then receives feedback about the accuracy of that decision. Ashby, Maddox, and Bohil (2002. Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666-677) reported that feedback training was superior to observational training when learning information-integration category structures, but that training type had little effect on the acquisition of rule-based category structures. These results were argued to support the COVIS (competition between verbal and implicit systems) dual-process account of category learning. However, a number of nonessential differences between their rule-based and information-integration conditions complicate interpretation of these findings. Experiment 1 controlled between-category structures for participant error rates, category separation, and the number of stimulus dimensions relevant to the categorization. Under these more controlled conditions, rule-based and information-integration category structures both benefited from feedback training to a similar degree. Experiment 2 maintained this difference in training type when learning a rule-based category that had otherwise been matched, in terms of category overlap and overall performance, with the rule-based categories used in Ashby et al. These results indicate that differences in dimensionality between the category structures in Ashby et al. is a more likely explanation for the interaction between training type and category structure than the dual-system explanation that they offered.

  12. The Stability Conditions of the Pump Structure Vibration

    Directory of Open Access Journals (Sweden)

    Nassir Hassan Abdul Hussain Al Hariri

    2012-01-01

    Full Text Available The general approach of this research is to assume that the small nonlinearity can be separated from the linear part of the equation of motion. The effect of the dynamic fluid force on the pump structure system is considered vibrates at its natural frequency but the amplitude is determined by the initial conditions. If the motion of the system tends to increase the energy of the pump structure system, the vibration amplitude will increase and the pump structure system is considered to be unstable. A suitable MATLAB program was used to predict the stability conditions of the pump structure vibration. The present research focuses on fluid pump problems, namely, the role played by damping coefficient C, damping factor D and angular speed ? (termed the ratio ( and the determining stability of a centrifugal pump structure. The data demonstrate substantial rotor dynamic effects, a destabilizing chart appears to be inversely proportional to the D, C, and ?, and resonance changes significantly with flow rate.

  13. Analysis of stability of community structure across multiple hierarchical levels

    CERN Document Server

    Li, Hui-Jia

    2015-01-01

    The analysis of stability of community structure is an important problem for scientists from many fields. Here, we propose a new framework to reveal hidden properties of community structure by quantitatively analyzing the dynamics of Potts model. Specifically we model the Potts procedure of community structure detection by a Markov process, which has a clear mathematical explanation. Critical topological information regarding to multivariate spin configuration could also be inferred from the spectral significance of the Markov process. We test our framework on some example networks and find it doesn't have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  14. Stability and structural dimension of access mechanized panel

    Institute of Scientific and Technical Information of China (English)

    LUO Yi-zhong; WU Ai-xiang; WANG Hong-jiang; LIU Xiang-ping

    2005-01-01

    To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.

  15. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability

    Directory of Open Access Journals (Sweden)

    Sujit eRoy

    2014-09-01

    Full Text Available Plant cells are subject to high levels of DNA damage resulting from plant’s obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury and other air and soil pollutants including heavy metals and metabolic byproducts from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.

  16. Core–shell structure carbon coated ferric oxide (Fe{sub 2}O{sub 3}@C) nanoparticles for supercapacitors with superior electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yipeng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming, E-mail: chenym@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Deng, Peng; Huang, Zhikun [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Liying; Qian, Yannan; Li, Yunyong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Li, Qingyu [School of Chemistry and Chemistry Engineering, Guangxi Normal University, Guilin 541004 (China)

    2015-08-05

    Highlights: • Fe{sub 2}O{sub 3}@C was prepared by using arc discharge method followed by heat treatment. • KOH activation made the core–shell structure Fe{sub 2}O{sub 3}@C porous. • The activated-Fe{sub 2}O{sub 3}@C supercapacitor exhibited superior electrochemical performance. - Abstract: Core–shell structure carbon coated ferric oxide nanoparticles (Fe{sub 2}O{sub 3}@C) were fabricated by the oxidation of carbon coated iron nanoparticles (Fe@C) prepared by a direct current carbon arc discharge method. Porous activated-Fe{sub 2}O{sub 3}@C was prepared by KOH activation of Fe{sub 2}O{sub 3}@C at the temperature of 750 °C. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the structure and morphology of the Fe{sub 2}O{sub 3}@C and activated-Fe{sub 2}O{sub 3}@C. The specific surface area and pore size distribution of the samples were also tested. The activated-Fe{sub 2}O{sub 3}@C electrodes exhibited good electrochemical performance with a maximum specific capacitance of 612 F g{sup −1} at the charge/discharge current density of 0.5 A g{sup −1} with 5 M NaOH electrolyte. After 10,000 cycling DC tests at the charge/discharge current density of 4 A g{sup −1}, a high level specific capacitance of 518 F g{sup −1} was obtained (90.6% retention of the initial capacity), suggesting excellent long-term cycling stability.

  17. Structure and stability of complex coacervate core micelles with lysozyme.

    Science.gov (United States)

    Lindhoud, Saskia; Vries, Renko de; Norde, Willem; Stuart, Martien A Cohen

    2007-07-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and the positively charged homopolymer PDMAEMA150. For encapsulation, part of the positively charged homopolymer was replaced by the positively charged globular protein lysozyme. We have studied the formation, structure, and stability of the resulting micelles for three different mixing ratios of homopolymer and lysozyme: a system predominantly consisting of homopolymer, a system predominantly consisting of lysozyme, and a system where the molar ratio between the two positively charged molecules was almost one. We also studied complexes made of only lysozyme and PAA42PAAm417. Complex formation and the salt-induced disintegration of the complexes were studied using dynamic light-scattering titrations. Small-angle neutron scattering was used to investigate the structures of the cores. We found that micelles predominantly consisting of homopolymer are spherical but that complex coacervate core micelles predominantly consisting of lysozyme are nonspherical. The stability of the micelles containing a larger fraction of lysozyme is lower.

  18. Energetic stabilization of the Mizoguchi structure for magnetite by band-structure effects

    Science.gov (United States)

    Mishra, S. K.; Satpathy, S.

    1993-03-01

    We show that the Mizoguchi structure is energetically stabilized over the Verwey structure for magnetite by electron hopping on the B sublattice. We use the one-band Cullen-Callen model Hamiltonian for the electronic band structure taking the nearest-neighbor and the second-neighbor Coulomb interactions, U1 and U2, into account. There is a competition between the Coulomb and the band-structure energies. The Coulomb energy tends to favor the Verwey structure while the band-structure energy tends to favor the Mizoguchi structure. We find that for U1band-structure energy) term dominates making the Mizoguchi structure energetically favorable over the Verwey structure. For a larger value of U1, the band-structure effect alone is insufficient, making it necessary to invoke other mechanisms such as the electron-phonon coupling earlier proposed by other authors, to stabilize the Mizoguchi structure. The energy of a single ``reversed-ring'' excitation in the Mizoguchi structure is calculated to be of the order of a few meV. The small energy is consistent with Cullen's explanation of the absence of cell doubling in the Ca plane as observed in diffraction experiments. The Mizoguchi order is unstable with respect to the formation of reversed-ring excitations if only U1 is present, but is stabilized by a small value of U2.

  19. Structures and stabilities of (MgO)n nanoclusters.

    Science.gov (United States)

    Chen, Mingyang; Felmy, Andrew R; Dixon, David A

    2014-05-01

    Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.

  20. Structural stability and elastic properties of WB4 under high pressure

    Science.gov (United States)

    Wu, Xiao-Long; Zhou, Xiao-Lin; Chang, Jing

    2015-05-01

    A comparative study on the structure stability and elastic properties for various types of tungsten tetraboride (WB4) has been carried out with the generalized gradient approximation (GGA) and local density approximation (LDA) in the framework of density functional theory (DFT). Five types of WB4 are considered i.e., orthorhombic Immm, Pnnm, Pmmn, monoclinic C2/m and hexagonal P63/mmc structure. Our calculations indicate that the P63/mmc-4u structure of WB4 is unstable at both ambient and pressure conditions, but the other four types of WB4 are stable, in agreement with recent theoretical results. By eliminating mechanical calculations, we find that the four types (C2/m, Immm, Pnnm and Pmmn) of WB4 are potential candidates to be ultra-incompressible and hard materials. Moreover, the WB4 in C2/m type is the most ultra-incompressible among the considered structures due to its superior mechanical properties, and the P63/mmc-2u structure of WB4 is not considered to be hard material because of its low hardness. In addition, the calculated B/G ratio exhibits the positive pressure dependence, and four types show brittle nature within 100 GPa.

  1. Structural Characters and Isolated Stability of Phosphorus Polyanions

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2005-01-01

    The optimized geometries at the RHF/6-311++G** level, the relatively stable energy at the MPW1PW91/6-311++G** level and the structural characters of anions have been acquired, indicating the stability is related to the chemical bonding of μ2(P atoms and the distri- bution of negative charges. The configurations of cage units P84- and P95- are stable due to the less torsion, but their ES values are relatively higher than that of P73- with more μ2(P atoms and the isolated stability is lower than that of P73-. They potentially play an important role as intermediate in chemical reaction of producing complicated polyphosphides. Based on the related electronic properties, a stable polyanion must have low valence electron concentration, no (μ2(P)-(μ2-P) bond and a little dispersive charge. The earmark IR frequencies of cage units have been assigned to the vibration models in the end.

  2. Structural control of the stability of nuclear waste glasses

    Science.gov (United States)

    Calas, G.; Galoisy, L.; Cormier, L.; Bergeron, B.; Jollivet, P.

    2009-05-01

    Vitrification of liquid high-level radioactive waste in borosilicate glasses has received a great attention in several countries. The fundamental properties of the waste forms are their chemical and mechanical durability. We present an overview of the local structure of inactive analogs of the French nuclear glass, using structural information obtained by a combination of X-ray absorption Fine Structure (XAFS) and Wide Angle X-ray Scattering (WAXS). We will first contrast several classes of elements, such as Zr, Mo or Zn, which give nuclear glasses peculiar positive or adverse properties for the industrial process: enhanced chemical stability, phase separation, crystal nucleation and separation. These properties may be rationalized using Pauling rules, familiar to Mineralogists, as other properties are correctly modelled in simplified glass compositions using molecular dynamics. We will also point out the importance of the melt-to-glass transition and the consequence of the glass structural properties on the resistance of glassy matrices to irradiation. Glass alteration affects the long-term stability of the glass. It is characterized by an amorphous (glass)-amorphous (gel) transformation. Depending on alteration conditions, alteration layers may have or not a protective character, which will influence radionuclide retention over time. We will present the structural modification of the surface chemistry of the glass monoliths during short-term experiments and the evolution towards a gel, which forms progressively at the expense of the glass. The protective character of the gel, observed during glass leaching under near-saturated conditions, will be rationalized by its structural properties.

  3. Structure and stability of small H clusters on graphene

    DEFF Research Database (Denmark)

    Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk

    2011-01-01

    The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...

  4. Structure and stability of spiro-cyclic water clusters

    Indian Academy of Sciences (India)

    M Elango; V Subramanian; N Sathyamurthy

    2009-09-01

    The structure and stability of spiro-cyclic water clusters containing up to 32 water molecules have been investigated at different levels of theory. Although there exist minima lower in energy than these spiro-cyclic clusters, calculations at the Hartree-Fock level, density functional theory using B3LYP parametrization and second order Møller-Plesset perturbation theory using 6-31G∗ and 6-311++G∗∗ basis sets show that they are stable in their own right. Vibrational frequency calculations and atoms-inmolecules analysis of the electron density map confirm the robustness of these hydrogen bonded clusters.

  5. Structure and Stability of Si(114)-(2x1)

    CERN Document Server

    Erwin, S C; Whitman, L J; Erwin, Steven C.; Baski, Alison A.; Whitman, Lloyd J.

    1996-01-01

    We describe a recently discovered stable planar surface of silicon, Si(114). This high-index surface, oriented 19.5 degrees away from (001) toward (111), undergoes a 2x1 reconstruction. We propose a complete model for the reconstructed surface based on scanning tunneling microscopy images and first-principles total-energy calculations. The structure and stability of Si(114)-(2x1) arises from a balance between surface dangling bond reduction and surface stress relief, and provides a key to understanding the morphology of a family of surfaces oriented between (001) and (114).

  6. A double molecular disc in NGC 6946: structure and stability

    CERN Document Server

    Romeo, Alessandro B

    2015-01-01

    The late-type spiral galaxy NGC 6946 is a prime example of molecular gas dynamics driven by `bars within bars'. Here we use data from the BIMA SONG and HERACLES surveys to analyse the structure and stability of its molecular disc. Our radial profiles exhibit a clear transition at distance R ~ 1 kpc from the galaxy centre. In particular, the surface density profile breaks at R ~ 0.8 kpc and is well fitted by a double exponential distribution with scale lengths R_1 ~ 200 pc and R_2 ~ 3 kpc, while the 1D velocity dispersion sigma decreases steeply in the central kpc and is approximately constant at larger radii. The fact that we derive and use the full radial profile of sigma rather than a constant value is perhaps the most novel feature of our stability analysis. We show that the profile of the Q stability parameter traced by CO emission is remarkably flat and well above unity, while the characteristic instability wavelength exhibits clear signatures of the nuclear starburst and inner bar within bar. We also sh...

  7. High thermal stability of core-shell structures dominated by negative interface energy.

    Science.gov (United States)

    Zhu, Yong-Fu; Zhao, Ning; Jin, Bo; Zhao, Ming; Jiang, Qing

    2017-03-29

    Nanoscale core/shell structures are of interest in catalysis due to their superior catalytic properties. Here we investigated the thermal stability of the coherent core-shell structures in a thermodynamic way by considering the impact from the core with the bulk melting point Tm(∞) lower or higher than the shell. When a low-Tm(∞) core is adopted, core-shell melting induced by the melting depression of the core does not occur upon heating because of the superheating, although the melting depression of the core can be triggered ultimately by the preferential melting of the high-Tm(∞) shell for small cores. The superheating of the core is contributed by the negative solid-solid interface energy, while the depression is originated from the positive solid-liquid interface energy. Owing to the presence of the negative interface energy, moreover, the low-Tm(∞)-core structure possesses a low difference in thermal expansion between the core and the shell, high activation energy of outward atomic diffusion from the core to shell, and low heat capacity. This result is beneficial for the core-shell structure design for its application in catalysis.

  8. Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Zhang, Dingke; Chen, Shijian

    2016-10-01

    Transition metal phosphides (TMPs) are burgeoning as novel electrocatalysts to replace noble metals for electrochemical production of hydrogen. In this work, we propose a novel and cost-effective catalyst, molybdenum diphosphide (MoP2) three-dimensional porous structural nanoparticles with superior activity towards the hydrogen evolution reaction (HER). MoP2 nanoparticles catalyst exhibits an onset overpotential of -38 mV, a Tafel slope of 52 mV dev-1 and an exchange current density of 0.038 mA cm-2. Furthermore, the catalyst only needs low overpotentials of -121 and -193 mV to produce operationally relevant cathodic current densities of -10 and -100 mA cm-2, respectively, and its catalytic activity is maintained for at least 24 h. Comparative study with MoP nanoparticles as electrocatalyst for HER clearly indicates that MoP2 with high phosphor component can potentially improve the electrocatalytic activities. Density functional theory (DFT) calculation shows that the higher electrocatalytic activity of MoP2 over MoP can be attributed to a longer Hsbnd P bond length, lower hydrogen adsorption energy, lower HER energy barrier and luxuriant surface active sites. This work may expand the TMPs family to poly-phosphides as active and cost-effective hydrogen electrode for the large-scale hydrogen production.

  9. Structure and stabilization of hydrogen-rich transverse.

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Sgouria [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilde, B [Georgia Inst. of Technology, Atlanta, GA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seitzman, J. [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, T. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after

  10. Structure and Stability of B20N20 Cluster

    Institute of Scientific and Technical Information of China (English)

    崔小英; 武海顺

    2005-01-01

    B3LYP/6-31G* density functional theory calculations have been carried out on the structure and stability of ten B20N20 clusters. It was found that two new proposed isomers with two octagons, twelve hexagons, eight squares in Cab and C2 symmetry were more stable than the isomer with sixteen hexagons and six squares in C2 symmetry which was previously deemed to the most stable by 79.5 and 13.8 kJ/mol respectively. The isomer with two decagons in S10 symmetry is much higher in energy than the most stable structure in C4h symmetry by 637.2 kJ/mol.

  11. Stability of thermal structures with an internal heating source

    CERN Document Server

    Sanchez, Nestor

    2008-01-01

    We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

  12. Gelled Complex Fluids: Combining Unique Structures with Mechanical Stability.

    Science.gov (United States)

    Stubenrauch, Cosima; Gießelmann, Frank

    2016-03-01

    Gelled complex fluids are soft materials in which the microstructure of the complex fluid is combined with the mechanical stability of a gel. To obtain a gelled complex fluid one either adds a gelator to a complex fluid or replaces the solvent in a gel by a complex fluid. The most prominent example of a "natural" gelled complex fluid is the cell. There are various strategies by which one can form a gelled complex fluid; one such strategy is orthogonal self-assembly, that is, the independent but simultaneous formation of two coexisting self-assembled structures within one system. The aim of this Review is to describe the structure and potential applications of various man-made gelled complex fluids and to clarify whether or not the respective system is formed by orthogonal self-assembly.

  13. Surface structure and stability of MoSx model clusters.

    Science.gov (United States)

    Wen, Xiao-Dong; Zeng, Tao; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun

    2005-10-01

    Density functional theory (DFT) computations have been carried out to study the structure and stability of MoSx clusters with the change of sulfur coverage at both Mo and S edges. DFT shows that adding sulfur to the Mo edge is always exothermic. However, deleting corner sulfur from the S edge is exothermic for 67 and 50% sulfur coverages, while deleting edge sulfur from the S edge is endothermic for 33 and 0% sulfur coverages. On the basis of the computed free energies along a wide range of H2S/H2 ratios, it is found that there are two stable structures with 33 and 50% sulfur coverages on the Mo edge by having 100% sulfur coverage on the S edge and one stable structure with 67% sulfur coverage on the S edge by having 0% sulfur coverage on the Mo edge. Under fully sulfiding atmosphere or at a very high H2S/H2 ratio, triangle MoSx structures with 100% sulfur coverage on the Mo edge are computed to be more stable than those with 100% sulfur coverage on the S edge, in agreement with the observation of scanning tunneling microscopy. In addition, the effects of cluster sizes on the surface structures are discussed.

  14. Function, structure, and stability of enzymes confined in agarose gels.

    Directory of Open Access Journals (Sweden)

    Jeffrey Kunkel

    Full Text Available Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.

  15. Structure and stability of Na+Xen clusters

    Science.gov (United States)

    Slama, M.; Issa, K.; Ben Mohamed, F. E.; Ben El Hadj Rhouma, M.; Spiegelman, F.

    2016-11-01

    The structure and stability features of Na+Xen (n ≤ 54) clusters are theoretically investigated via model potential energy surfaces (PES) and unconstrained global optimization. The potential energy is described in terms of pair-additive potentials including polarization parametrized from accurate ab initio data on Na+Xe, complemented by three-body contributions describing the interaction between the dipoles induced by the sodium ion on the rare gas atoms. We show that the three-body contributions stabilize the linear or planar structures versus more compact shapes for n< 4. At larger sizes, the growth around the square antisprism (SA) or capped square antisprism (CSA) core is favored while icosahedral pattern based isomers exist but not as the lowest ones. A transition in the metal ion coordination from 8 (square antiprism) to 12 (icosahedron) is seen to occur near n = 50. The results are discussed and analyzed in view of existing accurate ab initio calculations on Na+Xe2 and comparisons with similar metal-ion clusters.

  16. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  17. First-principles study of the structural stability and electronic structures of TaN

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C.L.; Yuan, G. [School of Information and Engineering, Ocean University of China, QingDao 266100 (China); Hou, Z.F. [Department of Physics, Fudan University, Shanghai 200433 (China)

    2008-08-15

    Using the plane-wave pseudopotential method within the generalized gradient approximation, we have studied the structural stability and electronic structures for several TaN phases. Our results show CoSn is the calculated ground-state structure of TaN among the five crystallographic structures that have been studied. The order of energetic stability of phase structures of TaN from low to high is: CsClstability of TaN in the CoSn and WC structures is due to the formation of pseudogap around the Fermi level and the stronger hybridization between N-2p states and Ta-5d states. TaN in all structures studied has a metallic nature. The calculated bulk modulus indicates that TaN in the WC structure may be a less compressible material. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Stability design of structures with semi-rigid connections

    Directory of Open Access Journals (Sweden)

    Igić Tomislav

    2010-01-01

    Full Text Available The paper points out to the differences of the First order theory and Second order theory and of the significance in practical calculations. The paper presents theoretical foundations and expressions of calculations of impacts on the stability of structure, that is, review of the Second order theory in a bridge with members semi-rigid connections in joints. In the real structures in general and the especially in the prefabricated structures the connection of members in the nodes can be partially rigid which can be very significant for the changes in tension and deformation. If the influence of the normal forces is significant and the structure is slender then it is necessary to carry out a calculation according to the Second order theory because the balance between internal and external forces really established on the deformed configuration and displacements in strict formation are also unreal. The importance and significance of the calculations and distribution of impact according to the Second order theory were presented in numerical examples as well as the calculation of critical load as well as the buckling length of members with semi-rigid connections in joint.

  19. Structure and Stability of Deflagrations in Porous Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  20. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    Science.gov (United States)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R.; Gajić, Radoš

    2016-02-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication.

  1. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  2. Stability of Brillouin Flow in Slow-Wave Structures

    Science.gov (United States)

    Simon, David; Lau, Y. Y.; Greening, Geoffrey; Wong, Patrick; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    For the first time, we include a slow-wave structure (SWS) to study the stability of Brillouin flow in the conventional, planar, and inverted magnetron geometry. The resonant interaction of the SWS circuit mode and the corresponding smooth-bore diocotron-like mode is found to be the dominant cause for instability, overwhelming the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow. This resonant interaction is absent in a smooth bore magnetron. Work supported by ONR N00014-13-1-0566 and N00014-16-1-2353, AFOSR FA9550-15-1-0097, and L-3 Communications Electron Device Division.

  3. Structured error recovery for code-word-stabilized quantum codes

    Science.gov (United States)

    Li, Yunfan; Dumer, Ilya; Grassl, Markus; Pryadko, Leonid P.

    2010-05-01

    Code-word-stabilized (CWS) codes are, in general, nonadditive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical nonlinear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less and employs a separate n-qubit measurement in each test. In this article, we suggest an error grouping technique that allows one to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3t times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

  4. STRUCTURAL ANALYSIS AND ENVIRONMENTAL STABILITY OF POLYFLUORINATED GROUP SUBSTITUTED POLYTHIOPHENES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuqing; SHEN Xueming; YANG Shiyong; LU Wei; ZHANG Jingyun

    1996-01-01

    Electrochemical polymerization of 3-fluoroalkoxy and 3-fluoroether thiophenes gives polymers with relatively high molecular weights and good processibility . Investigation of these polymers by means of GPC indicates that an increase in the number of fluorine atoms in the fluorinated group results in a decrease in degree of polymerization of the polymers in the same polythiophene series. As shown by NMR and FTIR, the polyfluorinated group substituted polythiophenes have regular 2, 5-coupling in their main chains.The SEM micrographs of the polymer films exhibit that polymer (1)-poly [3-2, 2, 3, 3-tetrafluoro-propoxy) thiophene] possesses more regular structure than the other polymers do. Substitution of polythiophenes by fluorinated groups leads to the polymers with high electric, electrochemical and thermal stability.

  5. Salt Contribution to RNA Tertiary Structure Folding Stability

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    Accurate quantification of the ionic contribution to RNA folding stability could greatly enhance our ability to understand and predict RNA functions. Recently, motivated by the potential importance of ion correlation and fluctuation in RNA folding, we developed the tightly bound ion (TBI) model. Extensive experimental tests showed that the TBI model can lead to better treatment of multivalent ions than the Poisson-Boltzmann equation. In this study, we use the model to quantify the contribution of salt (Na+ and Mg2+) to the RNA tertiary structure folding free energy. Folding of the RNA tertiary structure often involves intermediates. We focus on the folding transition from an intermediate state to the native state, and compute the electrostatic folding free energy of the RNA. Based on systematic calculations for a variety of RNA molecules, we derive a set of formulas for the electrostatic free energy for tertiary structural folding as a function of the sequence length and compactness of the RNA and the Na+ and Mg2+ concentrations. Extensive comparisons with experimental data suggest that our model and the extracted empirical formulas are quite reliable. PMID:21723828

  6. Nuclear structure far off stability - New results from RISING

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64294 Darmstadt (Germany); Grawe, H [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64294 Darmstadt (Germany); Banu, A [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64294 Darmstadt (Germany); Buerger, A [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn (Germany); Doornenbal, P [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64294 Darmstadt (Germany); Gerl, J [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64294 Darmstadt (Germany); Hjorth-Jensen, M [Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo (Norway); Huebel, H [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn (Germany); Nowacki, F [IReS, F-67037 Strasbourg Cedex 2 (France); Otsuka, T [Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033 (Japan); Reiter, P [Institut fuer Kernphysik, Universitaet zu Cologne (Germany)

    2006-10-10

    A broad range of physics phenomena can be addressed by high-resolution in-beam {gamma}-ray spectroscopy experiments with radioactive beams offered within the Rare ISotopes INvestigation at GSI (RISING) project. It combines the EUROBALL Ge-Cluster detectors, the MINIBALL Ge detectors, the HECTOR-BaF detectors, and the fragment separator FRS. The secondary beams produced at relativistic energies are used for Coulomb excitation or secondary fragmentation experiments to study projectile like nuclei far off the stability line by measuring de-excitation photons. The physics studied comprises the evolution of shell structure towards the drip lines and its signatures as inferred from excitation energies, mirror symmetry and electromagnetic transition strengths. The first results of the 'fast beam campaign' are discussed in comparison to various shell model calculations including the structure of light Sn isotopes based on Coulomb excitation of {sup 108}Sn, the discussion of the N = 32,34 sub-shell closure based on neutron-rich {sup 56,58}Cr isotopes, and the shell structure in light proton-rich Ca isotopes from the fragmentation of a {sup 37}Ca radioactive beam.

  7. Structure, Stability and Interaction Studies on Nucleotide Analogue Systems

    Directory of Open Access Journals (Sweden)

    R. Kanakaraju

    2003-08-01

    Full Text Available Abstract: Most of the biological molecules have a good interaction with water molecules. The hydrogen bonding interactions with the structural analogues of nucleic acid phosphate group namely dimethyl phosphate anion (DMP and diethyl phosphate anion (DEP are studied employing the ab initio and density functional theory methods. Inspections have been made to locate the reactive sites for the interactions of isomeric forms of mono, di and tri hydrates of alkyl phosphate anion using the above theories. It reveals, water molecules have a very strong interaction with the phosphate group in both the molecules and their interactions induce the changes in the structural parameters of the PO4 group for both the DMP and DEP anions. The optimized structural parameters, total energy, dipole moment and rotational constants are calculated and are compared with the available experimental values. The chemical hardness and chemical potential for these complexes have been calculated at HF/6-31G* level of theory and discussed the conformational stability of these complexes.

  8. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    Science.gov (United States)

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2012-02-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions—a Zn(II) ion, which is important for catalytic activity, and a Hg(II) ion, which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate (pNPA) hydrolysis with an efficiency only ~100-fold less than that of human carbonic anhydrase (CA)II and at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. Although histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme reveals necessary design features for future metalloenzymes containing one or more metals.

  9. Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries

    Science.gov (United States)

    Wang, Ruijuan; Yang, Zhanhong; Yang, Bin; Wang, Tingting; Chu, Zhihao

    2014-04-01

    Zn-Al-In layered double hydroxides (LDHs) are synthesized by hydrothermal method and investigated as negative electrode materials for Ni-Zn batteries. The Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show the as-prepared samples are well-crystallized and hexagon structure. The electrochemical performances of Zn-Al-LDHs and Zn-Al-In-LDHs with different Zn/Al/In molar ration are investigated by the cyclic voltammograms (CV), Tafel polarization and galvanostatic charge-discharge measurements. Zn-Al-LDHs shows good stability in the first 300-cycles. However, during the subsequent cycles, the discharge capacity decreases with increasing of the cycles. Compared with Zn-Al-LDHs, Zn-Al-In-LDHs with different Zn/Al/In molar rations, especially the sample of Zn/Al/In = 3:0.75:0.25 (molar ration) have higher discharge capacity and more stable cycling performances. This battery can undergo at least 800 charge-discharge cycles at constant current of 1C without dendrite and short circuits. The discharge capacity of Zn-Al-In-LDHs after the 800th cycle remains about 380 mAh g-1. Zn-Al-In-LDHs possess a high rate capability to meet the needs of high-storage applications.

  10. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Arandiyan, Hamidreza

    2016-01-01

    ), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer-Emmett-Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe3O4 microflowers was determined by the Barret-Joyner-Halenda (BJH) method. When evaluated...... as anode material for lithium-ion batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe3O4 microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture...

  11. Structural Features That Stabilize ZnO Clusters: An Electronic Structure Approach

    Directory of Open Access Journals (Sweden)

    Csaba E. Szakacs

    2013-05-01

    Full Text Available We show that a simple approach to building small computationally inexpensive clusters offers insights on specific structural motifs that stabilize the electronic structure of ZnO. All-electron calculations on ZniOi needle (i = 6, 9, 12, 15, and 18 and plate (i = 9 and 18 clusters within the density functional theory (DFT formalism show a higher stability for ZnO needles that increases with length. Puckering of the rings to achieve a more wurtzite-like structure destabilizes the needles, although this destabilization is reduced by going to infinite needles (calculated using periodic boundary conditions. Calculations of density of states (DOS curves and band gaps for finite clusters and infinite needles highlight opportunities for band-gap tuning through kinetic control of nanocrystal growth.

  12. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    Science.gov (United States)

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  13. The chlamydiales pangenome revisited: structural stability and functional coherence.

    Science.gov (United States)

    Psomopoulos, Fotis E; Siarkou, Victoria I; Papanikolaou, Nikolas; Iliopoulos, Ioannis; Tsaftaris, Athanasios S; Promponas, Vasilis J; Ouzounis, Christos A

    2012-05-16

    The entire publicly available set of 37 genome sequences from the bacterial order Chlamydiales has been subjected to comparative analysis in order to reveal the salient features of this pangenome and its evolutionary history. Over 2,000 protein families are detected across multiple species, with a distribution consistent to other studied pangenomes. Of these, there are 180 protein families with multiple members, 312 families with exactly 37 members corresponding to core genes, 428 families with peripheral genes with varying taxonomic distribution and finally 1,125 smaller families. The fact that, even for smaller genomes of Chlamydiales, core genes represent over a quarter of the average protein complement, signifies a certain degree of structural stability, given the wide range of phylogenetic relationships within the group. In addition, the propagation of a corpus of manually curated annotations within the discovered core families reveals key functional properties, reflecting a coherent repertoire of cellular capabilities for Chlamydiales. We further investigate over 2,000 genes without homologs in the pangenome and discover two new protein sequence domains. Our results, supported by the genome-based phylogeny for this group, are fully consistent with previous analyses and current knowledge, and point to future research directions towards a better understanding of the structural and functional properties of Chlamydiales.

  14. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike;

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...

  15. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ON DECENTRALIZED STABILIZATION OF LINEAR LARGE SCALE SYSTEMS WITH SYMMETRIC CIRCULANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    金朝永; 张湘伟

    2004-01-01

    The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied. A few sufficient conditions on decentralized stabilization of such systems were proposed. For the continuous systems, by introducing a concept called the magnitude of interconnected structure, a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given. So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is. A algorithm for obtaining decentralized state feedback to stabilize the overall system is given. The discrete systems were also discussed. The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.

  17. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  18. Superior self-paced memorization of digits in spite of a normal digit span: the structure of a memorist's skill.

    Science.gov (United States)

    Hu, Yi; Ericsson, K Anders; Yang, Dan; Lu, Chao

    2009-11-01

    Over the last century many individuals with exceptional memory have been studied and tested in the laboratory. This article studies Chao Lu, who set a Guinness World Record by memorizing 67,890 decimals of pi. Chao Lu's superior self-paced memorization of digits is shown through analyses of study times and verbal reports to be mediated by mnemonic encoding and retrieval processes. Furthermore, Chao Lu's development of his superior memory for decimals of pi is consistent with his engagement in thousands of hours of memorization. In contrast to most other studied memorists, who have digit spans over 15 digits, Chao Lu exhibited a digit span in only the normal range. Implications for different types of memorization skills and associated practice activities are discussed.

  19. Continuous nanoscale carbon fibers with superior mechanical strength.

    Science.gov (United States)

    Liu, Jie; Yue, Zhongren; Fong, Hao

    2009-03-01

    Continuous nanoscale carbon fibers can be developed by stabilization and carbonization of highly aligned and extensively stretched electrospun polyacrylonitrile copolymer nanofiber precursor under optimal tension. These carbon fibers, with diameters of tens of nanometers, are expected to possess a superior mechanical strength that is unlikely to be achieved through conventional approaches. This is because i) the innovative precursor, with a fiber diameter approximately 100 times smaller than that of conventional counterparts, possesses an extremely high degree of macromolecular orientation and a significantly reduced amount of structural imperfections, and ii) the ultrasmall fiber diameter also effectively prevents the formation of structural inhomogeneity, particularly sheath/core structures during stabilization and carbonization.

  20. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, M.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an {alpha}-helix, a {open_quotes}scaffold{close_quotes} region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca{sup 2+}-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of {lambda} Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of {lambda} Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an {alpha}-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded {beta}sheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of {sup 15}N NMR relaxation properties.

  1. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  2. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti......25, and Re25Ru25Co25Fe25 (at. %), having face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp) crystal structures, respectively, up to the pressure of ∼80 GPa and temperature of ∼1262 K. Under the extreme conditions of the pressure and temperature, all three studied...... HEAs remain stable up to the maximum pressure and temperatures achieved. For these three types of studied HEAs, the pressure-dependence of the volume can be well described with the third order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are found to be 88.3 GPa and 4...

  3. Structure and stability of small H clusters on graphene

    DEFF Research Database (Denmark)

    Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk

    2011-01-01

    The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H’s on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...

  4. STABILITY AND DYNAMICS OF SPATIO-TEMPORAL STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Hermann Riecke

    2005-10-21

    This document constitutes the final report for the grant. It provides a complete list of publications and presentations that arose from the project as well as a brief description of the highlights of the research results. The research funded by this grant has provided insights into the spontaneous formation of structures of increasing complexity in systems driven far from thermodynamic equilibrium. A classic example of such a system is thermally driven convection in a horizontal fluid layer. Highlights of the research are: (1) explanation of the localized traveling wave pulses observed in binary-mixture convection, (2) explanation of the localized waves in electroconvection, (3) introduction of a new diagnostics for spatially and temporally chaotic states, which is based on the statistics of defect trajectories, (4) prediction of complex states in thermally driven convection in rotating systems. Additional contributions provided insight into the localization mechanism for oscillons, the prediction of a new localization mechanism for traveling waves based on a resonant periodic forcing, and an analysis of the stability of quasi-periodic patterns.

  5. Cold Scalar-Tensor Black Holes Causal Structure, Geodesics, Stability

    CERN Document Server

    Bronnikov, K A; Constantinidis, C P; Fabris, J C

    1998-01-01

    We study the structure and stability of spherically symmetric Brans-Dicke black-hole type solutions with an infinite horizon area and zero Hawking temperature, existing for negative values of the coupling constant $\\omega$. These solutions split into two classes, depending on finite (B1) or infinite (B2) proper time needed for an infalling particle to reach the horizon. Class B1 metrics can be extended through the horizon only for discrete values of mass and scalar charge, depending on two integers m and n. For even m-n, the space-time is globally regular; for odd m, the metric changes its signature on the horizon but remains Lorentzian. Geodesics are smoothly continued across the horizon, but for odd m timelike geodesics become spacelike and vice versa. Causality problems, arising in some cases, are discussed. Tidal forces are shown to grow infinitely near type B1 horizons. All vacuum static, spherically symmetric solutions of the Brans-Dicke theory with $\\omega<-3/2$ are found to be linearly stable again...

  6. Thermal Stability and Vertical Structure of Radiation Dominated Accretion Disks

    Science.gov (United States)

    Jiang, Yanfei; Stone, J. M.; Davis, S.

    2013-01-01

    Standard thin disk model predicts that radiation dominated accretion disk is thermally unstable. However, using a radiation MHD code based on flux-limited diffusion (FLD) approximation, Hirose et al. (2009) finds that when the accretion stress provided by Magneto-rotational instability (MRI) is calculated self-consistently, the disk is actually stable. We check this surprising result with our recently developed radiation transfer module in Athena. We modify the Godunov method to include the radiation source terms and close the radiation momentum equations with variable Eddington tensor. In this way, it works in both optically thin and thick regimes, and works for both radiation or gas pressure dominated flows. As a general purpose radiation MHD code, it can also be used to study other systems, where radiation field plays an important role, such as feedback effects of stars on the interstellar medium. I will show a set of tests to demonstrate that the code is working accurately as expected for different regimes. I will describe in detail our results on the thermal stability of accretion disks in both the gas pressure dominated regime and radiation pressure dominated regime. Detailed studies of the vertical structures of the accretion disk will also be presented. I will also comment on the differences between our results and the results from FLD calculations.

  7. The effect of DNA supercoiling on nucleosome structure and stability.

    Science.gov (United States)

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  8. Structural stability study of protein monolayers in air

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; Canters, G. W.

    2004-03-01

    The assessment of the folding and of the structural stability of a protein in air, upon immobilization in the solid state, represents a critical point from both a fundamental point of view and for the development of solid state nanobioelectronics. The recent demonstrations by Rinaldi et al. [R. Rinaldi et al., Adv. Mater. 14, 1453 (2002); Appl. Phys. Lett. 82, 472 (2003); Ann. (N.Y.) Acad. Sci. 1006, 187 (2003)] of protein-based solid state devices and transistors working in air have raised an intriguing question about the behavior of a biomolecule under nonphysiological conditions. The operation principle of the realized devices is based on the physiological electron transfer function of the metalloprotein azurin. This means that azurin should retain its shape and functionality also in the solid state when utilized in air and at room temperature. In this Brief Report, we prove this claim by analyzing the conformational state of the azurin monolayers developed for such devices by means of intrinsic fluorescence spectroscopy. We show that the immobilization of azurins in the solid state under nonliquid conditions, by means of a specific chemisorption process, does not necessarily lead to protein denaturation. This result is of great importance because it opens up interesting perspectives for the development of solid state hybrid nanodevices for electronic applications requiring nonliquid environments.

  9. Experimental study on stability of sunken large diameter cylindrical structure on sandy seabed during construction period

    Institute of Scientific and Technical Information of China (English)

    秦崇仁; 庞红犁; 李世森; 张伟

    2002-01-01

    A systematic experimental research work is done for the stability of sunken large diameter cylinder during construction period. It is the first research that gives the method for assessing the stability of the larger diameter cylindrical structure, a set of values is derived also for the critical stability indices of the large diameter cylinder sunken to the sandy seabed.

  10. Accuracy Enhanced Stability and Structure Preserving Model Reduction Technique for Dynamical Systems with Second Order Structure

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    A method for model reduction of dynamical systems with the second order structure is proposed in this paper. The proposed technique preserves the second order structure of the system, and also preserves the stability of the original systems. The method uses the controllability and observability...... gramians within the time interval to build the appropriate Petrov-Galerkin projection for dynamical systems within the time interval of interest. The bound on approximation error is also derived. The numerical results are compared with the counterparts from other techniques. The results confirm...

  11. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.

    Science.gov (United States)

    Kovacevic, A; Savic, S; Vuleta, G; Müller, R H; Keck, C M

    2011-03-15

    The two polyhydroxy surfactants polyglycerol 6-distearate (Plurol(®)Stearique WL1009 - (PS)) and caprylyl/capryl glucoside (Plantacare(®) 810 - (PL)) are a class of PEG-free stabilizers, made from renewable resources. They were investigated for stabilization of aqueous solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Production was performed by high pressure homogenization, analysis by photon correlation spectroscopy (PCS), laser diffraction (LD), zeta potential measurements and differential scanning calorimetry (DSC). Particles were made from Cutina CP as solid lipid only (SLN) and its blends with Miglyol 812 (NLC, the blends containing increasing amounts of oil from 20% to 60%). The obtained particle sizes were identical for both surfactants, about 200 nm with polydispersity indices below 0.20 (PCS), and unimodal size distribution (LD). All dispersions with both surfactants were physically stable for 3 months at room temperature, but Plantacare (PL) showing a superior stability. The melting behaviour and crystallinity of bulk lipids/lipid blends were compared to the nanoparticles. Both were lower for the nanoparticles. The crystallinity of dispersions stabilized with PS was higher, the zeta potential decreased with storage time associated with this higher crystallinity, and leading to a few, but negligible larger particles. The lower crystallinity particles stabilized with PL remained unchanged in zeta potential (about -50 mV) and in size. These data show that surfactants have a distinct influence on the particle matrix structure (and related stability and drug loading), to which too little attention was given by now. Despite being from the same surfactant class, the differences on the structure are pronounced. They are attributed to the hydrophobic-lipophilic tail structure with one-point anchoring in the interface (PL), and the loop conformation of PS with two hydrophobic anchor points, i.e. their molecular structure and its

  12. Friction rock stabilizer and method of installing same in an earth structure

    Energy Technology Data Exchange (ETDEWEB)

    Lindeboom, H.

    1982-06-15

    The stabilizer comprises a generally tubular, metal body, the leading end of which has been hardened to rock-cutting strength in order that the stabilizer, according to the method of invention, can be impacted with a high frequency, low-blow actuator to cause the stabilizer to bore its own hole in the earth structure, this to eliminate a pre-boring, stabilizer installation step.

  13. Mechanism study on stability enhancement of adefovir dipivoxil by cocrystallization: Degradation kinetics and structure-stability correlation.

    Science.gov (United States)

    Lin, Rui-Zhen; Sun, Peng-Jie; Tao, Qian; Yao, Jia; Chen, Jia-Mei; Lu, Tong-Bu

    2016-03-31

    The purpose of this study is to determine the mechanism by which cocrystallization can enhance the stability of adefovir dipivoxil (AD), a diester prodrug of adefovir with known chemical stability problem. Three multi-component crystals of AD with biologically safe coformers, including gallic acid cocrystal hydrate (1:1:1), salicylate salt (1:1), and maleate salt (1:1) were prepared and characterized by thermal analysis, infrared spectroscopy, powder and single crystal X-ray diffraction. DVS measurements and stability tests were applied to evaluate the stability. The new crystalline phases exhibit improved stability compared to pure drug in the order AD gallic acid cocrystal>AD maleate>AD salicylate>AD form I. Degradation kinetics and structure-stability correlation studies demonstrate that the stability enhancement mechanism by cocrystallization involves (1) inhibition of hydrolysis of AD by replacement of drug-drug homosynthons by stronger drug-coformer heterosynthons at adenine fragments; (2) suppression of dimerization of AD by separation of adenine fragments by inserting coformers in crystal lattices; (3) further reducing rates of hydrolysis by forming hydrogen bonds with hydrate water at phosphoryl fragments. This study has important implications for use of cocrystallization approach to some easily degradable drugs in pharmaceutical.

  14. Principles of moment distribution applied to stability of structures composed of bars or plates

    Science.gov (United States)

    Lundquist, Eugene E; Stowell, Elbridge Z; Schuette, Evan H

    1945-01-01

    The principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load. A brief theoretical treatment of the subject, as applied to structures composed of either bars or plates, is included, together with an illustrative example for each of these two types of structure. An appendix presents the derivation of the formulas for the various stiffnesses and carry-over factors used in solving problems in the stability of structures composed of long plates.

  15. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    Science.gov (United States)

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  16. Controlled crystalline structure and surface stability of cobalt nanocrystals.

    Science.gov (United States)

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M

    2005-04-21

    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles.

  17. Novel pedicle screw and plate system provides superior stability in unilateral fixation for minimally invasive transforaminal lumbar interbody fusion: an in vitro biomechanical study.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available This study aims to compare the biomechanical properties of the novel pedicle screw and plate system with the traditional rod system in asymmetrical posterior stabilization for minimally invasive transforaminal lumbar interbody fusion (MI-TLIF. We compared the immediate stabilizing effects of fusion segment and the strain distribution on the vertebral body.Seven fresh calf lumbar spines (L3-L6 were tested. Flexion/extension, lateral bending, and axial rotation were induced by pure moments of ± 5.0 Nm and the range of motion (ROM was recorded. Strain gauges were instrumented at L4 and L5 vertebral body to record the strain distribution under flexion and lateral bending (LB. After intact kinematic analysis, a right sided TLIF was performed at L4-L5. Then each specimen was tested for the following constructs: unilateral pedicle screw and rod (UR; unilateral pedicle screw and plate (UP; UR and transfacet pedicle screw (TFS; UP and TFS; UP and UR.All instrumented constructs significantly reduced ROM in all motion compared with the intact specimen, except the UR construct in axial rotation. Unilateral fixation (UR or UP reduced ROM less compared with the bilateral fixation (UP/UR+TFS, UP+UR. The plate system resulted in more reduction in ROM compared with the rod system, especially in axial rotation. UP construct provided more stability in axial rotation compared with UR construct. The strain distribution on the left and right side of L4 vertebral body was significantly different from UR and UR+TFS construct under flexion motion. The strain distribution on L4 vertebral body was significantly influenced by different fixation constructs.The novel plate could provide sufficient segmental stability in axial rotation. The UR construct exhibits weak stability and asymmetrical strain distribution in fusion segment, while the UP construct is a good alternative choice for unilateral posterior fixation of MI-TLIF.

  18. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  19. THE IMPACT OF CAPITAL STRUCTURE ON THE ENTERPRISE FINANCIAL STABILITY

    Directory of Open Access Journals (Sweden)

    A. V. Ivanyshcheva

    2009-06-01

    Full Text Available Functioning of production enterprises in the conditions of continuous change of market environment require a special attention of management system to providing their activities. The enterprise financial stability management is one of integral parts of the management system. The increased or insufficient financial stability adversely affects the enterprise competition ability that leads to decreasing the profitability and worsening the financial results of its activities.

  20. Structural Stability and Optical Properties of Nanomaterials with Reconstructed Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Puzder, A; Williamson, A; Reboredo, F; Galli, G

    2003-10-24

    The authors present density functional and quantum Monte Carlo calculations of the stability and optical properties of semiconductor nanomaterials with reconstructed surfaces. they predict the relative stability of silicon nanostructures with reconstructed and unreconstructed surfaces, and show that surface step geometries unique to highly curved surfaces dramatically reduce the optical gaps and decrease excitonic lifetimes. These predictions provide an explanation of both the variations in the photoluminescence spectra of colloidally synthesized nanoparticles and observed deep gap levels in porous silicon.

  1. Structure and Stability of Steady Protostellar Accretion Flows - Part Two - Linear Stability Analysis

    Science.gov (United States)

    Balluch, M.

    1991-03-01

    Recent developments concerning spherically symmetric (1D-) numerical models of protostellar evolution show that steady protostellar accretion flows (resp. their shockfronts) may be unstable at least in the very early (Tscharnuter 1987a) and late stages (Balluch 1988) of accretion. A global, linear stability analysis of the structure of steady protostellar accretion flows with a shock discontinuity (Balluch 1990) is therefore presented to investigate such flows by different methods. Thereby three characteristic wave types, the radiation-, radiation diffusion- and acoustic modes were found. In the `ideal case' of a perfect gas law and constant opacity, the shockfront appears to be oscillatory unstable due to critical cooling as long as the mass flux rate is larger than a critical one of Mṡcrit = 10-6 Msun yr-1. In the `real case' with more realistic constitutive relations, an additional vibrational instability occurs due to the κ-mechanism in the outer layers of the core. This is shown to be the case in the whole range of core masses between 0.01 and 1 Msun, mass flow rates between 10-3 and 10-7 Msun yr-1 and different outer boundary conditions (corresponding to different states of the surrounding interstellar cloud). Analysing the first, outer protostellar cores before they get dynamically unstable due to H2-dissociation in their interiors, similar instabilities as mentioned above were found. Now the unstable κ-behaviour is due to dust instead of the deep ionisation zone as in the case of second, inner cores. According to the linear analysis, the instabilities should first appear in the velocity and the radiation flux in the settling zone. In the case of first, outer cores, these variations should be accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Sooner or later, the shockfront should oscillate in both cases too. These results are finally compared with the characteristics of the accretion shock

  2. Immunochemical faecal occult blood tests have superior stability and analytical performance characteristics over guaiac-based tests in a controlled in vitro study.

    LENUS (Irish Health Repository)

    Lee, Chun Seng

    2011-06-01

    The aims of this study were (1) to determine the measurement accuracy of a widely used guaiac faecal occult blood test (gFOBT) compared with an immunochemical faecal occult blood test (iFOBT) during in vitro studies, including their analytical stability over time at ambient temperature and at 4°C; and (2) to compare analytical imprecision and other characteristics between two commercially available iFOBT methods.

  3. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  4. Structure and stabilization of cryogenic spray flames; Structure et stabilisation des flammes cryotechniques

    Energy Technology Data Exchange (ETDEWEB)

    Juniper, M.

    2001-11-01

    Cryogenic rocket motors are fueled by liquid oxygen and gaseous hydrogen. The development of design methods is based on reliable numerical simulations, which rely on detailed knowledge of the flame structure and well-defined entry conditions. This research project concerns the region near the fuel injectors. We examine here: (1) The flame structure and injector geometry, (2) The flame stabilization. Tests have been performed on an injector which is similar to those in real motors. Models are developed and their results compared with experimental results in order to study the effect of the injector geometry. A new result of scientific interest is that a wake is more unstable when the outer flow is confined. This mechanism might explain the effect of recess on a cryogenic spray flame. The base of the flame is divided into two parts and a counter-flow flame analysis is applied to the first part. The second part is considered first as a flame in a corner (cross-flow flame). The flame above a porous plate with fuel injection is considered next and we envisage then a flame above a vaporizing fuel. Finally, the flame behind a step over a vaporizing fuel is envisaged. With this progression, the dimensionless parameters which control flame stabilization are identified. (author)

  5. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  6. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  7. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, S.; Vries, de R.J.; Norde, W.; Cohen Stuart, M.A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  8. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; Vries, de Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  9. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417) an

  10. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  11. Lipoestructura y relleno del polo superior de la mama frente a implantes Structural fat graft and lipofilling of mammary upper pole versus mammary implants

    Directory of Open Access Journals (Sweden)

    J.M. Cervilla Lozano

    2012-09-01

    Full Text Available La lipoestructura mamaria ofrece nuevas alternativas de tratamiento en la cirugía estética de aumento mamario, cumpliendo en algunos casos las expectativas esperadas y en otros no. Analizamos este hecho en 4 tipos de aplicación de lipoestructura mamaria que hemos venido realizando en los últimos años, centrándonos en un aspecto importante de esta cirugía que es el relleno del polo superior de la mama. Los tipos de aplicación empleados son: aumento mamario simple mediante lipoestructura en comparación con implantes; pexia más lipoestructura frente a pexia más implantes mamarios; reconstrucción de mama tuberosa mediante lipoestructura o implantes y finalmente, relleno periprotésico mediante lipoestructura en mamas sometidas a cirugía de aumento mamario con implantes. En definitiva, podríamos resumir este trabajo en una frase diciendo que la lipoestructura mamaria, a nuestro juicio, no sirve si lo que prima es conseguir el relleno del polo superior de la mama, siendo en este caso de elección la colocación de implantes mamarios. No obstante, en alguno de los casos señalados no solo es una alternativa, sino que obtiene resultados superiores a los logrados sólamente con implantes.The mammary structural fat graft offers news treatment options in breast augmentation cosmetic surgery, but it sometimes meets expectations and sometimes doesn´t. We analyze 4 different types of lipostructure mammary applications that we have been using in the last years, focused in an important aspect of this surgery as it´s the filling of the upper mammary pole. These applications are: mammary augmentation by simple structural fat compared with the use of mammary implants; structural fat graft and mastopexy versus implants and mastopexy; tuberous breast reconstruction using structural fat graft or implants and finally, periprosthetic filling in breast augmentation with mammary implants using structural fat graft. In short, we could summarize this paper

  12. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Khajehzadeh

    2016-01-01

    Conclusion: It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions.

  13. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    , recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  14. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  15. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  16. Core-Shell Vanadium Modified Titania@β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity.

    Science.gov (United States)

    Mumtaz, Asad; Mohamed, Norani Muti; Mazhar, Muhammad; Ehsan, Muhammad Ali; Mohamed Saheed, Mohamed Shuaib

    2016-04-13

    Core-shell rutile TiO2@β-In2S3 and modified V-TiO2@β-In2S3 were synthesized to develop bilayer systems to uphold charge transport via an effective and stable interface. Morphological studies revealed that β-In2S3 was deposited homogeneously on V-TiO2 as compared to unmodified TiO2 nanorod arrays. X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrometry studies verified the presence of various oxidation states of vanadium in rutile TiO2 and the vanadium surface was utilized for broadening the charge collection centers in host substrate layer and hole quencher window. Subsequently, X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectra confirmed the rutile phases of TiO2 and modified V-TiO2 along with the phases of crystalline β-In2S3. XPS valence band study explored the interaction of valence band quazi Fermi levels of β-In2S3 with the conduction band quazi Fermi levels of modified V-TiO2 for enhanced charge collection at the interface. Photoelectrochemical studies show that the photocurrent density of V-TiO2@β-In2S3 is 1.42 mA/cm(2) (1.5AM illumination). Also, the frequency window for TiO2 was broadened by the vanadium modification in rutile TiO2 nanorod arrays, and the lifetime of the charge carrier and stability of the interface in V-TiO2@β-In2S3 were enhanced compared to the unmodified TiO2@β-In2S3. These findings highlight the significance of modifications in host substrates and interfaces, which have profound implications on interphase stability, photocatalysis and solar-fuel-based devices.

  17. Infulence of atmospheric stability on the spatial structure of turbulence

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.

    This thesis consists of three chapters. In the first chapter, the cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or...... lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase...... predictions for vertical separations. The model coherences of all the three velocity components were overestimated for the analyzed stability classes at both the sites. The model performed better at both sites for neutral stability than slightly stable and unstable conditions. The model predictions...

  18. Tren-based analogues of bacillibactin: structure and stability.

    Science.gov (United States)

    Dertz, Emily A; Xu, Jide; Raymond, Kenneth N

    2006-07-10

    Synthetic analogues were designed to highlight the effect of the glycine moiety of bacillibactin on the overall stability of the ferric complex as compared to synthetic analogues of enterobactin. Insertion of a variety of amino acids to catecholamide analogues based on a Tren (tris(2-aminoethyl)amine) backbone increased the overall acidity of the ligands, causing an enhancement of the stability of the resulting ferric complex as compared to TRENCAM. Solution thermodynamic behavior of these siderophores and their synthetic analogues was investigated through potentiometric and spectrophotometric titrations. X-ray crystallography, circular dichroism, and molecular modeling were used to determine the chirality and geometry of the ferric complexes of bacillibactin and its analogues. In contrast to the Tren scaffold, addition of a glycine to the catechol chelating arms causes an inversion of the trilactone backbone, resulting in opposite chiralities of the two siderophores and a destabilization of the ferric complex of bacillibactin compared to ferric enterobactin.

  19. Structural stability of ultra-fine grained magnesium alloys processed by equal channel angular pressing

    Science.gov (United States)

    Janeček, M.; Krajňák, T.; Minárik, P.; Čížek, J.; Stráská, J.; Stráský, J.

    2017-05-01

    Structural stability of two magnesium alloys AZ31 (MgAlZn) and AX41 (MgAlCa) processed by equal channel angular pressing is investigated. The mechanical properties, microstructure evolution and dislocation density were studied by microhardness, electron back scatter diffraction and positron annihilation spectroscopy, respectively. The loss of microstructure stability at high temperatures and the coarsening of the ultrafine-grained structure as a result of isochronal annealing is accompanied by the sharp decrease of microhardness and the decrease of dislocation density. The differences in thermal stability of both alloys are related to different conditions of ECAP pressing and the phase stability, namely the presence of stable Al2Ca precipitates in AX41 alloy. Microscopic mechanisms controlling the structure stability of both alloys are discussed.

  20. Global Stability of a Predator-Prey System with Stage Structure for the Predator

    Institute of Scientific and Technical Information of China (English)

    Yan Ni XIAO; Lan Sun CHEN

    2004-01-01

    In this paper, some feasibly sufficient conditions are obtained for the global asymptotic stability of a positive steady state of a predator-prey system with stage structure for the predator by using the theory of competitive systems, compound matrices and stability of periodic orbits, and then the work of Wang [4] is improved.

  1. Robust Stability and Performance for Linear Systems with Structured and Unstructured Uncertainties

    Science.gov (United States)

    1990-06-01

    IEEE Transactions on Automatic Control , vol...34 IEEE Transactions on Automatic Control , vol. AC-30, pp. 577-579, June 1985. [10] Yedavalli, R.K., "Perturbation Bounds for Robust Stability in Linear...Zhou, K. and Khargonekar, Pl, "Stability Robustness Bounds for Linear State Space Models with Structured Uncertainty," IEEE Transactions on Automatic Control ,

  2. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  3. Fabrication of hierarchically structured novel redox-mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency.

    Science.gov (United States)

    Jo, Wan-Kuen; Lee, Joon Yeob; Natarajan, Thillai Sivakumar

    2016-01-14

    Novel, hierarchically nanostructured, redox-mediator-free, direct Z-scheme nanocomposite photocatalysts were synthesized via a facile hydrothermal method followed by wet-impregnation. The photocatalysts had a ZnIn2S4 marigold flower/Bi2WO6 flower-like (ZIS/BW) composition, which led to superior visible-light photocatalytic efficiency with excellent stability and reusability. The hierarchical marigold flower and flower-like morphologies of ZIS and BW were confirmed by FE-SEM and TEM analyses and further revealed that formation of the hierarchical marigold flower-like ZIS structure followed the formation of nanoparticles, growth of the ZIS petals, and self-assembly of these species. Powder X-ray diffraction and UV-visible diffuse reflectance spectroscopy analyses as well as the enhancement in the surface area and pore volume of the composite provide evidence of strong coupling between hierarchical BW and the ZIS nanostructures. The efficiency of the hierarchical direct Z-scheme photocatalysts for photocatalytic decomposition of metronidazole (MTZ) under visible-light irradiation was evaluated. The hierarchically nanostructured ZIS/BW nanocomposites with 50% loading of ZIS exhibited superior visible-light photocatalytic decomposition efficiency (PDE) compared to the composites with other percentages of ZIS and pristine BW. A probable mechanism for the enhanced photocatalytic efficiency of the ZIS/BW composite in MTZ degradation under visible irradiation was proposed. Radical quenching studies demonstrated that h(+), ˙OH, and O2˙(-) are the primary reactive radicals involved, which confirms that the Z-scheme mechanism of transfer of charge carriers accounts for the higher photocatalytic activity. Kinetic analysis revealed that MTZ degradation follows pseudo-first-order kinetics and the reusability of the composite catalyst for up to four cycles confirms the excellent stability of the hierarchical structure. It is concluded that the hierarchical structure of the ZIS

  4. Dimensional stability of distances between posterior teeth in maxillary complete dentures Estabilidade dimensional de distâncias entre dentes posteriores em prótese total superior

    Directory of Open Access Journals (Sweden)

    Rafael Leonardo Xediek Consani

    2006-09-01

    Full Text Available The aim of this study was to assess the displacement of posterior teeth in maxillary complete dentures stored in water at 37°C. Twenty acrylic resin-based maxillary complete dentures were constructed with the anterior teeth arranged in normal overlap and the posterior teeth in Angle class I. Metallic pins were placed on the labial cusp of the first premolars (PM, and on the mesiolabial cusp of the second molars (M. The final acrylic resin pressing was made in a metallic flask with aid of the RS tension system, and polymerized in a moist-hot cycle at 74°C for 9 hours. The dentures were deflasked after cooling in their own polymerizing water or after cooling in polymerizing water plus bench storage for 3 hours, and stored in water at 37°C for periods of 7, 30, and 90 days. Following deflasking and after each storage period tested, the PM-PM (premolar to premolar, M-M (molar to molar, LPM-LM (left premolar to left molar, and RPM-RM (right premolar to right molar distances were measured with an STM Olympus microscope, with an accuracy of 0.0005 mm. Collected data were submitted to ANOVA and Tukey's test (5%. There was no statistically significant difference for the PM-PM, M-M, and LPM-LM distances after all storage periods when the flask cooling methods were considered. With exception of the RPM-RM distance after the 30-days water plus bench storage period, the other distances remained statistically stable.O propósito deste trabalho foi verificar a movimentação de dentes posteriores em prótese total superior armazenada em água a 37°C. Vinte próteses totais superiores foram confeccionadas com resina acrílica, com os dentes anteriores em transpasse normal e os posteriores em Classe I de Angle. Pinos metálicos foram colocados na cúspide vestibular dos primeiros pré-molares (PM e cúspide mésio-vestibular dos segundos molares (M. A prensagem final da resina acrílica foi feita em mufla metálica com auxílio do dispositivo RS de contens

  5. Apinhamento ântero-superior: revisão e análise crítica da literatura Maxillary crowding and long-term stability: a review of literature

    Directory of Open Access Journals (Sweden)

    Patrícia Paschoal Martins

    2007-04-01

    Full Text Available INTRODUÇÃO: o tratamento do apinhamento dentário da região anterior superior e inferior é comumente acometido pela recidiva, entretanto a maior parte dos estudos aborda apenas a estabilidade do tratamento do arco dentário inferior. OBJETIVO: este artigo propõe uma revisão e análise crítica da literatura, enfatizando os fatores etiológicos do apinhamento dentário, as diversas formas de tratamento e a recidiva no arco superior, considerando o plano de tratamento, os fatores periodontais e a expansão rápida da maxila. CONCLUSÕES: a severidade inicial da má oclusão, as alterações dimensionais dos arcos dentários e as alterações na fisiologia do ligamento periodontal são os principais fatores etiológicos de recidiva. O estudo da etiologia da recidiva permite ao ortodontista o correto planejamento dos casos clínicos e a previsibilidade da estabilidade pós-contenção.INTRODUCTION: The treatment of crowding of maxillary and mandibular anterior teeth commonly suffers relapse. Therefore, major studies focus only on stability of mandibular anterior segment. OBJECTIVE: This article propose a review and critical analysis of the literature, emphasizing the etiologic factors of incisors crowding, the various treatment plans and the relapse of the maxillary anterior segment, considering the treatment protocols, the periodontal factors and the rapid maxillary expansion. CONCLUSIONS: The main factors influencing the relapse are the severity of the initial malocclusion, the changes in arch dimensions and the changes in physiology of periodontal tissue. The study of the causes of relapse is important to help in achieving a correct treatment planning and to predict the postretention stability.

  6. Nonlinear and Variable Structure Excitation Controller for Power System Stability

    Institute of Scientific and Technical Information of China (English)

    Wang Ben; Ronnie Belmans

    2006-01-01

    A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.

  7. Stability of Spatial Structure of Urban Agglomeration in China Based on Central Place Theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper brings forward the concept of stability of the spatial structure of urban agglomeration (UA) based on Central Place Theory by introducing centrality index and fractal theory. Before assessment, K=4 is selected as parameter to calculate centrality index and fractal dimension (K represents the quantitive relationship between city and the counties in Central Place Theory), and then found the number of nodes, the type of spatial structure, the spatial allocation of nodes with different hierarchy affecting the stability of spatial structure. According to spatial contact direction and the level of stability, UAs in China are classified into five types. Finally, it is posed as a further question that how to use hierarchical relation K=6 and K=7 in central place system to coordinate with the assessment of stability of spatial structure is brought forward.

  8. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    Science.gov (United States)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  9. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    Directory of Open Access Journals (Sweden)

    Ryo Ohmura

    2012-02-01

    Full Text Available This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the best stability. Also, at a given molecule size, better stability may be available when the large molecule guest substance has a larger molar mass.

  10. Banking structure and financial stability:a comparison of Chinese and German banking systems

    Institute of Scientific and Technical Information of China (English)

    CAI Conglu

    2006-01-01

    In the process of financial globalization and diversification,the issue of financial stability has become heated all over the world.This Paper attempts to uncover the delicate relationship between banking structure and financial stability by comparing and analyzing the situation of the Chinese and German banking systems.This paper suggests that(i)the trade-off between competition and concentration in banking industry is a vital factor to maintain financial stability and(ii)concentration is not always a bad thing for financial stability,especially in banking systems with discontent bank performance.

  11. Stability Criteria for Large-Scale Linear Systems with Structured Uncertainties

    Institute of Scientific and Technical Information of China (English)

    Cao Dengqing

    1996-01-01

    The robust stability analysis for large-scale linear systems with structured timevarying uncertainties is investigated in this paper. By using the scalar Lyapunov functions and the properties of M-matrix and nonnegative matrix, stability robustness measures are proposed. The robust stability criteria obtained are applied to derive an algebric criterion which is expressed directly in terms of plant parameters and is shown to be less conservative than the existing ones. A numerical example is given to demonstrate the stability criteria obtained and to compare them with the previous ones.

  12. General Approach for MOF-Derived Porous Spinel AFe2O4 Hollow Structures and Their Superior Lithium Storage Properties.

    Science.gov (United States)

    Yu, Hong; Fan, Haosen; Yadian, Boluo; Tan, Huiteng; Liu, Weiling; Hng, Huey Hoon; Huang, Yizhong; Yan, Qingyu

    2015-12-09

    A general and simple approach for large-scale synthesis of porous hollow spinel AFe2O4 nanoarchitectures via metal organic framework self-sacrificial template strategy is proposed. By employing this method, we can successfully synthesize uniform NiFe2O4, ZnFe2O4, and CoFe2O4 hollow architectures that are hierarchically assembled by nanoparticles. When these hollow microcubes were tested as anode for lithium ion batteries, good rate capability and long-term cycling stability can be achieved. For example, high specific capacities of 636, 449, and 380 mA h g(-1) were depicted by NiFe2O4, ZnFe2O4, and CoFe2O4, respectively, at a high current density of 8.0 A g(-1). NiFe2O4 exhibits high specific capacities of 841 and 447 mA h g(-1) during the 100th cycle when it was tested at current densities of 1.0 and 5.0 A g(-1), respectively. Discharge capacities of 390 and 290 mA h g(-1) were delivered by the ZnFe2O4 and CoFe2O4, respectively, during the 100th cycle at 5.0 A g(-1).

  13. Broadband Liquid Dampers to Stabilize Flexible Spacecraft Structures

    NARCIS (Netherlands)

    Kuiper, J.M.

    2012-01-01

    Mass-spring and liquid dampers enable structural vibration control to attenuate single, coupled lateral and torsional vibrations in diverse structures. Out of these, the passively tuned liquid damper (TLD) class is wanted due to its broad applicability, extreme reliability, robustness, long life tim

  14. Stability of a flexible structure with destabilizing boundary conditions

    Science.gov (United States)

    Shubov, M.; Shubov, V.

    2016-07-01

    The Euler-Bernoulli beam model with non-dissipative boundary conditions of feedback control type is investigated. Components of the two-dimensional input vector are shear and moment at the right end, and components of the observation vector are time derivatives of displacement and slope at the right end. The codiagonal matrix depending on two control parameters relates input and observation. The paper contains five results. First, asymptotic approximation for eigenmodes is derived. Second, `the main identity' is established. It provides a relation between mode shapes of two systems: one with non-zero control parameters and the other one with zero control parameters. Third, when one control parameter is positive and the other one is zero, `the main identity' yields stability of all eigenmodes (though the system is non-dissipative). Fourth, the stability of eigenmodes is extended to the case when one control parameter is positive, and the other one is sufficiently small. Finally, existence and properties of `deadbeat' modes are investigated.

  15. Thermal stability of graphene edge structure and graphene nanoflakes

    Science.gov (United States)

    Barnard, Amanda S.; Snook, Ian K.

    2008-03-01

    One of the most exciting recent developments in nanoscience was the discovery of graphene (single sheets of carbon atoms, a two-dimensional ``(2D) crystal'') and the subsequent discovery of the fascinating properties of this new material, e.g., electrons behaving as massless relativistic particles and an anomalous quantum Hall effect [A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007)]. It is also surprising that large sheets of graphene exist as it was widely believed that 2D crystals are unstable. Furthermore, because of the stability of folded graphene sheets, i.e., carbon nanotubes (CNTs), a fascinating question is why does not graphene spontaneously transform into CNTs? In this paper, we explore the thermal stability of small pieces of graphene, i.e., graphene nanoflakes by ab initio quantum mechanical techniques. We find that indeed nanoflakes are stable to being heated and do not under any conditions used here transform to CNTs. They do not, however, remain strictly 2D as at finite temperatures, they undergo extensive vibrational motion and remain buckled if annealed and then quenched to room temperature.

  16. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...... the hydraulic stability and the structural integrity. The objective of the round-head tests is to produce similar design formulae for Dolos armour in around-head. The tests will also include examinations of the hydraulic stability and run-up for a trunk section adjacent to the round-head. A run-up formula...

  17. Configurational Model for Conductivity of Stabilized Fluorite Structure Oxides

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1981-01-01

    The formalism developed here furnishes means by which ionic configurations, solid solution limits, and conductivity mechanisms in doped fluorite structures can be described. The present model differs markedly from previous models but reproduces qualitatively reality. The analysis reported...

  18. Structural and mechanical stability of rare-earth diborides

    Institute of Scientific and Technical Information of China (English)

    Haci Ozisik; Engin Deligoz; Kemal Colakoglu; Gokhan Surucu

    2013-01-01

    Structural and mechanical properties of several rare-earth diborides were systematically investigated by first principles calculations.Specifically,we studied XB2,where X =Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,and Lu in the hexagonal A1B2,ReB2,and orthorhombic OsB2-type structures.The lattice parameters,bulk modulus,bond distances,second order elastic constants,and related polycrystalline elastic moduli (e.g.,shear modulus,Young's modulus,Poisson's ratio,Debye temperature,sound velocities) were calculated.Our results indicate that these compounds are mechanically stable in the considered structures,and according to "Chen's method",the predicted Vickers hardness shows that they are hard materials in A1B2-and OsB2-type structures.

  19. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  20. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Science.gov (United States)

    Bica, Doina; Vékás, Ladislau; Avdeev, Mikhail V.; Marinică, Oana; Socoliuc, Vlad; Bălăsoiu, Maria; Garamus, Vasil M.

    2007-04-01

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  1. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Doina [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania); Vekas, Ladislau [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Division, Bd. Mihai Viteazul 24, 300223 Timisoara (Romania) and National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania)]. E-mail: vekas@acad-tim.tm.edu.ro; Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Marinica, Oana [National Centre for Engineering of Systems with Complex Fluids, University Politehnica Timisoara, Bd. Mihai Viteazul 1, 300222 Timisoara (Romania); Socoliuc, Vlad [National Institute R and D for Electrochemistry and Condensed Matter, Str. Diaconu Coressi 144, 300588 Timisoara (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  2. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions

    Science.gov (United States)

    Shi, Ya-Zhou; Jin, Lei; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions. PMID:26682822

  3. STRUCTURAL STABILITY OF ALUMINOSILICATE INORGANIC POLYMERS: INFLUENCE OF THE PREPARATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    Libor Kobera

    2011-12-01

    Full Text Available The stability of amorphous aluminosilicate inorganic polymer (AIP systems with regard to the structural role of water molecules incorporated in inorganic matrix is discussed. Innovative approach to preparation of amorphous AIP systems with identical chemical composition but differing in structural and mechanical behavior is introduced. It is shown that even small changes in the manufacture dramatically affect mechanical properties and the overall structural stability of AIP systems. If the required quantity of water is admixed to the reaction mixture during the initial step of AIPs synthesis the resulting amorphous aluminosilicate matrix undergoes extensive crystallization (zeolitization. On the other hand, if the amount of water is added to the reaction mixture during the last step of the preparation procedure, the inorganic matrix exhibits long-term stability without any structural defects. To find the structural reasons of the observed behavior a combination of traditional solid state NMR (1H and 29Si MAS NMR, 29Si CP/MAS NMR, 29Si inverse-T1-filtered NMR, XRPD and TGA measurements were used. The applied experiments revealed that the structural stability of AIPs can be attributed to the tight binding of water molecules into the inorganic matrix. The structural stability of the prepared amorphous AIP systems thus seems to be affected by the extent of hydration i.e. the strength of binding water into the inorganic framework.

  4. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene

    OpenAIRE

    Zhikun Peng; Xu Liu; Shuaihui Li; Zhongjun Li; Baojun Li; Zhongyi Liu; Shouchang Liu

    2017-01-01

    ZrO2 heterophase structure nanocrystals (HSNCs) were synthesized with tunable ratios of monoclinic ZrO2 (m-ZrO2) to tetragonal ZrO2 (t-ZrO2). The phase mole ratio of m-ZrO2 versus t-ZrO2 in ZrO2 HSNCs was tuned from 40% to 100%. The concentration of the surface hydroxyl groups on m-ZrO2 is higher than that on t-ZrO2. ZrO2 HSNCs have different surface hydroxyl groups on two crystalline phases. This creates more intimate synergistic effects than their single-phase counterparts. The ZrO2 HSNCs w...

  5. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    Science.gov (United States)

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  6. Structure and Stability of C20H3 Radical

    Institute of Scientific and Technical Information of China (English)

    REN,Jie; ZHANG,Cong-Jie; WU,Hai-Shun

    2008-01-01

    Density functional theory B3LYP with 6-31G* basis set has been used to investigate the geometries, rotational constants, dipole moments, energy gaps and vibrational frequencies of nine series of isomers of C20H3 radical. The result shows that the bowl-like structure with C1 symmetry is the most stable structure, in which the three hydrogen atoms locate on the edge carbon atoms, and the two hydrogen atoms are neighbouring and the other one has a two-carbon atom interval to the neighbouring hydrogen. In addition, the relationship between the energy and the position of one hydrogen atom from end to middle on the linear structures of C20H3 radical with two hydrogens atoms lo-cated on two ends was obtained, which shows the energy increase monotonously. Furthermore, hydrogenation can relax the strain and make the isomer of C20 more stable.

  7. Nash Stability in Additively Separable Hedonic Games and Community Structures

    DEFF Research Database (Denmark)

    Olsen, Martin

    2009-01-01

      We prove that the problem of deciding whether a Nash stable   partition exists in an Additively Separable Hedonic Game is   NP-complete. We also show that the problem of deciding whether a   non trivial Nash stable partition exists in an   Additively Separable Hedonic Game with   non......-negative and symmetric   preferences is NP-complete. We motivate our study of the   computational complexity by linking Nash stable partitions in   Additively Separable Hedonic Games to community structures in   networks. Our results formally justify that computing community   structures in general is hard....

  8. Multi-scale structural and kinematic analysis of a Neoarchean shear zone in northeastern Minnesota: Implications for assembly of the southern Superior Province

    Science.gov (United States)

    Dyess, Jonathan

    This dissertation is a multi-scale structural and kinematic analysis of the Shagawa Lake shear zone in northeastern Minnesota (USA). The Neoarchean Shagawa Lake shear zone is an ~70 km long ~7 km wide subvertical package of L-S tectonites located within the Wawa Subprovince of the Archean Superior Province. In this dissertation, I (1) discuss a new method for mapping regional tectonic fabrics using high-resolution LiDAR altimetry data; (2) examine the geometric relationships between metamorphic foliation, elongation lineation, vorticity, and non-coaxial shear direction within individual L-S tectonites; and (3) incorporate LiDAR, field, and microstructural data sets into a comprehensive structural and kinematic analysis of the Western Shagawa Lake shear zone. Lastly, I discuss implications for assembly of the southern Superior Province. In Chapter one I examine an Archean granite-greenstone terrane in NE Minnesota to illustrate the application of high-resolution LiDAR altimetry to mapping regional tectonic fabrics in forested, glaciated areas. I describe the recognition of lineaments and distinguishing between tectonic and glacial lineament fabrics. I use a 1-m posted LiDAR derived bare-earth digital elevation model (DEM) to construct multiple shaded-relief images for lineament mapping with sun elevation of 45˚ and varying sun azimuth in 45˚ intervals. Two suites of lineaments are apparent. Suite A has a unimodal orientation, mean trend of 035, and consists of short (> 2 km long) lineaments within sediment deposits and bedrock. Suite B lineaments, which are longer (1-30 km) than those of suite A, have a quasi-bimodal orientation distribution, with maximum trends of 065 and 090. Only one lineament suite is visible in areas where suites A and B are parallel. I interpret suite A as a surficial geomorphologic fabric related to recent glaciation, and suite B as a proxy for the regional tectonic fabric. In Chapter two I present a detailed kinematic study of seven

  9. Active stabilization of thin-wall structures under compressive loading

    Science.gov (United States)

    Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey

    2003-08-01

    The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.

  10. The fragmentation and stability of hierarchical structure in Serpens South

    CERN Document Server

    Friesen, R K; Di Francesco, J; Gutermuth, R; Myers, P C

    2016-01-01

    Filamentary structures are ubiquitous in molecular clouds, and have been recently argued to play an important role in regulating the size and mass of embedded clumps through fragmentation and mass accretion. Here, we reveal the dynamical state and fragmentation of filamentary molecular gas associated with the Serpens South protocluster through analysis of wide (~4 x 4 pc) observations of NH3 (1,1) and (2,2) inversion transitions with the Green Bank Telescope. Detailed modeling of the NH3 lines reveals that the kinematics of the cluster and surrounding filaments are complex. We identify hierarchical structure using a dendrogram analysis of the NH3 emission. The distance between neighbour structures that are embedded within the same parent structure is generally greater than expected from a spherical Jeans analysis, and is in better agreement with cylindrical fragmentation models. The NH3 line width-size relation is flat, and average gas motions are sub- or trans-sonic over all physical scales observed. Subsoni...

  11. Molecular Structure and Stability of Dissolved Lithium Polysulfide Species

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Govind, Niranjan; Walter, Eric D.; Burton, Sarah D.; Shukla, Anil K.; Devaraj, Arun; Xiao, Jie; Liu, Jun; Wang, Chong M.; Karim, Ayman M.; Thevuthasan, Suntharampillai

    2014-01-01

    Ability to predict the solubility and stability of lithium polysulfide is vital in realizing longer lasting lithium-sulfur batteries. Herein we report a combined computational and experimental spectroscopic analysis to understand the dissolution mechanism of lithium polysulfide species in an aprotic solvent medium. Multinuclear NMR and sulfur K-edge X-ray absorption (XAS) analysis reveals that the lithium exchange between polysulfide species and solvent molecule constitutes the first step in the dissolution process. Lithium exchange leads to de-lithiated polysulfide ions which subsequently forms highly reactive free radicals through disproportion reaction. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility.

  12. Stability of Numerical Interface Conditions for Fluid/Structure Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Banks, J W; Sjogreen, B

    2009-08-13

    In multi physics computations, where a compressible fluid is coupled with a linearly elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid. In a numerical scheme, there are many ways that the velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs a normal mode analysis to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type of finite difference schemes. The analysis shows that depending on the ratio of densities between the solid and the fluid, some numerical interface conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition, obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid.

  13. Linear forms of plasmid DNA are superior to supercoiled structures as active templates for gene expression in plant protoplasts.

    Science.gov (United States)

    Ballas, N; Zakai, N; Friedberg, D; Loyter, A

    1988-07-01

    Introduction of the plasmids pUC8CaMVCAT and pNOSCAT into plant protoplasts is known to result in transient expression of the chloramphenicol acetyl transferase (CAT) gene. Also, transfection with the plasmid pDO432 results in transient appearance of the luciferase enzyme. In the present work we have used these systems to study the effect of DNA topology on the expression of the above recombinant genes. Linear forms of the above plasmids exhibited much higher activity in supporting gene expression than their corresponding super-coiled structures. CAT activity in protoplasts transfected with the linear forms of pUC8CaMVCAT and pNOSCAT was up to ten-fold higher than that observed in protoplasts transfected by the supercoiled template of these plasmids. This effect was observed in protoplasts derived from two different lines of Petunia hybrida and from a Nicotiana tabacum cell line. Transfection with the relaxed form of pUC8CaMVCAT resulted in very low expression of the CAT gene.Northern blot analysis revealed that the amount of poly(A)(+) RNA extracted from protoplasts transformed with the linear forms of the DNA was about 10-fold higher than that found in protoplasts transformed with supercoiled DNA.Southern blot analysis revealed that about the same amounts of supercoiled and linear DNA molecules were present in nuclei of transfected protoplasts. No significant quantitative differences have been observed between the degradation rates of the various DNA templates used.

  14. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Zhu, Zi-Zhong; Sun, Shi-Gang

    2016-04-14

    Atomic-scale understanding of structures and thermodynamic stability of core-shell nanoparticles is important for both their synthesis and application. In this study, we systematically investigated the structural stability and thermodynamic evolution of core-shell structured Pd-Ni nanoparticles by molecular dynamics simulations. It has been revealed that dislocations and stacking faults occur in the shell and their amounts are strongly dependent on the core/shell ratio. The presence of these defects lowers the structural and thermal stability of these nanoparticles, resulting in even lower melting points than both Pd and Ni monometallic nanoparticles. Furthermore, different melting behaviors have been disclosed in Pd-core/Ni-shell and Ni-core/Pd-shell nanoparticles. These diverse behaviors cause different relationships between the melting temperature and the amount of stacking faults. Our results display direct evidence for the tunable stability of bimetallic nanoparticles. This study provides a fundamental perspective on core-shell structured nanoparticles and has important implications for further tailoring their structural and thermodynamic stability by core/shell ratio or composition controlling.

  15. Electronic Structure and Stability of C20 Isomers

    Institute of Scientific and Technical Information of China (English)

    曹则贤

    2001-01-01

    The electronic structure of the C20 cluster in monocyclic ring, bowl and fullerene isomers has been calculated using the tight-binding scheme developed by Harrison, starting in particular from the sp2.803-hybrids for the fullerene structure. The study of energetics predicts the fullerene to be the ground state with the bowl and ring lying over 1.32 and 3.35 eV higher in energy. The total energies will be lowered by Peierls or Jahn-Teller distortion, but the energetic ordering remains unchanged. It is also shown that the range of valence electron, the level difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as the σ - π gap, which are less sensitive to the exact geometry, vary in the ring, bowl and fullerene sequence.

  16. Structural Breaks, Parameter Stability and Energy Demand Modeling in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusegun A. Omisakin

    2012-08-01

    Full Text Available This paper extends previous studies in modeling and estimating energy demand functions for both gasoline and kerosene petroleum products for Nigeria from 1977 to 2008. In contrast to earlier studies on Nigeria and other developing countries, this study specifically tests for the possibility of structural breaks/regime shifts and parameter instability in the energy demand functions using more recent and robust techniques. In addition, the study considers an alternative model specification which primarily captures the price-income interaction effects on both gasoline and kerosene demand functions. While the conventional residual-based cointegration tests employed fail to identify any meaningful long run relationship in both functions, the Gregory-Hansen structural break cointegration approach confirms the cointegration relationships despite the breakpoints. Both functions are also found to be stable under the period studied.The elasticity estimates also follow the a priori expectation being inelastic both in the long- and short run for the two functions.

  17. Structure and stability of small TiO2 nanoparticles.

    Science.gov (United States)

    Hamad, S; Catlow, C R A; Woodley, S M; Lago, S; Mejías, J A

    2005-08-25

    The effect of the nanostructure on the photochemistry of TiO2 is an active field of research owing to its applications in photocatalysis and photovoltaics. Despite this interest, little is known of the structure of small particles of this oxide with sizes at the nanometer length scale. Here we present a computational study that locates the global minima in the potential energy surface of Ti(n)O2n clusters with n = 1-15. The search procedure does not refer to any of the known TiO2 polymorphs, and is based on a novel combination of simulated annealing and Monte Carlo basin hopping simulations, together with genetic algorithm techniques, with the energy calculated by means of an interatomic potential. The application of several different methods increases our confidence of having located the global minimum. The stable structures are then refined by means of density functional theory calculations. The results from the two techniques are similar, although the methods based on interatomic potentials are unable to describe some subtle effects. The agreement is especially good for the larger particles, with n = 9-15. For these sizes the structures are compact, with a preference for a central octahedron and a surrounding layer of 4- and 5-fold coordinated Ti atoms, although there seems to be some energy penalty for particles containing the 5-fold coordinated metal atoms with square base pyramid geometry and dangling Ti=O bonds. The novel structures reported provide the basis for further computational studies of the effect of nanostructure on adsorption, photochemistry, and nucleation of this material.

  18. Stability

    Directory of Open Access Journals (Sweden)

    Nada S. Abdelwahab

    2017-05-01

    Full Text Available The present work concerns with the development of stability indicating the RP-HPLC method for simultaneous determination of guaifenesin (GUF and pseudoephedrine hydrochloride (PSH in the presence of guaifenesin related substance (Guaiacol. GUC, and in the presence of syrup excepients with minimum sample pre-treatment. In the developed RP-HPLC method efficient chromatographic separation was achieved for GUF, PSH, GUC and syrup excepients using ODS column as a stationary phase and methanol: water (50:50, v/v, pH = 4 with orthophosphoric acid as a mobile phase with a flow rate of 1 mL min−1 and UV detection at 210 nm. The chromatographic run time was approximately 10 min. Calibration curves were drawn relating the integrated area under peak to the corresponding concentrations of PSH, GUF and GUC in the range of 1–8, 1–20, 0.4–8 μg mL−1, respectively. The developed method has been validated and met the requirements delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. The validated method was successfully applied for determination of the studied drugs in triaminic chest congestion® syrup; moreover its results were statistically compared with those obtained by the official method and no significant difference was found between them.

  19. Stabilization of polar Mn3O4(001) film on Ag(001): Interplay between kinetic and structural stability

    Science.gov (United States)

    Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.

    2017-10-01

    Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar Mn3O4 film and as a consequence of that a strong interplay between structural and kinetic stability in the Mn3O4 film has been observed. Further, stripe-like LEED pattern has been observed from the Mn3O4(001) surface, for the film grown at higher oxygen partial pressure (> 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

  20. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.

    Science.gov (United States)

    Choi, Hyunsung; Chang, Hyun Joon; Lee, Myeongsang; Na, Sungsoo

    2017-02-04

    In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.

  1. Dissecting the structure of surface stabilizer on the dispersion of inorganic nanoparticles in aqueous medium

    Science.gov (United States)

    Ding, Yong; Yu, Zongzhi; Zheng, Junping

    2017-03-01

    Dispersing inorganic nanoparticles in aqueous solutions is a key requirement for a great variety of products and processes, including carriers in drug delivery or fillers in polymers. To be highly functional in the final product, inorganic particles are required to be finely dispersed in nanoscale. In this study, silica was selected as a representative inorganic particle. Surface stabilizers with different chain length and charged group were designed to reveal the influence of electrostatic and van der Waals forces between silica and stabilizer on the dispersion of silica particles in aqueous medium. Results showed surface stabilizer with longer alkyl chain and charged group exerted best ability to deaggregate silica, leading to a hydrodynamic size of 51.1 nm. Surface stabilizer designing with rational structure is a promising solution for deagglomerating and reducing process time and energy. Giving the designability and adaptability of surface stabilizer, this method is of potential for dispersion of other inorganic nanoparticles.

  2. Nuclear structure far off stability -Implications for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Grawe, H.; Gorska, M. [GSI, Darmstadt (Germany); Blazhev, A. [GSI, Darmstadt (Germany); University of Sofia, Sofia (Bulgaria); Grzywacz, R. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Mach, H. [Uppsala University, ISV, Nykoeping (Sweden); Mukha, I. [GSI, Darmstadt (Germany); RRC Kurchatov Institute, Moscow (Russian Federation); Katholieke Universiteit Leuven, Leuven (Belgium)

    2006-03-15

    The single-particle structure and shell gap of {sup 100}Sn as inferred from previous in-beam {gamma}-ray spectroscopy has been confirmed in recent studies of seniority and spin-gap isomers by {gamma}{gamma}, {beta}{gamma}, {beta}p{gamma}, p{gamma} and 2p{gamma} spectroscopy. The results for {sup 94,} {sup 95}Ag, {sup 98}Cd and its N=50 isotones {sup 96}Pd and {sup 94}Ru stress the importance of large-scale shell model calculations employing realistic interactions for the isomerism, np-nh excitations, seniority mixing and E2 polarisation of the {sup 100}Sn core. The strong monopole interaction of the {delta}l=0,1 spin/isospin-flip partners {pi}g{sub 9/2}-{nu}g{sub 7/2} along the N=50 isotones and the {pi}f{sub 5/2}- {nu}g{sub 9/2} pair of nucleons along the Z=28 Ni isotopes are decisive for the evolution of the shell structure towards {sup 100}Sn and {sup 78}Ni. It can be traced back to the tensor force in the effective nucleon-nucleon interaction and provides a straightforward explanation for new shells in neutron-rich light nuclei, implying qualitative predictions for new N=32,34 subshells in Ca isotopes, persistence of the {sup 78}Ni proton and neutron shell gaps and non-equivalence of the g{sub 9/2} valence mirror Ni isotopes and N=50 isotones. This is corroborated by recent experimental data on {sup 56,58}Cr and {sup 70-76}Ni. The implication of monopole driven shell evolution for apparent spin-orbit splitting towards N>>Z and structure along the astrophysical r-path between N=50 and N=82 is discussed. (orig.)

  3. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{sub 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.

  4. Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures

    Science.gov (United States)

    Viteri, C. Ricardo; Tomita, Yu; Brown, Kenneth R.

    2009-10-01

    We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.

  5. Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures

    CERN Document Server

    Viteri, C Ricardo; Brown, Kenneth R

    2009-01-01

    We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.

  6. Trophic structure and community stability in an overfished ecosystem

    KAUST Repository

    Utne-Palm, Anne Christine

    2010-07-15

    Since the collapse of the pelagic fisheries off southwest Africa in the late 1960s, jellyfish biomass has increased and the structure of the Benguelan fish community has shifted, making the bearded goby (Sufflogobius bibarbatus) the new predominant prey species. Despite increased prédation pressure and a harsh environment, the gobies are thriving. Here we show that physiological adaptations and antipredator and foraging behaviors underpin the success of these fish. In particular, body-tissue isotope signatures reveal that gobies consume jellyfish and sulphidic diatomaceous mud, transferring "dead-end" resources back into the food chain.

  7. Structural microtubule cap: Stability, catastrophe, rescue, and third state

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Chretien, D.; Janosi, I.M.

    2002-01-01

    Microtubules polymerize from GTP-liganded tubulin dinners, but are essentially made of GDP-liganded tubulin. We investigate the tug-of-war resulting from the fact that GDP-liganded tubulin favors a curved configuration, but is forced to remain in a straight one when part of a microtubule. We point...... of two well-established facts: protofilaments made of GDP-liganded tubulin have intrinsic curvature, and microtubules are elastic, made from material that can yield to forces, in casu its own intrinsic forces. We explore possible properties of this structural cap, and demonstrate 1) how it allows both...

  8. Contact angles of wetting and water stability of soil structure

    Science.gov (United States)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  9. Emulating structural stability of Pseudomonas mendocina lipase: in silico mutagenesis and molecular dynamics studies.

    Science.gov (United States)

    Saravanan, Parameswaran; Dubey, Vikash Kumar; Patra, Sanjukta

    2014-11-01

    The need of alkaline detergent-stable lipases has been growing rapidly as they are highly attractive for the production of detergents, biodiesel, pharmaceuticals agents, and various other applications. Lipase from Pseudomonas mendocina (PML) is one such candidate with triglyceride activity and non-homologous with other reported Pseudomonas lipases. The present work provides insights on the role of amino acids toward structural stability of PML. PML was subjected to mutagenesis through in silico point mutations for emulating its structural stability, the foremost property to enhance biophysiochemical properties for industrial process. The structural effects of identified mutants on PML have been analyzed through comparative atomistic molecular dynamics simulations on wild type and mutants. The in silico mutants P187A and P219A were found to stabilize their respective local dynamics and improved the structural stability of PML. The current study sheds light on the rational engineering of PML through in silico methodologies to improvise its structural stability as well as prototype for rational engineering of the lipases.

  10. Engineered Mutations Change the Structure and Stability of a Virus-Like Particle

    OpenAIRE

    Fiedler, Jason D.; Higginson, Cody; Hovlid, Marisa L.; Kislukhin, Alexander A.; Castillejos, Alexandra; Manzenrieder, Florian; Campbell, Melody G; Voss, Neil R.; Potter, Clinton S.; Carragher, Bridget; Finn, M.G.

    2012-01-01

    The single coat protein (CP) of bacteriophage Qβ self assembles into T=3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various stabilizing interactions. Optimization of a pr...

  11. Global Stability for a Delayed Predator-Prey System with Stage Structure for the Predator

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2009-01-01

    Full Text Available A delayed predator-prey system with stage structure for the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of equilibria of the system is discussed. The existence of Hopf bifurcation at the positive equilibrium is established. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and two boundary equilibria of the system. Numerical simulations are carried out to illustrate the theoretical results.

  12. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries

    Science.gov (United States)

    Li, Min; Hou, Xianhua; Sha, Yujing; Wang, Jie; Hu, Shejun; Liu, Xiang; Shao, Zongping

    2014-02-01

    A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a core-shell structure has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; natural graphite serves as the core, and silicon nanoparticles, which filled in the porous carbon matrix formed from the pyrolysis of citric acid and pitch precursors, serve as the shell. The combination of the core-shell structure for the composite and porous carbon-coating layer accommodates the large volume change of the silicon during the lithium intercalation/extraction process, thus stabilizing the electrode structure during discharge/charge cycles. As an anode material, the as-obtained Si/C composite demonstrates high capacity and excellent cycle stability. An initial specific discharge capacity of approximately 723.8 mAh g-1 and a reversible specific capacity of approximately 600 mAh g-1 after 100 cycles at a constant density of 100 mA g-1 are reached, about two times the values for graphite. Due to the simple synthesis process and the excellent performance of the resulted electrode, great commercial potential is envisioned.

  13. Stability of linear systems in second-order form based on structure preserving similarity transformations

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard

    2015-01-01

    of the transformation parameters into a new system (I, B 1, C 1) with a symmetrizable matrix C 1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.......This paper deals with two stability aspects of linear systems of the form Ix¨+Bx˙+Cx=0 given by the triple (I, B, C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices...

  14. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    Science.gov (United States)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we

  15. Structural stability of the high-aluminium zinc alloys modified with Ti addition

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2012-01-01

    Full Text Available The subject of the paper is structural stability of the Zn-26 wt.% Al binary alloys doped with 2.2 wt.% Cu or 1.6 wt.% Ti addition. The structural stability of Zn-Al alloys with increased Al content is connected with stability of solid solution of zinc in aluminium α', which is the main component of these alloys microstructure. Such a solution undergoes phase transformations which are accompanied, among others, by changes in dimensions and strength properties.The structural stability of the ZnAL26Cu2.2 and ZnAl26Ti1.6 alloys was investigated using XRD examinations during long term natural ageing after casting, as well as during long term natural ageing after super-saturation and quenching. On the basis of the performed examinations it was stated that small Ti addition to the binary ZnAl25 alloy, apart from structure refinement, accelerates decomposition of the primary α' phase giving stable structure in a shorter period of time in comparison with the alloy without Ti addition. Addition of Ti in amount of 1.6 wt.%, totally replacing Cu, allows obtaining stable structure and dimensions and allows avoiding structural instability caused by the metastable ε−CuZn4phase present in the ZnAl26Cu2.2 alloy.

  16. EFFECTS OF INDIVIDUAL CHARACTERISTICS AND ORGANIZATIONAL CONTEXT ON SUPERIORS' USE OF CONFLICT STYLES AND SUBORDINATES' SATISFACTION WITH SUPERVISION

    Directory of Open Access Journals (Sweden)

    Lee Kim Lian

    2008-01-01

    Full Text Available Data from 139 respondents from major industries showed that subordinates were more satisfied with their superiors' supervision through the exercise of integrating, compromising and obliging styles. On the contrary, subordinates who perceived their superiors as primarily using dominating and avoiding styles viewed them as incompetent in supervision and thus lowering their level of satisfaction with supervision. Among the conflict handling styles, integrating was most correlated with organic structure. The organic structure was found to be positively correlated with subordinates' satisfaction. These results implied that organic structure can be a potent force in maintaining organizational stability. The exercise of dominating style was found to be only marginally correlated with superior's age. Superior rank in lower hierarchy level was found to have a negative impact, albeit marginally on the exercise of dominating style. The present results also seemed to suggest that subordinates tend to be less satisfied with superiors with wider span of control.

  17. Structure and Stability of Interstellar Molecule C3S

    Institute of Scientific and Technical Information of China (English)

    YU,Hai-Tao(于海涛); FU,Hong-Gang(傅宏刚); CHI,Yu-Juan(池玉娟); HUANG,Xu-Ri(黄旭日); LI,Ze-Sheng(李泽生); SUN,Jia-Zhong(孙家钟)

    2002-01-01

    The singlet and triplet potential energy surfaces of interstellar molecule C3S are predicted at the UB3LYP/6-311 (d) and UCCSD(T)/6-311 + G(2df) (single-point) levels. The linear singlet isomer CCCS with 1 ∑ + electronic state is found to be thermodynamically and kinetically the most stable species on the singlet surface followed by other four singiet isomers, which are unstable on the basis of calculated results. On the triplet sur face, the lowest-lying species, which lies 248.79 kJ/mol above linear singlet species CCCS, is chain CCCS connectivity with 3A' electronic state. Other four triplet isomers can be considered as unstable species by means of transition state and potential energy surface scan technologies. The structures, vibrational frequencies, dipole moments and rotational constants of all optimized species are also calculated.

  18. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    Science.gov (United States)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid

  19. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties.

    Science.gov (United States)

    Ossowski, Jakub; Wächter, Tobias; Silies, Laura; Kind, Martin; Noworolska, Agnieszka; Blobner, Florian; Gnatek, Dominika; Rysz, Jakub; Bolte, Michael; Feulner, Peter; Terfort, Andreas; Cyganik, Piotr; Zharnikov, Michael

    2015-04-28

    Selenolate is considered as an alternative to thiolate to serve as a headgroup mediating the formation of self-assembled monolayers (SAMs) on coinage metal substrates. There are, however, ongoing vivid discussions regarding the advantages and disadvantages of these anchor groups, regarding, in particular, the energetics of the headgroup-substrate interface and their efficiency in terms of charge transport/transfer. Here we introduce a well-defined model system of 6-cyanonaphthalene-2-thiolate and -selenolate SAMs on Au(111) to resolve these controversies. The exact structural arrangements in both types of SAMs are somewhat different, suggesting a better SAM-building ability in the case of selenolates. At the same time, both types of SAMs have similar packing densities and molecular orientations. This permitted reliable competitive exchange and ion-beam-induced desorption experiments which provided unequivocal evidence for a stronger bonding of selenolates to the substrate as compared to the thiolates. Regardless of this difference, the dynamic charge transfer properties of the thiolate- and selenolate-based adsorbates were found to be nearly identical, as determined by the core-hole-clock approach, which is explained by a redistribution of electron density along the molecular framework, compensating the difference in the substrate-headgroup bond strength.

  20. Monitoring fire impacts in soil water repellency and structure stability during 6 years

    Directory of Open Access Journals (Sweden)

    A.J. Gordillo-Rivero

    2013-05-01

    Full Text Available Wildfires induce a series of soil changes affecting their physical and chemical properties and the hydrological and erosive response. Two of the properties that are commonly affected by burning are soil water repellency and structural stability. This paper carries out the study and monitoring of water repellency and soil structural stability during a period of 6 years after fire in calcareous soils of southern Spain in different aggregate size fractions (<2, 1-2, 0.5-1 and 0.25-0.5 mm. During this time, it was observed that both properties showed different tendencies in different aggregate size fractions. It was observed that water repellency increased after fire especially in the finer fractions (0.25-0.5 mm. Structural stability increased significantly after the fire and was progressively reduced during the experimental period.

  1. Structural stability of intermetallic compounds of Mg-Al-Ca alloy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dian-wu; LIU Jin-shui; ZHANG Jian; PENG Ping

    2007-01-01

    A first-principles plane-wave pseudopotential method based on the density functional theory was used to investigate the energetic and electronic structures of intermetallic compounds of Mg-Al-Ca alloy, such as Al2Ca, Al4Ca and Mg2Ca. The negative formation heat, the cohesive energies and Gibbs energies of these compounds were estimated from the electronic structure calculations, and their structural stability was also analyzed. The results show that Al2Ca phase has the strongest alloying ability as well as the highest structural stability, next Al4Ca, finally Mg2Ca. After comparing the density of states of Al2Ca, Al4Ca and Mg2Ca phases, it is found that the highest structural stability of Al2Ca is attributed to an increase in the bonding electron numbers in lower energy range below Fermi level, which mainly originates from the contribution of valence electron numbers of Ca(s) and Ca(p) orbits, while the lowest structural stability of Mg2Ca is resulted from the least bonding electron numbers near Fermi level.

  2. STUDY ON DYNAMICS, STABILITY AND CONTROL OF MULTI-BODY FLEXIBLE STRUCTURE SYSTEM IN FUNCTIONAL SPACE

    Institute of Scientific and Technical Information of China (English)

    徐建国; 贾军国

    2001-01-01

    The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern mathematics. First,the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained.These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.

  3. Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-computing is a practical and advanced tool for solving large-scale underground rock engineering problems.

  4. Changes in the Thermal and Dimensional Stability of the Structure of a Polymer Composite After Carbonization

    Science.gov (United States)

    Gaidachuk, V. E.; Kondratiev, A. V.; Chesnokov, A. V.

    2017-01-01

    Based on the theory of reinforcement of polymer composites, approximate relations for the physicomechanical and strength properties of a carbon-carbon composite material are synthesized, which are used to perform a finite-element analysis of the degree and character of changes in the thermal and dimensional stability of its structure after carbonization. Using approximate criteria of structural optimization of carbon-carbon composites ensuring their maximum dimensional stability, a [0/±45/90] package of thermally nonquilibrium layers is investigated and compared with an analogous carbon-fiber-reinforced plastic.

  5. First-principles calculations of structural stability and mechanical properties of tungsten carbide under high pressure

    Science.gov (United States)

    Li, Xinting; Zhang, Xinyu; Qin, Jiaqian; Zhang, Suhong; Ning, Jinliang; Jing, Ran; Ma, Mingzhen; Liu, Riping

    2014-11-01

    The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.

  6. Stability of soil microbial structure and activity depends on microbial diversity.

    Science.gov (United States)

    Tardy, Vincent; Mathieu, Olivier; Lévêque, Jean; Terrat, Sébastien; Chabbi, Abad; Lemanceau, Philippe; Ranjard, Lionel; Maron, Pierre-Alain

    2014-04-01

    Despite the central role of microbes in soil processes, empirical evidence concerning the effect of their diversity on soil stability remains controversial. Here, we addressed the ecological insurance hypothesis by examining the stability of microbial communities along a gradient of soil microbial diversity in response to mercury pollution and heat stress. Diversity was manipulated by dilution extinction approach. Structural and functional stabilities of microbial communities were assessed from patterns of genetic structure and soil respiration after the stress. Dilution led to the establishment of a consistent diversity gradient, as revealed by 454 sequencing of ribosomal genes. Diversity stability was enhanced in species-rich communities whatever the stress whereas functional stability was improved with increasing diversity after heat stress, but not after mercury pollution. This discrepancy implies that the relevance of ecological insurance for soil microbial communities might depend on the type of stress. Our results also suggest that the significance of microbial diversity for soil functional stability might increase with available soil resources. This could have strong repercussions in the current 'global changes' context because it suggests that the combined increased frequencies of extreme climatic events, nutrient loading and biotic exploitation may amplify the functional consequences of diversity decrease.

  7. Benchmarking Membrane Protein Detergent Stability for Improving Throughput of High-Resolution X-ray Structures

    Science.gov (United States)

    Sonoda, Yo; Newstead, Simon; Hu, Nien-Jen; Alguel, Yilmaz; Nji, Emmanuel; Beis, Konstantinos; Yashiro, Shoko; Lee, Chiara; Leung, James; Cameron, Alexander D.; Byrne, Bernadette; Iwata, So; Drew, David

    2011-01-01

    Summary Obtaining well-ordered crystals is a major hurdle to X-ray structure determination of membrane proteins. To facilitate crystal optimization, we investigated the detergent stability of 24 eukaryotic and prokaryotic membrane proteins, predominantly transporters, using a fluorescent-based unfolding assay. We have benchmarked the stability required for crystallization in small micelle detergents, as they are statistically more likely to lead to high-resolution structures. Using this information, we have been able to obtain well-diffracting crystals for a number of sodium and proton-dependent transporters. By including in the analysis seven membrane proteins for which structures are already known, AmtB, GlpG, Mhp1, GlpT, EmrD, NhaA, and LacY, it was further possible to demonstrate an overall trend between protein stability and structural resolution. We suggest that by monitoring membrane protein stability with reference to the benchmarks described here, greater efforts can be placed on constructs and conditions more likely to yield high-resolution structures. PMID:21220112

  8. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    Science.gov (United States)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  9. Kekulene: Structure, stability and nature of H•••H interactions in large PAHs

    Science.gov (United States)

    Poater, J.; Paauwe, J.; Pan, S.; Merino, G.; Guerra, C. Fonseca; Bickelhaupt, F. M.

    2017-09-01

    We have quantum chemically analyzed how the stability of small and larger polycyclic aromatic hydrocarbons (PAHs) is determined by characteristic patterns in their structure using density functional theory at the BLYP/TZ2P level. In particular, we focus on the effect of the nonbonded H•••H interactions that occur in the bay region of kinked (or armchair) PAHs, but not in straight (or zigzag) PAHs. Model systems comprise anthracene, phenanthrene, and kekulene as well as derivatives thereof. Our main goals are: (1) to explore how nonbonded H•••H interactions in armchair configurations of kinked PAHs affect the geometry and stability of PAHs and how their effect changes as the number of such interactions in a PAH increases; (2) to understand the extent of stabilization upon the substitution of a bay Csbnd H fragment by either C• or N; and (3) to examine the origin of such stabilizing/destabilizing interactions.

  10. Cement stabilized red earth as building block and structural pavement layer

    Directory of Open Access Journals (Sweden)

    G.V. RAMA SUBBARAO

    2014-12-01

    Full Text Available Red Earth is most commonly used as material in the building and road construction. Many a times, the red earth found in various quarries is found not suitable for construction. Cement of 4 and 8% of dry mass of red earth was added to improve its suitability as building block and structural pavement material. To know the influence of waste plastic fiber on cement stabilized red earth, 1% fiber was also added to the mixture. It is shown that the compressive strength of cement stabilized red earth blocks was improved with seven days of curing. The addition of cement to red earth enhanced soaked CBR value. The soaked CBR value of fiber reinforced cement stabilized red earth was about 1.3 to 1.5 times that of unreinforced cement stabilized red earth.

  11. Numerical simulation of optical bi-stability in antiferromagnetic sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dongmei [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Fu Shufang, E-mail: shufangfu@yahoo.com [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Zhou Sheng; Wang Xuanzhang [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2012-01-15

    The magnetically optical bi-stability, a third-order nonlinear response, is investigated on an antiferromagnetic (AF) sandwich structure, where an AF film is sandwiched between two dielectric films. The configuration with the AF anisotropy axis and external static magnetic field both in the interfaces and normal to the incident plane is used. The incident wave is taken as a TE wave with its electric component transverse to the incident plane. We find that bistable switches can appear only in a finite frequency range and an incident angle range for a given regime of incident power, which means that there are the critical incident angle and frequency. The power threshold value for the bi-stability increases with the incident angle. In addition, the bi-stability also easily is modulated by the external magnetic field. - Highlights: > Antiferromagnetic sandwich NM/AF/NM. > Optical bi-stability near the resonant frequency. > Effect of magnetic field and incident angle.

  12. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms.

    Science.gov (United States)

    Balasco, Nicole; Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-07-01

    It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.

  13. A graph theoretical approach for assessing bio-macromolecular complex structural stability.

    Science.gov (United States)

    Del Carpio, Carlos Adriel; Iulian Florea, Mihai; Suzuki, Ai; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Ichiishi, Eiichiro; Miyamoto, Akira

    2009-11-01

    Fast and proper assessment of bio macro-molecular complex structural rigidity as a measure of structural stability can be useful in systematic studies to predict molecular function, and can also enable the design of rapid scoring functions to rank automatically generated bio-molecular complexes. Based on the graph theoretical approach of Jacobs et al. [Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins: Struct Funct Genet 44:150-165] for expressing molecular flexibility, we propose a new scheme to analyze the structural stability of bio-molecular complexes. This analysis is performed in terms of the identification in interacting subunits of clusters of flappy amino acids (those constituting regions of potential internal motion) that undergo an increase in rigidity at complex formation. Gains in structural rigidity of the interacting subunits upon bio-molecular complex formation can be evaluated by expansion of the network of intra-molecular inter-atomic interactions to include inter-molecular inter-atomic interaction terms. We propose two indices for quantifying this change: one local, which can express localized (at the amino acid level) structural rigidity, the other global to express overall structural stability for the complex. The new system is validated with a series of protein complex structures reported in the protein data bank. Finally, the indices are used as scoring coefficients to rank automatically generated protein complex decoys.

  14. Engineered mutations change the structure and stability of a virus-like particle.

    Science.gov (United States)

    Fiedler, Jason D; Higginson, Cody; Hovlid, Marisa L; Kislukhin, Alexander A; Castillejos, Alexandra; Manzenrieder, Florian; Campbell, Melody G; Voss, Neil R; Potter, Clinton S; Carragher, Bridget; Finn, M G

    2012-08-13

    The single-coat protein (CP) of bacteriophage Qβ self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.

  15. New insights into structural determinants of prion protein folding and stability.

    Science.gov (United States)

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  16. Effect Mechanism of Structure-Changed Water on Heat Stability of Lysozyme

    Institute of Scientific and Technical Information of China (English)

    赵林; 谭欣

    2003-01-01

    Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.

  17. A numerical approach to investigate the stability of equilibria for structured population models

    NARCIS (Netherlands)

    Breda, D.; Diekmann, O.; Maset, S.; Vermiglio, R.

    2013-01-01

    We are interested in the asymptotic stability of equilibria of structured populations modelled in terms of systems ofVolterra functional equations coupled with delay differential equations. The standard approach based on studying the characteristic equation of the linearized system is often involved

  18. An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2010-01-01

    A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns ...

  19. Thermal stability of structurally different viruses with proven or potential relevance to food safety

    NARCIS (Netherlands)

    Tuladhar, E.; Bouwknegt, M.; Zwietering, M.H.; Koopmans, M.; Duizer, E.

    2012-01-01

    Aims: To collect comparative data on thermal stability of structurally different viruses with proven or potential relevance to food safety. Methods and Results: Suspensions with poliovirus Sabin1, adenovirus type5, parechovirus1, human norovirus (NoV) GII.4, murine NoV (MNV1) and human influenza A (

  20. Frame Stability of Tunnel‐Structured Cryptomelane Nanofibers: The Role of Tunnel Cations

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul

    2013-01-01

    The role of tunnel K+ ions on the growth and stability of tunnel‐structured cryptomelane‐type MnO2 nanofibers (denoted as cryptomelane nanofibers hereafter) has been discussed by means of X‐ray diffraction and electron microscopy. Cryptomelane nanofibers with typical diameters of 20–80 nm and len...

  1. Structure and stability of ZrSiO4 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Marques, M.; Florez, M.; Recio, J.M.

    2006-01-01

    We present the results of a combined experimental and theoretical investigation aimed to determine structural and equation-of-state parameters and phase stability thermodynamic boundaries of ZrSiO4 polymorphs. Experimental unit-cell data have been obtained for a powdered sample in a diamond-anvil...

  2. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...

  3. Thermal stability of structurally different viruses with proven or potential relevance to food safety

    NARCIS (Netherlands)

    Tuladhar, E.; Bouwknegt, M.; Zwietering, M.H.; Koopmans, M.; Duizer, E.

    2012-01-01

    Aims: To collect comparative data on thermal stability of structurally different viruses with proven or potential relevance to food safety. Methods and Results: Suspensions with poliovirus Sabin1, adenovirus type5, parechovirus1, human norovirus (NoV) GII.4, murine NoV (MNV1) and human influenza A

  4. Defect structure and mechanical stability of microcrystalline titanium produced by equal channel angular pressing

    Science.gov (United States)

    Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.; Amosova, O. V.; Sklenicka, V.

    2017-01-01

    It is established that increases in nanoporosity and the proportion of high-angle grain boundaries in the process of equal-channel angular pressing are the main structural factors leading to reduction in mechanical stability (durability) of microcrystalline titanium during long-term tests under creeping conditions.

  5. Structural analysis of the indium-stabilized GaAs(001)-c(8×2) surface

    DEFF Research Database (Denmark)

    Lee, T.-L.; Kumpf, C.; Kazimirov, A.

    2002-01-01

    The indium-stabilized GaAs(001)-c(8x2) surface was investigated by surface x-ray diffraction and x-ray standing waves. We find that the reconstruction closely resembles the c(8x2) structure described by the recently proposed unified model for clean III-V semiconductor surfaces [Kumpf , Phys. Rev....

  6. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...

  7. Nucleobase azide-ethynylribose click chemistry contributes to stabilizing oligonucleotide duplexes and stem-loop structures.

    Science.gov (United States)

    Kitamura, Yoshiaki; Asakura, Ryo; Terazawa, Koki; Shibata, Aya; Ikeda, Masato; Kitade, Yukio

    2017-06-15

    The formation of 1,4-disubstituted 1,2,3-triazoles through copper-catalyzed azide-alkyne cycloaddition (CuAAC) in oligonucleotides bearing 1-deoxy-1-ethynyl-β-d-ribofuranose (R(E)) can have a positive impact on the stability of oligonucleotide duplexes and stem-loop structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Contribution of posterolateral corner structures to knee joint translational and rotational stabilities: a computational study.

    Science.gov (United States)

    Kim, Yoon Hyuk; Purevsuren, Tserenchimed; Kim, Kyungsoo; Oh, Kwang-Jun

    2013-09-01

    It has been reported that posterolateral corner structures, including the lateral collateral ligament, the popliteus tendon, and the popliteofibular ligament, may play important roles in reducing external rotational and posterior translational instabilities. However, there are few studies focusing on the quantitative influence of posterolateral corner structures on knee joint stability, due to the difficulty of controlling experimental conditions. In this study, a knee model that included posterolateral corner structures was developed. It was validated by comparison to previous experimental studies using the posterior drawer test, dial test, and varus stress test. The posterior translation, external rotation, and varus rotation were then predicted in order to investigate the contribution of posterolateral corner structures to translational and rotational stabilities. Our results indicate that posterolateral corner structures, including the popliteofibular ligament and the popliteus tendon, could contribute to posterior translational and external rotational stabilities, as clinical observations had suggested. Therefore, the addition of posterolateral corner structures to knee joint models may improve the utility of such models.

  9. Cu-Ni core-shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Science.gov (United States)

    Wang, Qiang; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui

    2017-02-01

    Bimetallic core-shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu-Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu12@Ni42 is more stable than two-shell Cu13@Ni42, while two-shell Ni13@Cu42 is more stable than three-shell Cu@Ni12@Cu42. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu-Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core-shell catalysts.

  10. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Science.gov (United States)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  11. Effects of macromolecular crowding on the structural stability of human α-lactalbumin

    Institute of Scientific and Technical Information of China (English)

    De-Lin Zhang; Ling-Jia Wu; Jie Chen; Yi Liang

    2012-01-01

    The folding of protein,an important process for protein to fulfill normal functions,takes place in crowded physiological environments.α-Lactaibumin,as a model system for protein-folding studies,has been used extensively because it can form stable molten globule states under a range of conditions.Here we report that the crowding agents Ficoll 70,dextran 70,and polyethylene glycol (PEG) 2000 have different effects on the structural stability of human α-lactalbumin (HLA) represented by the transition to a molten globule state: dextran 70 dramatically enhances the thermal stability of Ca2+-depleted HLA (apo-HLA) and Ficoll 70 enhances the thermal stability of apo-HLA to some extent,while PEG 2000 significantly decreases the thermal stability of apo-HLA.Ficoll 70 and dextran 70 have no obvious effects on trypsin degradation of apo-HLA but PEG 2000 accelerates apo-HLA degradation by trypsin and destabilizes the native conformation of apo-HLA.Furthermore,no interaction is observed between apo-HLA and Ficoll 70 or dextran 70,but a weak,non-specific interaction between the apo form of the protein and PEG 2000 is detected,and such a weak,non-specific interaction could overcome the excludedvolume effect of PEG 2000.Our data are consistent with the results of protein stability studies in cells and suggest that stabilizing excluded-volume effects of crowding agents can be ameliorated by non-specific interactions between proteins and crowders.

  12. DFT Predictions on Structures and Stabilities of Eleven-vertex nido-and cioso-Heteroboranes

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2009-01-01

    Based on the octadecahedron of eleven-vertex closo-borane,the eleven-vertex closo-heteroborane was suggested with nonmetallic atoms instead of the different nonequivalent boron,and the stabilities were predicted at G96PW91/6-31+G(3d,2p) level.The small heteroatoms,C,N,O,preferentially occupy vertex 2 with the absolutely lowest relative energy to form the high stabilization closo-heteroboranes.They cap four-membered rings to satisfy the geometrical demand of short B-Z bonds.The electron attractions from the vicinal boron atoms make the frameworks shrink.Differently,Si and Ge preferentially substitute for boron at vertex 1 with six tight B-Z bonds and form stabilized molecules.P,As,S,and Se tend to occupy vertex 4 and the optimized structures belong to the nido configurations,in contrast to high electronegative heteroatoms,S and Se transfer less negative charges to framework and the electropositive heteroatoms,Si and Ge transfer more negative charges to framework to form the delocalization structures.The HOMO-LUMO gaps show that most of predicted clusters possess chemical stabilities.The substitutions of heteroatoms for boron atoms in eleven-vertex closo-hcteroboranes are consistent with the topological charge stabilization rule proposed by Gimarc.

  13. Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily

    Directory of Open Access Journals (Sweden)

    Andrei T. Alexandrescu

    2009-05-01

    Full Text Available The OB-fold is a diverse structure superfamily based on a β-barrel motif that is often supplemented with additional non-conserved secondary structures. Previous deletion mutagenesis and NMR hydrogen exchange studies of three OB-fold proteins showed that the structural stabilities of sites within the conserved β-barrels were larger than sites in non-conserved segments. In this work we examined a database of 80 representative domain structures currently classified as OB-folds, to establish the basis of this effect. Residue-specific values were obtained for the number of Cα-Cα distance contacts, sequence hydrophobicities, crystallographic B-factors, and theoretical B-factors calculated from a Gaussian Network Model. All four parameters point to a larger average flexibility for the non-conserved structures compared to the conserved β-barrels. The theoretical B-factors and contact densities show the highest sensitivity.Our results suggest a model of protein structure evolution in which novel structural features develop at the periphery of conserved motifs. Core residues are more resistant to structural changes during evolution since their substitution would disrupt a larger number of interactions. Similar factors are likely to account for the differences in stability to unfolding between conserved and non-conserved structures.

  14. Hydrogen segregation and its roles in structural stability and metallization: silane under pressure

    Science.gov (United States)

    Cui, Wenwen; Shi, Jingming; Liu, Hanyu; Yao, Yansun; Wang, Hui; Iitaka, Toshiaki; Ma, Yanming

    2015-08-01

    We present results from first-principles calculations on silane (SiH4) under pressure. We find that a three dimensional P-3 structure becomes the most stable phase above 241 GPa. A prominent structural feature, which separates the P-3 structure from previously observed/predicted SiH4 structures, is that a fraction of hydrogen leaves the Si-H bonding environment and forms segregated H2 units. The H2 units are sparsely populated in the system and intercalated with a polymeric Si-H framework. Calculations of enthalpy of formation suggest that the P-3 structure is against the decomposition into Si-H binaries and/or the elemental crystals. Structural stability of the P-3 structure is attributed to the electron-deficient multicenter Si-H-Si interactions when neighboring silicon atoms are linked together through a common hydrogen atom. Within the multicenter bonds, electrons are delocalized and this leads to a metallic state, possibly also a superconducting state, for SiH4. An interesting outcome of the present study is that the enthalpy sum of SiH4 (P-3 structure) and Si (fcc structure) appears to be lower than the enthalpy of disilane (Si2H6) between 200 and 300 GPa (for all previously predicted crystalline forms of Si2H6), which calls for a revisit of the stability of Si2H6 under high pressure.

  15. SEMICONDUCTOR DEVICES Design consideration of the thermal and electro stability of multi-finger HBTs based on different device structures

    Science.gov (United States)

    Yanhu, Chen; Huajun, Shen; Xinyu, Liu; Hui, Xu; Ling, Li; Huijun, Li

    2010-10-01

    The thermal and electro stability of multi-finger heterojunction bipolar transistors (HBTs) with different structures were analyzed and discussed simultaneously. The thermal stability of the devices with different layout structures was assessed by the DC-IV test and thermal resistance calculation. Their electro stability was assessed by the calculation of the stability factor K based on the S parameter of the HBT. It is found that HBTs with higher thermal stability are prone to lower electro stability. The trade-off relationship between the two types of stability was explained and discussed by using a compact K-factor analytic formula which is derived from the small signal equivalent circuit model of HBT. The electro stability of the device with a thermal ballasting resistor was also discussed, based on the analytic formula.

  16. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se batteries with superior storage capacity and perfect cycling stability

    Science.gov (United States)

    Li, Zhaoqiang; Yin, Longwei

    2015-05-01

    Nitrogen-doped carbon sponges (NCS) composed of hierarchical microporous carbon layers are derived from metal organic frameworks (MOFs) via carbonization at high temperatures under Ar and NH3 flow. Se is impregnated into 0.4-0.55 nm micropores by melting-diffusion and infiltration methods. The confinement of Se within small-sized micropores of NCS efficiently prevents Se loss, and mesopores between carbon layers absorb a sufficient amount of electrolyte, as well as serve as cushion spaces for large volume changes during delithiation-lithiation processes. Nitrogen doping improves the electrical conductivity of carbon matrix and facilitates rapid charge transfer, making the carbon sponge a highway for charges involved in redox reactions. When serving as cathode materials for Li-Se batteries, the NCS/Se-50 composite with 50 wt% Se exhibits excellent cycling stability, superior rate capability and high coulombic efficiency. The cathode can exhibit 443.2 mA h g-1 at the 200th cycle with a coulombic efficiency of up to 99.9% at 0.5C (C = 675 mA h g-1), which leads to 0.031% capacity loss per cycle from 5th to 200th cycles. Even at a high rate of 5C, it can still retain 286.6 mA h g-1. The unique, large surface rod-like MOF-derived, N-doped carbon sponges with hierarchical porosity could be potential candidates in the related energy-storage systems.Nitrogen-doped carbon sponges (NCS) composed of hierarchical microporous carbon layers are derived from metal organic frameworks (MOFs) via carbonization at high temperatures under Ar and NH3 flow. Se is impregnated into 0.4-0.55 nm micropores by melting-diffusion and infiltration methods. The confinement of Se within small-sized micropores of NCS efficiently prevents Se loss, and mesopores between carbon layers absorb a sufficient amount of electrolyte, as well as serve as cushion spaces for large volume changes during delithiation-lithiation processes. Nitrogen doping improves the electrical conductivity of carbon matrix and

  17. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....

  18. Structure and stability of superfluid 4He systems with cylindrical symmetry

    Science.gov (United States)

    Szybisz, Leszek; Gatica, Silvina M.

    2001-12-01

    The structure and stability of superfluid 4He systems with cylindrical symmetry are studied. Ground-state energies and density profiles are computed by using density-functional approaches. A model to understand the energetics of cylindrical systems is developed by following the main ideas of the Droplet Model utilized to describe spherical clusters. The necessary condition for stability is formulated by imposing a positive longitudinal isothermal compressibility along the principal axis of the cylinder. It is shown that free cylinders of 4He at T=0 K are unstable. As an example of the evolution towards stable systems, results for liquid 4He confined by cylindrical nanopores in Cs are reported.

  19. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  20. Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure

    Energy Technology Data Exchange (ETDEWEB)

    Xu Rui [Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College, No. 97 Heping West Road, Shijiazhuang 050003, Hebei Province (China); Department of Applied Mathematics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: rxu88@yahoo.com.cn; Ma Zhien [Department of Applied Mathematics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-11-15

    A ratio-dependent predator-prey model with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when {tau} = {tau}{sub 0}. By using an iteration technique, sufficient conditions are derived for the global attractivity of the positive equilibrium. By comparison arguments, sufficient conditions are obtained for the global stability of the boundary equilibrium. Numerical simulations are carried out to illustrate the main results.

  1. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties....... Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor...... gallate and lactoferrin did not exert any antioxidative effect in the SL mayonnaise...

  2. Dynamical stability analysis of delayed recurrent neural networks with ring structure

    Science.gov (United States)

    Zhang, Huaguang; Huang, Yujiao; Cai, Tiaoyang; Wang, Zhanshan

    2014-04-01

    In this paper, multistability is discussed for delayed recurrent neural networks with ring structure and multi-step piecewise linear activation functions. Sufficient criteria are obtained to check the existence of multiple equilibria. A lemma is proposed to explore the number and the cross-direction of purely imaginary roots for the characteristic equation, which corresponds to the neural network model. Stability of all of equilibria is investigated. The work improves and extends the existing stability results in the literature. Finally, two examples are given to illustrate the effectiveness of the obtained results.

  3. Comparing the structural stability of PbS nanocrystals assembled in fcc and bcc superlattice allotropes.

    Science.gov (United States)

    Bian, Kaifu; Wang, Zhongwu; Hanrath, Tobias

    2012-07-04

    We investigated the structural stability of colloidal PbS nanocrystals (NCs) self-assembled into superlattice (SL) allotropes of either face-centered cubic (fcc) or body-centered cubic (bcc) symmetry. Small-angle X-ray scattering analysis showed that the NC packing density is higher in the bcc than in the fcc SL; this is a manifestation of the cuboctahedral shape of the NC building block. Using the high-pressure rock-salt/orthorhombic phase transition as a stability indicator, we discovered that the transition pressure for NCs in a bcc SL occurs at 8.5 GPa, which is 1.5 GPa higher than the transition pressure (7.0 GPa) observed for a fcc SL. The higher structural stability in the bcc SL is attributed primarily to the effective absorption of loading force in specific SL symmetry and to a lesser extent to the surface energy of the NCs. The experimental results provide new insights into the fundamental relationship between the symmetry of the self-assembled SL and the structural stability of the constituent NCs.

  4. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  5. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C. H. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T. S. [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H. M. [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  6. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  7. Structural stabilities, elastic and electronic properties of chromium tetraboride from first-principles calculations

    Science.gov (United States)

    Xu, C.; Li, Q.; Liu, C. M.; Duan, M. Y.; Wang, H. K.

    2016-05-01

    First-principles calculations are employed to investigate the structural and elastic properties, formation enthalpies and chemical bonding features as well as hardness values of chromium tetraboride (CrB4) with different structures. The lattice parameters, Poisson’s ratio and B/G ratio are also derived. Our calculations indicate that the orthorhombic structure with Pnnm symmetry is the most energetically stable one for CrB4. Except for WB4P63/mmc structure with imaginary frequencies, another six new structures are investigated through the full phonon dispersion calculations. Their mechanical and thermodynamic stabilities are also studied by calculating the elastic constants and formation enthalpies. Our calculations show that the thermodynamic stabilities of all these CrB4 phases can be enhanced under high pressure. The large shear moduli, Young’s moduli and hardness values indicate that these CrB4 phases are potential hard materials. Analyses of the densities of states (DOSs) and electron localization functions (ELFs) provide further understandings of the chemical and physical properties of these CrB4 phases. It is observed that the large occupations and high strengths of the B-B covalent bonds are important for the stabilities, incompressibility and hardnesses of these CrB4 phases.

  8. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  9. Global stability analysis of structures and actions to control their effects

    Directory of Open Access Journals (Sweden)

    F. C. Freitas

    Full Text Available ABSTRACT In this moment in which civil engineering is undergoing a phase where structural projects have been developed with structural systems composed of different and complex elements, some methods and criteria are used for the purpose of evaluating important aspects with regard to global and local stability. Among them, it is necessary to mention the parameters of instability a and ?z. In this sense, this work has the objective to present the basic concepts of the instability parameters a and ?z in accordance with what is clearly defined in the Brazilian standard ABNT NBR 6118; to present the results of simulations of models in the Brazilian structural software TQS varying the stress of compression in the columns in order to relate these values with the stability parameters.

  10. Tetrel Bonds in Infinite Molecular Chains by Electronic Structure Theory and Their Role for Crystal Stabilization.

    Science.gov (United States)

    George, Janine; Dronskowski, Richard

    2017-02-16

    Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains, a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.

  11. Thermal Stability Influence of the Enclosure Structure on the Building’s Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Zaborova Daria

    2016-01-01

    Full Text Available Thermal stability of the enclosure structures is one of the most important objective in the building design. Thermal processes in the wall depend not only on the internal and external air temperature, but also on many other factors. Therefore, complexity of this process make heat conservation in the room to be an actual problem. This paper presents dependence between thermal stability of the enclosure structure and its design. It was shown that thermophysical characteristics of materials directly affect the thermal processes in the wall. For the research, three frequently used types of enclosure structure in Russia were taken. For each wall was found the average temperature and cooling time. As a result, it was found that the higher values of thermal conductivity, specific heat and material density are, the higher average temperature of the wall is.

  12. Stabilization Techniques for Road Lower Structure and Roadbed Constructed on Permafrost Soil

    Directory of Open Access Journals (Sweden)

    Vorontsov Vyacheslav

    2016-01-01

    Full Text Available The perspective development of Yamal-Nenets Autonomous District, which is rich in mineral resources is impossible without creation of the road network for communication between settlements, oil and gas fields and transport hubs. Yamal-Nenets Autonomous District is characterized by complex engineering-geological conditions where different geological and geocryological phenomena and processes are being developed causing specific approaches to design and construction of engineering structures to be used. In this regard, an urgent task is to develop constructional solutions making it possible to stabilize the road lower structure and the roadbed, prolong periods between repairs on individual sections and improve operational reliability of roads in general. The paper describes the proposed and implemented constructional and technological solutions to stabilize the road lower structure and the roadbed constructed on permafrost soils. The results of two-year geotechnical monitoring of the road sections with implemented solutions are given.

  13. Structural, Mechanical Properties and Thermal Stability of ZrAlN Coatings

    Institute of Scientific and Technical Information of China (English)

    WANG M X; ZHANG J J; LID J

    2004-01-01

    Dry machining will result in elevated temperatures at the tool surface ( 800 ~ 1000 ℃ ). So, coating materials that can provide protection for cutting tools at these temperatures are of great technological interests. ZrAlN coating is proposed to possess high-temperature stable structural and mechanical properties due to the addition of the alloying element.ZrAlN coatings were grown using a dc reactive magnetron sputtering. The XRD and ultramicro-indentor were employed to investigate the effects of reaction gas partial pressure and substrate bias on structural, mechanical properties, as well as hightemperature stability. The ZrAlN coating, when deposited under optimum conditions ( -37 V substrate bias and 1.5 10-7 Torr N2 partial pressure), showed smooth surface with 22 GPa hardness and 2.2 GPa internal stress. Its structural and mechanical properties kept high-temperature stability before and after annealing .

  14. Using operational and defined fractions to assess soil organic matter stabilization and structure

    Science.gov (United States)

    Horwath, W. R.

    2015-12-01

    Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate

  15. Thermal stability of the cellular structure of an austenitic alloy after selective laser melting

    Science.gov (United States)

    Bazaleeva, K. O.; Tsvetkova, E. V.; Balakirev, E. V.; Yadroitsev, I. A.; Smurov, I. Yu.

    2016-05-01

    The thermal stability of the cellular structure of an austenitic Fe-17% Cr-12% Ni-2% Mo-1% Mn-0.7% Si-0.02% C alloy produced by selective laser melting in the temperature range 20-1200°C is investigated. Metallographic analysis, transmission electron microscopy, and scanning electron microscopy show that structural changes in the alloy begin at 600-700°C and are fully completed at ~1150°C. Differential scanning calorimetry of the alloy with a cellular structure reveals three exothermic processes occurring upon annealing within the temperature ranges 450-650, 800-1000, and 1050-1200°C.

  16. Analysis on complex structure stability under different bar angle with BIM technology

    Directory of Open Access Journals (Sweden)

    Wang Xiongjue

    2016-03-01

    Full Text Available Sun Valley, the landmark building of World Expo in Shanghai, which has free surface with single-layer reticulated shell structure, is a typical complex structure. CAD/CAM integrated information system to design is used for the complex structure; however, it is a very rigorous process to be used widely. The relevant technology of the Sun Valley is not open to the public at present, so we try to use BIM technology to model the Sun Valley, including architecture modelling and structure analysis. By analysis of the Sun Valley structure using this method, it is proved that the problems in modelling may be solved by writing some script codes in Rhino software and the stability of the model can also be analyzed. The new approach is viable and effective in combination with different softwares such as Rhino, Revit, and Midas in solution of the complex shaped surfaces’ structure for modelling and calculation.

  17. Crystal structures and phase stability in pseudobinary CaAl 2-xZn x

    Science.gov (United States)

    Söderberg, Karin; Boström, Magnus; Kubota, Yoshiki; Nishimatsu, Takeshi; Niewa, Rainer; Häussermann, Ulrich; Grin, Yuri; Terasaki, Osamu

    2006-08-01

    Samples in the pseudobinary system CaAl 2-xZn x ( 0⩽x⩽2) were synthesised from the elements. Three different structure types, the C15 and C36 Laves phase structures and the KHg 2 (CeCu 2) structure, were observed. The structures and homogeneity ranges of the underlying phases were investigated by electron microscopy and thermal analysis as well as X-ray powder diffraction. The stability ranges for the different structure types were found to be 0⩽x⩽0.18, 0.28⩽x⩽0.68 and 0.93⩽x⩽2 for the C15, C36 and KHg 2 structure types, respectively.

  18. Transient stabilization of structure preserving power systems with excitation control via energy-shaping

    Energy Technology Data Exchange (ETDEWEB)

    He, Bin; Zhang, Xiubin; Zhao, Xingyong [Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2007-12-15

    In this paper, the transient stability of multimachine power systems based on structure preserving model (SPM) is considered. The interconnection and damping assignment passivity-based control (IDA-PBC) methodology is extended to solve the excitation regulation problem of SPM represented by a set of differential-algebraic equations. By shaping the total energy function via the introduction of a virtual coupling between the electrical and the mechanical dynamics of the power system, a decentralized excitation control law is proposed to ensure the asymptotic stability of the closed-loop system. The controller is proved to be effective in damping the oscillations and enhancing the system stability by the results of simulation research. (author)

  19. Structural evolution and stability of mechanically alloyed Fe-Ni nanocrystalline

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi; LIU Qi-zheng; MENG Qing-ping; RONG Yong-hua

    2005-01-01

    The structural evolution and stability of Fe100-xNix(x=10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fe90Ni10 and Fe80Ni20 consist of a single α(bcc) phase, Fe30Ni30 powders are a single γ(fcc), and for Fe65Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80Ni20 powders annealed at 680 ℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.

  20. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  1. Finite element analysis of dynamic stability of skeletal structures under periodic loading

    Institute of Scientific and Technical Information of China (English)

    THANA Hemantha Kumar; AMEEN Mohammed

    2007-01-01

    This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose.The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of numerical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark's method to verify the results.

  2. Pressure effects on catalytic properties and structural stability of human paraoxonase

    Energy Technology Data Exchange (ETDEWEB)

    Clery-Barraud, C; Leva, J; Bakdouri, N E; Renault, F; Masson, P; Rochu, D [Departement de Toxicologie, Centre de Recherches du Service de Sante des Armees, BP 87, 38702 La Tronche cedex (France)], E-mail: cclerybarraud@crssa.net

    2008-07-15

    Human paraoxonase (HuPON1) is a candidate as catalytic bioscavenger for pre-treatment and therapy of poisoning by organophosphate compounds. HuPON1 is a hydrophobic protein associated with a partner, the human phosphate binding protein (HPBP) in plasma high density lipoproteins. The relationship between the composition and the size of multimeric states of HuPON1 is not well understood. Moreover the effect of HPBP's presence on enzyme catalytic mechanisms and stability is unclear. We investigated the effect of hydrostatic pressure and temperature on structural stability and activity of different PON1 preparations (hybrid recombinant PON1, natural HuPON1 free of its partner or in the presence of 50% w/w HPBP). We showed that PON1 exists under several multimeric forms and that the binding of HPBP amends the size of the hetero-oligomeric states and exerts a stabilizing effect on the activity of PON1.

  3. Pressure effects on catalytic properties and structural stability of human paraoxonase

    Science.gov (United States)

    Cléry-Barraud, C.; Leva, J.; Bakdouri, N. E.; Renault, F.; Masson, P.; Rochu, D.

    2008-07-01

    Human paraoxonase (HuPON1) is a candidate as catalytic bioscavenger for pre-treatment and therapy of poisoning by organophosphate compounds. HuPON1 is a hydrophobic protein associated with a partner, the human phosphate binding protein (HPBP) in plasma high density lipoproteins. The relationship between the composition and the size of multimeric states of HuPON1 is not well understood. Moreover the effect of HPBP's presence on enzyme catalytic mechanisms and stability is unclear. We investigated the effect of hydrostatic pressure and temperature on structural stability and activity of different PON1 preparations (hybrid recombinant PON1, natural HuPON1 free of its partner or in the presence of 50% w/w HPBP). We showed that PON1 exists under several multimeric forms and that the binding of HPBP amends the size of the hetero-oligomeric states and exerts a stabilizing effect on the activity of PON1.

  4. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    Science.gov (United States)

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  5. Computational analysis of a stability robustness margin for structured real-parameter perturbations

    Science.gov (United States)

    Wedell, Evan; Chuang, C.-H.; Wie, Bong

    1989-01-01

    An efficient computational method is presented for stability robustness analysis with structured real-parameter perturbations. A generic model of a class of uncertain dynamical systems is used as an example. The parameter uncertainty is characterized by a real scalar, epsilon. Multilinearity of the closed-loop characteristic polynomial is exploited to permit application of the mapping theorem to calculate the stability robustness margin. It is found that sensitive geometry of the stability boundary in the epsilon, omega-plane renders problematic the calculation of the minimum epsilon as a function of omega. This difficulty is avoided by calculating the minimum distance to the image of the uncertainty domain over omega as a function of epsilon. It is also shown that a certain class of uncertain dynamical systems has the required multilinearity property and are thus amenable to the proposed technique.

  6. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15.

    Science.gov (United States)

    Zhang, Fuqiang; Yan, Yan; Yang, Haifeng; Meng, Yan; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan

    2005-05-12

    Mesostructured silica SBA-15 materials with different structural parameters, such as pore size, pore volume, and wall thickness, etc., were prepared by varying the postsynthesis hydrothermal treatment temperature and adding inorganic salts. The hydrothermal stabilities of these materials in steam (100% water vapor) were systematically investigated using a variety of techniques including powder X-ray diffraction, transmission electron microscopy, nitrogen sorption, and (29)Si solid-state NMR. The effect of the pore size, microporosity or mesoporosity, and wall thickness on the stability was discussed. The results show that all of the SBA-15 materials have a good hydrothermal stability under steam of 600 degrees C for at least 24 h. N(2) sorption measurements show that the Brumauer-Emmett-Teller surface area of SBA-15 materials is decreased by about 62% after treatment under steam at 600 degrees C for 24 h. The materials with thicker walls and more micropores show relatively better hydrothermal stability in steam of 600 degrees C. Interestingly, we found that the microporosity of the mesostructured silica SBA-15 is a very important factor for the hydrothermal stability. To the materials with more micropores, the recombination of Si-O-Si bonds during the high-temperature steam treatment may not cause direct destruction to the wall structure. As a result, SBA-15 materials with more micropores show better stability in pure steam of 600 degrees C. Nevertheless, these materials are easily destroyed in steam of 800 degrees C for 6 h. Two methods to effectively improve the hydrothermal stability are introduced here: one is a high-temperature treatment, and another is a carbon-propping thermal treatment. Thermal treatment at 900 degrees C can enhance the polymerization degree of Si-O-Si bonds and effectively improve the hydrothermal stability of these SBA-15 materials in 800 degrees C steam for 12 h. But, this approach will cause very serious shrinkage of the mesopores

  7. Evolving systems: Control and stability inheritance in self-assembling structures

    Science.gov (United States)

    Frost, Susan A.

    We propose a new framework called Evolving Systems to describe the autonomous self-assembly of actively controlled dynamical subsystems into an Evolved System with a higher purpose. We introduce Evolving Systems and explore the essential topics of the control and stability properties for such systems. The Evolving Systems framework developed in this thesis provides a scalable, modular architecture to model and analyze the subsystem components, their connections to other components, and the Evolved System. Autonomous assembly of large, complex structures in space is one application of Evolving Systems. Future space missions will entail systems where the scale, complexity, and distance preclude astronaut assistance due to the inherent risks and costs. These considerations suggest the need for a framework and methods to advance the state of the art of autonomous assembly of complex systems. A critical requirement for autonomously assembled structures is that they remain stable during and after mating. The important topic of stability in Evolving Systems is the primary focus of this research. We introduce the key component controller design approach to maintain stability in Evolving Systems. One key component from the Evolving System is augmented with additional local control to achieve the goal of ensuring system stability during assembly. The other components of the Evolving System are left unchanged, enabling modular system design and reuse of components. We present simulation results demonstrating the successful use of these methods to maintain stability in illustrative examples. Aerospace systems are difficult and costly to model, due to their complexity and their uncertain operating environments. The adaptive key component controller we present is well suited to poorly modeled systems because its gains adapt to the sensed system outputs. We develop an impedance-admittance formulation of the contact dynamics between components of an Evolving System to obtain

  8. Theoretical study of the structural stability for fcc-CHx phases using density functional theory

    Directory of Open Access Journals (Sweden)

    M Dadsetani

    2011-09-01

    Full Text Available  Recently, a new carbon modification, namly n-diamond, have been reported, whose structure is still a matter of debate. It is important to note that the synthesis of n-diamond was carried out in the presence of hydrogen or methan. In this work we evaluate the structural stability of five fcc-CHx phases by means of first-principle calculation. The total energy is obtained as a function of the isotropic, tetragonal and rhombohedral deformations for the bulk structures. First, we analyze the C2H (cuprite, CH (zincblende, CH (rocksalt and CH2 (fluorite structures.It is found that the four systems show a minimum in the total energy for the isotropic and rhombohedral deformations, but are unstable against tetragonal deformation. In the second part, we explore the structural stability of CH2 in the pyrite structure. We find that CH2 (pyrite with the hydrogen atoms defined by the internal parameter u=0.35 and a lattice parameter of 3.766 Å is elastically stable, providing a possible explanation for the experimental observation of fcc-carbon in materials prepared in the presence of hydrogen or methan. In final, we calculate density of states, band structure and EELS spectrum of CH2 (pyrite and compare them with n-diamond.

  9. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    Science.gov (United States)

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  10. Stability and Electronic Structures of CuxS Solar Cell Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wei, S. H.; Xu, Q.; Huang, B.; Zhao, Y.; Yan, Y.; Noufi, R.

    2012-07-01

    Cu{sub x}S is one of the most promising solar cell absorber materials that has the potential to replace the leading thin-film solar cell material Cu(In,Ga)Se{sub 2} for high efficiency and low cost. In the past, solar cells based on Cu{sub x}S have reached efficiency as high as 10%, but it also suffers serious stability issues. To further improve its efficiency and especially the stability, it is important to understand the stability and electronic structure of Cu{sub x}S. However, due to the complexity of their crystal structures, no systematic theoretical studies have been carried out to understand the stability and electronic structure of the Cu{sub x}S systems. In this work, using first-principles method, we have systematically studied the crystal and electronic band structures of Cu{sub x}S (1.25 < x {le} 2). For Cu{sub 2}S, we find that all the three chalcocite phases, i.e., the low-chalcocite, the high-chalcocite, and the cubic-chalcocite phases, have direct bandgaps around 1.3-1.5 eV, with the low-chalcocite being the most stable one. However, Cu vacancies can form spontaneously in these compounds, causing instability of Cu{sub 2}S. We find that under Cu-rich condition, the anilite Cu{sub 1.75}S is the most stable structure. It has a predicted bandgap of 1.4 eV and could be a promising solar cell absorber.

  11. What are Millian Qualitative Superiorities?

    Directory of Open Access Journals (Sweden)

    Jonathan Riley

    2008-04-01

    Full Text Available In an article published in Prolegomena 2006, Christoph Schmidt-Petri has defended his interpretation and attacked mine of Mill’s idea that higher kinds of pleasure are superior in quality to lower kinds, regardless of quantity. Millian qualitative superiorities as I understand them are infinite superiorities. In this paper, I clarify my interpretation and show how Schmidt-Petri has misrepresented it and ignored the obvious textual support for it. As a result, he fails to understand how genuine Millian qualitative superiorities determine the novel structure of Mill’s pluralistic utilitarianism, in which a social code of justice that distributes equal rights and duties takes absolute priority over competing considerations. Schmidt-Petri’s own interpretation is a non-starter, because it does noteven recognize that Mill is talking about different kinds of pleasant feelings, such that the higher kinds are intrinsically more valuable than the lower. I conclude by outlining why my interpretation is free of any metaphysical commitment to the “essence” of pleasure.

  12. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  13. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  14. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  15. Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Tristan; Lemoine, Pierric; Gascoin, Stéphanie; Lebedev, Oleg I. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, 6 bd du Marechal Juin, 14050 CAEN Cedex 4 (France); Kaltzoglou, Andreas; Vaqueiro, Paz; Powell, Anthony V. [Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD (United Kingdom); Smith, Ron I. [ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0OX (United Kingdom); Guilmeau, Emmanuel, E-mail: emmanuel.guilmeau@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, 6 bd du Marechal Juin, 14050 CAEN Cedex 4 (France)

    2015-06-15

    Highlights: • Phase stability of tetrahedrite is addressed by DSC, XRD and neutron diffraction. • Effect of temperature, kinetic, and composition is discussed. • We report ZT = 0.8 in highly dense samples (98%) sintered by SPS. - Abstract: The purity and structural stability of the high thermoelectric performance Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 10.4}Ni{sub 1.6}Sb{sub 4}S{sub 13} tetrahedrite phases, synthesized by solid–liquid–vapor reaction and Spark Plasma Sintering, were studied at high temperature by Rietveld refinement using high resolution X-ray powder diffraction data, DSC/TG measurements and high resolution transmission electron microscopy. In a complementary study, the crystal structure of Cu{sub 10.5}Ni{sub 1.5}Sb{sub 4}S{sub 13} as a function of temperature was investigated by powder neutron diffraction. The temperature dependence of the structural stability of ternary Cu{sub 12}Sb{sub 4}S{sub 13} is markedly different to that of the nickel-substituted phases, providing clear evidence for the significant and beneficial role of nickel substitution on both sample purity and stability of the tetrahedrite phase. Moreover, kinetic effects on the phase stability/decomposition have been identified and discussed in order to determine the maximum operating temperature for thermoelectric applications. The thermoelectric properties of these compounds have been determined for high density samples (>98%) prepared by Spark Plasma Sintering and therefore can be used as reference values for tetrahedrite samples. The maximum ZT of 0.8 was found for Cu{sub 10.4}Ni{sub 1.6}Sb{sub 4}S{sub 13} at 700 K.

  16. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy.

    Science.gov (United States)

    Kikani, B A; Singh, S P

    2015-11-01

    An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications.

  17. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    Science.gov (United States)

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis, Structural Characterization, and Field-Effect Transistor Properties of n-Channel Semiconducting Polymers Containing Five-Membered Heterocyclic Acceptors: Superiority of Thiadiazole Compared with Oxadiazole.

    Science.gov (United States)

    Chen, Huajie; Liu, Zhaoxia; Zhao, Zhiyuan; Zheng, Liping; Tan, Songting; Yin, Zhihong; Zhu, Chunguang; Liu, Yunqi

    2016-12-07

    Five-membered 1,3,4-oxadiazole (OZ) and 1,3,4-thiadiazole (TZ) heterocycle-based copolymers as active layer have long been ignored in solution-processable n-channel polymer field-effect transistors (PFETs) despite the long history of using OZ or TZ derivatives as the electron-injecting materials in organic light-emitting devices and their favorable electron affinities. Herein, we first report the synthesis and PFETs performance of two n-channel conjugated polymers bearing OZ- or TZ-based acceptor moieties, i.e., PNOZ and PNTZ, where simple thiophene units are utilized as the weak donors and additional alkylated-naphthalenediimides units are used as the second acceptors. A comparative study has been performed to reveal the effect of different heterocyclic acceptors on thermal properties, electronic properties, ordering structures, and carrier transport performance of the target polymers. It is found that both polymers possess low-lying LUMO values below -4.0 eV, indicating high electron affinity for both heterocycle-based polymers. Because of strong polarizable ability of sulfur atom in TZ heterocycle, PNTZ exhibits a red shift in maximal absorption and stronger molecular aggregation even in the diluted chlorobenzene solution as compared to the OZ-containing PNOZ. Surface morphological study reveals that a nodule-like surface with a rough surface morphology is observed clearly for PNOZ films, whereas PNTZ films display highly uniform surface morphology with well interconnected fiber-like polycrystalline grains. Investigation of PFETs performance indicates that both polymers afford air-stable n-channel transport characteristics. The uniform morphological structure and compact π-π stacking endow PNTZ with a high electron mobility of 0.36 cm(2) V(-1) s(-1), much higher than that of PNOZ (0.026 cm(2) V(-1) s(-1)). These results manifest the feasibility in improving electron-transporting property simply by tuning heteroatom substitutes in n-channel polymers; further

  19. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability

    Science.gov (United States)

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.

    2009-01-01

    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  20. Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols.

    Science.gov (United States)

    Libster, Dima; Aserin, Abraham; Yariv, Doron; Shoham, Gil; Garti, Nissim

    2009-11-01

    This paper describes the formation and characterization of liquid crystalline dispersions based on the hexagonal phase of GMO/tricaprylin/water. As a stabilizer of the soft particles dispersed in the aqueous phase, a non-ionic, non-polymeric surfactant--ethoxylated phytosterol with 30 oxyethylene units (PhEO) was utilized. In contrast to Pluronic copolymers, normally utilized in the stabilization of liquid crystalline dispersions with ordered inner structure, use of such non-polymeric surfactant is not a common practice in this field. We revealed how properties of these particles, such as internal structure, size, and stability, can be rationally modified by the concentration of the stabilizing agent and processing conditions. The physical stability of the hexosomes was further examined by the LUMiFuge technique. Structural effect of PhEO solubilization on the properties of the bulk H(II) mesophase system showed that phase behavior was greatly influenced following phase transitions: H(II)-->H(II)+cubic-->cubic+L(alpha)-->L(alpha). The decrease of hydrogen bonding of the hydroxyl and carbonyl groups of monoolein with water and simultaneous hydration of EO groups of PhEO appeared to be important for the observed behavior. The use of PhEO as a dispersant resulted in a soft matter multi-phase water dispersion with bimodal distribution of the particle population. Effective stabilization of hexosomes was obtained in an extremely narrow concentration range of PhEO (0.1-0.2 wt%), coexisting with small vesicles and disordered particles. At higher PhEO content, particles had disordered inner structure, and unilamellar and multilamellar vesicles, at the expense of hexosomes in consequence of incorporation of the dispersant into the hexosome structure. PhEO was found to induce lamellar phase formation, introducing disorder into the hexagonal LLC and reducing their domain size. Finally, hexosomes were evaluated as delivery vehicles for the therapeutic peptide desmopressin

  1. Size dependence of structural stability and magnetization of nickel clusters from real-space pseudopotentials

    Science.gov (United States)

    Sakurai, Masahiro; Souto-Casares, Jaime; Chelikowsky, James R.

    2016-07-01

    We examine the structural stability and magnetization for nickel clusters containing up to 500 atoms by performing first-principles calculations based on pseudopotential in real space computed within density-functional theory. After structural relaxation, Ni clusters in this size range favor either an fcc structure, which is a crystal structure in bulk, or an icosahedral structure, which is expected for small clusters. The calculated total magnetic moments per atom of energetically stable clusters agree well with experiment, wherein the moments decrease nonmonotonically toward the bulk value as the cluster size increases. We analyze the spatial distribution of the local magnetic moment, which explains why the magnetic moments of Ni clusters are enhanced compared to their bulk value.

  2. Crustal structure of the Churchill-Superior boundary zone between 80 and 98 deg W longitude from Magsat anomaly maps and stacked passes

    Science.gov (United States)

    Hall, D. H.; Millar, T. W.; Noble, I. A.

    1985-01-01

    A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.

  3. Spectral and structural stability properties of charged particle dynamics in coupled lattices

    CERN Document Server

    Qin, Hong; Davidson, Ronald C; Burby, J W

    2015-01-01

    It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.

  4. Improve the operational stability of the inverted organic solar cells using bilayer metal oxide structure.

    Science.gov (United States)

    Chang, Jingjing; Lin, Zhenhua; Jiang, Changyun; Zhang, Jie; Zhu, Chunxiang; Wu, Jishan

    2014-11-12

    Operational stability is a big obstacle for the application of inverted organic solar cells (OSCs), however, less talked about in the research reports. Due to photoinduced degradation of the metal oxide interlayer, which can cause shunts generation and degeneration in ZnO interlayer, a significant degradation of open circuit voltage (Voc) and fill factor (FF) has been observed by in situ periodic measurements of the device current density-voltage (J-V) curves with light illumination. By combining TiOx and ZnO to form bilayer structures on ITO, the photovoltaic performance is improved and the photoinduced degradation is reduced. It was found that the device based on ZnO/TiOx bilayer structure achieved better operational stability as compared to that with ZnO or TiOx interlayer.

  5. Thermodynamic stability and structures of iron chloride surfaces: A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Saraireh, Sherin A. [Physics Department, Faculty of Sciences, Al-Hussein Bin Talal University, Ma' an (Jordan); Altarawneh, Mohammednoor, E-mail: M.Altarawneh@Murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Perth (Australia)

    2014-08-07

    In this study, we report a comprehensive density functional theory investigation of the structure and thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces. Calculated lattice constants and heats of formation for bulk FeCl{sub 2} and FeCl{sub 3} were found to be in relatively good agreement with experimental measurements. We provide structural parameters for 15 distinct FeCl{sub 2} and FeCl{sub 3} surfaces along the three low-index orientations. The optimized geometries for all surfaces are compared with analogous bulk values. Ab initio atomistic thermodynamic calculations have been carried out to assess the relative thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces under practical operating conditions of temperatures and pressures. The FeCl{sub 2} (100-Cl) surface is found to afford the most stable configuration at all experimentally accessible gas phase conditions.

  6. Stabilization of nonlinear systems with parametric uncertainty using variable structure techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering

    1995-07-01

    The authors present a result on the robust stabilization of a class of nonlinear systems exhibiting parametric uncertainty. They consider feedback linearizable nonlinear systems with a vector of unknown constant parameters perturbed about a known value. A Taylor series of the system about the nominal parameter vector coupled with a feedback linearizing control law yields a linear system plus nonlinear perturbations. Via a structure matching condition, a variable structure control law is shown to exponentially stabilize the full system. The novelty of the result is that the linearizing coordinates are completely known since they are defined about the nominal parameter vector, and fewer restrictions are imposed on the nonlinear perturbations than elsewhere in the literature.

  7. Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining

    Institute of Scientific and Technical Information of China (English)

    韩昌良; 张农; 李宝玉; 司光耀; 郑西贵

    2015-01-01

    In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion.

  8. Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions

    Science.gov (United States)

    Matsunami, Hideyuki; Barker, Clive S.; Yoon, Young-Ho; Wolf, Matthias; Samatey, Fadel A.

    2016-01-01

    The bacterial flagellar hook is a tubular helical structure made by the polymerization of multiple copies of a protein, FlgE. Here we report the structure of the hook from Campylobacter jejuni by cryo-electron microscopy at a resolution of 3.5 Å. On the basis of this structure, we show that the hook is stabilized by intricate inter-molecular interactions between FlgE molecules. Extra domains in FlgE, found only in Campylobacter and in related bacteria, bring more stability and robustness to the hook. Functional experiments suggest that Campylobacter requires an unusually strong hook to swim without its flagella being torn off. This structure reveals details of the quaternary organization of the hook that consists of 11 protofilaments. Previous study of the flagellar filament of Campylobacter by electron microscopy showed its quaternary structure made of seven protofilaments. Therefore, this study puts in evidence the difference between the quaternary structures of a bacterial filament and its hook. PMID:27811912

  9. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  10. Generalized stability of motion of impulsive Lurie-Postnikov systems with structural perturbation

    Directory of Open Access Journals (Sweden)

    A. A. Martynyuk

    1998-01-01

    Full Text Available This paper investigates the absolute stability on ℊs of the zero solution of Lurie-Postnikov systems with impulses and structural perturbation. A number of absolutely stable on ℊs theorems of the Lyapunov type for Lurie-Postnikov systems are proved, extending and generalizing previous work on the subject. These results are applied to some fourth-order Lurie-Postnikov type systems decomposed into two systems.

  11. Structural Stability of Functionalized Silicene Nanoribbons with Normal, Reconstructed, and Hybrid Edges

    OpenAIRE

    Sadegh Mehdi Aghaei; Ingrid Torres; Irene Calizo

    2016-01-01

    Silicene, a novel graphene-like material, has attracted a significant attention because of its potential applications for nanoelectronics. In this paper, we have theoretically investigated the structural stability of edge-hydrogenated and edge-fluorinated silicene nanoribbons (SiNRs) via first-principles calculations. Various edge forms of SiNRs including armchair edge, zigzag edge, Klein edge, reconstructed Klein edge, reconstructed pentagon-heptagon edge, and hybrid edges have been consider...

  12. Narrative change, narrative stability, and structural constraint: The case of prisoner reentry narratives.

    Science.gov (United States)

    Harding, David J; Dobson, Cheyney C; Wyse, Jessica J B; Morenoff, Jeffrey D

    2017-03-01

    Cultural sociologists and other social scientists have increasingly used the concept of narrative as a theoretical tool to understand how individuals make sense of the links between their past, present, and future, how individuals construct social identities from cultural building blocks, and how culture shapes social action and individual behavior. Despite its richness, we contend that the narratives literature has yet to grapple with narrative change and stability when structural constraints or barriers challenge personal narratives and narrative identities. Particularly for marginalized groups, the potential incompatibility of personal narratives with daily experiences raises questions about the capacity of narratives to influence behavior and decision-making. In this study we draw on prospective longitudinal data on the reentry narratives and narrative identities of former prisoners to understand how narratives do and not change when confronted with contradictory experiences and structural constraints. We identify and describe the processes generating narrative change and stability among our subjects. These findings inform a framework for studying narrative change and stability based on four factors: the content of the narrative itself, the structural circumstances experienced by the individual, the institutional contexts in which the individual is embedded, and the social networks in which the individual is embedded.

  13. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions.

    Science.gov (United States)

    Bochicchio, Brigida; Tamburro, Antonio Mario

    2002-11-01

    In the last years polyproline II (PPII) structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response. The polyproline left-handed helical structure was nearly unknown until now and often confused with unordered, disordered, irregular, unstructured, extended, or random coil conformations because it is neither alpha-helical nor beta-turn nor beta-sheet, i.e., a classical structure. In spite of the regularity of the PPII structure and, more precisely, its well-defined dihedral angle values, a typical feature of PPII structure is the absence of any intramolecular hydrogen bonds that renders the PPII structure indistinguishable from an irregular backbone structure by (1)H-NMR spectroscopy. The only way to unambiguously reveal PPII structure in solution is to use spectroscopies based on optical activity, such as circular dichroism (CD), vibrational circular dichroism (VCD), and Raman optical activity (ROA). Herein we focus on the identification of PPII structure by CD, widely considered to be the most reliable methodology. Then we report on VCD and ROA spectroscopies as tools in the identification of PPII structure. A third section is dedicated to the analysis of the stabilization of PPII conformation in aqueous solution. Finally, the significance of PPII in self-assembly processes, in elasticity of elastomeric proteins, and in proteins-(peptides) proteins molecular recognition processes are considered.

  14. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.

    Science.gov (United States)

    Zhu, Zhengxi

    2014-03-01

    Flash nanoprecipitation (FNP) can generate hydrophobic drug nanoparticles in ∼ 100 nm with a much higher drug loading (e.g., > 40 wt %) than traditional nanocarriers (e.g., FNP and demonstrates that chemically bonding a drug compound (e.g., paclitaxel) with a cleavable hydrophobic moiety of organosilicate (e.g., triethoxysilicate) is able to enhance the particle size stability. A nonionic amphiphilic diblock copolymer, poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG), is used as a model surfactant to provide steric stabilization. The experiments here show that the lower the drug solubility in the aqueous medium, the more stable the particles in terms of Ostwald ripening, which are consistent with the prediction by the LSW theory. The initial particle size distribution is sufficiently narrow and of insignificance to Ostwald ripening. To correlate the particle stability with hydrophobicity, this study introduces the n-octanol/water partition coefficient (LogP), a hydrophobicity indication, into the FNP technique. A comparison of various drugs and their analogues shows that LogP of a drug is a better hydrophobicity indication than the solubility parameter (δ) and correlates well with the particle stability. Empirically, with ACDLogP > ∼ 12, nanoparticles have good stability; with ∼ 2 < ACDLogP < ∼ 9, nanoparticles show fast Ostwald ripening and interparticle recrystallization; with ACDLogP < ∼ 2, the drug is very likely difficult to form nanoparticles. This rule creates a quick way to predict particle stability for a randomly selected drug structure and helps to enable a fast preclinical drug screen.

  15. The global stability of a delayed predator-prey system with two stage-structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengyan [College of Science, Jimei University, Xiamen Fujian 361021 (China)], E-mail: wangfy68@163.com; Pang Guoping [Department of Mathematics and Computer Science, Yulin Normal University, Yulin Guangxi 537000 (China)

    2009-04-30

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  16. The role of key residues in structure, function, and stability of cytochrome-c.

    Science.gov (United States)

    Zaidi, Sobia; Hassan, Md Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2014-01-01

    Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists

  17. Stability and change in structural social relations as predictor of mortality among elderly women and men

    DEFF Research Database (Denmark)

    Lund, Rikke; Modvig, J; Due, P

    2000-01-01

    In a follow-up study of 70-95 years old women and men (n = 911) we studied the association between change and stability in three structural aspects of social relations (contact frequency, contact diversity, cohabitation status) from 1986-1990 and mortality after the next four years in 1994. Women.......02-14.94) and ORdiv: 6.04 (1.30-28.03). In summary, we found rather larger age differences in the strength of the association between change in structural social relations and mortality. Furthermore, the associations seemed stronger among women than men, which may however mainly be explained by the small number...

  18. Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form.

    Science.gov (United States)

    Wong, Joyce J W; Paterson, Reay G; Lamb, Robert A; Jardetzky, Theodore S

    2016-01-26

    Hendra virus (HeV) is one of the two prototypical members of the Henipavirus genus of paramyxoviruses, which are designated biosafety level 4 (BSL-4) organisms due to the high mortality rate of Nipah virus (NiV) and HeV in humans. Paramyxovirus cell entry is mediated by the fusion protein, F, in response to binding of a host receptor by the attachment protein. During posttranslational processing, the fusion peptide of F is released and, upon receptor-induced triggering, inserts into the host cell membrane. As F undergoes a dramatic refolding from its prefusion to postfusion conformation, the fusion peptide brings the host and viral membranes together, allowing entry of the viral RNA. Here, we present the crystal structure of the prefusion form of the HeV F ectodomain. The structure shows very high similarity to the structure of prefusion parainfluenza virus 5 (PIV5) F, with the main structural differences in the membrane distal apical loops and the fusion peptide cleavage loop. Functional assays of mutants show that the apical loop can tolerate perturbation in length and surface residues without loss of function, except for residues involved in the stability and conservation of the F protein fold. Structure-based disulfide mutants were designed to anchor the fusion peptide to conformationally invariant residues of the F head. Two mutants were identified that inhibit F-mediated fusion by stabilizing F in its prefusion conformation.

  19. Study of Structural Stability of Cyclophilin A by NMR and Circular Dichroism Spectra

    Institute of Scientific and Technical Information of China (English)

    SHI, Yan-Hong; LIN, Dong-Hai; HUANG, Jian-Ying; SHEN, Xu

    2006-01-01

    The structural stability of cyclophilin A (CypA) was investigated using H/D exchange and temperature coefficients of chemical shifts of amide protons, monitored by 2D heteronuclear NMR spectroscopy. Amide proton exchange rates were measured by H/D exchange experiments for slow-exchange protons and measured by SEA (Solvent Exposed Amides)-HSQC experiments for fast-exchange protons. Temperature coefficients of chemical shifts and hydrogen exchange rates of amide protons show reasonably good correlation with the protein structure. Totally,44 out of 153 non-proline assigned residues still exist in 86 d of hydrogen-deuterium exchange at 4 ℃, suggesting that CypA structure should be highly stable. Residues in secondary structures of α2, β1, β2, β5,β6 and β7 might constitute the hydrophobic core of the protein. The change in free energy of unfolding ( AGuH2O ) of CypA was estimated to be (21.99± 1.53) kJ·mol-1 by circular dichroism (CD). The large free energy change is also an indicator of the high structural stability.

  20. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions

    CERN Document Server

    Shi, Ya-Zhou; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we will further develop the model by improving the implicit-salt electrostatic potential and involving a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. As compared with the experimental data, the present model can predict 3D structures of RNA hairpins with bulge/internal loops (<77nt) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy, and the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different length at extensive divalent/monovalent ion conditions. In addition, the model successfully pred...

  1. Structure and Function of the Superior Temporal Plane in Adult Males with Cleft Lip and Palate: Pathologic Enlargement with No Relationship to Childhood Hearing Deficits

    Science.gov (United States)

    Shriver, A. S.; Canady, J.; Richman, L.; Andreasen, N. C.; Nopoulos, P.

    2006-01-01

    Background: In a previous study from our lab, adult males with non-syndromic cleft lip and/or palate (NSCLP) were shown to have significantly lower temporal lobe gray matter volume than matched controls. The current study was designed to begin a regional analysis of specific subregions of the temporal lobe. The superior temporal plane (STP) is a…

  2. Structure and Function of the Superior Temporal Plane in Adult Males with Cleft Lip and Palate: Pathologic Enlargement with No Relationship to Childhood Hearing Deficits

    Science.gov (United States)

    Shriver, A. S.; Canady, J.; Richman, L.; Andreasen, N. C.; Nopoulos, P.

    2006-01-01

    Background: In a previous study from our lab, adult males with non-syndromic cleft lip and/or palate (NSCLP) were shown to have significantly lower temporal lobe gray matter volume than matched controls. The current study was designed to begin a regional analysis of specific subregions of the temporal lobe. The superior temporal plane (STP) is a…

  3. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure

    Indian Academy of Sciences (India)

    A K Verma; P Ravindran; R S Rao; B K Godwal; R Jeanloz

    2003-01-01

    We have carried out electronic structure total energy calculations on rhenium in the hexagonal close packed (hcp) and body centred cubic (bcc) phases, by the full potential linear muffin–tin orbital method, in order to verify the stability of the ambient pressure hcp phase against transition to the bcc structure at high pressures. As per our results, no hcp to bcc structural transition can occur up to 1 TPa pressures. Moreover, our Bain path calculations show that face centred cubic and body centred tetragonal structures are also not energetically preferred over hcp in this pressure range. The axial ratio (/) of Re changes by less than 0.33% in the pressure range studied.

  4. Structures and stabilities of small Co clusters on a Cu(111) surface: A theoretical study

    Science.gov (United States)

    Huang, R. Z.; Chen, C.; Li, C. M.; Jiang, C. H.; Zhang, R. J.; Gao, Y.

    2017-10-01

    Structures and relative stabilities of small Con clusters (n = 1-12) on a Cu(111) surface are studied using molecular dynamics simulations. It is shown that the supported clusters are all in two-dimensional island structures of the edges forming square microfacets (A step) and/or triangular microfacets (B step) with the substrate. For non-magic-number clusters, the lowest energy structures are the ones of the edges with more A steps and the most unstable structures are the ones of the edges with only A steps or B steps due to the lattice mismatch of the Con/Cu(111) system. Magic number clusters are truncated triangular or elongated shapes with a closed atomic shell and maximum nearest-neighbor bonds. In addition, the anomalous mobility is found for Co3 and Co6 clusters in the diffusion processes of these clusters. The concerted translation and rotation movements are responsible for their special diffusion behaviors.

  5. Theoretical Studies on Structures and Stabilities of C4H2+ Isomers

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ying; WAN Su-qin; LIU Hui-ling; HUANG Xu-ri; SUN Chia-chung

    2013-01-01

    The structures,energies,stabilities and spectroscopies of doublet C4H2+ cations were explored at the DFT/B3LYP/6-311G(d,p),CCSD(T)/6-311+G(2df,2pd)(single-point),and G3B3 levels.Ten minimum isomers including the chainlike,three-member-ring,and four-member-ring structures are interconverted by means of 15 interconversion transition states.The potential energy surface was investigated.At the CCSD(T)/6-311+G(2df,2pd) and G3B3 levels,the global minimum isomer was found to be a linear HCCCCH.The structures of the stable isomer and its relevant transition state are further optimized at the QCISD/6-311G(d,p) level.The bonding nature and structure of isomer HCCCCH were analyzed.

  6. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    Science.gov (United States)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  7. First-principles study of structural stabilities of AlH3 under high pressure

    Science.gov (United States)

    Feng, Wenxia; Cui, Shouxin; Feng, Min

    2014-07-01

    The structural stabilities and electronic properties of AlH3 under high pressure are investigated by using the plane-wave pseudopotential method. Our results demonstrate that the sequence of the pressure-induced phase transition is Fd 3 bar m(β) → cmcm(α ') → R 3 bar c(α) → Pnma(hp 1) → Pm 3 bar n(hp 2), and the transition pressures are 0.49, 0.91, 47, and 70 GPa, respectively. Im 3 bar m , Pnnm(γ) and P63/m structures are not stable in the 0-100 GPa. β, α ', α, and hp1 structures of AlH3 are nonmetals, while Pm 3 bar n structure of AlH3 is metallic, and the pressure-induced metallization is ascribed to phase transition under higher compression.

  8. Sequence, Stability, Structure of G-Quadruplexes and Their Drug Interactions

    Science.gov (United States)

    Chen, Yuwei; Yang, Danzhou

    2012-01-01

    Although DNA is most widely known to store and pass along genetic information, the discovery of G-quadruplex structures has illuminated a new role of DNA in biology. DNA G-quadruplexes are four-stranded globular nucleic acid secondary structures formed in specific G-rich sequences with biological significance, such as human telomeres and oncogene promoters. This review focuses on the unimolecular DNA G-quadruplexes, which can readily form in solution under physiological conditions and are considered to be most biologically relevant. Available structural data show a great conformational diversity of unimolecular G-quadruplexes, amenable to small molecule drug targeting. The relationship of sequence, structure, and stability of unimolecular DNA G-quadruplexes, as well as the recent progress on interactions with small molecule compounds and insights into rational design of G-quadruplex-interactive molecules, will be discussed. PMID:22956454

  9. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  10. Stabilization and transformation of amorphous calcium carbonate: structural and kinetic studies

    Science.gov (United States)

    Schmidt, Millicent Promise

    Amorphous calcium carbonate (ACC) is a common transient precursor in the formation of more stable crystalline calcium carbonate minerals, most notably calcite, vaterite, and aragonite. Formation of ACC from calcium carbonate rich aqueous solution rather than direct crystallization of crystalline polymorphs by organisms provides several advantages: control of morphology, grain size, orientation, hardness, and other bulk properties as well as reduction of energy costs during growth cycles. Despite decades of study, stabilization and transformation mechanisms of synthetic and biogenic ACC remain unclear. In particular, the roles of H2O and inorganic phosphate in ACC structure and transformation, and the variables affecting transformation kinetics and polymorph selection are understudied. In this research, we addressed structure and kinetic behavior of ACC through four complementary investigations: two studies focus on synthetic ACC stabilization and two focus on synthetic and biogenic ACC transformation behavior in solution at ambient temperatures. We explored ACC stabilization via compositional and thermal analyses, X-ray scattering, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy. Transformation experiments used a novel method of in situ structural analysis that provided quantitative kinetic and structural data and allowed us to visualize the ACC transformation pathway. Results revealed the complexity of H2O structure in ACC samples synthesized from three methods, indicating that the distinct hydrous populations produced define ACC behavior. Transformation kinetics and polymorph selection were strongly affected by the hydration state and type of synthetic ACC reacted. In situ transformation experiments also showed differences in kinetic behavior due to reaction medium. The structural role of hydrous components was again evident in in situ transformation experiments for ACC from a biogenic lobster gastrolith (LG) reacted with water. LG

  11. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  12. Structure and phase stability of a Pu-0.32 wt% Ga alloy

    Science.gov (United States)

    Wheeler, D. W.; Ennaceur, S. M.; Matthews, M. B.; Roussel, P.; Bayer, P. D.

    2016-08-01

    In plutonium-gallium (Pu-Ga) alloys that have a Ga content of 0.3-0.4 wt%, their readiness to transform to α‧ renders them of particular interest in efforts to understand the tenuous nature of δ phase stability. The present study is a comprehensive examination of the structure and phase stability of a cast Pu-0.32 wt% Ga alloy, the Ga content being close to the minimum amount needed to retain the δ phase to ambient temperature. The alloy was characterised in both the as-cast condition as well as following a homogenising heat treatment. The 250-h heat treatment at 450 °C was shown to achieve an apparently stable δ-Pu phase. However, the stability of the δ-Pu phase was shown to be marginal: partial transformation to α‧-Pu was observed when the alloy was subjected to hydrostatic compression. Similar transformation was also apparent during metallographic preparation as well as during hardness indentation. The results provide new understanding of the nature of δ phase stability.

  13. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    Science.gov (United States)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  14. Structure and stability of short beta-peptide nanotubes: a non-natural representative of collagen?

    Science.gov (United States)

    Czajlik, András; Beke, Tamás; Bottoni, Andrea; Perczel, András

    2008-07-03

    Since secondary structure elements are known to play a key role in stabilizing the 3D-fold of proteins for the design of non-natural proteins composed of beta-amino acid residues, the construction of suitable secondary structural elements is mandatory. Folding analogues of alpha-helices and beta-strands of beta-polypeptides were already described (Chem. Biodiversity 2004, 1, 1111 (1)). Here, we present several collagen-like folds composed exclusively of beta-Ala(s). Unlike their natural counterpart, these tubular nanostructures can be composed of more than three polypeptide chains aligned parallel and/or antiparallel. By using ab initio and DFT calculations we have optimized a large number of versatile collagen-like antiparallel nanostructures. In these tubular systems, oligopeptide strands are interconnected by i --> (i) type H-bonds, except for the "closing" set. This latter is called "the H-bond zipper" and is either (i) --> i, ( i + 1) --> i, or ( i + 2) --> i type. Antiparallel, tubular foldamers composed of l number of strands, each of k number of beta-amino acid residues (e.g., apbeta-T(l) i+l ) k , ap(beta-T(l) i+1 ) k , or ap(beta-T(l) i+2 ) k ), are unexpectedly stable supramolecular complexes. Independent of k and l, the local backbone fold of the amino acid residues is usually spiral, abbreviated as "S(P)" or "S*(P)". Nevertheless, in contrast to parallel, in antiparallel nanotubes the backbone fold can occasionally twist out from S(P) or S*(P) type into an alternative local structure. However, the more the local geometry of the strands resembles to S(P) or S*(P), the higher the stability is. Besides the backbone twisting, the overall stability is determined by the type and the geometrical properties of the constituent H-bonds. Interestingly, higher number of total H-bonds can provide a lower overall stability, when H-bond parameters are inferior. In general, the increase of both the number of strands and their length stabilize the supramolecular

  15. PERSISTENT LEFT SUPERIOR VENACAVA

    Directory of Open Access Journals (Sweden)

    Devinder Singh

    2014-05-01

    Full Text Available A Persistent Left Superior Venacava (PLSVC is the most common variation of the thoracic venous system and rare congenital vascular anomaly and is prevalent in 0.3% of the population. It may be associated with other cardiovascular abnormalities including atrial septal defect, bicuspid aortic valve, coarctation of aorta, coronary sinus ostial atresia, and cor triatriatum. Incidental rotation of a dilated coronary sinus on echocardiography should raise the suspicion of PLSVC. The diagnosis should be confirmed by saline contrast echocardiography. Condition is usually asymptomatic. Here we present a rare case of persistent left superior vena cava presented in OPD with dyspnoea & palpitations.

  16. APPROACH FOR LAYOUT OPTIMIZATION OF TRUSS STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS, DISPLACEMENT AND STABILITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    SHI Lian-shuan; WANG Yue-fang; SUN Huan-chun

    2006-01-01

    A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.

  17. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase.

    Directory of Open Access Journals (Sweden)

    Amanda J Cork

    Full Text Available Group A Streptococcus (GAS is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen. Streptococcal surface enolase (SEN is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen to its binding sites, leading to more efficient plasmin(ogen binding and activation.

  18. Structural Dynamics of a Mitochondrial tRNA Possessing Weak Thermodynamic Stability

    Science.gov (United States)

    2015-01-01

    Folding dynamics are ubiquitously involved in controlling the multivariate functions of RNAs. While the high thermodynamic stabilities of some RNAs favor purely native states at equilibrium, it is unclear whether weakly stable RNAs exist in random, partially folded states or sample well-defined, globally folded conformations. Using a folding assay that precisely tracks the formation of native aminoacylable tRNA, we show that the folding of a weakly stable human mitochondrial (hmt) leucine tRNA is hierarchical with a distinct kinetic folding intermediate. The stabilities of the native and intermediate conformers are separated by only about 1.2 kcal/mol, and the species are readily interconvertible. Comparison of folding dynamics between unmodified and fully modified tRNAs reveals that post-transcriptional modifications produce a more constrained native structure that does not sample intermediate conformations. These structural dynamics may thus be crucial for recognition by some modifying enzymes in vivo, especially those targeting the globular core region, by allowing access to pretransition state conformers. Reduced conformational sampling of the native, modified tRNAs could then permit improved performance in downstream processes of translation. More generally, weak stabilities of small RNAs that fold in the absence of chaperone proteins may facilitate conformational switching that is central to biological function. PMID:24520994

  19. Chemical-mechanical stability of the hierarchical structure of shell nacre

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hierarchical structure and mechanical property of shell nacre are experimentally investigated from the new aspects of chemical stability and chemistry-mechanics coupling. Through chemical deproteinization or demineralization methods together with characterization techniques at micro/nano scales,it is found that the nacre of abalone,haliotis discus hannai,contains a hierarchical structure stacked with irregular aragonite platelets and interplatelet organic matrix thin layers. Yet the aragonite platelet itself is a nanocomposite consisting of nanoparticles and intraplatelet organic matrix framework. The mean diameter of the nanoparticles and the distribution of framework are quite different for different platelets. Though the interplatelet and in-traplatelet organic matrix can be both decomposed by sodium hydroxide solution,the chemical stability of individual aragonite platelets is much higher than that of the microstructure stacked with them. Further,macroscopic bending test or nanoindentation experiment is performed on the micro/nanostructure of nacre after sodium hydroxide treatment. It is found that the Young’s modulus of both the stacked microstructure and nanocomposite platelet reduced. The reduction of the microstructure is more remark than that of the platelet. Therefore the chemical-mechanical stability of the nanocomposite platelet itself is much higher than that of the stacked microstructure of nacre.

  20. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity.

    Science.gov (United States)

    Zhang, Yingyue; Li, Qi; Welsh, William J; Moghe, Prabhas V; Uhrich, Kathryn E

    2016-04-01

    Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies.

  1. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    Science.gov (United States)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  2. Effects of PEG size on structure, function and stability of PEGylated BSA.

    Science.gov (United States)

    Plesner, Bitten; Fee, Conan J; Westh, Peter; Nielsen, Anders D

    2011-10-01

    The effects of PEGylation on the structural, thermal and functional stability of bovine serum albumin (BSA) were investigated using BSA and 6 linear mono-PEGylated BSA compounds. The secondary and tertiary structure of BSA measured by circular dichroism (CD) was independent of PEGylation. In contrast, the thermal stability of BSA was affected by PEGylation. The apparent unfolding temperature T(max) measured by differential scanning calorimetry (DSC) decreased with PEGylation, whereas the temperature of aggregation, T(agg), measured by dynamic light scattering (DLS) increased with PEGylation. The unfolding temperature and the temperature of aggregation were both independent of the molecular weight of the PEG chain. Possible functional changes of BSA after PEGylation were measured by Isothermal Titration Calorimetry (ITC), where the binding of sodium dodecyl sulphate (SDS) to BSA and PEGylated BSA was analysed. At 25°C, two distinct classes of binding sites (high affinity and low affinity) for BSA and one class of binding site (low affinity) for PEGylated BSA were identified. The binding isotherm was modelled assuming independence and thermodynamic equivalence of the sites within each class. From the present biophysical characterisation, it is concluded that after PEGylation BSA appears to be unaffected structurally (secondary and tertiary structure), slightly destabilised thermally (unfolding temperature), stabilised kinetically (temperature of aggregation) and has an altered functionality (binding profile). These biophysical characteristics are all independent of the molecular weight of the attached polymer chain.

  3. Structure, stability and magnetic properties of (NiAl)n(n≤6) clusters

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Zhang, Xiao-Zhen; Wen, Zhen-Yi

    2016-09-01

    In this paper, density functional theory with generalized gradient approximation (GGA) for the exchange-correlation potential has been used to calculate the energetically global-minimum geometries and electronic states of (NiAl)n(n≤6) clusters. Full structural optimizations, analysis of energy and frequency calculation are performed. The most stable structures of (NiAl)n clusters are all three-dimensional structures except NiAl. The average bond lengths of (NiAl)n clusters are larger than that of Ni2n, and are smaller than that of Al2n. The binding energy per atom of Ni2n and (NiAl)n has the same change trend, and that are larger than that of Al2n. Stability analysis shows that Ni8, (NiAl)2 and Al10 clusters have higher relative stability than other clusters. Mulliken analysis indicates that charges always transfer from Al atoms to Ni atoms, and the average charges of transfer from Al atoms to Ni atoms have a maximum at (NiAl)6, implying the strong interaction between Al and Ni atoms in (NiAl)6. The average atomic magnetic moments of (NiAl)n are smaller than that of true Ni2n. The analysis of the static polarizability shows that the electronic structures of (NiAl)n clusters tend to be compact with the increase of atoms.

  4. Structure and thermal stability of laser deposited ZrO{sub 2}/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Sarah; Ernst, Benedikt; Liese, Tobias; Krebs, Hans-Ulrich [Georg-August-Universitaet, Goettingen (Germany)

    2012-07-01

    ZrO{sub 2}/Ti thin multilayer systems have important applications in X-ray optics, especially in the 'water window' regime (wavelengths: 2.3-4.4 nm) as X-ray mirrors and multilayer Laue lenses (MLLs). To increase the resolution of MLLs, which is defined by the thickness of their thinnest layers, it is necessary to prepare as small structures as possible. With regard to the structural stability of the layers a lower limit of the layer thickness can be determined. While using, the X-ray optic may be exposed to elevated temperatures so that a precise knowledge about the thermal stability of these multilayer systems is also required. Several measurement techniques like X-ray reflectometry (XRR including IMD simulations), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were applied to study the structure after preparation and in situ the phase transformations of the components during heating. The observed results are discussed with respect to the processes occurring during annealing of the multilayers (structural changes, crystallization of the amorphous oxides, changes in the oxygen content of the layers..).

  5. Structures and Stabilities of (MgO)n Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingyang; Felmy, Andrew R.; Dixon, David A.

    2014-05-01

    Global minima for (MgO)n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. Finally, the electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.

  6. A Subset of Autism-associated Genes Regulate the Structural Stability of Neurons

    Directory of Open Access Journals (Sweden)

    Yu-Chih Lin

    2016-11-01

    Full Text Available Autism spectrum disorder (ASD comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into 1 cytoskeletal regulators, e.g. motors and small RhoGTPase regulators; 2 adhesion molecules, e.g. cadherins, NCAM, and neurexin superfamily; 3 cell surface receptors, e.g. glutamatergic receptors and receptor tyrosine kinases; 4 signaling molecules, e.g. protein kinases and phosphatases; and 5 synaptic proteins, e.g. vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.

  7. Structure stability and magnetic properties of OsB( = 11–20) clusters

    Indian Academy of Sciences (India)

    Xiu-Rong Zhang; Min Luo; Fu-Xing Zhang; Xiang-Yu Zheng; Gao-Kang Hu

    2015-04-01

    The structure and magnetic properties of OsB( = 11–20) clusters have been systematically investigated by using density functional theory within the generalized gradient approximation (GGA). For each size, the average binding energy per atom, the second-order differences of total energies, the dissociation energies and the formation energies are calculated to analyse the stability of clusters. Os12B, Os15B, Os17B and Os19B clustersare found to be more stable than other clusters. The B atom has little influence on OsB cluster stability. d electrons exhibit locality compared to s and p electrons in most cases. Os14B cluster has the strongest magnetism among all the clusters, and the local magnetic moment of B atom does little effect to the total magnetic moment.

  8. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    and dealloying due to kinetic barriers, despite the thermodynamic driving force for dissolution. This is followed by our results on trying to decouple the strain and ligand effects for platinum skin structures, and determining whether there is any correlation between adsorption energy and surface stability...... in these systems. We find that there is such a correlation for some adsorbates, indicating that there exists a limit for the stability of an overlayer for a given adsorption strength. Finally, we introduce our work on platinum alloy nanoparticles, and our attempt to isolate the features which result...... in the increased activity that has been seen experimentally. We show how the platinum-platinum distance at the surface is decreased for a variety of alloy phases in the core, with greater compression of the overlayer for core phases with lattice parameters which are either much smaller or much larger than pure...

  9. Stability of Complex Biomolecular Structures: Vander Waals, Hydrogen Bond Cooperativity, and Nuclear Quantum Effects

    CERN Document Server

    Rossi, Mariana; Michaelides, Angelos

    2016-01-01

    Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only ...

  10. Structured populations: immigration, (bi)stability and the net growth rate

    CERN Document Server

    Farkas, Jozsef Z

    2009-01-01

    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearized system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearized operator equals zero, i.e. when linearization does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearized system exhibits bistability, for a certain range of values of the external inflow, induced potentially by Allee-effect.

  11. The Google matrix controls the stability of structured ecological and biological networks

    Science.gov (United States)

    Stone, Lewi

    2016-09-01

    May's celebrated theoretical work of the 70's contradicted the established paradigm by demonstrating that complexity leads to instability in biological systems. Here May's random-matrix modelling approach is generalized to realistic large-scale webs of species interactions, be they structured by networks of competition, mutualism or both. Simple relationships are found to govern these otherwise intractable models, and control the parameter ranges for which biological systems are stable and feasible. Our analysis of model and real empirical networks is only achievable on introducing a simplifying Google-matrix reduction scheme, which in the process, yields a practical ecological eigenvalue stability index. These results provide an insight into how network topology, especially connectance, influences species stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in these systems are found more restrictive than those controlling stability, helping explain the enigma of why many classes of feasible ecological models are nearly always stable.

  12. Global Stability of a Predator-prey Model with Stage Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Li-li; XU Rui

    2015-01-01

    A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using the uniformly persistence theory, the system is proven to be permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the two boundary equilibria is globally asymptotically stable when the coexistence equilibrium is not feasible. By using compound matrix theory, the sucient conditions are obtained for the global stability of the coexistence equilibrium. At last, numerical simulations are carried out to illustrate the main results.

  13. Structural stability and theoretical strength of Cu crystal under equal biaxial loading

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhong-Liang Lin; Yan Zhang; Vincent Ji

    2010-02-01

    Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.

  14. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    Science.gov (United States)

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT

  15. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  16. Stability and structure of metal clusters - Be(13) and Be(55)

    Science.gov (United States)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.

    1986-01-01

    Face-centered cubic (fcc) and hexagonally close-packed (hcp) structures are compared for Be(13) and Be(55) clusters. Both Be(13) and Be(55) prefer the fcc structure over the bulk hcp structure, but the energy difference per atom decreases for Be(55) relative to Be(13). The binding energy per atom, 1.3 eV for Be(55) and 0.8-0.9 eV for Be(13), reflects the greater total number of bonds in the larger cluster rather than a difference in bonding. The energies per bond are much more similar, in the range of 0.30-0.34 eV for both clusters. The size of the p-basis set used influences both stability and ionization potentials strongly.

  17. Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures

    Institute of Scientific and Technical Information of China (English)

    陈双涛; 赵红利; 马斌; 侯予

    2012-01-01

    A modularized code based on the Finite Element QZ (FEQZ) method is developed, for a better estimate of the critical speed and a more convenient method of rotor-dynamic stability analysis for a gas bearing high speed turboexpander rotor system with actual structure and application of a cryogenic turboexpander. This code is then validated by the experimental data of a gas bearing turboexpander, with a rotor diameter of 25 mm and a rated speed of 106,400 rpm. With this code, four rotors with different structures, available to the turboexpander, are parametrically analyzed by the available speed range, vibration modes and logarithmic attenuation rate. The results suggest that the rotor with a structure of two thrust collars on the system exhibits a better performance in the designed conditions.

  18. Improving the stability of peptidic radiotracers by the introduction of artificial scaffolds: which structure element is most useful?

    Science.gov (United States)

    Bacher, Lisa; Fischer, Gabriel; Litau, Shanna; Schirrmacher, Ralf; Wängler, Björn; Baller, Marko; Wängler, Carmen

    2015-08-01

    Peptidic radiotracers are highly potent substances for the specific in vivo imaging of various biological targets with Single Photon Emission Computed Tomography and Positron Emission Tomography. However, some radiolabeled peptides such as bombesin analogs were shown to exhibit only a limited stability, hampering a successful target visualization. One option to positively influence the stability of radiolabeled peptides is the introduction of certain artificial molecular scaffolds. In order to comparatively assess the influence of different structure elements on the stability of radiolabeled peptides and to identify those structure elements being most useful for peptide radiotracer stabilization, several monomeric and dimeric bombesin derivatives were synthesized, exhibiting differing molecular designs and the chelator NODAGA for (68) Ga-labeling. The radiolabeled peptides were evaluated regarding their in vitro stability in human serum to determine the influence of the introduced molecular scaffolds on the peptides' serum stabilities. The results of the evaluations showed that the introduction of scaffold structures and the overall molecular design have a substantial impact on the stabilities of the resulting peptidic radiotracers. But besides some general trends found using certain scaffold structures, the obtained results point to the necessity to empirically assess their influence on stability for each susceptible peptidic radiotracer individually.

  19. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.

    Science.gov (United States)

    Hu, Yongbo; Unwalla, Ray; Denny, R Aldrin; Bikker, Jack; Di, Li; Humblet, Christine

    2010-01-01

    High throughput microsomal stability assays have been widely implemented in drug discovery and many companies have accumulated experimental measurements for thousands of compounds. Such datasets have been used to develop in silico models to predict metabolic stability and guide the selection of promising candidates for synthesis. This approach has proven most effective when selecting compounds from proposed virtual libraries prior to synthesis. However, these models are not easily interpretable at the structural level, and thus provide little insight to guide traditional synthetic efforts. We have developed global classification models of rat, mouse and human liver microsomal stability using in-house data. These models were built with FCFP_6 fingerprints using a Naïve Bayesian classifier within Pipeline Pilot. The test sets were correctly classified as stable or unstable with satisfying accuracies of 78, 77 and 75% for rat, human and mouse models, respectively. The prediction confidence was assigned using the Bayesian score to assess the applicability of the models. Using the resulting models, we developed a novel data mining strategy to identify structural features associated with good and bad microsomal stability. We also used this approach to identify structural features which are good for one species but bad for another. With these findings, the structure-metabolism relationships are likely to be understood faster and earlier in drug discovery.

  20. STRUCTURAL SYNTHESIS OF A STABILIZING ROBUST CONTROLLER OF THE ROTOR FLUX LINKAGE

    Directory of Open Access Journals (Sweden)

    N. J. Khlopenko

    2017-03-01

    Full Text Available Purpose. The aim is to structural synthesis of robust stabilizing control of the rotor flux vector control system of induction motor. Methodology. Synthesis controller structure was carried out in two stages. The first stage constructed a mathematical model of the channel of the rotor flux with parametric uncertainty and calculated transfer function of H∞-suboptimal controller by method of the mixed sensitivity. The second stage was carried out the expansion of the transfer function of the continued fraction for the Euclidean algorithm. This fraction was used to construct the controller structural scheme. Results. Computer modeling of the transfer function of H∞-suboptimal controller. Achieved decomposition found the transfer function of the continued fraction. The flow diagram of suboptimal H∞-controller with a proportional and integrating links and a few summers. The curves of transient rotor flux linkage in packages Robust Control Toolbox and Simulink. They coincide in the steady state, but differ among themselves in the transition. Originality. We developed the method of structural synthesis of robust stabilizing controller of the flux linkage rotor, H∞-suboptimal structural scheme of which is presented in the form of simple compounds integrating and proportional elements of the same order as the controller with the strictly correct transfer function, and takes into account the parametric uncertainty of control object. The results of the simulation of transient processes in a variety of packages MATLAB applications confirms the adequacy and small sensitivity of the system to parametric perturbation. Practical value. The resulting structure of the controller makes it possible to carry out the modernization of electric control systems, in use, with minimal financial costs.

  1. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    Science.gov (United States)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  2. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis

    Science.gov (United States)

    Williamson, Benjamin H.; Kerns, Robert J.; Berger, James M.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) infects one-third of the world’s population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone–gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone–enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance. PMID:26792525

  3. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis.

    Science.gov (United States)

    Blower, Tim R; Williamson, Benjamin H; Kerns, Robert J; Berger, James M

    2016-02-16

    Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone-gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone-enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance.

  4. Energetic Stabilities, Structural and Electronic Properties of Monolayer Graphene Doped with Boron and Nitrogen Atoms

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2016-12-01

    Full Text Available The structural, energetic, and electronic properties of single-layer graphene doped with boron and nitrogen atoms with varying doping concentrations and configurations have been investigated here via first-principles density functional theory calculations. It was found that the band gap increases with an increase in doping concentration, whereas the energetic stability of the doped systems decreases with an increase in doping concentration. It was observed that both the band gaps and the cohesive energies also depend on the atomic configurations considered for the substitutional dopants. Stability was found to be higher in N-doped graphene systems as compared to B-doped graphene systems. The electronic structures of B- and N-doped graphene systems were also found to be strongly influenced by the positioning of the dopant atoms in the graphene lattice. The systems with dopant atoms at alternate sublattices have been found to have the lowest cohesive energies and therefore form the most stable structures. These results indicate an ability to adjust the band gap as required using B and N atoms according to the choice of the supercell, i.e., the doping density and substitutional dopant sites, which could be useful in the design of graphene-based electronic and optical devices.

  5. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.

    Science.gov (United States)

    Morgan, Brittany R; Zitzewitz, Jill A; Massi, Francesca

    2017-08-08

    Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    Science.gov (United States)

    Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.

    2017-03-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  7. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    Science.gov (United States)

    Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.

    2017-01-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments. PMID:28272524

  8. A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage

    Science.gov (United States)

    Jo, Mi Ru; Heo, Yoon-Uk; Lee, Yoon Cheol; Kang, Yong-Mook

    2013-12-01

    A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached to its surface, and is responsible for the altered electrochemical reactions with relatively small volume expansion routes. The FeSi2Ti matrix significantly contributes to not only the stabilization of cyclic retention, but also the enhancement of conductivity, as well as a high rate capability unprecedented in research on Si-based anodes. This achievement demonstrates the potency of this novel hybrid design for electrode materials for energy storage.A nano-Si/FeSi2Ti hetero-structure has been synthesized for highly reversible Li-ion batteries by using a simple melt-spinning method. We demonstrate that this composite has a very peculiar core/shell structure in which the FeSi2Ti alloy plays various pivotal roles as a mechanically supporting backbone and as an electronic pathway for the active Si attached to its surface, and is responsible for the altered electrochemical reactions with relatively small volume expansion routes. The FeSi2Ti matrix significantly contributes to not only the stabilization of cyclic retention, but also the enhancement of conductivity, as well as a high rate capability unprecedented in research on Si-based anodes. This achievement demonstrates the potency of this novel hybrid design for electrode materials for energy storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04954j

  9. Ribbon structure stabilized by C10 and C12 turns in αγ hybrid peptide.

    Science.gov (United States)

    Wani, Naiem Ahmad; Kant, Rajni; Gupta, Vivek Kumar; Aravinda, Subrayashastry; Rai, Rajkishor

    2016-04-01

    The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc-Gpn-L-Pro-NHMe (1), Boc-Aib-Gpn-L-Pro-NHMe (2), and Boc-L-Pro-Aib-Gpn-L-Pro-NHMe (3). Peptides 1 and 2 adopt expanded 12-membered (C12 ) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β-turn (C10 ) followed by the expanded C12 helical γα turn. Both right-handed and left-handed helical conformations for Aib residue are observed in peptides 2 and 3, respectively.

  10. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...... the N atoms remaining in the solid state after H2-reduction are trapped by Cr atoms. Quantitative interpretation in terms of the local distortions around Cr atoms and their N coordination number reveals that no Cr–N clusters or CrN platelets are present....

  11. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  12. Global stability of a delayed mosquito-transmitted disease model with stage structure

    Directory of Open Access Journals (Sweden)

    B. G. Sampath Aruna Pradeep

    2015-01-01

    Full Text Available This article presents a new eco-epidemiological deterministic delay differential equation model considering a biological controlling approach on mosquitoes, for endemic dengue disease with variable host (human and variable vector (Aedes aegypti populations, and stage structure for mosquitoes. In this model, predator-prey interaction is considered by using larvae as prey and mosquito-fish as predator. We give a complete classification of equilibria of the model, and sufficient conditions for global stability/global attractivity of some equilibria are given by constructing suitable Lyapunov functionals and using Lyapunov-LaSalle invariance principle. Also, numerical simulations are presented to show the validity of our results.

  13. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies

    Directory of Open Access Journals (Sweden)

    C.A. Royer

    2005-08-01

    Full Text Available A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

  14. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    . Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  15. Stability and structure of quark matter in a molecular dynamics framework

    CERN Document Server

    Akimura, Y; Yoshinaga, N; Chiba, S; Akimura, Yuka; Maruyama, Toshiki; Yoshinaga, Naotaka; Chiba, Satoshi

    2005-01-01

    We study stability and structure of quark matters as a function of density in a framework of molecular dynamics (MD). Using appropriate effective interactions and the frictional cooling method, we search for the minimum energy of the system. Transition from confined to deconfined phase is observed at densities of 2 -- 3$\\rho_0$, where $\\rho_0$ is the nuclear matter saturation density. The $uds$ matter becomes more stable than the charge-neutral $ud$ matter at 3$\\rho_0$, but the $udd$ matter is the most stable even at high density.

  16. Stability and structure of quark matter in a molecular dynamics framework

    Energy Technology Data Exchange (ETDEWEB)

    Akimura, Yuka [Department of physics, Saitama University, Sakura-Ku, Saitama-Shi, 338-8570 (Japan); Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Yoshinaga, Naotaka [Department of physics, Saitama University, Sakura-Ku, Saitama-Shi, 338-8570 (Japan); Chiba, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2005-03-07

    We study stability and structure of quark matters as a function of density in a framework of molecular dynamics (MD). Using appropriate effective interactions and the frictional cooling method, we search for the minimum energy of the system. Transition from confined to deconfined phase is observed at densities of 2-3{rho}0, where {rho}0 is the nuclear matter saturation density. The uds matter becomes more stable than the electrically neutral ud matter at 3{rho}0, but the udd matter is the most stable even at high density.

  17. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration

    Science.gov (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.

    2017-04-01

    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  18. Stability analysis of age-structured population equations by pseudospectral differencing methods.

    Science.gov (United States)

    Breda, Dimitri; Cusulin, Caterina; Iannelli, Mimmo; Maset, Stefano; Vermiglio, Rossana

    2007-05-01

    In this paper a numerical scheme to investigate the stability of linear models of age-structured population dynamics is studied. The method is based on the discretization of the infinitesimal generator associated to the semigroup of the solution operator by using pseudospectral differencing techniques, hence following the approach recently proposed in Breda et al. [SIAM J Sci Comput 27(2): 482-495, 2005] for delay differential equations. The method computes the rightmost characteristic roots and it is shown to converge with spectral accuracy behavior.

  19. Thermal and structural stability of medium energy target carrier assembly for NOvA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Ader, C.; Anderson, K.; Hylen, J.; Martens, M.; /Fermilab

    2010-05-01

    The NOvA project will upgrade the existing Neutrino at Main Injector (NuMI) project beamline at Fermilab to accommodate beam power of 700 kW. The Medium Energy (ME) graphite target assembly is provided through an accord with the State Research Center of Russia Institute for High Energy Physics (IHEP) at Protvino, Russia. The effects of proton beam energy deposition within beamline components are considered as thermal stability of the target carrier assembly and alignment budget are critical operational issues. Results of finite element thermal and structural analysis involving the target carrier assembly is provided with detail regarding the target's beryllium windows.

  20. Evidence of induced structural and conduction anisotropy in scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Barbashov, Vladimir; Nesova, Elizaveta; Pismenova, Natalia; Radionova, Olga [Donetsk Phys. Tech. Institute, N.A.S. Ukraine, R. Luxemburg St. 72, 83114 Donetsk (Ukraine)

    2012-04-15

    Evidence of current induced structural and conduction anisotropy was experimentally established in scandia-stabilized zirconia ceramics. It was found that these effects are observed only when the material is in the rhombohedral phase. It was shown using conductivity measurements and X-ray phase analysis that anisotropic behavior of polycrystalline ZrO{sub 2}-Sc{sub 2}O{sub 3} ceramics is induced by a low-amplitude alternating current in the temperature range corresponding to a rhombohedral-to-cubic phase transition. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...

  2. Stability and electronic structure of InN nanotubes from first-principles study

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Juan

    2006-01-01

    The stability and electronic structure of hypothetical InN nanotubes were studied by first-principles density functional theory.It was found that the strain energies of InN nanotubes are smaller than those of carbon nanotubes of the same radius.Single-wall zigzag InN nanotubes were found to be semiconductors with a direct band gap while the armchair counterparts have an indirect band gap.The band gaps of nanotubes decrease with increasing diameter,similar to the case of carbon nanotubes.

  3. STUDY ON STABILITY OF STRUCTURE AND PROPERTIES OF TIOPC/SAN PHOTOCONDUCTIVE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Li-fang Tong; Li-wei Li; Mang Wang

    2003-01-01

    The influence of the condensed structure of poly(styrene-co-acrylonitrile) (SAN) and traces of tetrahydrofuran (THF) that remained in titanyl phthalocyanine (TiOPc)/SAN films after fabrication on the photoconductive stability of TiOPc/SAN composites is studied. The results reveal that the existence of traces of THF results in the increase of the photoconductivity and the charging voltage. The main factors responsible for the unstable photoconductivity of the photoconductors are believed to be the relaxation of SAN and the slow volatilization of THF.

  4. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  5. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Apartado Postal 55-534, 09340, D.F. (Mexico); Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Tabuleiro do Martins, Maceio, AL, 57072-970 (Brazil); Ribeiro, Rogerio Tavares; Longo, Ricardo L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Navarro, Marcelo, E-mail: navarro@ufpe.b [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico)

    2010-11-30

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A{sup 2-} + A {yields} 2A{center_dot}{sup -}). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  6. Influence of protic ionic liquids on the structure and stability of succinylated Con A.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru

    2012-01-01

    We report the synthesis of a series of ionic liquids (ILs) from various ions having different kosmotropicity including dihydrogen phosphate (H(2)PO(4)(-)), hydrogen sulfate (HSO(4)(-)) and acetate (CH(3)COO(-)) as anions and chaotropic cation such as trialkylammonium cation. To characterize the biomolecular interactions of ILs with protein, we have explored the stability of succinylated Con A (S Con A) in the presence of these aqueous ILs, which are varied combinations of kosmotropic anion with chaotropic cation such as triethylammonium dihydrogen phosphate [(CH(3)CH(2))(3)NH][H(2)PO(4)] (TEAP), trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP) and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). Circular dichroism (CD) and fluorescence experiments have been used to characterize the stability of S Con A by ILs. Our data distinctly demonstrate that the long alkyl chain IL TEAP is a strong stabilizer for S Con A. Further, our experimental results reveal that TEAP is an effective refolding enhancer for S Con A from a thermally denatured protein structure.

  7. Structural Characterization of Mg/Al hydrotalcite-like Compounds and their Thermal Stability

    Science.gov (United States)

    Zhang, Shuhua; Yang, Siyuan; Wang, Cheng; Liu, Weijun; Gu, Xiaodan; Gan, Wenjun; Xue, Xiaoyu

    2014-03-01

    Hydrotalcite-like compounds, repersented by the formula [M1-x 2 + Mx3+ (OH)2]Xx/n n - . nH2O (M2+ = Ni2+, Mg2+, Cu2+,etc; M3+ = Al3+, Fe3+, etc; Xn- = CO32- , NO3-,etc) possess the brucite-like layers [Mg(OH)2] with positive charge and anionic compounds in the interlayer to form neutral materials. Catalytic effects to decompose NOx from automobile exhaust were highly related with the difference of M2+ and thermal stability because the catylists locate are about 200 ~ 500°. In this paper, Mg-Al-Cu and Mg-Al-Ni hydrotalcite-like compounds were characterized by XRD and FT-IR spectra and the thermal stability were analyzed by TGA and DTA. Even though they both have the typical diffraction peaks of hydrotalcites, but their interlayer spaces are different. Some weak chemical bonds were observed to be formed in Mg-Al-Ni hydrotalcites by FT-IR. Mg-Al-Ni hydrotalcite-like compound degraded at lower temperature, by contrast, Mg-Al-Cu hydrotalcite has the better structural stablilty and thermal stability.

  8. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  9. Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Qiu, Longbin; Ono, Luis K; Jiang, Yan; Leyden, Matthew R; Raga, Sonia R; Wang, Shenghao; Qi, Yabing

    2017-05-25

    The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO2, but the device is not stable and degrades rapidly. With an amorphous TiO2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO2. Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH3NH3PbI3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO2 and CH3NH3PbI3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO2 can enhance device stability, strongly suggests that the interface interaction between TiO2 and CH3NH3PbI3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

  10. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    LI JinPing; HAN JieOai; MENG SongHe; ZHANG XingHong

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels,the valence elec-tron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules.The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13,the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15,and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2.The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>ZrCeO2>ZrYOZrMgO>ZrCaO.The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are ZrCeO2>c-ZrO2>ZrYO>ZrMgO>ZrCaO.The percent-ages of the total number of covalent electrons in the descending order arec-ZrO2>ZrYO> ZrCeO2>ZrMgO> ZrCaO.From the above analysis,it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  11. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World

  12. Oxidative stability of mayonnaise and milk drink produced with structured lipids based on fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2004-01-01

    The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg/kg) or lactof......The oxidative stabilities of traditional fish oil (FO), randomized lipids (RFO), or specific structured lipids (SFO) produced from fish oil were compared when incorporated into either milk drink or mayonnaise. Furthermore, the effect of adding the potential antioxidants EDTA (240 mg....../kg) or lactoferrin (1000 mg/kg) to the milk drink based on SFO was investigated. The lipid type significantly affected the oxidative stability of both mayonnaises and milk drinks: The oxidative stability decreased in the order RFO>FO>SFO. The reduced oxidative stability in the SFO food emulsions could...

  13. Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin; Laurencin, Danielle; Burnell, Victoria; Smith, Mark E.; Grover, Liam M.; Hriljac, Joseph A.; Wright, Adrian J. (CNRS-UMR); (Birmingham UK)

    2012-10-25

    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilizers, by utilizing pyrophosphates (P{sub 2}O{sub 7}{sup 4-}); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O and Sr{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond 8 {angstrom} in both phases, with this local order found to resemble crystalline analogues. Further studies, including {sup 1}H and {sup 31}P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P{sub 2}O{sub 7} units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to 450 C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P{sub 2}O{sub 7} anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO{sub 4}{sup 2-} anions within the amorphous matrix. The latter anions then recombined into P{sub 2}O{sub 7} ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme

  14. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2016-01-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be much larger than the electron scattering opacity primarily due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity "bump" on the thermal stability and vertical structure of radiation pressure dominated accretion disks, utilizing three dimensional radiation magneto-hydrodynamic simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a $5\\times 10^8$ solar mass black hole with $\\sim 3\\%$ of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than $10$ thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as ...

  15. Molecular dynamics study on structure stability, lattice variation, and melting behavior of silver nanoparticles

    Science.gov (United States)

    Chen, L.; Wang, Q.; Xiong, L.

    2017-09-01

    Molecular dynamics simulation is used to comparatively investigate the structure stability, lattice variation, and surface energy of Ag nanoparticles. It is revealed that the most stable structure of shapes transformed from an octahedron to a cuboctahedron with the cluster size increasing, and the energetically larger lattice contraction of particles should have higher surface energy. Simulation also shows that the cubic shapes have contributed highly to the lattice contractions of particles, and the lattice constants of octahedral shapes are the nearest to bulk Ag. In addition, a systematic work on the melting behavior of polyhedral shapes is carried out by shape factor, and the surface energy-dependent shape evolution of Ag particles is revealed. The present results agree well with experimental observations in the literature, and provide a deep understanding of the different physical and chemical properties of Ag nanoparticles.

  16. Structural stability and phase transition of Bi 2 Te 3 under high pressure and low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. L.; Zhang, S. J.; Zhu, J. L.; Liu, Q. Q.; Wang, X. C.; Jin, C. Q.; Yu, J. C.

    2017-09-01

    Structural stability and phase transition of topological insulator Bi2Te3 were studied via angle-dispersive synchrotron radiation X-ray diffraction under high pressure and low temperature condition. The results manifest that the R-3m phase (phase I) is stable at 8 K over the pressure range up to 10 GPa and phase transition occurs between 8 K and 45 K at 8 GPa. According to the Birch-Murnaghan equation of state, the bulk modulus at ambient pressure B0 was estimated to be 45 ± 3 GPa with the assumption of B0' = 4. The structural robustness of phase I at 8 K suggests that the superconductivity below 10 GPa is related to phase I. Topological properties of superconducting Bi2Te3 phase under pressure were discussed.

  17. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Junghyun

    2015-08-04

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  18. Effects of PEG size on structure, function and stability of PEGylated BSA

    DEFF Research Database (Denmark)

    Plesner, Bitten; Fee, Conan J.; Westh, Peter;

    2011-01-01

    . In contrast, the thermal stability of BSA was affected by PEGylation. The apparent unfolding temperature Tmax measured by differential scanning calorimetry (DSC) decreased with PEGylation, whereas the temperature of aggregation, Tagg, measured by dynamic light scattering (DLS) increased with PEGylation....... The unfolding temperature and the temperature of aggregation were both independent of the molecular weight of the PEG chain. Possible functional changes of BSA after PEGylation were measured by Isothermal Titration Calorimetry (ITC), where the binding of sodium dodecyl sulphate (SDS) to BSA and PEGylated BSA...... the present biophysical characterisation, it is concluded that after PEGylation BSA appears to be unaffected structurally (secondary and tertiary structure), slightly destabilised thermally (unfolding temperature), stabilised kinetically (temperature of aggregation) and has an altered functionality (binding...

  19. Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.

    Science.gov (United States)

    Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M

    2013-04-26

    We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.

  20. Dynamic-stall and structural-modeling effects on helicopter blade stability with experimental correlation

    Science.gov (United States)

    Barwey, D.; Gaonkar, Gopal H.

    1994-04-01

    The effects of blade and root-flexure elasticity and dynamic stall on the stability of hingeless rotor blades are investigated. The dynamic stall description is based on the ONERA models of lift, drag, and pitching moment. The structural analysis is based on three blade models that range from a rigid flap-lag model to two elastic flap-lag-torsion models, which differ in representing root-flexure elasticity. The predictions are correlated with the measured lag damping of an experimental isolated three-blade rotor; the correlation covers rotor operations from near-zero-thrust conditions in hover to highly stalled, high-thrust conditions in foward flight. That correlation shows sensitivity of lag-damping predictions to structural refinements in blade and root-flexure modeling. Moreover, this sensitivity increases with increasing control pitch angle and advance ratio. For high-advance-ratio and high-thrust conditions, inclusion of dynamic stall generally improves the correlation.

  1. Multicamera system extrinsic stability analysis and large-span truss string structure displacement measurement.

    Science.gov (United States)

    Liu, Cong; Dong, Shuai; Mokhtar, Mohammed; He, Xiaoyuan; Lu, Jinyu; Wu, Xiaolong

    2016-10-10

    A novel technique for measuring the displacements of large-span truss string structures that employs multicamera systems is proposed. The coordinates of the stereo-vision systems are unified in a single global coordinate system by employing 3D data reconstructed using close-range photogrammetry. To estimate the camera's attitude motions during an experiment, an instantaneous extrinsic rectification algorithm was developed. Experiments in which a camera was rotated and translated were conducted to verify the accuracy and precision of the developed algorithm. In addition, the proposed multicamera systems were employed to analyze a large-span truss string structure. The displacement results obtained from numerical simulations and experiments using pre-calibration and rectification methods are compared in this paper, and the stability of the camera's extrinsic parameters is discussed.

  2. Structure and phase stability of a Pu–0.42 wt.% Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.W., E-mail: David.Wheeler@awe.co.uk; Ennaceur, S.M.; Matthews, M.B.; Roussel, P.

    2014-09-15

    Highlights: • Examination of the structure and properties of a Pu–0.42 wt.% Ga alloy. • Good agreement between as-cast α-Pu contents from density measurements, DSC and dilatometry. • Density, DSC and dilatometry of as-cast alloy show α-Pu contents of between 21 and 27%. • The heat-treated alloy has a wholly δ-Pu structure at ambient temperature. • Heat-treated alloy exhibited high stability when cold treated at between −50 °C and −90 °C. - Abstract: This paper describes the characterisation of a cast plutonium–gallium (Pu–0.42 wt.% Ga) alloy, both in the as-cast condition as well as following an homogenising heat treatment. The alloy was subjected to density measurements, differential scanning calorimetry (DSC), dilatometry, optical microscopy, electron probe micro-analysis (EPMA), X-ray diffraction (XRD) and hardness measurements. The Ga content is insufficient to retain a wholly delta-Pu (δ-Pu) phase in the as-cast condition. However, the 250-h heat treatment at 450 °C is sufficient to redistribute the Ga resulting in an apparently stable δ-Pu phase. DSC and dilatometry did not indicate the presence of any alpha-Pu (α-Pu) phase in the heat-treated alloy. XRD patterns of the alloys also showed α-Pu to be present, although in the case of the heat-treated alloy this may be a consequence of incomplete removal of the transformed surface layer during the electro-polishing process. The stability of the δ-Pu phase in the heat-treated alloy was evaluated by cooling specimens to sub-zero temperatures. The alloy exhibited a high degree of stability when subjected to cold treatments at temperatures of between −50 °C and −90 °C.

  3. Structural stability and masnetism of metastable Ni-Pt intermetallic compounds studied by ab initio calculation

    Institute of Scientific and Technical Information of China (English)

    CHE XingLai; LI diaHao; DAI Ye; LIU BaiXin

    2009-01-01

    The self-consistent electronic structure calculations were carried out with the accurate frozen-core full-potential projector augmented-wave method on 13 Ni-Pt intermetallic compounds of simple crys-talline structures, i.e. A15, D019, D03 and L12 Ni3Pt and NiPt3, and α-NiAs, B1, B2, L28, and L10 NiPt. The calculations reveal that the L12 Ni3Pt, L10 NiPt and L12 NiPt3 are energetically more stable than their respective competitive structures, indicating that the three structures may be formed in some appro-priate conditions. The obtained results match well with the experimental observation or other theory predictions. It is found that there is hybridization between Ni 3d and Pt 5d states, which may signifi-cantly affect the structural stability and magnetism of metastable Ni-Pt intermetallic compounds.

  4. Structural stability and mechanical properties of Pt–Zr alloys from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yong, E-mail: y_pan@ipm.com.cn [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); Wang, Xiaohong; Chen, Songsong; Wang, Lijun; Tong, Chuangchuang; Cao, Zhen [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China)

    2015-09-15

    Highlights: • The convex hull indicates that Pt{sub 11}Zr{sub 7} is the most stable structure. • Pt{sub 8}Zr has the strongest volume deformation resistance. • Pt{sub 3}Zr has the strongest shear deformation resistance and has highest stiffness. • The high elastic modulus originated from Pt concentration and bond characteristic. - Abstract: The correlation between structural stability and mechanical properties of Pt–Zr alloys is systematically investigated by first-principles calculations. Additionally, the thermodynamic properties and electronic structure are discussed in detail. The convex hull indicates that the Pt{sub 10}Zr{sub 7} with orthorhombic structure is more stable than other Pt–Zr alloys at ground state. The bulk modulus of Pt–Zr alloys increases linearly as Pt concentration increases. Pt{sub 8}Zr has strong volume deformation resistance, which is derived from the high Pt concentration. Pt{sub 3}Zr exhibits strong shear deformation resistance and has high elastic stiffness, which originated from the strong Pt–Pt metallic bond along the b-direction. The trend of Debye temperature is consistent with the variation of shear modulus and Young’s modulus, and the calculated Debye temperature of Pt{sub 3}Zr is 342 K, which is bigger than other Pt–Zr alloys. The results provide a helpful for the design of Pt-based high-temperature structural materials with excellent mechanical properties.

  5. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  6. Stability of LS and LS2 crystal structures in binary mixtures of hard and charged spheres.

    Science.gov (United States)

    Hynninen, A-P; Filion, L; Dijkstra, M

    2009-08-14

    We study by computer simulations the stability of various crystal structures in a binary mixture of large and small spheres interacting either with a hard sphere or a screened-Coulomb potential. In the case of hard-core systems, we consider structures that have atomic prototypes CrB, gammaCuTi, alphaIrV, HgBr2, AuTe2, Ag2Se and the Laves phases (MgCu2, MgNi2, and MgZn2) as well as a structure with space group symmetry 74. By utilizing Monte Carlo simulations to calculate Gibbs free energies, we determine composition versus pressure and constant volume phase diagrams for diameter ratios of q=0.74, 0.76, 0.8, 0.82, 0.84, and 0.85 for the small and large spheres. For diameter ratios 0.76 mixture. By extrapolating to the thermodynamic limit, we show that the MgZn2 structure is the most stable one of the Laves structures. We also calculate phase diagrams for equally and oppositely charged spheres for size ratio of 0.73 taking into consideration the Laves phases and CsCl. In the case of equally charged spheres, we find a pocket of stable Laves phases, while in the case of oppositely charged spheres, Laves phases are found to be metastable with respect to the CsCl and fluid phases.

  7. The stability and catalytic activity of W13@Pt42 core-shell structure

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  8. Structural stability and magnetism of metastable Ni-Pt intermetallic compounds studied by ab initio calculation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The self-consistent electronic structure calculations were carried out with the accurate frozen-core full-potential projector augmented-wave method on 13 Ni-Pt intermetallic compounds of simple crystalline structures,i.e. A15,D019,D03 and L12 Ni3Pt and NiPt3,and α-NiAs,B1,B2,L2a,and L10 NiPt. The calculations reveal that the L12 Ni3Pt,L10 NiPt and L12 NiPt3 are energetically more stable than their respective competitive structures,indicating that the three structures may be formed in some appropriate conditions. The obtained results match well with the experimental observation or other theory predictions. It is found that there is hybridization between Ni 3d and Pt 5d states,which may significantly affect the structural stability and magnetism of metastable Ni-Pt intermetallic compounds.

  9. The stability and catalytic activity of W13@Pt42 core-shell structure.

    Science.gov (United States)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  10. eVolver: an optimization engine for evolving protein sequences to stabilize the respective structures.

    Science.gov (United States)

    Brylinski, Michal

    2013-07-31

    Many structural bioinformatics approaches employ sequence profile-based threading techniques. To improve fold recognition rates, homology searching may include artificially evolved amino acid sequences, which were demonstrated to enhance the sensitivity of protein threading in targeting midnight zone templates. We describe implementation details of eVolver, an optimization algorithm that evolves protein sequences to stabilize the respective structures by a variety of potentials, which are compatible with those commonly used in protein threading. In a case study focusing on LARG PDZ domain, we show that artificially evolved sequences have quite high capabilities to recognize the correct protein structures using standard sequence profile-based fold recognition. Computationally design protein sequences can be incorporated in existing sequence profile-based threading approaches to increase their sensitivity. They also provide a desired linkage between protein structure and function in in silico experiments that relate to e.g. the completeness of protein structure space, the origin of folds and protein universe. eVolver is freely available as a user-friendly webserver and a well-documented stand-alone software distribution at http://www.brylinski.org/evolver.

  11. Organised structures in wall turbulence as deduced from stability theory-based methods

    Indian Academy of Sciences (India)

    P K Sen; S V Veeravalli; P W Carpenter; G Joshi; P S Josan

    2007-02-01

    In earlier work, we have explored the relevance of hydrodynamic stability theory to fully developed turbulent wall flows. Using an extended Orr-Summerfeld Equation, based on an anisotropic eddy-viscosity model, it was shown that there exists a wide range of unstable wave numbers (wall modes), which mimic some of the key features of turbulent wall flows. Here we present experimental confirmation for the same. There is good qualitative and quantitative agreement between theory and experiment. Once the dominant coherent structure is obtained from stability theory, control of turbulence would be the next logical step. As shown, the use of a compliant wall shows considerable promise. We also present some theoretical work for bypass transition (Klebanoff/K-modes), wherein the receptivity of a laminar boundary layer to a vortex sheet in the freestream has been studied. Further, it is shown that triadic interaction between K-modes, 2D TS waves and 3D TS waves can lead to rapid algebraic growth. A similar mechanism seems to carry over to inner wall structures in wall turbulence and perhaps this is the “root cause” for sustenance of turbulence.

  12. Practical robust stabilization of PMAC servo drive based on continuous variable structure control

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, B.; Cafuta, P.; Znidaric, M. [Univ. of Maribor (Slovenia). Faculty of Electrical Engineering and Computer Sciences

    1996-12-01

    In the paper the two stage control design of a high performance PMAC servo drive is described. In the first stage the nominal PMAC motor model is discussed as an analytical nonlinear system, transformed into the controllable canonical Brunovsky`s forms on the basis of input-output linearization. The influence of the load torque is considered implicitly by introducing the disturbance observer. Due to the sensitivity of the nominal model based control to parameter perturbations the linear tracking control is extended in the second stage by a continuous variable structure stabilizing control derived from Lyapunov`s function of the augmented feedback system. The design of the variable structure control requires no knowledge of the upper bounds of the perturbation function; instead, it considers the variable bounds of the available control signal. Undesired chattering of states and controlled variables are excluded. The introduced two stage control design assures practical robust stabilization for the class of bounded nonlinear perturbations satisfying the matching conditions without affecting the relative degree of the feedback system. Experimental results of the proposed PMAC servo drive control are presented.

  13. Stabilization of Si_60 Cage Structure: The Agony and the Ecstasy

    Science.gov (United States)

    Kawazoe, Y.; Sun, Q.; Wang, Q.; Rao, B. K.; Jena, P.

    2003-03-01

    The unique role of silicon in the micro-electronics industry has motivated many researchers to find ways to stabilize Si_60 with fullerene structure. In spite of numerous experimental attempts, synthesis of a theoretically predicted C_60-supported Si_60 cluster (C_60@Si_60) has not been possible. Using a state-of-the-art theoretical method, we provide the first answer for this long-standing contradiction between the experimental observation and the theoretical prediction. The flaws in earlier theoretical works are pointed out, and Si_60 is shown to be unstable in the fullerene structure either on its own or when supported on a C_60 fullerene (C_60@Si_60). On the other hand, we show that Si_60 cage can be stabilized by using magic clusters such as Al_12X (X = Si, Ge, Sn, Pb) as endohedral units, which have been identified in recent experiment as stable clusters and as suitable building blocks for cluster-assembled materials.

  14. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  15. Structure, Mixing, and Stability of Flush and Elevated Jets in Crossflow

    Science.gov (United States)

    Gevorkyan, Levon; Getsinger, Daniel; Peng, Terry Wen Yu; Smith, Owen; Karagozian, Ann

    2013-11-01

    The present experiments explore the characteristics of equidensity and variable density transverse jets using acetone PLIF, stereo PIV, and hot wire anemometry. Jets composed of mixtures of helium and nitrogen are injected normally from different types of nozzles (flush and elevated with respect to the wind tunnel wall, and converging as well as straight shapes) into an air crossflow. A range of jet-to-crossflow momentum flux ratios J and density ratios S is examined, within which previous studies have identified conditions for upstream shear layer transition from convective to absolute instability. The present study examines the relationships among transverse jet structure, including vortical rollup and cross-sectional symmetry/asymmetry, jet mixing characteristics, and shear layer stability characteristics. The role of the crossflow boundary layer as well as jet injection systems for structure, mixing, and stability is evaluated and related to prior observations on vorticity evolution for jets in crossflow. Supported by NSF grant CBET-1133015 & AFOSR grant FA9550-11-1-0128 (A001768901).

  16. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    Science.gov (United States)

    Lv, Ming; Liu, Haiqiang

    2015-07-01

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV-Vis diffuse reflectance spectrum (UV-vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO2 reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M2+ on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials.

  17. The Stabilizing Effect of Industrial Structure Upgrade on Economic Fluctuations in China

    Institute of Scientific and Technical Information of China (English)

    FUQIAN; FANG; XINYU; ZHAN

    2015-01-01

    Empirical study using a time-varying parameter model indicates that since the reform and opening up of China,its industrial structure upgrade has had an increasingly significant stabilizing effect on the amplitude of economic fluctuations.A further analysis using a TGARCH model reveals that the three major industrial sectors have asymmetrical effects on the size of macroeconomic fluctuation:the primary industry(extraction)has little effect;the secondary industry(manufacturing)has a leverage effect mainly caused by heavy industry;the tertiary industry(services)has a clear stabilizing effect,with the effect of transportation,logistics,the postal industry,housing-catering services,and other service industries being most significant,and the effect of wholesale,retail,the finance industry and real estate being less significant due to their own large fluctuations.The policy implications of the findings are that to maintain stable growth in the economy,China should optimize the relations of the three major industrial sectors,and further push for the upgrading of the industrial structure,especially the development of the tertiary industry.

  18. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    Science.gov (United States)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  19. Bovine lactoperoxidase - a versatile one- and two-electron catalyst of high structural and thermal stability.

    Science.gov (United States)

    Banerjee, Srijib; Furtmüller, Paul G; Obinger, Christian

    2011-02-01

    Lactoperoxidase (LPO), a member of the peroxidase-cyclooxygenase superfamily, is found in multiple human exocrine secretions and acts as a first line of defense against invading microorganisms by production of antimicrobial oxidants. Because of its ability to efficiently catalyze one- and two-electron oxidation reactions of inorganic and organic compounds, the heme peroxidase is widely used in food biotechnology, cosmetic industry, and diagnostic kits. In order to probe its structural integrity, conformational, and thermal stability, we have undertaken a comprehensive investigation by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry (DSC). The oxidoreductase exhibits a high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of DTT. Due to its unique ester bonds between the prosthetic group and the protein as well as six intra-chain disulfides, unfolding of the central compact (-helical core occurs concomitantly with denaturation of the heme cavity. The corresponding enthalpic and entropic contributions to the free enthalpy of unfolding are presented. Together with spectroscopic data they will be discussed with respect to the known structure of bovine LPO and homologous myeloperoxidase as well as to its practical application.

  20. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  1. The Superior Transvelar Approach to the Fourth Ventricle and Brainstem

    OpenAIRE

    Ezer, Haim; Banerjee, Anirban Deep; Bollam, Papireddy; Guthikonda, Bharat; Nanda, Anil

    2012-01-01

    Objective The superior transvelar approach is used to access pathologies located in the fourth ventricle and brainstem. The surgical path is below the venous structures, through the superior medullary velum. Following splitting the tentorial edge, near the tentorial apex, the superior medullary velum is split in the cerebello-mesencephalic fissure. Using the supracerebellar infratentorial, transtentorial or parietal interhemispheric routes, the superior medullary velum is approached. Splittin...

  2. Progress in theoretical approach to InGaN and InN epitaxy: In incorporation efficiency and structural stability

    Science.gov (United States)

    Kangawa, Yoshihiro; Ito, Tomonori; Koukitu, Akinori; Kakimoto, Koichi

    2014-10-01

    The surface stability, growth process, and structural stability of InGaN and InN are reviewed from a theoretical viewpoint. In 2001, a new theoretical approach based on an ab initio calculation was developed. This theoretical approach enables the investigation of the influence of growth conditions such as partial pressure and temperature on the surface stability. The theoretical approach is applied to the research on the In incorporation efficiency in InGaN grown on nonpolar and semipolar surfaces. The calculation results suggest that the N-H layer formed on such surfaces has a crucial role in In incorporation. Moreover, the structural stability of InN grown by pressurized-reactor MOVPE is reviewed. It was found by the theoretical approach that \\{ 1\\bar{1}\\bar{1}\\} facet formation causes the spontaneous formation of islands with the zinc-blende structure.

  3. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  4. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    Science.gov (United States)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  5. Thermal stability and structural changes in bacterial toxins responsible for food poisoning

    Science.gov (United States)

    Regenthal, Paulina; Hansen, Jesper S.; André, Ingemar

    2017-01-01

    The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety. PMID:28207867

  6. Thermal stability and structural changes in bacterial toxins responsible for food poisoning.

    Science.gov (United States)

    Regenthal, Paulina; Hansen, Jesper S; André, Ingemar; Lindkvist-Petersson, Karin

    2017-01-01

    The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety.

  7. Phase stability and structural distortion of NiO under high pressure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-bing; HU Yu-lin; TANG Bi-yu

    2006-01-01

    The phase stability and structural distortion of NiO under high pressure were investigated using first-principles calculations based on density-functional theory. Different forms of exchange-correlation functional including LDA,GGA and GGA+U were used in the present calculations. All of the three methods predict NiO to be AFM II ordering with the cell slightly compressed along [111] direction and also indicate that there is no structural phase transition of NiO under pressure up to 140 GPa,which are in agreement with the experiment. However,both LDA and GGA incorrectly predict the structural distortion under pressure especially above 60 GPa. Only when strong correlations are included in form of GGA+U,structural distortion under high pressure can qualitatively agree with the experiment. The related mechanism was also analyzed and discussed. These results suggest that the strong electronic correlations still play a very important role in the properties of NiO under high pressure.

  8. Structure and stability of RNA/RNA kissing complex: with application to HIV dimerization initiation signal.

    Science.gov (United States)

    Cao, Song; Chen, Shi-Jie

    2011-12-01

    We develop a statistical mechanical model to predict the structure and folding stability of the RNA/RNA kissing-loop complex. One of the key ingredients of the theory is the conformational entropy for the RNA/RNA kissing complex. We employ the recently developed virtual bond-based RNA folding model (Vfold model) to evaluate the entropy parameters for the different types of kissing loops. A benchmark test against experiments suggests that the entropy calculation is reliable. As an application of the model, we apply the model to investigate the structure and folding thermodynamics for the kissing complex of the HIV-1 dimerization initiation signal. With the physics-based energetic parameters, we compute the free energy landscape for the HIV-1 dimer. From the energy landscape, we identify two minimal free energy structures, which correspond to the kissing-loop dimer and the extended-duplex dimer, respectively. The results support the two-step dimerization process for the HIV-1 replication cycle. Furthermore, based on the Vfold model and energy minimization, the theory can predict the native structure as well as the local minima in the free energy landscape. The root-mean-square deviations (RMSDs) for the predicted kissing-loop dimer and extended-duplex dimer are ~3.0 Å. The method developed here provides a new method to study the RNA/RNA kissing complex.

  9. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy.

    Science.gov (United States)

    Fox, Christopher B; Barnes V, Lucien; Evers, Tara; Chesko, James D; Vedvick, Thomas S; Coler, Rhea N; Reed, Steven G; Baldwin, Susan L

    2013-09-01

    Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil-in-water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS-PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody-secreting plasma cells, hemagglutination inhibition titers, and cytokine production. We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two-component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Oil-in-water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza antigen. The dramatic differences in adjuvant activity between squalene-based emulsion and medium chain triglyceride-based emulsion are due principally to the biological activity of the oil composition rather than physical interactions of the antigen with the emulsion. © 2012 John Wiley & Sons Ltd.

  10. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC, hydroxypropylmethylcellulose (HPMC and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v and sodium chloride (0.05% w/v as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v. Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  11. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Science.gov (United States)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  12. Continued stabilization of the nuclear higher-order structure of post-mitotic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Janeth Alva-Medina

    Full Text Available BACKGROUND: Cellular terminal differentiation (TD correlates with a permanent exit from the cell cycle and so TD cells become stably post-mitotic. However, TD cells express the molecular machinery necessary for cell proliferation that can be reactivated by experimental manipulation, yet it has not been reported the stable proliferation of any type of reactivated TD cells. Neurons become post-mitotic after leaving the ventricular zone. When neurons are forced to reenter the cell cycle they invariably undergo cell death. Wider evidence indicates that the post-mitotic state cannot solely depend on gene products acting in trans, otherwise mutations in the corresponding genes may lead to reentry and completion of the cell cycle in TD cells, but this has not been observed. In the interphase, nuclear DNA of metazoan cells is organized in supercoiled loops anchored to a nuclear nuclear matrix (NM. The DNA-NM interactions define a higher-order structure in the cell nucleus (NHOS. We have previously compared the NHOS of aged rat hepatocytes with that of early post-mitotic rat neurons and our results indicated that a very stable NHOS is a common feature of both senescent and post-mitotic cells in vivo. PRINCIPAL FINDINGS: In the present work we compared the NHOS in rat neurons from different post-natal ages. Our results show that the trend towards further stabilization of the NHOS in neurons continues throughout post-natal life. This phenomenon occurs in absence of overt changes in the post-mitotic state and transcriptional activity of neurons, suggesting that it is independent of functional constraints. CONCLUSIONS: Apparently the continued stabilization of the NHOS as a function of time is basically determined by thermodynamic and structural constraints. We discuss how the resulting highly stable NHOS of neurons may be the structural, non-genetic basis of their permanent and irreversible post-mitotic state.

  13. Continued Stabilization of the Nuclear Higher-Order Structure of Post-Mitotic Neurons In Vivo

    Science.gov (United States)

    Alva-Medina, Janeth; Maya-Mendoza, Apolinar; Dent, Myrna A. R.; Aranda-Anzaldo, Armando

    2011-01-01

    Background Cellular terminal differentiation (TD) correlates with a permanent exit from the cell cycle and so TD cells become stably post-mitotic. However, TD cells express the molecular machinery necessary for cell proliferation that can be reactivated by experimental manipulation, yet it has not been reported the stable proliferation of any type of reactivated TD cells. Neurons become post-mitotic after leaving the ventricular zone. When neurons are forced to reenter the cell cycle they invariably undergo cell death. Wider evidence indicates that the post-mitotic state cannot solely depend on gene products acting in trans, otherwise mutations in the corresponding genes may lead to reentry and completion of the cell cycle in TD cells, but this has not been observed. In the interphase, nuclear DNA of metazoan cells is organized in supercoiled loops anchored to a nuclear nuclear matrix (NM). The DNA-NM interactions define a higher-order structure in the cell nucleus (NHOS). We have previously compared the NHOS of aged rat hepatocytes with that of early post-mitotic rat neurons and our results indicated that a very stable NHOS is a common feature of both senescent and post-mitotic cells in vivo. Principal Findings In the present work we compared the NHOS in rat neurons from different post-natal ages. Our results show that the trend towards further stabilization of the NHOS in neurons continues throughout post-natal life. This phenomenon occurs in absence of overt changes in the post-mitotic state and transcriptional activity of neurons, suggesting that it is independent of functional constraints. Conclusions Apparently the continued stabilization of the NHOS as a function of time is basically determined by thermodynamic and structural constraints. We discuss how the resulting highly stable NHOS of neurons may be the structural, non-genetic basis of their permanent and irreversible post-mitotic state. PMID:21731716

  14. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  15. Contabilidad Financiera Superior

    OpenAIRE

    Ipiñazar Petralanda, Izaskun

    2013-01-01

    Duración (en horas): De 31 a 40 horas. Destinatario: Estudiante y Docente A través de este material se presentan las pautas necesarias para implementar un aprendizaje basado en problemas en la asignatura de Contabilidad Financiera Superior dentro de los temas “Constitución de S.A. y S.R.L.” (Tema 2), “Ampliaciones de Capital” (Tema 3) y “Reducciones de Capital” (Tema 4). En primer lugar se presentan las guías generales de la asignatura, y a continuación, las diferentes activida...

  16. Resolution of superior oblique myokymia with memantine.

    Science.gov (United States)

    Jain, Saurabh; Farooq, Shegufta J; Gottlob, Irene

    2008-02-01

    We describe a novel treatment of superior oblique myokymia. A 40-year-old woman was treated with gabapentin for this disorder with partial success and reported significant side effects including loss of libido and weight gain. After a drug holiday, memantine therapy was initiated resulting in a substantial improvement in her symptoms with far fewer side effects and stability on long-term maintenance therapy.

  17. Influence of carbohydrates on the stability and structure of a hyperglycosylated human interferon alpha mutein.

    Science.gov (United States)

    Ceaglio, Natalia; Etcheverrigaray, Marina; Kratje, Ricardo; Oggero, Marcos

    2010-08-01

    Protein physical and chemical instability is one of the major challenges in the development of biopharmaceuticals during every step of the process, ranging from production to final delivery. This is particularly applicable to human recombinant interferon alpha-2b (rhIFN-alpha2b), a pleiotropic cytokine currently used worldwide for the treatment of various cancer and chronic viral diseases, which presents a poor stability in solution. In previous studies, we have demonstrated that the introduction of four N-glycosylation sites in order to construct a heavily glycosylated IFN variant (4N-IFN) resulted in a markedly prolonged plasma half-life which was reflected in an enhanced therapeutic activity in mice in comparison with the commercial non-glycosylated rhIFN-alpha2b (NG-IFN). Herein, we evaluated the influence of glycosylation on the in vitro stability of 4N-IFN towards different environmental conditions. Interestingly, the hyperglycosylated cytokine showed enhanced stability against thermal stress, acid pH and repetitive freeze-thawing cycles in comparison with NG-IFN. Besides, microcalorimetric analysis indicated a much higher melting temperature of 4N-IFN, also demonstrating a higher solubility of this variant as denoted by the absence of precipitation at the end of the experiment, in contrast with the NG-IFN behaviour. Furthermore, far-UV circular dichroism (CD) spectrum of 4N-IFN was virtually superimposed with that of NG-IFN, indicating that the IFN structure was not altered by the addition of carbohydrate moieties. The same conclusion could be inferred from limited proteolysis studies. Our results suggest that glycoengineering could be a useful strategy for protecting rhIFN-alpha2b from inactivation by various external factors and for overcoming aggregation problems during the production process and storage.

  18. Stabilizing cadmium into aluminate and ferrite structures: Effectiveness and leaching behavior.

    Science.gov (United States)

    Su, Minhua; Shih, Kaimin; Kong, Lingjun

    2017-02-01

    The inappropriate disposal of sludge, particularly for those enriched in heavy metals, is highly hazardous to the environment. Thermally converting sludge into useful products is a highly promising technique as heavy metals are immobilized and organic substances are mineralized. This work investigated the feasibility of stabilizing simulated cadmium-laden sludge by sintering with Al-and Fe-rich precursors. To simulate the process, cadmium oxide was alternatively mixed and sintered with γ-Al2O3 and α-Fe2O3. Cadmium was crystallographically incorporated into aluminate (CdAl4O7) monoclinic structure and ferrite (CdFe2O4) spinel, dependent on the type of precursor used. The CdFe2O4 formation was initialed at about 150-300 °C lower than that of CdAl4O7. With Rietveld refinement analysis of the collated XRD data, the weight percentages of crystalline phases in the fired samples were quantified. To evaluate the cadmium incorporation efficiency, a transformation ratio (TR) index was devised. The TR values revealed that, to effectively incorporate cadmium, 950 °C was favored by γ-Al2O3 and 850 °C was for α-Fe2O3 within a 3-h sintering treatment. Constant pH leaching test (CPLT) was used to assess the metal stabilization effects, revealing a remarkable reduction of cadmium by transformation into CdAl4O7 and CdFe2O4. Both CdAl4O7 and CdFe2O4 were incongruently dissolved in an acid solution. The overall finding indicated a potentially feasible technology in cadmium-laden sludge stabilization.

  19. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar; Petsko, Gregory A.; (Harvard-Med); (Brandeis)

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  20. Statistics of superior records

    Science.gov (United States)

    Ben-Naim, E.; Krapivsky, P. L.

    2013-08-01

    We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution ρ. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution ρ. We find that the fraction of superior sequences SN decays algebraically with sequence length N, SN˜N-β in the limit N→∞. Interestingly, the decay exponent β is nontrivial, being the root of an integral equation. For example, when ρ is a uniform distribution with compact support, we find β=0.450265. In general, the tail of the parent distribution governs the exponent β. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences IN decays algebraically, albeit with a different decay exponent, IN˜N-α. We use the above statistical measures to analyze earthquake data.