WorldWideScience

Sample records for superior micro-nanostructure endows

  1. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    Science.gov (United States)

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo.

    Science.gov (United States)

    Hao, Jingzu; Li, Ying; Li, Baoe; Wang, Xiaolin; Li, Haipeng; Liu, Shimin; Liang, Chunyong; Wang, Hongshui

    2017-09-01

    Hybrid micro-nanostructure implant surface was produced on titanium (Ti) surface by acid etching and anodic oxidation to improve the biological and mechanical properties. The biological properties of the micro-nanostructure were investigated by simulated body fluid (SBF) soaking test and MC3T3-E1 cell co-culture experiment. The cell proliferation, spreading, and bone sialoprotein (BSP) gene expression were examined by MTT, SEM, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. Furthermore, the effect of the micro-nanostructure surface on implant osteointegration was examined by in vivo experiment. The results showed that the formation of bone-like apatite was accelerated on the micro-nanostructured Ti surface after immersion in simulated body fluid, and the proliferation, spreading, and BSP gene expression of the MC3T3-E1 cells were also upregulated on the modified surface. The micro-nanostructured Ti surface displayed decreased friction coefficient, stiffness value, and Young's modulus which were much closer to those of the cortical bone, compared to the polished Ti surface. This suggested much better mechanical match to the surrounding bone tissue of the micro-nanostructured Ti surface. Furthermore, the in vivo animal experiment showed that after implantation in the rat femora, the micro-nanostructure surface displayed higher bonding strength between bone tissues and implant; hematoxylin and eosin (H&E) staining suggested that much compact osteoid tissue was observed at the interface of Micro-nano-Ti-bone than polished Ti-bone interface after implantation. Based on these results mentioned above, it was concluded that the improved biological and mechanical properties of the micro-nanostructure endowed Ti surface with good biocompatibility and better osteointegration, implying the enlarged application of the micro-nanostructure

  3. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  4. Effects of different hierarchical hybrid micro/nanostructure surfaces on implant osseointegration.

    Science.gov (United States)

    Cheng, Bingkun; Niu, Qiang; Cui, Yajun; Jiang, Wei; Zhao, Yunzhuan; Kong, Liang

    2017-06-01

    Hierarchical hybrid micro/nanostructure implant surfaces are considered to better mimic the hierarchical structure of bone and the nanostructures substantively influence osseointegration through managing cell behaviors. To enhance implant osseointegration for further clinical application, we evaluated the material properties and osseointegration effects of hierarchical surfaces with different nano-morphologies, using a rat model. Two representative surface fabrication methods, hydrofluoric (HF) acid etching combined with anodization (HF + AN) or magnetron sputtering (HF + MS), were selected. Sample material properties were evaluated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and epoxy resin docking tensile test. Implants with different surfaces were inserted into the distal femurs of rats. After 12 weeks, osseointegration was examined by microcomputed tomography (micro-CT), histological, and biomechanical tests. Tensile testing demonstrated high bonding strength at coating/implant in the HF + MS group. Micro-CT revealed increased bone volume/total volume and significantly reduced trabecular separation in HF + MS versus other groups. Histological analysis showed significantly higher HF + MS bone-to-implant contact (74.78 ± 4.40%) versus HF + AN (65.11 ± 5.10%) and machined samples (56.03 ± 3.23%). The maximal HF + MS pull-out force increased by 33.7% versus HF + AN. These results indicated that HF + MS surfaces exhibited superior material property in terms of bonding strength and favorable implant osseointegration compared to other groups. © 2017 Wiley Periodicals, Inc.

  5. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics

    International Nuclear Information System (INIS)

    Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg

    2007-01-01

    The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors

  7. Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties

    International Nuclear Information System (INIS)

    Zhong Shengliang; Zhang Linfei; Huang Zhenzhong; Wang Shangping

    2011-01-01

    Several novel cadmium sulfide (CdS) micro/nanostructures, including cauliflower-like microspheres, football-like microspheres, tower-like microrods, and dendrites were controllably prepared via an oxalic acid-assisted solvothermal route using ethylene glycol (EG) and H 2 O as pure and mixed solvents with different S sources. The as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and UV-vis spectrophotometer (UV). It was found that CdS micro/nanostructures can be selectively obtained by varying the composition of solvent, concentration of oxalic acid, and sulfur sources. UV-vis absorption spectra reveal that their absorption properties are shape-dependent. The possible formation process of the CdS micro/nanostructures was briefly discussed. This route provides a facile way to tune the morphologies of CdS over a wide range.

  8. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    Science.gov (United States)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  9. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  10. Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shengliang, E-mail: zslxhx@yahoo.com.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Zhang Linfei; Huang Zhenzhong; Wang Shangping [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China)

    2011-01-15

    Several novel cadmium sulfide (CdS) micro/nanostructures, including cauliflower-like microspheres, football-like microspheres, tower-like microrods, and dendrites were controllably prepared via an oxalic acid-assisted solvothermal route using ethylene glycol (EG) and H{sub 2}O as pure and mixed solvents with different S sources. The as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and UV-vis spectrophotometer (UV). It was found that CdS micro/nanostructures can be selectively obtained by varying the composition of solvent, concentration of oxalic acid, and sulfur sources. UV-vis absorption spectra reveal that their absorption properties are shape-dependent. The possible formation process of the CdS micro/nanostructures was briefly discussed. This route provides a facile way to tune the morphologies of CdS over a wide range.

  11. Photoelectrochemical properties of hierarchical ZnO micro-nanostructure sensitized with Sb2S3 nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhimin GUO

    2016-02-01

    Full Text Available By using electrochemical deposition method, and assisted with additions of PEG-400 and EDA, well-aligned ZnO nanorods and hierarchical ZnO micro-nanostructure are fabricated directly on indium doped tin oxide coated conducting glass (ITO substrate. The shell-core Sb2S3/ZnO nanorod structure and the shell-core hierarchical Sb2S3/ZnO micro-nanostructure are prepared by chemical bath deposition method. SEM, XRD, UV-Vis and photocurrent test are used to characterize the morphology, nanostructures and their photoelectrochemical properties. The studies show that the photocurrent on the array membranes with shell-core hierarchical Sb2S3/ZnO micro-nanostructure is apparently higher than that with shell-core Sb2S3/ZnO nanorods array.

  12. Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their electromagnetic absorption properties

    Science.gov (United States)

    Xie, Aming; Sun, Mengxiao; Zhang, Kun; Xia, Yilu; Wu, Fan

    2018-05-01

    Conducting polymers (CPs) at nano scales endow materials with special optical, electrical, and magnetic properties. The crucial factor to construct and regulate the micro-structures of CPs is the inducing reagent, particular in its chemical structure, such active sites, self-assembling properties. In this paper, we design and synthesize an amphiphile bearing tetrazole moiety on its skeleton, and use this amphiphile as an inducing reagent to prepare and regulate the micro-structures of a series of CPs including polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) and poly(p-phenylenediamine). Because of the unique electric properties of CPs and size effect, we next explored the electromagnetic absorption performances of these CPs nanostructures. A synergetic combination of electric loss and magnetic loss is used to explain the absorption mechanism of these CPs nano-structures.

  13. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis.

    Science.gov (United States)

    Zhang, Ranran; Liu, Xujie; Xiong, Zhiyuan; Huang, Qianli; Yang, Xing; Yan, Hao; Ma, Jing; Feng, Qingling; Shen, Zhijian

    2018-03-08

    Micro/nanostructured TiO 2 /ZnO coating has been shown to possess multiple functions, including antibacterial activity and bioactivity. Osteoblast-like SaOS-2 cells were employed for evaluating the in vitro osteogenic capacity of this coating and positive results were obtained. However, traditional principles of osseointegration focus only on the osteogenic differentiation alone. The effects of immunomodulation on the osteogenic activity have been largely ignored. In this study, the inflammatory responses of macrophages on the micro/nanostructured TiO 2 /ZnO coating were investigated. The extract media of macrophage cell line RAW264.7 cultured on the TiO 2 /ZnO coating were collected as indirect co-culture conditioned media. The osteogenic activity of SaOS-2 cells in the conditioned media was investigated. Adhesion, ALP activity and extracellular mineralization of cells grown in the conditioned media extracted from the micro/nanostructured TiO 2 /ZnO coating were found to be enhanced, compared to those grown in the conditioned media extracted from the macroporous TiO 2 coating. The immune microenvironment produced by the micro/nanostructured TiO 2 /ZnO coating showed excellent capacity to promote osteogenesis, indicating that this coating could be a promising candidate for implant surface modification in orthopaedic and dental applications. Furthermore, this work could help us understand the interplay between the host immune system and the osteoimmunomodulatory properties of the biomaterials, and optimize the design for coating biomaterials.

  14. Secrets of the Academy: The Drivers of University Endowment Success

    OpenAIRE

    Josh Lerner; Antoinette Schoar; Jialan Wang

    2008-01-01

    University endowments have received much attention recently for their superior investment returns compared with other institutional investors. This study documents trends in college and university endowment returns and investments in the United States between 1992 and 2005 using data on over a thousand schools. Such endowments have generally performed well over this time period, with a median growth rate of 7.4 percent per year and median return of 6.9 percent. This sector has been dominated ...

  15. Micro/Nanostructured Films and Adhesives for Biomedical Applications.

    Science.gov (United States)

    Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung

    2015-12-01

    The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.

  16. Micro-‘‘factory’’ for self-assembled peptide nanostructures

    DEFF Research Database (Denmark)

    Castillo, Jaime; Rodriguez-Trujíllo, Romén; Gauthier, Sébastian

    2011-01-01

    This study describes an integrated micro ‘‘factory’’ for the preparation of biological self-assembled peptide nanotubes and nanoparticles on a polymer chip, yielding controlled growth conditions. Self-assembled peptides constitute attractive building blocks for the fabrication of biological...... nanostructures due to the mild conditions of their synthesis process. This biological material can form nanostructures in a rapid way and the synthesis method is less expensive as compared to that of carbon nanotubes or silicon nanowires. The present article thus reports on the on-chip fabrication of self-assembled...

  17. Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures

    International Nuclear Information System (INIS)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud; Ghanbari, Davood; Saberyan, Kamal; Hosseinpour-Mashkani, S. Mostafa

    2014-01-01

    Graphical abstract: - Highlights: • CuI nanostructures were prepared via a simple precipitation method. • Glucose as a green capping agent and reductant was applied. • The effect of glucose concentration on the morphology of CuI was investigated. • According to XRD results, pure cubic phase CuI have been formed by using glucose. - Abstract: In this work, CuI micro/nanostructures have been successfully prepared via a simple precipitation route at room temperature. By using glucose as a clean reducing agent with different concentrations, CuI micro/nanostructures with various morphologies were obtained. Besides glucose, Na 2 SO 3 , KBH 4 and N 2 H 4 ·H 2 O have been applied as reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy, X-ray energy dispersive spectroscopy (EDS) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the as-produced CuI micro/nanostructures. According to the XRD results, it was found that pure cubic phase CuI have been formed by using glucose

  18. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  19. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    Science.gov (United States)

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-10-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical labyrinth-like microstructures and dendritic nanostructures. The as-prepared surface is also found with good chemical stability and mechanical durability. Furthermore, superior anticorrosion behaviors of the resultant samples in seawater are investigated by electrochemical measurements. Due to trapped air in micro/nanostructures, the newly presented solid-air-liquid contacting interface can help to resist the seawater penetration by greatly reducing the interface interaction between corrosive ions and the superamphiphobic surface. Finally, an optimized two-layer perceptron artificial neural network is set up to model and predict the cause-and-effect relationship between preparation conditions and the anticorrosion parameters. This work provides a great potential to extend the applications of aluminum alloys especially in marine engineering fields.

  20. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  1. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  2. Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self-powered micro-shock sensing

    Science.gov (United States)

    Zhu, Jianxiong; Chen, Cong; Guo, Xiaoyu

    2018-04-01

    We report a suspended polytetrafluoroethylene (PTFE) nanostructure electret film in dual variable cavities for a self-powered micro-shock sensing application. The prototype contained series variable air cavities, a suspended nanostructure PTFE electret film and independent electrode films. The charges on the suspended nanostructure PTFE electret film provided the electrostatic field around the electret film in the series variable air cavities. When the reported device was driven by a micro-shock pressure, the inducted electrostatic charges on both the top and bottom electrodes would vary as the micro-shock pressing or releasing. Experimental results showed that the maximum of a short-circuit current density (J sc ) and an open-circuit voltage (V oc ) reached 3 ± 0.1 nA cm‑2 and 3.6 ± 0.1 V, respectively. It was found that the parameter J sc was more advantageous in identifying stronger shocks (parameter acceleration a bigger than 0.1 m s‑2), whereas the parameter V oc was more sensitive for weaker shocks, such as acceleration a smaller than 0.1 m s‑2. Moreover, finger continuous micro-shock pressure taps application was used to demonstrate the mechanical energy conversion performance with 4.5 ± 0.2 V open-circuit voltages. The research on the nanostructure electret PTFE film in series dual variable air cavities not only gave us a fresh idea about the principle and design of the shocking sensor, but also provided an easy fabrication and a low cost shocking sensor for the Internet of Things (IoT) systems.

  3. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst.

    Science.gov (United States)

    Nandan, R; Nanda, K K

    2017-08-31

    Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.

  4. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Yi; Liao, Jiunn-Der; Ju, Yu-Hung; Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Shiau, Ai-Li, E-mail: jdliao@mail.ncku.edu.tw [Department of Microbiology and Immunology, National Cheng Kung University, No 1, University Road, Tainan 70101, Taiwan (China)

    2011-05-06

    The focused ion beam (FIB) technique was used to precisely fabricate patterned Au micro/nanostructures (fibAu). The effects of surface enhanced Raman scattering (SERS) on the fibAu samples were investigated by adjusting the geometrical, dimensional, and spacing factors. The SERS mechanism was evaluated using low-concentration rhodamine 6G (R6G) molecules, physically adsorbed or suspended on/within the micro/nanostructures. The results indicated that for detecting R6G molecules, hexagon-like micro/nanostructures induced a higher electromagnetic mechanism (EM) due to the availability of multiple edges and small curvature. By decreasing the dimensions from 300 to 150 nm, the laser-focused area contained an increasing number of micro/nanostructures and therefore intensified the excitation of SERS signals. Moreover, with an optimized geometry and dimensions of the micro/nanostructures, the relative intensity/surface area value reached a maximum as the spacing was 22 nm. An exponential decrease was found as the spacing was increased, which most probably resulted from the loss of EM. The spacing between the micro/nanostructures upon the fibAu was consequently regarded as the dominant factor for the detection of R6G molecules. By taking an optimized fibAu to detect low-concentration influenza virus, the amino acids from the outermost surface of the virus can be well distinguished through the SERS mechanism.

  5. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  6. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  7. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania; Tirinato, Luca; Pagliari, Francesca; Giugni, Andrea; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2016-01-01

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  8. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  9. Investigation of the interaction between liquid and micro/nanostructured surfaces during condensation with quartz crystal microbalance

    Science.gov (United States)

    Su, Junwei

    Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. The research focuses on the development of a novel acoustic-based technique for analyzing the liquid/solid interactions of different condensations on micro- and nanostructured surfaces including DWC. hi addition. the newly developed technology was demonstrated for quantitatively sensing different wetting states of liquid on rough surfaces. First, different micro/nanostructures were fabricated on the quartz crystal microbalance (QCM), which serves as acoustic sensor. Polymethyl methacrylate (PMMA) micropillars, with varying heights from 6.03 to 25.02 microm, were fabricated on a quartz crystal microbalance (QCM) substrate by thermal nanoimprinting lithography to form pillar-based QCM (QCM-P). For nanostructured QCM. a copper layer was deposited on the QCM surface and then nanostructures of copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution. Then, these surfaces were treated to make them superhydrophilic or superhydrophobic using oxygen plasma treatment or with coating of 1H,1 H,2H,2H-perfluorooctyl-trichlorosilane (PFOTS). Based on the geometry of these micro/nanostructures, the relationship between the frequency responses of QCM and the wetting states of these surfaces was theoretically investigated. Different theoretical models were established to describing the frequency shift of the micro- and nanostructured QCM in different wetting states. For the microstructured surface, the cantilever based model and a two-degree-of-freedom dynamic model were applied to predict the frequency shift of the QCM-P in

  10. Solvothermal synthesis of copper sulfide semiconductor micro/nanostructures

    International Nuclear Information System (INIS)

    Liu, Jun; Xue, Dongfeng

    2010-01-01

    Covellite copper sulfide (CuS) micro/nanometer crystals in the shape of hierarchical doughnut-shaped, superstructured spheric-shaped and flowerlike architectures congregated from those nanoplates with the thickness of 20-100 nm have been prepared by a solvothermal method. The as-obtained CuS products were characterized by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy-dispersive X-ray spectroscopy (EDS). A systematic investigation has been carried out to understand the factors influencing the evolution of CuS particle morphology which found to be predominant by solvent, surfactant, sulfur resource and copper salt. The possible formation mechanism for the nanostructure formation was also discussed. These CuS products show potential applications in solar cell, photothermal conversion and chemical sensor.

  11. Facile and green fabrication of organic single-crystal hollow micro/nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Chen Yingzhi; Ou Xuemei; Zhang Xiaohong [Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Xiujuan, E-mail: xjzhang@suda.edu.cn, E-mail: xhzhang@mail.ipc.ac.cn [Functional Nano and Soft Materials Laboratory (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2011-07-15

    Under high humidity and appropriate temperature, tris (8-hydroxyquinoline) aluminum (Alq3) solid micro/nanostructures may be etched into hollow structures and still retain their crystalline structures and surface morphologies. The shapes and sizes of the hollow structures are easily adjusted by varying the experimental parameters. Throughout the entire process, water is introduced into the system instead of organic or corrosive solvents, making this method convenient and environmentally friendly; it can also be extended to application in other materials such as TCNQ.

  12. Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H. [Department of Physics, Jazan University, Jizan-114 (Saudi Arabia); Sachan, P.; Gupta, R. K. [DST-Unit on Nanosciences, Indian Institute of Technology, Kanpur (India); Arockiasamy, L. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Umadevi, M. [Department of Physics, Mother Teresa Women’s University, Kodaikanal-624101 (India)

    2016-06-10

    A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS mask using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.

  13. P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor

    Science.gov (United States)

    Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)

    2018-05-01

    Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.

  14. MicroRNA-triggered, cascaded and catalytic self-assembly of functional ``DNAzyme ferris wheel'' nanostructures for highly sensitive colorimetric detection of cancer cells

    Science.gov (United States)

    Zhou, Wenjiao; Liang, Wenbin; Li, Xin; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2015-05-01

    The construction of DNA nanostructures with various sizes and shapes has significantly advanced during the past three decades, yet the application of these DNA nanostructures for solving real problems is still in the early stage. On the basis of microRNA-triggered, catalytic self-assembly formation of the functional ``DNAzyme ferris wheel'' nanostructures, we show here a new signal amplification platform for highly sensitive, label-free and non-enzyme colorimetric detection of a small number of human prostate cancer cells. The microRNA (miR-141), which is catalytically recycled and reused, triggers isothermal self-assembly of a pre-designed, G-quadruplex sequence containing hairpin DNAs into ``DNAzyme ferris wheel''-like nanostructures (in association with hemin) with horseradish peroxidase mimicking activity. These DNAzyme nanostructures catalyze an intensified color transition of the probe solution for highly sensitive detection of miR-141 down to 0.5 pM with the naked eye, and the monitoring of as low as 283 human prostate cancer cells can also, theoretically, be achieved in a colorimetric approach. The work demonstrated here thus offers new opportunities for the construction of functional DNA nanostructures and for the application of these DNA nanostructures as an effective signal amplification means in the sensitive detection of nucleic acid biomarkers.

  15. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  16. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    Science.gov (United States)

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  17. From micro- to nanostructured implantable device for local anesthetic delivery

    Science.gov (United States)

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola

    2016-01-01

    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  18. Philanthropic endowments in general internal medicine.

    Science.gov (United States)

    Murden, R A; Lamb, J F

    1999-04-01

    We performed two surveys to uncover the status of philanthropic endowments in general internal medicine divisions. The initial survey of U.S. medical school departments of medicine found that only 14.1% of general internal medicine divisions hold endowments versus 21.9% of all other divisions, and that endowment sources for general medicine are atypical. The second survey of successfully endowed divisions found that sympathetic administrators and active pursuit of endowments were associated with endowment success. Aggressive pursuit of endowments, publicizing successes of general medicine, and consideration of endowment sources noted in this study are recommended to improve philanthropic contributions to general internal medicine.

  19. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  20. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  1. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    Science.gov (United States)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  2. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    Science.gov (United States)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be

  3. Hot-Spot Engineering in 3D Multi-Branched Nanostructures

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Chirumamilla, Anisha; Roberts, Alexander

    2017-01-01

    The detection of probe molecules at ultralow concentrations, even at the single-molecule level, can be addressed with the breakthrough concept of plasmonic hot-spot engineering. In view of that, the fabrication of nanostructures endowed with sub-10 nm gaps and extremely large near-field enhanceme...

  4. Endowment and Education

    Science.gov (United States)

    Moore, John W.

    2000-05-01

    The 1998 annual report of the Research Corporation ( http://www.rescorp.org) contains fascinating reading for anyone with an interest in science education at private institutions. An article titled "The Midas Touch: Do Soaring Endowments Have Any Impact on College Science" concludes that "college science is seldom more than an incidental beneficiary of endowment resources, even when they are conspicuously plentiful." Written by Research Corporation director of communication W. Stevenson Bacon, the article reports on a survey of leading undergraduate institutions, dividing them between those with endowments above and below 300 million. The first surprise to me was that Harvard's endowment of 727,522 per full-time equivalent (FTE) student is exceeded by Grinnell's 760,404, and Yale's 612,015 per FTE student is far exceeded by Agnes Scott's 692,914 (much of it in Coca-Cola stock and somewhat restricted) and closely rivaled by Swarthmore's 608,955. Of the eleven institutions in the Research Corporation survey, seven were above 300,000 per FTE student and only four were below. Private-college endowments have soared along with a soaring stock market. The Research Corporation report asks whether this increased endowment income is helping colleges to provide improved education in the sciences. A major use of endowment income and gift funds is for construction of buildings. Seven of the eleven institutions surveyed had building programs under way or planned for the sciences, and three of the four remaining expected to stress science facilities in upcoming campaigns. In some cases new buildings are designed to support science effectively, but in others, according to Research Corporation Vice President Michael Doyle, "the building is an elegant shell without modern instrumentation or flexibility for future uses." New construction serves to make a campus attractive to prospective students who will bring in the tuition fees that support most of a college's budget. An "elegant

  5. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  6. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    Directory of Open Access Journals (Sweden)

    Lizzit S

    2007-01-01

    Full Text Available AbstractNonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110 are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  7. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  8. Wide angle light collection with ultralow reflection and super scattering by silicon micro-nanostructures for thin crystalline silicon solar cell applications

    International Nuclear Information System (INIS)

    Das, Sonali; Kundu, Avra; Saha, Hiranmay; Datta, Swapan K

    2016-01-01

    Conventional c-Si solar cells employ micron-sized pyramids for achieving reduced reflection (∼10%) and enhanced light trapping by multiple bounces (maximum 3) of the incident light. Alternatively, bio-mimetic, moth-eye sub-wavelength nanostructures offer broadband antireflection properties (∼3%) suitable for solar cell applications in the optical regime. However, such structures do not provide any advantage in the charge carrier extraction process as radial junctions cannot be formed in such sub-wavelength dimensions and they have high surface area causing increased charged carrier recombination. The choice of the geometry for achieving optimum photon–electron harvesting for solar applications is therefore very critical. Cross-fertilization of the conventional solar cell light-trapping techniques and the sub-wavelength nanostructures results in unique micro-nanostructures (structures having sub-wavelength dimensions as well as dimensions of the order of few microns) which provide advanced light management capabilities along with the ability of realizing radial junctions. It is seen that an ultralow reflection along with wide angle light collection is obtained which enables such structures to overcome the morning, evening and winter light losses in solar cells. Further, super-scattering in the structures offer enhanced light trapping not only in the structure itself but also in the substrate housing the structure. Ray and wave optics have been used to understand the optical benefits of the structures. It is seen that the aspect ratio of the structures plays the most significant role for achieving such light management capabilities, and efficiencies as high as 12% can be attained. Experiments have been carried out to fabricate a unique micro-nanomaze-like structure instead of a periodic array of micro-nanostructures with the help of nanosphere lithography and the MacEtch technique. It is seen that randomized micro-nanomaze geometry offers very good

  9. Higher Education Endowments Return

    Science.gov (United States)

    Bahlmann, David; Walda, John D.; Sedlacek, Verne O.

    2012-01-01

    A new study of endowments by the National Association of College and University Business Officers (NACUBO) and the Commonfund Institute has brought good news to college and universities: While endowment returns dropped precipitously in fiscal year 2009 as a result of the financial crisis and accompanying slide in equity markets, they climbed to an…

  10. Largest College Endowments, 2011

    Science.gov (United States)

    Chronicle of Higher Education, 2012

    2012-01-01

    Of all endowments valued at more than $250-million, the UCLA Foundation had the highest rate of growth over the previous year, at 49 percent. This article presents a table of the largest college endowments in 2011. The table covers the "rank," "institution," "market value as of June 30, 2011," and "1-year change" of institutions participating in…

  11. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  12. Microstructure and functional properties of micro- and nanostructure metal composites obtained by diffusion welding and rolling of multilayer packages

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valery P.; Karpov, Michael I., E-mail: korzhov@issp.ac.ru [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2011-07-01

    Multilayered nanostructure composites of Cu/Fe, Cu/Nb, and Cu/(Nb/NbTi) with an ≤10 nm the average thickness of individual layers mechanical and superconducting properties which are implemented immediately after rolling, and micro- and nanostructure composites of Ni/Al, Ti/Ni, and (Cu/Nb)/Cu12Sn functional properties which, in contrast to the first, are manifested after rolling and heat treatment were investigated. Composites of (Cu/Nb)/Cu12Sn in final form were a multilayer tape of superconducting compound Nb{sub 3}Sn. Welding of stacks carried by heat treatment under pressure and rolling mill in a vacuum with heating to 900-950°C and large (∼30%) compression in a single pass. The microstructure was investigated by scanning electron microscopy and X-ray analysis. For superconducting composites critical current density and upper critical magnetic field were measured. Shown that the pinning of superconducting vortices in alloys of NbTi are occurred at interlayer Nb- NbTi boundaries. Change in hardness and strength of multilayer composites under rolling deformation is described by the expression of the Hall-Petch relationship, in which instead of the grain size appeared thick of layers. Key words: multilayered composite, micro- and nanostructure, NbTi alloy, superconducting compound, rolling, heat treatment, the superconducting properties, hardness, strength, superconducting vortices, the Hall-Petch expression.

  13. In situ nanostructure formation of (micro-hydroxo)bis(micro-carboxylato) diruthenium units in nafion membrane and its utilization for selective reduction of nitrosonium ion in aqueous medium.

    Science.gov (United States)

    Kumar, Annamalai Senthil; Tanase, Tomoaki; Iida, Masayasu

    2007-01-16

    Nanostructured molecular film containing the (micro-hydroxo)bis(micro-carboxylato) diruthenium(III) units, [RuIII2(micro-OH)(micro-CH3COO)2(HBpz3)2]+ ({RuIII2(micro-OH)}), was prepared by an in situ conversion of its micro-oxo precursor, [RuIII2(micro-O)(micro-CH3COO)2(HBpz3)2] ({RuIII2(micro-O)}), in a Nafion membrane matrix, where HBpz3 is hydrotris(1-pyrazolyl)borate. The conversion procedure results in fine nanoparticle aggregates of the {RuIII2(micro-OH)} units in the Nafion membrane (Nf-{RuIII2(micro-OH)}), where an average particle size (4.1 +/- 2.3 nm) is close to the Nafion's cluster dimension of approximately 4 nm. Chemically modified electrodes by using the Nafion molecular membrane films (Nf-{RuIII2(micro-OH)}-MMFEs) were further developed on ITO/glass and glassy carbon electrode (GCE) surfaces, and a selective reduction of nitrosonium ion (NO+), presumably through reaction of a {RuIIRuIII(micro-OH)} mixed-valence state with HNO2, was demonstrated without interference by molecular oxygen in an acidic aqueous solution. The Nf-{RuIII2(micro-OH)}-MMFEs are stable even in a physiological condition (pH 7), where the naked {RuIII2(-OH)} complex is readily transformed into its deprotonated {RuIII2(micro-O)} form, demonstrating an unusual stabilizing effects for the {RuIII2(micro-OH)} unit by the Nafion cluster environment.

  14. Kinetically-controlled template-free synthesis of hollow silica micro-/nanostructures with unusual morphologies

    International Nuclear Information System (INIS)

    Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2014-01-01

    We report a kinetically-controlled template-free room-temperature production of hollow silica materials with various novel morphologies, including tubes, crutches, ribbons, bundles and bells. The obtained products, which grew in a well-controlled manner, were monodispersed in shape and size. The role of ammonia, sodium citrate, polyvinylpyrrolidone, chloroauric acid and NaCl in shape control is discussed in detail. The oriented growth of these micro-/nanostructures directed by reverse micelles followed a solution–solution–solid (SSS) mechanism, similar to the classic vapor–liquid–solid mechanism. The evolution processes of silica rods, tubes, crutches, bundles and bells were recorded using transmission electron microscopy to prove the SSS mechanism. (paper)

  15. Micro- and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications

    DEFF Research Database (Denmark)

    Chronakis, Ioannis S.

    2015-01-01

    Micro- and nano-structures such as micro- and nano-fibers and micro- and nano-particles based on polymers (synthetic and natural) can be processed by electrospinning. Electrospun micro- and nano-structures are an exciting class of novel materials due to several unique characteristics, including...

  16. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    Science.gov (United States)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  17. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  18. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  19. CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells.

    Science.gov (United States)

    Farr, Alexander R; Wu, Weisheng; Choi, Bongkum; Cavalcoli, James D; Laouar, Yasmina

    2014-09-02

    Invariant natural killer T (iNKT) cells to date represent the best example of cells known to have a hybrid function, representing both innate and adaptive immunity. Shared phenotypic similarities with NK cells together with a rapid response to a cytokine stimulus and a productive TCR engagement are the features that underline the hybrid nature of iNKT cells. Using these criteria, we provide molecular and functional evidence demonstrating that CD1d-independent (CD1d(ind)) NKT cells, a population of CD1d-unrestricted NKT cells, are endowed with a hybrid function far superior to that of iNKT cells: (i) an extensive shared program with NK cells, (ii) a closer Euclidian distance with NK cells, and (iii) the ability to respond to innate stimuli (Poly:IC) with cytotoxic potential in the same manner as NK cells identify a hybrid feature in CD1d(ind)NKT cells that truly fulfills the dual function of an NK and a T cell. Our finding that CD1d(ind)NKT cells are programmed to act like NK cells in response to innate signals while being capable of adaptive responses is unprecedented, and thus might reemphasize CD1d-unrestricted NKT cells as a subset of lymphocytes that could affect biological processes of antimicrobial and tumor immunity in a unique way.

  20. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  1. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography

    International Nuclear Information System (INIS)

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Dellasega, David; Cortelli, Daniele; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-01-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO 2 film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO 2 films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO 2 film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell–surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell–implant interactions. (paper)

  2. Graphene-based in-plane micro-supercapacitors with high power and energy densities.

    Science.gov (United States)

    Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.

  3. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    Science.gov (United States)

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  4. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  5. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.

    Science.gov (United States)

    Lee, Jung-Pil; Choi, Sinho; Park, Soojin

    2011-01-18

    We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.

  6. From micro- to nanostructured implantable device for local anesthetic delivery

    Directory of Open Access Journals (Sweden)

    Zorzetto L

    2016-06-01

    Full Text Available Laura Zorzetto,1 Paola Brambilla,1 Elena Marcello,1 Nora Bloise,2 Manuela De Gregori,3 Lorenzo Cobianchi,4,5 Andrea Peloso,4,5 Massimo Allegri,6 Livia Visai,2,7 Paola Petrini1 1Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, Milan, 2Department of Molecular Medicine, Centre for Health Technologies (CHT, INSTM UdR of Pavia, University of Pavia, 3Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, 4General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, 5Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 6Department of Surgical Sciences, University of Parma, Parma, 7Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy Abstract: Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured

  7. Multifunctional ZnO interfaces with hierarchical micro- and nanostructures: bio-inspiration from the compound eyes of butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sha; Yang, Yefeng; Jin, Yizheng; Huang, Jingyun; Zhao, Binghui; Ye, Zhizhen [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China)

    2010-07-15

    Multifunctional zinc oxide (ZnO) interfaces were fabricated by utilizing the technique of low-temperature metal-organic chemical vapor deposition (MOCVD). The ZnO interfacial material exhibit antiwetting, antireflectance, and photonic properties derived from the unique hierarchical micro- and nanostructures of the compound eye of the butterflies. We demonstrate that the fabrication of the multifunctional interfaces by using biotemplates can be applied to other materials, such as Pt. Our study provides an excellent example to obtain multifunctional interfaces by learning from nature. (orig.)

  8. Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700-1060 nm

    Science.gov (United States)

    Cansizoglu, Hilal; Gao, Yang; Ghandiparsi, Soroush; Kaya, Ahmet; Perez, Cesar Bartolo; Mayet, Ahmed; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Nanostructures allow broad spectrum and near-unity optical absorption and contributed to high performance low-cost Si photovoltaic devices. However, the efficiency is only a few percent higher than a conventional Si solar cell with thicker absorption layers. For high speed surface illuminated photodiodes, the thickness of the absorption layer is critical for short transit time and RC time. Recently a CMOS-compatible micro/nanohole silicon (Si) photodiode (PD) with more than 20 Gb/s data rate and with 52 % quantum efficiency (QE) at 850 nm was demonstrated. The achieved QE is over 400% higher than a similar Si PD with the same thickness but without absorption enhancement microstructure holes. The micro/nanoholes increases the QE by photon trapping, slow wave effects and generate a collective assemble of modes that radiate laterally, resulting in absorption enhancement and therefore increase in QE. Such Si PDs can be further designed to enhance the bandwidth (BW) of the PDs by reducing the device capacitance with etched holes in the pin junction. Here we present the BW and QE of Si PDs achievable with micro/nanoholes based on a combination of empirical evidence and device modeling. Higher than 50 Gb/s data rate with greater than 40% QE at 850 nm is conceivable in transceivers designed with such Si PDs that are integrated with photon trapping micro and nanostructures. By monolithic integration with CMOS/BiCMOS integrated circuits such as transimpedance amplifiers, equalizers, limiting amplifiers and other application specific integrated circuits (ASIC), the data rate can be increased to more than 50 Gb/s.

  9. Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization

    Science.gov (United States)

    Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

  10. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  11. Combination process of diamond machining and roll-to-roll UV-replication for thin film micro- and nanostructures

    Science.gov (United States)

    Väyrynen, J.; Mönkkönen, K.; Siitonen, S.

    2016-09-01

    Roll-to-roll (R2R) ultraviolet (UV) curable embossing replication process is a highly accurate and cost effective way to replicate large quantities of thin film polymer parts. These structures can be used for microfluidics, LED-optics, light guides, displays, cameras, diffusers, decorative, laser sensing and measuring devices. In the R2R UV-process, plastic thin film coated with UV-curable lacquer, passes through an imprinting embossing drum and is then hardened by an UV-lamp. One key element for mastering this process is the ability to manufacture a rotating drum containing micro- and nanostructures. Depending on the pattern shapes, the drum can be directly machined by diamond machining or it can be done through wafer level lithographical process. Due to the shrinkage of UV-curable lacquer, the R2R drum pattern process needs to be prototyped few times, in order to get the desired performance and shape from the R2R produced part. To speed up the prototyping and overall process we have developed a combination process where planar diamond machining patterns are being turned into a drum roller. Initially diamond machined patterns from a planar surface are replicated on a polymer sheet using UV-replication. Secondly, a nickel stamper shim is grown form the polymer sheet and at the end the stamper is turned into a roller and used in the R2R process. This process allows various micro milled, turned, grooved and ruled structures to be made at thin film products through the R2R process. In this paper, the process flow and examples of fabricating R2R embossed UVcurable thin film micro- and nanostructures from planar diamond machined patterns, is reported.

  12. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  13. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.

    Science.gov (United States)

    Zhong, Wenbin; Wang, Yongxin; Yan, Yan; Sun, Yufeng; Deng, Jianping; Yang, Wantai

    2007-04-19

    A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.

  14. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  15. A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei

    2016-03-07

    One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Poly(hydridocarbyne as Highly Processable Insulating Polymer Precursor to Micro/Nanostructures and Graphite Conductors

    Directory of Open Access Journals (Sweden)

    Aaron M. Katzenmeyer

    2009-01-01

    Full Text Available Carbon-based electronic materials have received much attention since the discovery and elucidation of the properties of the nanotube, fullerene allotropes, and conducting polymers. Amorphous carbon, graphite, graphene, and diamond have also been the topics of intensive research. In accordance with this interest, we herein provide the details of a novel and facile method for synthesis of poly(hydridocarbyne (PHC, a preceramic carbon polymer reported to undergo a conversion to diamond-like carbon (DLC upon pyrolysis and also provide electrical characterization after low-temperature processing and pyrolysis of this material. The results indicate that the strongly insulating polymer becomes notably conductive in bulk form upon heating and contains interspersed micro- and nanostructures, which are the subject of ongoing research.

  17. Fe3O4@polyaniline yolk-shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption

    Science.gov (United States)

    Wang, Xiaoliang; Zhang, Minwei; Zhao, Jianming; Huang, Guoyong; Sun, Hongyu

    2018-01-01

    Unique Fe3O4/polyaniline (PANI) composite with yolk-shell micro/nanostructure (FPys) has been successfully synthesized by a facile silica-assisted in-situ polymerization and subsequent etching strategy. The structural and compositional studies of the FPys composites are performed by employing X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The yolk-shell morphology of the products is confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. When evaluated as anode material for lithium-ion batteries, the as-prepared FPys electrodes deliver superior capacity, better cycling stability and rate capability than those of bare Fe3O4 micro/nanospheres and Fe3O4/PANI core-shell (FPcs) electrodes. Moreover, FPys also exhibits excellent electromagnetic wave absorption performance when comparing to the synthesized Fe3O4-based electromagnetic wave absorbers, in which strong reflection loss and extensive response bandwidth can be achieved simultaneously. The excellent bifunctional properties of FPys material are associated with the specially designed hierarchical micro/nanostructures. The current strategy that application directed structural design can be applied to the synthesis of other multifunctional materials.

  18. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  19. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  20. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  1. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  2. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  3. Managing the Endowment

    Science.gov (United States)

    Ellis, R. L.

    1975-01-01

    The treasurer of Smith College describes their use of the unit method of investment, in which each endowment is given shares in the total investment pool, and the total return concept, which emphasizes the use of a modest portion of investment appreciation for operating purposes to supplement the yield from interest and dividends. (JT)

  4. Market Collapse Weighs Heavily on College Endowments

    Science.gov (United States)

    Bluemenstyk, Goldie

    2009-01-01

    College endowments earned an average return of minus-3 percent for the 2008 fiscal year and an estimated minus-22.5 percent in the five months after that, two new reports show. More than a quarter of all institutions said they plan to draw less money from their endowment this year than they had expected to spend. After a half-decade of soaring…

  5. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    International Nuclear Information System (INIS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O 3 treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar + -etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O 3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films

  6. The Role of "Non-economic" Endowments

    DEFF Research Database (Denmark)

    Laursen, Keld; Santangelo, Grazia D.

    2017-01-01

    Recent developments in the pattern of international knowledge sourcing have highlighted a new international division of labor in knowledge production which now is affecting emerging as well as advanced countries. The source of this division of labor has been identified as residing in the changing...... economic endowments of these countries. We extend this by suggesting that the new international allocation of knowledge-related activities is related strongly to a country’s “non-economic” endowments. Our arguments provide context to the papers in this special section....

  7. Manganese Nanostructures and Magnetism

    Science.gov (United States)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  8. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  9. Ion Beam Etching: Replication of Micro Nano-structured 3D Stencil Masks

    International Nuclear Information System (INIS)

    Weber, Patrick; Guibert, Edouard; Mikhailov, Serguei; Bruegger, Juergen; Villanueva, Guillermo

    2009-01-01

    Ion beam LIGA allows the etching of 3D nano-structures by direct writing with a nano-sized beam. However, this is a relatively time consuming process. We propose here another approach for etching structures on large surfaces and faster, compared to the direct writing process. This approach consists of replicating 3D structured masks, by scanning an unfocused ion beam. A polymer substrate is placed behind the mask, as in UV photolithography. But the main advantage is that the 3D structure of the mask can be replicated into the polymer. For that purpose, the masks (developped at LMIS1, EPFL) are made of a silicon nitride membrane 100 nm thick, on which 3D gold structures up to 200 nm thick, are deposited. The 3D Au structures are made with the nanostencil method, based on successive gold deposition. The IMA institute, from HE-Arc, owns a High Voltage Engineering 1.7 MV Tandetron with both solid and gaseous negative ion sources, able to generate ions from almost every chemical element in a broad range of energies comprised between 400 keV and 6.8 MeV. The beam composition and energy are chosen in such a way, that ions lose a significant fraction of their energy when passing through the thickest regions of the mask. Ions passing through thinner regions of the mask loose a smaller fraction of their energy and etch the polymer with larger thicknesses, allowing a replication of the mask into the polymer. For our trials, we have used a carbon beam with an energy of 500 keV. The beam was focussed to a diameter of 5 mm with solid slits, in order to avoid border effects and thus ensure a homogeneous dose distribution on the beam diameter. The feasibility of this technique has been demonstrated, allowing industrial applications for micro-mould fabrication, micro-fluidics and micro-optics.

  10. Growing the Endowment in a High-Risk Environment.

    Science.gov (United States)

    Tharp, Charles

    1997-01-01

    To increase the value of its endowment, a college or university must manage three separate but interdependent factors: endowment spending rate; investment policy; and fund-raising. Using lessons learned by other institutions, Oberlin College (Ohio) developed strategies for spending and investment that balance the institution's need for income, the…

  11. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    International Nuclear Information System (INIS)

    Marimuthu, T.; Anandhan, N.

    2016-01-01

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  12. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, School of Physics, Alagappa University, Karaikudi – 630 003, India. (India)

    2016-05-06

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  13. Fabrication of Nanostructured Polymer Surfaces and Characterization of their Wetting Properties

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard

    . • Simulations of wetting transitions. • Clean room fabrication of functional surfaces, and production of micro- and nanostructured mold inserts. • Injection molding of micro- and nanostructured polymer parts on a commercial injection molding machine. • Co-invented a patented technique for microstructuring steel...... molds able to produce superhydrophobic polymer parts. The patented microstructuring technique generates microstructures similar to those found on the leaf of the lotus flower, without the overlaying nanostructure. Despite the lack of hierarchical structures, the microstructured surface shows excellent...... structures and the irregular structures produced by the patented microstructuring technique. The second study bridges the gap between silicon structures produced by planar processes in the clean room and the smooth multi-height structures often found in nature. Finally i have demonstrated a novel type...

  14. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors

    Science.gov (United States)

    Dubal, Deepak P.; Gund, Girish S.; Holze, Rudolf; Lokhande, Chandrakant D.

    2013-11-01

    The hierarchical structures of nanosheets, micro-roses and micro-woolen like CuO nanosheets were directly fabricated on stainless steel via surfactant-free and inexpensive chemical bath deposition (CBD) method. Further, these CuO nanostructures demonstrate excellent surface properties like uniform surface morphology, high surface area and uniform pore size distribution of CuO samples. The electrochemical properties of CuO nanostructures have been investigated by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy techniques. The electrochemical studies of the CuO samples show obvious influence of surface properties on the pseudocapacitance performance. The maximum specific capacitances of nanosheets, micro-roses and micro-woolen like CuO nanosheets are found to be 303 Fg-1, 279 Fg-1 and 346 Fg-1, respectively at 5 mV s-1 scan rate. Further, the EIS analysis shows lower ESR value, high power performance, excellent rate as well as frequency response of micro-woolen like CuO sample. The Ragone plot ascertains better power and energy densities of all three CuO nanostructured samples than other electrical energy storage devices. The long-term cycling performance of CuO is examined at different scan rates and the morphology changes of the electrode materials were studied. Present investigation suggests the inexpensive CBD approach for fine-tuning surface properties of oxide materials for energy storage applications.

  15. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  16. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    Science.gov (United States)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  17. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    International Nuclear Information System (INIS)

    Li, Nannan; Pang, Shucai; Yan, Fei; Chen, Lei; Jin, Dazhi; Xiang, Wei; Zhang, De; Zeng, Baoqing

    2015-01-01

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics

  18. College Endowment Funds: A Consideration of Applicable Accounting and Legal Principles.

    Science.gov (United States)

    Blackwell, Thomas E.; Johns, Ralph S.

    1970-01-01

    In 1968 the Ford Foundation appointed an Advisory Committee on Endowment Management to study the management of college and university endowment funds with an eye toward the accounting and legal principals of more unconventional investing. The Committee concluded that gains from endowments need not be treated as principal of NACUBO sees this…

  19. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    Science.gov (United States)

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  20. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  1. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    OpenAIRE

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-01-01

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plat...

  2. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  3. Effects of Laser Scanning Conditions on Metallic Micro/Nanostructures in Multiphoton Nanofabrication%多光子纳米加工中激光扫描条件对金属微纳结构的影响

    Institute of Scientific and Technical Information of China (English)

    靳伟; 董贤子; 赵震声; 段宣明

    2011-01-01

    The influences of laser scanning conditions on the silver micro/nanostructures in multipho-ton photoreduction of metallic micro/nanostructures and morphology using femtosecond laser were investigated. The results indicated that increasing the distance between scanning points (d) could make the width of lines become smaller and extending the exposure of time (t) could make the lines broadening. Furthermore, the increasing of scanning times (N) led to the formation of large silver particles and lumps on the structures due to the fusion of silver nanoparticles which on the surface of metallic micro/nanostructures.%研究了飞秒激光多光子还原制备银微纳结构技术中激光扫描条件对金属微纳结构与形貌的影响.结果表明:增加激光扫描点间距d可获得较小线宽,延长曝光时间t使线条变宽,增加扫描次数N可使金属微纳结构表面银纳米粒子熔融凝固成较大尺寸颗粒及块状物.

  4. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  5. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    Science.gov (United States)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  6. Application of Functional Nano-Patterning to Polymer Medical Micro Implants

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Biondani, Francesco Giuseppe; Tang, P.T.

    2015-01-01

    , etching of aluminium oxide, nickel and copper electroplating and selective etching of the aluminium master. The resulting nanostructure consists of tightly packed hemispherical features with average diameter of approximately 400 nm. Characterization of the obtained nanostructure on the micro mould inserts...

  7. Fabrication of ZnO Nanostructures with Self-cleaning Functionality

    International Nuclear Information System (INIS)

    Kok, K.Y.; Ng, I.K.; Nur Ubaidah Saidin; Bustaman, F.K.A.

    2011-01-01

    The science of biomimicry has served as a fusion point between nature and technology where one could adopt natures best solution for humans use. Lotus leaf surface, for example, possesses self cleaning capability due to its unique physical and chemical properties. In this work, we aimed to mimic these features on glass surface using ZnO nanostructures to achieve the self-cleaning functionality. A series of ZnO films were electrochemically deposited on indium-doped tin oxide (ITO) conducting glasses from different aqueous electrolytes at systematically varied deposition potentials and electrolyte conditions. The surface morphology, density, orientation and aspect ratio of the ZnO micro/nanostructures obtained were characterized using X-ray diffraction and scanning electron microscopy. Results from these studies show that lower electrolyte concentrations tend to favor one-dimensional growth of ZnO nanostructures that self-assembled into nano flowers at higher deposition temperatures. This hierarchical micro/nano-structured ZnO-modified surface exhibits super hydrophobicity with water contact angle as high as 170 degree. (author)

  8. As Endowment Managers Turn to Private Equity, Questions Arise

    Science.gov (United States)

    Fuller, Andrea; Blumenstyk, Goldie

    2012-01-01

    Endowment growth in 2011 came in no small part because universities have increasingly invested in private equity--the same private equity that has become a hot-button issue on the 2012 campaign trail, with some candidates and commentators calling into question its social value. Private equity is "of increasing significance" for endowments. It made…

  9. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  10. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  11. Influence of Ga vacancies, Mn and O impurities on the ferromagnetic properties of GaN micro- and nanostructures

    Science.gov (United States)

    Guzmán, G.; Escudero, R.; Silva, R.; Herrera, M.

    2018-04-01

    We present a study of the influence of gallium vacancy (VGa) point defects on the ferromagnetic properties of GaN:Mn and GaN:Mn,O micro- and nanostructures. Results demonstrate that the generation of these point defects enhances the ferromagnetic signal of GaN:Mn microstructures, while incorporation of oxygen as an impurity inhibits this property. XPS measurements revealed that Mn impurities in ferromagnetic GaN:Mn samples mainly exhibit a valence state of 2+. Cathodoluminescence (CL) spectra from Mn-doped GaN samples displayed emissions centered at about 1.97 eV, attributed to transitions between the 4T1-6A1 states of the Mn2+ d orbitals, and emissions centered at 2.45 and 2.9 eV, associated with the presence of VGa. CL measurements also revealed a blue shift of the GaN band-edge emission generated by the expansion of the wurtzite lattice due to Mn incorporation, which was confirmed by XRD measurements. These latter measurements also revealed an amorphization of GaN:Mn due to the incorporation of oxygen as impurities. The GaN:Mn samples were synthesized by thermal evaporation of GaN and MnCO3 powders onto Ni0.8Cr0.2/Si(100) in a horizontal furnace operated at low vacuum. The residual air inside the system was used as a source of oxygen during the synthesis of Mn and O co-doped GaN nanostructures. Mn and O impurities were incorporated into the nanostructures at different concentrations by varying the growth temperature. Energy Dispersive Spectroscopy, XRD, and XPS measurements confirmed that the obtained samples predominantly consisted of GaN.

  12. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    International Nuclear Information System (INIS)

    Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simoes, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G.

    2008-01-01

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained

  13. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    Energy Technology Data Exchange (ETDEWEB)

    Volanti, D.P. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Keyson, D. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil)], E-mail: laeciosc@bol.com.br; Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Joya, M.R. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Longo, E.; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Souza, A.G. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil)

    2008-07-14

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained.

  14. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  15. Advancing Women's Health and Women's Leadership With Endowed Chairs in Women's Health.

    Science.gov (United States)

    Carnes, Molly; Johnson, Paula; Klein, Wendy; Jenkins, Marjorie; Bairey Merz, C Noel

    2017-02-01

    Gender-based bias and conflation of gender and status are root causes of disparities in women's health care and the slow advancement of women to leadership in academic medicine. More than a quarter of women physicians train in internal medicine and its subspecialties, and women physicians almost exclusively constitute the women's health focus within internal medicine. Thus, internal medicine has considerable opportunity to develop women leaders in academic medicine and promote women's health equity.To probe whether holding an endowed chair-which confers status-in women's health may be an effective way to advance women leaders in academic medicine and women's health, the authors explored the current status of endowed chairs in women's health in internal medicine. They found that the number of these endowed chairs in North America increased from 7 in 2013 to 19 in 2015, and all were held by women. The perceptions of incumbents and other women's health leaders supported the premise that an endowed chair in women's health would increase women's leadership, the institutional stature of women's health, and activities in women's health research, education, and clinical care.Going forward, it will be important to explore why not all recipients perceived that the endowed chair enhanced their own academic leadership, whether providing women's health leaders with fundraising expertise fosters future success in increasing the number of women's health endowed chairs, and how the conflation of gender and status play out (e.g., salary differences between endowed chairs) as the number of endowed chairs in women's health increases.

  16. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Micro- and nanostructured Al{sub 2}O{sub 3} surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Cenk, E-mail: cenk.aktas@inm-gmbh.de [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Doerrschuck, Eva; Schuh, Cathrin [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany); Miro, Marina Martinez; Lee, Juseok [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Puetz, Norbert; Wennemuth, Gunther [Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424 Homburg (Germany); Metzger, Wolfgang; Oberringer, Martin [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Building 57, 66424 Homburg (Germany); Veith, Michael [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Department of Inorganic Chemistry, University of Saarland, Building C 4 1, 66123 Saarbruecken (Germany); Abdul-Khaliq, Hashim [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany)

    2012-07-01

    The effect of the micro- and nanotopography on vascular cell-surface interaction is investigated using nano- and microstructured Al{sub 2}O{sub 3} as model substrate. Two different nanostructured Al{sub 2}O{sub 3} surfaces composed of low density (LD) and high density (HD) nanowires (NWs) were synthesized by chemical vapour deposition (CVD) and commercially available microstructured Al{sub 2}O{sub 3} plates were used for comparison. A clear diverging response of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC) was observed on these nano- and microstructured surfaces. LD Al{sub 2}O{sub 3} NWs seem to enhance the proliferation of HUVECs selectively. This selective control of the cell-surface interaction by topography may represent a key issue for the future stent material design. - Highlights: Black-Right-Pointing-Pointer Nanostructured alumina surfaces triggers selective adhesion and proliferation of endothelial cells. Black-Right-Pointing-Pointer Catalyst free synthesis of nanowires. Black-Right-Pointing-Pointer Topography induces selective cell response.

  18. Happiness and memory: affective significance of endowment and contrast.

    Science.gov (United States)

    Liberman, Varda; Boehm, Julia K; Lyubomirsky, Sonja; Ross, Lee D

    2009-10-01

    Three studies (two conducted in Israel and one in the United States) examined associations between self-rated dispositional happiness and tendencies to treat memories of positive and negative events as sources of enhanced or attenuated happiness through the use of "endowment" and "contrast." Although participants generally endorsed items describing happiness-enhancing tendencies more than happiness-diminishing ones, self-reported happiness was associated with greater endorsement of "positive endowment" items and less endorsement of "negative endowment" items, and also with less endorsement of items that involved contrasting the present with happier times in the past. Only in the American sample, however, was happiness associated with greater endorsement of items that involved contrasting the present with less happy times in the past. These data suggest that relatively unhappy people show somewhat conflicting memorial tendencies vis-à-vis happiness, whereas very happy people show simpler, and less conflicting, tendencies. These findings augment the existing literatures on the affective consequences of memory, which have been concerned more with mood than with temperament and/or have dealt only with a subset of the endowment and contrast tendencies explored in the present work.

  19. Influence of negative interest rates on endowements and foundations functioning

    Directory of Open Access Journals (Sweden)

    Nikolić Dušan Ž.

    2015-01-01

    Full Text Available Negative interest rate exists in the case when on the basis of the deposit contract a deponent is obliged to pay to a depository (a bank a reimbursement for the money keeping (paying to save. The scientific literature indicates that the legal regulation on endowments and foundations in a vast number of countries is based on the presumption that interest rates cannot be negative and that we are encountering the phenomenon of which we have limited knowledge. The introduction of negative interest rates, thus, could endanger the functioning, if not the subsistence of some endowments and foundations. The vulnerable social groups could, thereby, be especially affected. The Law on Endowments and Foundations of the Republic of Serbia enshrines that the endowments' capital shall not fall under the minimum capital assets of30.000 EUR recalculated in dinars based on the middle exchange rate of the National Bank of Serbia on the day of establishment. Apart from that, a founder may in the Articles of Association determine the minimum value below which the capital assets of endowment may not be reduced, which may not be lower of the minimum assets value set by the Law. In Serbia negative interest rates could aggravate, and throughout the time, even prevent the accomplishment of aims of endowments and foundations which for the operation of their activities may use only the interest yields and not the means of capital assets above the legal minimum. Some endowments could even cease to exist due to the diminishment of their minimum capital assets which entirely consist of the money deposited in the banks. The Article indicates the need for reconsidering the legal norms currently in force and that the transformation of certain legal institutes shall timely commence, whereby their systematic and social functions shall be regarded, as well as the need for introducing a streamlined corrective mechanisms with the aim of protecting interests of the weaker party in

  20. Composition of silicon fibrous nanostructures synthesized using ultrafast laser pulses under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sivakumar M.

    2015-01-01

    Full Text Available In this study the composition of nanostructures generated owing to ablation of crystalline silicon using high repletion rate femtosecond laser under ambient condition is investigated. The web-like silicon fibrous nanostructures are formed in and around the laser irradiated area. Electron Microscopy investigation revealed that the nanostructures are made of nanoparticles of size about 40 nm. In addition Micro-Raman analysis shows that the nanofibrous structures comprises a mixture of amorphous and polycrystalline silicon. X-ray photoelectron spectroscopy analysis reveals the oxidized and un-oxidized elemental states of silicon in the nanostructures. Moreover web-like fibrous nanostructures are generated due to condensation of super saturated vapour and subsequent nucleus growth in the laser induced plasma plume.

  1. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    International Nuclear Information System (INIS)

    Park, Youngjae; Kim, Hyungdae; Kim, Hyungmo; Kim, Joonwon

    2014-01-01

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (micro- and nano-structured surfaces. The visualization results are analyzed to obtain the microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters

  2. Relationships between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting matrixes containing a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal.

    Science.gov (United States)

    Tercjak, Agnieszka; Mondragon, Iñaki

    2008-10-07

    Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.

  3. Self-organized nanostructures in silicon and glass for MEMS, MOEMS and BioMEMS

    International Nuclear Information System (INIS)

    Lilienthal, K.; Fischer, M.; Stubenrauch, M.; Schober, A.

    2010-01-01

    The utilization of self-organization in the process workflows for Micro-Electro-Mechanical-Systems (MEMS) and their derivatives is a smart way to get large areas of nanostructured surfaces for various applications. The generation of nano-masking spots by self-organizing residues in the plasma can lead to needle- or tube-like structures on the surface after (deep-) reactive ion etching. With lengths of 3 up to 25 μm and 150 up to 500 nm in diameter for silicon broad applications in the fields of micro fluidics with catalysts, micro-optical or mechanical mountings or carrier wafer bonding in microelectronics are possible. Now, we also developed dry etching processes for fused silica which shows analogue properties to 'Black Silicon' and investigated these glass nanostructures by a first parameter study to identify new usable structures and hybrids. This innovative starting point allows the transfer of 'Black Silicon' technologies and its applications to another important material class in micro- and nanotechnologies, fused silica.

  4. Self-organized nanostructures in silicon and glass for MEMS, MOEMS and BioMEMS

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, K., E-mail: katharina.lilienthal@tu-ilmenau.de [Research Group ' Micro fluidics and Biosensors' , Ilmenau University of Technology, Institute of Micro- and Nanotechnologies, D-98693 Ilmenau (Germany); Fischer, M. [Research Group ' Micro fluidics and Biosensors' , Ilmenau University of Technology, Institute of Micro- and Nanotechnologies, D-98693 Ilmenau (Germany); Stubenrauch, M. [Department of Micromechanical Systems, Ilmenau University of Technology, Institute of Micro- and Nanotechnologies, D-98693 Ilmenau (Germany); Schober, A. [Research Group ' Micro fluidics and Biosensors' , Ilmenau University of Technology, Institute of Micro- and Nanotechnologies, D-98693 Ilmenau (Germany)

    2010-05-25

    The utilization of self-organization in the process workflows for Micro-Electro-Mechanical-Systems (MEMS) and their derivatives is a smart way to get large areas of nanostructured surfaces for various applications. The generation of nano-masking spots by self-organizing residues in the plasma can lead to needle- or tube-like structures on the surface after (deep-) reactive ion etching. With lengths of 3 up to 25 {mu}m and 150 up to 500 nm in diameter for silicon broad applications in the fields of micro fluidics with catalysts, micro-optical or mechanical mountings or carrier wafer bonding in microelectronics are possible. Now, we also developed dry etching processes for fused silica which shows analogue properties to 'Black Silicon' and investigated these glass nanostructures by a first parameter study to identify new usable structures and hybrids. This innovative starting point allows the transfer of 'Black Silicon' technologies and its applications to another important material class in micro- and nanotechnologies, fused silica.

  5. Colleges Leverage Large Endowments to Benefit Some Donors and Employees

    Science.gov (United States)

    Hermes, J. J.

    2008-01-01

    College endowments have beaten the market so consistently in recent years, it is not surprising that individuals would like to take advantage of that institutional wisdom to invest their own money. Increasingly, many are. A small but growing number of universities are trying to entice donors to invest their trusts alongside college endowments,…

  6. Buying and selling exchange goods: Loss aversion and the endowment effect

    NARCIS (Netherlands)

    E. van Dijk (Eric); D.L. van Knippenberg (Daan)

    1996-01-01

    textabstractAn experimental market was used to investigate whether exchange goods may be susceptible to the endowment effect. Previous research (Kahneman et al., 1990) suggested that the endowment effect will not be observed in exchange goods. The present study demonstrates that it may be observed,

  7. Novel of core-shell AlOOH/Cu nanostructures: Synthesis, characterization, antimicrobial activity and in vitro toxicity in Neuro-2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru; Glazkova, E. A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, N. V., E-mail: nvsv@ispms.tsc.ru [Institute of Strength Physics and Materials Sciences SB RAS, Akademicheskii Pr. 2/4, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.

  8. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  9. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanan; Liu, Baodan, E-mail: baodanliu@imr.ac.cn; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin, E-mail: xjiang@imr.ac.cn

    2015-11-30

    Graphical abstract: A general strategy for the rational synthesis of tungstate nanostructure has been developed based on plasma electrolytic oxidation (PEO) technology (up). Using this method, ZnWO{sub 4} and NiWO{sub 4} nanostructures with controllable morphologies and superior crystallinity can be easily obtained (down), showing obvious advantage in comparison with conventional hydrothermal and sol–gel methods. - Highlights: • Plasma electrolyte oxidation (PEO) method has been used for the rational synthesis of tungstate nanostructures. • ZnWO{sub 4} nanoplates have strong mechanical adhesion with porous TiO{sub 2} film substrate. • The morphology and dimensional size of ZnWO{sub 4} nanostructures can be selectively tailored by controlling the annealing temperature and growth time. • The PEO method can be widely applied to the growth of various metal oxides. - Abstract: A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO{sub 4} and NiWO{sub 4} nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO{sub 4} nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol–gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO{sub 4} nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of

  10. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    International Nuclear Information System (INIS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-01-01

    Graphical abstract: A general strategy for the rational synthesis of tungstate nanostructure has been developed based on plasma electrolytic oxidation (PEO) technology (up). Using this method, ZnWO 4 and NiWO 4 nanostructures with controllable morphologies and superior crystallinity can be easily obtained (down), showing obvious advantage in comparison with conventional hydrothermal and sol–gel methods. - Highlights: • Plasma electrolyte oxidation (PEO) method has been used for the rational synthesis of tungstate nanostructures. • ZnWO 4 nanoplates have strong mechanical adhesion with porous TiO 2 film substrate. • The morphology and dimensional size of ZnWO 4 nanostructures can be selectively tailored by controlling the annealing temperature and growth time. • The PEO method can be widely applied to the growth of various metal oxides. - Abstract: A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO 4 and NiWO 4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO 4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol–gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO 4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by

  11. Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures

    International Nuclear Information System (INIS)

    Liu, Ting; Chen, Xian; Hong, Cheng-Yi; Xu, Xiao-Ping; Yang, Huang-Hao

    2014-01-01

    Electrochemiluminescence (ECL) integrates the advantages of electrochemical detection and chemiluminescent techniques. The method has received particular attention because it is highly sensitive and selective, has a wide linear range but low reagent costs. The use of nanomaterials with their unique physical and chemical properties has led to new kinds of biosensors that exhibit high sensitivity and stability. Compared to other nanomaterials, DNA nanostructures are more biocompatible, more hydrophilic, and thus less prone to nonspecific adsorption onto the electrode surface. We describe here a label-free and ultrasensitive ECL biosensor for detecting a cancer-associated microRNA at a femtomolar level. We have designed two auxiliary probes that cause the formation of a long-range self-assembly in the form of a μm-long 1-dimensional DNA concatamer. These can be used as carriers for signal amplification. The intercalation of the ECL probe Ru(phen) 3 2+ into the grooves of the concatamers leads to a substantial increase in ECL intensity. This amplified sensor shows high selectivity for discriminating complementary target and other mismatched RNAs. The biosensor enables the quantification of the expression of microRNA-21 in MCF-7 cells. It also displays very low limits of detection and provides an alternative approach for the detection of RNA or DNA detection in diagnostics and gene analysis. (author)

  12. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  13. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  14. Prospect Theory: A Study of the Endowment Effect

    Directory of Open Access Journals (Sweden)

    Jurandir Sell Macedo

    2007-01-01

    Full Text Available Behavioral Finance is a recent field of study which contradicts the presupposition supported by Modern Finance that decision makers act rationally. Prospect Theory, developed by Kahneman and Tversky (1979, is presented as an alternative model to the Theory of Expected Utility in relation to the way people decide in face of possibilities of risk. According to Prospect Theory, people define gains and losses based on a given point of reference, which can be established on grounds of a given level of expected gain. This fact leads to the Endowment Effect - a behavioral trend investigated in this study – whereby investors are influenced by a portfolio which they have received as an inheritance or endowment. The reason this occurs is that individuals usually define their expectations of gain according to the future profitability of the portfolio received, and not according to the future profitability of the market. Using an investment simulation, the Endowment Effect was tested among 226 university students taking courses in the subject of capital markets. The results demonstrate that the students were influenced by the different initial portfolios, which were randomly assigned.

  15. Influence of the endowment effect on the valuation of goods. An experimental verification.

    Directory of Open Access Journals (Sweden)

    Magdalena Gawrońska

    2015-09-01

    Full Text Available The article refers to the issue of the endowment effect, which acts as a mechanism that influences valuation. The paper’s main aim is to verify the endowment effect phenomenon for branded, fast-moving consumer goods. The subject of this paper also includes examining whether short-term possession, generates the endowment effect. It also studies how the possibility of using a product influences the power of the examined phenomenon. In order to verify the proposed hypothesis, an economic experiment was used. Its results were analyzed with the use of descriptive statistics and econometric methods. The study demonstrated that the endowment effect determines the perception of goods and influences their valuation.

  16. Self-aligned mask renewal for anisotropically etched circular micro- and nanostructures

    International Nuclear Information System (INIS)

    Kaspar, Peter; Jäckel, Heinz; Holzapfel, Sebastian; Windhab, Erich J

    2011-01-01

    The top–down fabrication of high aspect ratio circular micro- and nanostructures in silicon nitride is presented. A new method is introduced to increase the aspect ratio of anisotropically etched holes by a factor of more than two with respect to the results obtained from an established dry-etching process. The method is based on the renewal of an etching mask after a first etching step has been completed. Mask renewal is done by line-of-sight deposition of a masking layer on the surface of the sample, which is mounted at an angle with respect to the deposition direction. No additional alignment step is required. The proof of principle is performed for silicon nitride etching through a mask of titanium, but the method has great potential to be applicable to a wide variety of substrate–mask combinations and to find entrance into various engineering fields. Two specific applications are highlighted. Firstly, a thick silicon nitride hardmask is used for the fabrication of deeply etched photonic crystal holes in indium phosphide (InP). For holes of 280 nm diameter, a record aspect ratio of 20 and an overall selectivity of 28.5 between a positive-tone resist layer and InP are reported. Secondly, the use of perforated silicon nitride membranes for droplet formation for applications in food engineering or pharmaceutics is addressed. Preliminary results show a potential for the self-aligned mask renewal method to exceed state-of-the-art membrane quality in terms of pore size, aspect ratio and membrane stability.

  17. On The Role of Wetting, Structure Width, and Flow Characteristics in Polymer Replication on Micro- and Nanoscale

    DEFF Research Database (Denmark)

    Rytka, Christian; Opara, Nadia; Andersen, Nis Korsgaard

    2016-01-01

    The replication of functional polymeric micro- and nanostructures requires a deep understanding of material and process interrelations. In this investigation the dewetting potential of a polymer is proposed as a simple rationale for estimation of the replicability of functional micro- and nanostr......The replication of functional polymeric micro- and nanostructures requires a deep understanding of material and process interrelations. In this investigation the dewetting potential of a polymer is proposed as a simple rationale for estimation of the replicability of functional micro......- and nanostructures by injection molding. The dewetting potential of a polymer is determined by integrating the spreading coefficient over the range from melt temperature to no-flow temperature. From all polymers tested, the lowest dewetting potential is calculated for PP and the highest for polymethylmethacrylate....... The dewetting potential correlates well with the replicated height of four different structures covering both the micro- and the nanorange on two different surfaces (brass and fluorocarbon modified nickel) and polymers with different spreading coefficients. It is clearly shown that a lower dewetting potential...

  18. Nanostructures by ion beams

    Science.gov (United States)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  19. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  20. Lignin from Micro- to Nanosize: Applications

    Directory of Open Access Journals (Sweden)

    Stefan Beisl

    2017-11-01

    Full Text Available Micro- and nanosize lignin has recently gained interest due to improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. This review focuses on the application of micro- and nanostructured lignin in final products or processes that all show potential for high added value. The fields of application are ranging from improvement of mechanical properties of polymer nanocomposites, bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. Also, a carbonization of lignin nanostructures can lead to high-value applications such as use in supercapacitors for energy storage. The properties of the final product depend on the surface properties of the nanomaterial and, therefore, on factors like the lignin source, extraction method, and production/precipitation methods, as discussed in this review.

  1. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    Science.gov (United States)

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS. Georg Thieme Verlag KG Stuttgart · New York.

  2. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

    Science.gov (United States)

    Zong, Xianli; Zhu, Rong; Guo, Xiaoliang

    2015-01-01

    In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measurement for label-free, nondestructive, real-time and rapid monitoring on a single cell has been achieved. Moreover, parameters of Au nanostructures such as size of nanoholes/nanogaps can be controllably adjusted in the fabrication. We have demonstrated a SERS enhancement factor of up to ~2.24 × 106 and double-layer impedance decrease ratio of 90% ~ 95% at low frequency range below 200 kHz by using nanostructured microelectrodes. SERS detection and in-situ EIS measurement of a trapped single cell by using planar microelectrodes are realized to demonstrate the compatibility, multi-functions, high-sensitivity and simplicity of the micro-chip system. This dual function platform integrating SERS and EIS is of great significance in biological, biochemical and biomedical applications. PMID:26558325

  3. 76 FR 32992 - National Endowment for the Arts; Proposed Collection; Comment Request

    Science.gov (United States)

    2011-06-07

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Proposed Collection; Comment Request ACTION: Notice. SUMMARY: The National Endowment for the Arts (NEA), as part of.... Currently, the NEA is soliciting comments concerning the proposed information collection on the motivation...

  4. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    Science.gov (United States)

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  5. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    OpenAIRE

    Hullavarad, SS; Hullavarad, NV; Karulkar, PC; Luykx, A; Valdivia, P

    2007-01-01

    AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise a...

  6. Mere exposure and the endowment effect on consumer decision making.

    Science.gov (United States)

    Tom, Gail; Nelson, Carolyn; Srzentic, Tamara; King, Ryan

    2007-03-01

    Previous researchers (e.g., J. A. Bargh, 1992, 2002) demonstrated the importance of nonconscious processes on consumer choice behavior. Using an advertisement, the authors determined the effect of two nonconscious processes--the mere exposure effect, which increases object preference by increasing consumer exposure to an object, and the endowment effect, which increases object valuation by providing consumer possession of an object--on consumer behavior. Although the mere exposure effect and endowment effect did not produce an interaction, they produced independent effects. The endowment effect increased object valuation but not object preference. The mere exposure effect increased object preference but not object valuation. Thus, at the unconscious level, an increase in object preference does not lead to an increase in object valuation, nor does an increase in object valuation lead to an increase in object preference. The authors discuss the importance of developing measures of unconscious process in advertising effectiveness.

  7. Colleges Lower Their Expectations for Endowments

    Science.gov (United States)

    Masterson, Kathryn

    2008-01-01

    This article reports that after years of double-digit gains, college endowments are feeling the pinch from distressed financial markets. Some colleges are reporting negative rates of return for the fiscal year that just ended, and even those that performed better are wondering what the current financial crisis will mean. If the market's slide…

  8. Electrified Liquid Jets from Nanostructured Surfaces for Phase Change Heat Transfer Enhancement

    Data.gov (United States)

    National Aeronautics and Space Administration — The need exists to dissipate up to 1kW/cm2 with minimum cooling power overhead and a minimum weight. Using micro and nanostructures on hot surfaces recently emerged...

  9. Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries

    Science.gov (United States)

    Li, Yana; Hou, Xianhua; Li, Yajie; Ru, Qiang; Wang, Shaofeng; Hu, Shejun; Lam, Kwok-ho

    2017-09-01

    Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g). [Figure not available: see fulltext.

  10. Fabricating ordered functional nanostructures onto polycrystalline substrates from the bottom-up

    International Nuclear Information System (INIS)

    Torres, María; Pardo, Lorena; Ricote, Jesús; Fuentes-Cobas, Luís E.; Rodriguez, Brian J.; Calzada, M. Lourdes

    2012-01-01

    Microemulsion-mediated synthesis has emerged as a powerful bottom-up procedure for the preparation of ferroelectric nanostructures onto substrates. However, periodical order has yet to be achieved onto polycrystalline Pt-coated Si substrates. Here, we report a new methodology that involves microemulsion-mediated synthesis and the controlled modification of the surface of the substrate by coating it with a template-layer of water-micelles. This layer modifies the surface tension of the substrate and yields a periodic arrangement of ferroelectric crystalline nanostructures. The size of the nanostructures is decreased to the sub-50 nm range and they show a hexagonal order up to the third neighbors, which corresponds to a density of 275 Gb in −2 . The structural analysis of the nanostructures by synchrotron X-ray diffraction confirms that the nanostructures have a PbTiO 3 perovskite structure, with lattice parameters of a = b = 3.890(0) Å and c = 4.056(7) Å. Piezoresponse force microscopy confirmed the ferro-piezoelectric character of the nanostructures. This simple methodology is valid for the self-assembly of other functional oxides onto polycrystalline substrates, enabling their reliable integration into micro/nano devices.

  11. Application of AFM in microscopy and fabrication of micro/nanostructures

    Czech Academy of Sciences Publication Activity Database

    Lopour, F.; Kalousek, R.; Škoda, D.; Spousta, J.; Matějka, František; Šikola, T.

    2002-01-01

    Roč. 34, č. 1 (2002), s. 352 - 355 ISSN 0142-2421 R&D Projects: GA MŠk ME 334; GA MŠk ME 480 Institutional research plan: CEZ:AV0Z2065902 Keywords : AFM fabrication * local anodic oxidation * oxide nanostructures Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.071, year: 2002

  12. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  13. Field emission from patterned SnO2 nanostructures

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Yu Ke; Li Guodong; Peng Deyan; Zhang Qiuxiang; Hu Hongmei; Xu Feng; Bai Wei; Ouyang Shixi; Zhu Ziqiang

    2006-01-01

    A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO 2 ) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO 2 nanostructures arrays, a unit area is of ∼500 μm x 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO 2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO 2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO 2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm 2 . This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on

  14. Nano-structured 3D Electrodes for Li-ion Micro-batteries

    OpenAIRE

    Perre, Emilie

    2010-01-01

    A new challenging application for Li-ion battery has arisen from the rapid development of micro-electronics. Powering Micro-ElectroMechanical Systems (MEMS) such as autonomous smart-dust nodes using conventional Li-ion batteries is not possible. It is not only new batteries based on new materials but there is also a need of modifying the actual battery design. In this context, the conception of 3D nano-architectured Li-ion batteries is explored. There are several micro-battery concepts that a...

  15. Investment Policies for College and University Endowments.

    Science.gov (United States)

    Spitz, William T.

    1999-01-01

    College trustees have a responsibility to institute investment policies that preserve real endowment value. The chief financial officer's responsibility varies, but at a minimum should provide the board with essential information and ensure that trustees understand the importance of policy decisions. Critical tasks include establishing and…

  16. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    Directory of Open Access Journals (Sweden)

    Luykx A

    2007-01-01

    Full Text Available AbstractThe ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise and decay time measurements were also measured.

  17. academic performance of less endowed high school students

    African Journals Online (AJOL)

    User

    girls) who obtained the basic requirements for courses that they ... Academic performance of students from less endowed senior high ... 106 ... only pay academic facility user fees. The second ..... certificate education, Pro is senior executive.

  18. Optical robotics in a biological micro-environment

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    with the use of joysticks or gaming devices. The fabrication of microstructures with nanometer sized features, for example a nano-needle, coupled with the real-time user interactive optical control allows a user to robotically actuate appended nanostructures depending on their intended function. These micro...

  19. Supersonic cluster beams: a powerful method for the deposition of nanostructured thin films with tailored properties

    International Nuclear Information System (INIS)

    Milani, P.

    2002-01-01

    By using a pulsed micro-plasma cluster source and by exploiting aero-dynamical effects typical of supersonic beams it is possible to obtain very high deposition rates with a control on neutral cluster mass distribution, allowing the deposition of thin films with controlled nanostructure. Due to high deposition rates, high lateral resolution, low temperature processing supersonic cluster beams can also be used for the micro and nano-patterning of cluster-assembled films when little or no post-growth manipulation or assembly is required. For example the nano and meso-structure of films obtained by carbon cluster beam deposition can be controlled by selecting in the beam the elemental building blocks, moreover functional properties such as field emission can be controlled and tailored. The use of supersonic cluster beams opens also new perspectives for the production of nano-structured films with novel physico-chemical and topological properties such as nano-structured carbon matrices containing carbide and transition metal particles. (Author)

  20. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.

    Science.gov (United States)

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun

    2016-05-20

    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, S [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology (NIGEB), Room 117, Shahrak-e Pajoohesh, km 15, Tehran-Karaj Highway, Tehran, PO Box 14965/161 (Iran, Islamic Republic of); Li, D [Department of Engineering Physics, Ecole Polytechnique, Montreal, QC, H3C 3A7 (Canada); Szpunar, J A, E-mail: sfaghihi@nigeb.ac.ir [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2010-12-03

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of {approx} 10 {mu}m and {approx} 50 {mu}m for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  2. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Faghihi, S; Li, D; Szpunar, J A

    2010-01-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ∼ 10 μm and ∼ 50 μm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  3. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    Science.gov (United States)

    Faghihi, S.; Li, D.; Szpunar, J. A.

    2010-12-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  4. Constructing Preference from Experience: The Endowment Effect Reflected in External Information Search

    Science.gov (United States)

    Pachur, Thorsten; Scheibehenne, Benjamin

    2012-01-01

    People often attach a higher value to an object when they own it (i.e., as seller) compared with when they do not own it (i.e., as buyer)--a phenomenon known as the "endowment effect". According to recent cognitive process accounts of the endowment effect, the effect is due to differences between sellers and buyers in information search.…

  5. Endowment Investing: Time for a Sustainability Play?

    Science.gov (United States)

    Pelletier, Stephen G.

    2010-01-01

    Managers of university endowment funds are paying closer attention to investing in "green" industries, commonly bundled under the umbrella "cleantech." Cleantech offers the possibility of buying in while prices are low "and" making a "green" investment play, but it also harbors the risks inherent in any emerging industry. Cleantech has varying…

  6. First woman named to endowed engineering professorship

    OpenAIRE

    Nystrom, Lynn A.

    2005-01-01

    Karen A. Thole, Virginia Tech professor of mechanical engineering, is the first female recipient of an endowed engineering professorship at the university. Thole has received the William S. Cross Professorship in the College of Engineering, established in 1984 by a generous gift from William S. Cross Jr., of Greensboro, N.C.

  7. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    International Nuclear Information System (INIS)

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface

  8. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Kosuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Shinonaga, Togo [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yamashita, Kimihiro [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan)

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface.

  9. Classical elements in the endowments of Serbian XIII century donors

    Directory of Open Access Journals (Sweden)

    Gligorijević-Maksimović Mirjana

    2009-01-01

    Full Text Available In Byzantine painting, starting from the XIII and particularly during the XIV century, there was a visible return to models from the period of Antiquity. The influences of ancient, ostensibly, Hellenistic heritage were reflected in the shapes, in the content of the compositions, as well as in the drawing, modellation and colours. In the art that came into being in the course of the XIII century, in the endowments of the Serbian donors numerous elements emerged that had existed in ancient art. In the frescoes in the Church of the Mother of God in Studenica, the endowment of Stefan Nemanja and his sons, we see personifications, symbols, the introduction of details, and space acquiring depth, features that were later to come to full expression, especially from the middle of the XIII century. The few preserved frescoes dating from the XIII century in the Church of the Resurrection in the Žiča monastery, the endowment of Stefan the First Crowned, his son Radoslav and his brother Sava, are an iconographic continuation of the trends in the art one encounters in Studenica. The frescoes in the Church of Christ's Ascension in Mileševa, the endowment of King Vladislav, with their subtly fashioned figures and carefully modelled faces, as well as refined colouring, signal a return to the Hellenistic models. The painting in the Church of Dormition of the Virgin in the Morača monastery, the endowment of Prince Stefan, nephew of king Stefan, with its well-proportioned, firmly modelled figures, landscapes and architecture deepening the space, reminds one of the Sopoćani frescoes. In the fresco painting of the Holy Apostles in Peć, the endowment of Archbishop Sava which owed its outcome to the efforts of Archbishop Arsenije I, the images are very vivid, and the painted architecture is depicted in an abbreviated form, using different kinds of perspective. The painting in the Church of the Holy Trinity in Sopoćani, the endowment of king Uroš I, represents

  10. Topographic characterization of nanostructures on curved polymer surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Petersen, Jan C.; Taboryski, Rafael J.

    2014-01-01

    The availability of portable instrumentation for characterizing surface topography on the micro- and nanometer scale is very limited. Particular the handling of curved surfaces, both concave and convex, is complicated or not possible on current instrumentation. However, the currently growing use...... method with a portable instrument that can be used in a production environment, and topographically characterize nanometer-scale surface structures on both flat and curved surfaces. To facilitate the commercialization of injection moulded polymer parts featuring nanostructures, it is pivotal...... of injection moulding of polymer parts featuring nanostructured surfaces, requires an instrument that can characterize these structures to ensure replication-confidence between master structure and replicated polymer parts. This project concerns the development of a metrological traceable quality control...

  11. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yizhou; Liu, Xiangmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K. [Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Shuilin, E-mail: shuilin.wu@gmail.com [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  12. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W.K.; Chu, Paul K.; Wu, Shuilin

    2017-01-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  13. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  14. Nanostructured conducting molecularly imprinted polymer for selective extraction of salicylate from urine and serum samples by electrochemically controlled solid-phase micro-extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, Akram [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Alizadeh, Naader, E-mail: alizaden@modares.ac.ir [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Overoxidized polypyrrole templated with salicylate has been utilized as conducting molecular imprinted polymer for EC-SPME. Black-Right-Pointing-Pointer This first study reported on conducting molecular imprinted polymer was used to EC-SPME of salicylate. Black-Right-Pointing-Pointer Proposed method, is particularly effective in sample clean-up and selective monitoring of salicylate in physiological samples. - Abstract: Overoxidized polypyrrole (OPPy) films templated with salicylate (SA) have been utilized as conducting molecular imprinted polymers (CMIPs) for potential-induced selective solid-phase micro-extraction processes. Various important fabrication factors for controlling the performance of the OPPy films have been investigated using fluorescence spectrometry. Several key parameters such as applied potential for uptake, release, pH of uptake and release solution were varied to achieve the optimum micro-extraction procedure. The film template with SA exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5 Multiplication-Sign 10{sup -8} to 5 Multiplication-Sign 10{sup -4} and 1.2 Multiplication-Sign 10{sup -6} to 5 Multiplication-Sign 10{sup -4} mol mL{sup -1} and the detection limit was 4 Multiplication-Sign 10{sup -8} mol L{sup -1}. The OPPy film as the solid-phase micro-extraction absorbent has been applied for the selective clean-up and quantification of trace amounts of SA from physiological samples. The results of scanning electron microscopy (SEM) have confirmed the nano-structure morphologies of the films.

  15. Nanostructured conducting molecularly imprinted polymer for selective extraction of salicylate from urine and serum samples by electrochemically controlled solid-phase micro-extraction

    International Nuclear Information System (INIS)

    Ameli, Akram; Alizadeh, Naader

    2011-01-01

    Highlights: ► Overoxidized polypyrrole templated with salicylate has been utilized as conducting molecular imprinted polymer for EC-SPME. ► This first study reported on conducting molecular imprinted polymer was used to EC-SPME of salicylate. ► Proposed method, is particularly effective in sample clean-up and selective monitoring of salicylate in physiological samples. - Abstract: Overoxidized polypyrrole (OPPy) films templated with salicylate (SA) have been utilized as conducting molecular imprinted polymers (CMIPs) for potential-induced selective solid-phase micro-extraction processes. Various important fabrication factors for controlling the performance of the OPPy films have been investigated using fluorescence spectrometry. Several key parameters such as applied potential for uptake, release, pH of uptake and release solution were varied to achieve the optimum micro-extraction procedure. The film template with SA exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5 × 10 −8 to 5 × 10 −4 and 1.2 × 10 −6 to 5 × 10 −4 mol mL −1 and the detection limit was 4 × 10 −8 mol L −1 . The OPPy film as the solid-phase micro-extraction absorbent has been applied for the selective clean-up and quantification of trace amounts of SA from physiological samples. The results of scanning electron microscopy (SEM) have confirmed the nano-structure morphologies of the films.

  16. The Impact of Inflation on Endowment Assets

    Science.gov (United States)

    Birkeland, Kathryn; Carr, David L.; Lavin, Angeline M.

    2013-01-01

    Maintaining spending power in real terms (current) while preserving an endowment's value in real terms (future) is the crux of intergenerational equity. Tobin's (1974) model provides the conceptual basis on which simulations were developed to study the impact of various inflation (0%, TIPS, CPI, HECA, and HEPI) and new giving scenarios ($0, $4…

  17. The Influence of Emotions on the Endowment Effect

    Directory of Open Access Journals (Sweden)

    Otacílio Torres Vilas Boas

    2009-04-01

    Full Text Available According to prospect theory, individuals with loss aversion would tend to attribute a higher value to a good once their ownership over it had been established. Such tendency would cause reluctance to trade the good, even if an equivalent one were offered in exchange. Thaler (1980 named this phenomenon endowment effect. In this article, we present a review of the literature about the topic, which has been one of the most investigated themes in the relatively recent field of behavioral finance. Adopting Knetsch’s research model (1989, we conducted two experiments in order to investigate the phenomenon in a Brazilian sample, specifically testing the influence of emotions on its manifestation. The results replicate findings for the endowment effect, and suggest that negative emotions attenuate the observed effects. Positive emotions, however, did not have any detectable influence over the phenomenon.

  18. 78 FR 23233 - Agency Information Collection Activities; Comment Request; Financial Report for the Endowment...

    Science.gov (United States)

    2013-04-18

    ...; Comment Request; Financial Report for the Endowment Challenge Grant Program AGENCY: Office of... notice will be considered public records. Title of Collection: Financial Report for the Endowment... Financial Report is to have the grantees report annually the kind of investments that have been made, the...

  19. Results of a massive experiment on virtual currency endowments and money demand.

    Directory of Open Access Journals (Sweden)

    Nenad Živić

    Full Text Available We use a 575,000-subject, 28-day experiment to investigate monetary policy in a virtual setting. The experiment tests the effect of virtual currency endowments on player retention and virtual currency demand. An increase in endowments of a virtual currency should lower the demand for the currency in the short run. However, in the long run, we would expect money demand to rise in response to inflation in the virtual world. We test for this behavior in a virtual field experiment in the football management game Top11. 575,000 players were selected at random and allocated to different "shards" or versions of the world. The shards differed only in terms of the initial money endowment offered to new players. Money demand was observed for 28 days as players used real money to purchase additional virtual currency. The results indicate that player money purchases were significantly higher in the shards where higher endowments were given. This suggests that a positive change in the money supply in a virtual context leads to inflation and increased money demand, and does so much more quickly than in real-world economies. Differences between virtual and real currency behavior will become more interesting as virtual currency becomes a bigger part of the real economy.

  20. Results of a massive experiment on virtual currency endowments and money demand.

    Science.gov (United States)

    Živić, Nenad; Andjelković, Igor; Özden, Tolga; Dekić, Milovan; Castronova, Edward

    2017-01-01

    We use a 575,000-subject, 28-day experiment to investigate monetary policy in a virtual setting. The experiment tests the effect of virtual currency endowments on player retention and virtual currency demand. An increase in endowments of a virtual currency should lower the demand for the currency in the short run. However, in the long run, we would expect money demand to rise in response to inflation in the virtual world. We test for this behavior in a virtual field experiment in the football management game Top11. 575,000 players were selected at random and allocated to different "shards" or versions of the world. The shards differed only in terms of the initial money endowment offered to new players. Money demand was observed for 28 days as players used real money to purchase additional virtual currency. The results indicate that player money purchases were significantly higher in the shards where higher endowments were given. This suggests that a positive change in the money supply in a virtual context leads to inflation and increased money demand, and does so much more quickly than in real-world economies. Differences between virtual and real currency behavior will become more interesting as virtual currency becomes a bigger part of the real economy.

  1. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  2. 36 CFR 1281.14 - What type of endowment is required for a Presidential library?

    Science.gov (United States)

    2010-07-01

    ... required for a Presidential library? 1281.14 Section 1281.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NARA FACILITIES PRESIDENTIAL LIBRARY FACILITIES § 1281.14 What type of endowment is required for a Presidential library? (a) Endowment requirement—new libraries. The foundation or...

  3. Current status of nanostructured tungsten-based materials development

    International Nuclear Information System (INIS)

    Kurishita, H; Matsuo, S; Arakawa, H; Hatakeyama, M; Shikama, T; Sakamoto, T; Kobayashi, S; Nakai, K; Okano, H; Watanabe, H; Yoshida, N; Torikai, Y; Hatano, Y; Takida, T; Kato, M; Ikegaya, A; Ueda, Y

    2014-01-01

    Nanostructured tungsten (W)-based materials offer many advantages for use as plasma facing materials and components exposed to heavy thermal loads combined with irradiation with high-energy neutron and low-energy ion. This paper first presents the recent progress in nanostructured toughened, fine grained, recrystallized W materials. Thermal desorption spectrometry apparatus equipped with an ion gun has been installed in the radiation controlled area in our Center at Tohoku University to systematically investigate the effects of displacement damage due to high-energy neutron irradiation on hydrogen isotope retention in connection with the nano- or micro-structures in W-based materials. In this paper, the effects of high-energy heavy ion irradiation on deuterium retention in W with different microstructures are described as a preliminary work with the prospective view of neutron irradiation effects. (paper)

  4. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    International Nuclear Information System (INIS)

    Osmani, Bekim; Töpper, Tino; Weiss, Florian M.; Leung, Vanessa; Müller, Bert; Deschenaux, Christian; Nohava, Jiri

    2015-01-01

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market

  5. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Bekim, E-mail: bekim.osmani@unibas.ch, E-mail: tino.toepper@unibas.ch; Töpper, Tino, E-mail: bekim.osmani@unibas.ch, E-mail: tino.toepper@unibas.ch; Weiss, Florian M., E-mail: vanessa.leung@unibas.ch, E-mail: bert.mueller@unibas.ch; Leung, Vanessa, E-mail: vanessa.leung@unibas.ch, E-mail: bert.mueller@unibas.ch; Müller, Bert, E-mail: vanessa.leung@unibas.ch, E-mail: bert.mueller@unibas.ch [Biomaterials Science Center, University of Basel, c/o University Hospital, 4031 Basel (Switzerland); Deschenaux, Christian, E-mail: jiri.nohava@anton-paar.com; Nohava, Jiri, E-mail: jiri.nohava@anton-paar.com [Anton Paar TriTec SA, Rue de la Gare 4, Galileo Center, 2034 Peseux (Switzerland)

    2015-02-17

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.

  6. Through the Lens of Maslow's Hierarchy: Understanding Endowment Accumulation at Private Colleges and Universities

    Science.gov (United States)

    Flabiano, Heather Lynn

    2013-01-01

    Colleges and universities have been questioned regarding their use of endowments, with critics maintaining that these assets have significance beyond the financial benefits they provide and suggesting that institutions hoard endowment to attain unnecessary intangibles such as prestige. A few scholars have attempted to study the purposes of…

  7. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    Science.gov (United States)

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  8. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    Science.gov (United States)

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  9. Micromirror array nanostructures for anticounterfeiting applications

    Science.gov (United States)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  10. LDRD final report on adaptive-responsive nanostructures for sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; van Swol, Frank B.; Wang, Zhongchun; Medforth, Craig J.

    2005-11-01

    also explored means for controlling their morphology, size, and placement on surfaces. The research proposed will lay the groundwork for the use of these remarkable porphyrin nanostructures in micro- and nanoscale devices, by providing a more detailed understanding of their molecular structure and the factors that control their structural, photophysical, and chemical properties.

  11. Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology

    International Nuclear Information System (INIS)

    Riaz, Ufana; Ahmad, Sharif; Ashraf, S. M.

    2008-01-01

    A template free approach was adopted to explore the effect of polymerization environment on the synthesis of nanostructured poly (1-naphthylamine) (PNA) using cupric chloride as oxidant and methyl alcohol as medium. The polymerization environment was varied by carrying out the synthesis in the presence of nitrogen and oxygen. The morphology of the synthesized nanostructured PNA was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis and FT-IR spectroscopies. PNA nanorods of sizes varying between 50-100 nm were obtained in presence of nitrogen while in presence of oxygen, it formed aggregated globular particles of sizes varying between 80-100 nm. The results provide valuable information on controlling the synthesis of one-dimensional nanostructured conducting polymers that exhibit superior processibility as compared to the conventional conducting polymers.

  12. Wettability control of micropore-array films by altering the surface nanostructures.

    Science.gov (United States)

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  13. Brushless DC micro-motor with external rotor

    International Nuclear Information System (INIS)

    Rizzo, M.; Turowski, J.

    1992-01-01

    The increasing use of high-tech electronic components has led researchers to try new solutions in the field of micro-scale electrical machinery. One such solution, described in this paper, consists of the substitution of a conventional mechanical commutator with an electronic type so as to allow the conversion of a electromagnetic micro-motor into a brushless version using permanent magnets. The comparison of the two micro-motor alternatives evidences the clear superiority of the brushless micro-motor

  14. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2016-11-01

    Full Text Available In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  15. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    Science.gov (United States)

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  16. 75 FR 51116 - National Endowment for the Arts;

    Science.gov (United States)

    2010-08-18

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that five meetings of the Arts Advisory Panel to the National Council on the Arts... (ending times are approximate): Arts Education (application review): September 14-15, 2010 in Room 714. A...

  17. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan; Alshareef, Husam N.

    2015-01-01

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high

  18. The Growth of Academic Radiation Oncology: A Survey of Endowed Professorships in Radiation Oncology

    International Nuclear Information System (INIS)

    Wasserman, Todd H.; Smith, Steven M.; Powell, Simon N.

    2009-01-01

    Purpose: The academic health of a medical specialty can be gauged by the level of university support through endowed professorships. Methods and Materials: We conducted a survey of the 86 academic programs in radiation oncology to determine the current status of endowed chairs in this discipline. Results: Over the past decade, the number of endowed chairs has more than doubled, and it has almost tripled over the past 13 years. The number of programs with at least one chair has increased from 31% to 65%. Conclusions: Coupled with other indicators of academic growth, such as the proportion of graduating residents seeking academic positions, there has been clear and sustained growth in academic radiation oncology.

  19. Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, L.G.; Piseri, P.; De Giorgio, F.; Arbizzani, C.; Milani, P.; Soavi, F.

    2015-01-01

    Highlights: • We exploited Supersonic Cluster Beam Deposition for the fabrication of a flexible, planar micro-supercapacitor featuring nanostructured carbon electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. • The micro-supercapacitor operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 . • The micro-supercapacitor features long cycling stability over 2x10 4 cycle on flat and bent configuration. -- Graphical abstract: Display Omitted -- Abstract: Power generation and storage in electronics require flexible, thin micro-electrochemical energy storage/conversion systems. Micro-supercapacitors (μSCs) with double-layer capacitance carbon electrodes are attracting much attention for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. Supersonic Cluster Beam Deposition (SCBD) is an effective strategy for the development of nanostructured, binder-free porous carbon electrodes on temperature sensitive substrates including polymers. We exploited SCBD for the development of a flexible, planar μSC featuring nanostructured carbon (ns-C) electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. The electrochemical performance at different temperatures of the μSC which operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 with long cycling stability over 2 × 10 4 cycles is here reported and discussed

  20. Structural colours via metal free disordered nanostructures with nm resolution and full CYMK colour spectrum

    KAUST Repository

    Mazzone, Valerio

    2017-11-02

    Engineering colors through optical properties of nanostructures represents a research area of great interest, due to the many applications that can be enabled by this technology, from adaptive camouflage to micro-images for security and biomimetic materials [1-4].

  1. Structural colours via metal free disordered nanostructures with nm resolution and full CYMK colour spectrum

    KAUST Repository

    Mazzone, Valerio; Bonifazi, Marcella; Fratalocchi, Andrea

    2017-01-01

    Engineering colors through optical properties of nanostructures represents a research area of great interest, due to the many applications that can be enabled by this technology, from adaptive camouflage to micro-images for security and biomimetic materials [1-4].

  2. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  3. 3D printing of nano- and micro-structures

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  4. Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Xu, Lin; Yang, Hai-Bo

    2016-06-01

    During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Funds for the Future. Report of the Twentieth Century Fund Task Force on College and University Endowment Policy.

    Science.gov (United States)

    Williamson, J. Peter

    The Task Force on College and University Endowment Policy examines endowment policy in a broad context. They feel that it is important to preserve private colleges and universities and develop a sense of mission about how best to pursue this objective. The Task Force reviews policy issues faced by managers of endowment funds for institutions of…

  6. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance

    Science.gov (United States)

    Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin

    2014-11-01

    A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.

  7. The Advancing a Healthier Wisconsin Endowment: How a Health Care Conversion Foundation Is Transforming a Medical School.

    Science.gov (United States)

    Maurana, Cheryl A; Lucey, Paula A; Ahmed, Syed M; Kerschner, Joseph E; Bolton, G Allen; Raymond, John R

    2016-01-01

    Health care conversion foundations, such as the Advancing a Healthier Wisconsin Endowment (the endowment) at the Medical College of Wisconsin (MCW), result from the conversion of nonprofit health organizations to for-profit corporations. Over the past several decades, nearly 200 of these foundations have been created, and they have had a substantial impact on the field of health philanthropy. The MCW was a recipient of funds resulting from Blue Cross & Blue Shield United of Wisconsin's conversion from a nonprofit to a for-profit status in 1999. Established in 2004, the endowment has invested approximately $185 million in 337 research, education, and public and community health initiatives that benefit Wisconsin residents. However, the transformative potential of the health care conversion foundation has extended well beyond the opportunities provided through the endowment's financial resources. As the endowment celebrates its 10th anniversary, the authors describe the transformative nature of the endowment, as well as significant accomplishments and lessons learned, in the following areas: shared power, community partnerships, translational research, and integration of medicine and public health. It is the authors' hope that these lessons will be valuable to other medical schools and the communities they serve, as they invest in improving the health of their communities, irrespective of the funding source.

  8. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  9. 27 CFR 70.164 - Surrender of property subject to levy in the case of life insurance and endowment contracts.

    Science.gov (United States)

    2010-04-01

    ... the case of life insurance and endowment contracts. (a) In general. This section provides special rules relating to the surrender of property subject to levy in the case of life insurance and endowment... subject to levy in the case of life insurance and endowment contracts. 70.164 Section 70.164 Alcohol...

  10. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  11. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    Science.gov (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  12. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga2O3

    International Nuclear Information System (INIS)

    Girija, K.; Thirumalairajan, S.; Avadhani, G.S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2013-01-01

    Highlights: ► Nanostructures of β-Ga 2 O 3 were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga 2 O 3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga 2 O 3 nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10

  13. The impact of locus of control and priming on the endowment effect.

    Science.gov (United States)

    Sun, Ya-Chung

    2011-10-01

    This paper demonstrates the effects of different priming conditions on the endowment effect with respect to seller and buyer roles for individuals with different loci of control. Individuals with an external locus of control process information less rationally, and they are more susceptible to external influences. In addition, the literature reports that when individuals are making a purchasing decision, they tend to perceive the value of the product as being higher because of its utility aspect because decision makers search for reasons and arguments to justify their choices (Shafir 1993; Tversky & Griffin, 1991). Therefore, this study investigates the effects of different priming conditions (utilitarian priming vs. hedonic priming) on the endowment effect according to each type of locus of control (internal vs. external). The results showed that the endowment effect was larger when externals were exposed to utilitarian priming as opposed to hedonic priming. Finally, the implications of these findings and suggestions for future research are discussed. © 2011 The Author. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  14. Probabilistic endowment appraisal system based upon the formalization of geologic decisions. General description

    International Nuclear Information System (INIS)

    Harris, D.P.; Carrigan, F.J.

    1980-04-01

    The objectives of this study include the design of an appraisal system which has the following features: estimates uranium endowment, not resources; formalizes the geologist's geoscience and assists the geologist in the exercise of his geoscience; describes the probability distribution for uranium endowment; diminishes or at least does not contribute to psychometric biases; provides for anonymous exchange among multiple experts of tenets of geoscience, but not the exchange of endowment estimates; provides an endowment estimate based upon geoscience only; is not easily gamed or manipulated; and provides for a quick and easy review of geoscience and resource information. This report is reflective of its title, a general description. The appraisal system resulting from this research is complex in the detail of its design and use. However, the major concepts which are reflected by the system are simple. The purpose of this report is to establish clearly these major concepts and the manner in which the system applies these concepts. Many details, refinements, and caveats are purposefully suppressed in order to provide this general description. While this suppression is a loss to some readers, it is a benefit to a wider spectrum of readers. Those interested in the nuts and bolts of the system will also want to read the user's manual which accompanies this general description

  15. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Andrei; Bredikhin, Vladimir; Pikulin, Alexander; Ilyakov, Igor; Shishkin, Boris; Akhmedzhanov, Rinat; Bityurin, Nikita, E-mail: bit@ufp.appl.sci-nnov.ru [Institute of Applied Physics of Russian Academy of Scienses, 46, Ul' yanov St., Nizhniy Novgorod 603950 (Russian Federation)

    2015-05-04

    We consider laser nanostructuring of the material surface by means of a colloidal particle lens array. Here, the monolayer of dielectric micro- or nanospheres placed on the surface acts as an array of near-field lenses that focus the laser radiation into the multitude of distinct spots, allowing the formation of many structures in a single stage. We show that conversion of a small part of the energy of the femtosecond beam into the second harmonic (SH) is an efficient way to increase the surface density of obtained nanostructures. By combining the fundamental frequency and the SH, one benefits both from the power of the former and from the focusing ability of the latter. This combination provides an efficient nanostructuring with sphere diameter close to the wavelength of the second harmonic. The possibility to create arrays of nanostructures with surface density above 5×10{sup 8} cm{sup −2} with femtosecond Ti:sapphire laser operating at 800 nm was demonstrated by employing 0.45 μm spheres.

  16. ENDOWMENT LIFE INSURANCE

    Directory of Open Access Journals (Sweden)

    Zeljko Sain

    2013-06-01

    Full Text Available The aim of the paper that treats the actuarial model of insurance in case of survival or early death is to show the actuarial methods and methodology for creating a model and an appropriate number of sub-models of the most popular form of life insurance in the world. The paper applies the scientific methodology of the deductive character based on scientific, theoretical knowledge and practical realities. Following the basic theoretical model’s determinants, which are at the beginning of the paper, the basic difference between models further in this paper was carried out according to the character of the premium to be paid. Finally, the financial repercussions of some models are presented at examples in insurance companies. The result of this paper is to show the spectrum of possible forms of capital endowment insurance which can be, without major problems, depending on the financial policy of the company, applied in actual practice. The conclusion of this paper shows the theoretical and the practical reality of this model, life insurance, and its quantitative and qualitative guidelines.

  17. Academic Performance of Less Endowed High School Students in ...

    African Journals Online (AJOL)

    This paper investigates the academic performance of students from less endowed senior high schools in the Kwame Nkrumah University of Science and Technology (KNUST). Questionnaires were administered to 152 (123 males and 29 females) fourth year students who enrolled for various programmes at KNUST in 2007 ...

  18. Two simple examples for the micro-nano integration of nanowires as electronic device elements

    International Nuclear Information System (INIS)

    Adelung, Rainer

    2011-01-01

    As a part of the conference talk about the mass fabrication and applications of nanostructures, the aim of this paper is to review and compare two approaches for the simple fabrication and integration and of nanostructures into Si-based microchips. The purpose of the integration is the utilization of the different and advanced electronic properties of nanowires. The first method is based on a fracture approach, that integrates nanowires bound to a Si substrate between micro electrodes. These are arrange in a horizontal manner, the second approach allows to integrate free standing nanowires and even 3 dimensional nanowire networks in the chip. As an example for the electronic properties of the nano-micro integrated structures the UV light sensitivity is sown here.

  19. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  20. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2015-12-01

    Full Text Available ZnxCu1−xO (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol% hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  1. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  2. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon

    Science.gov (United States)

    Chen, Qiongyu; Chen, Jizhang; Zhou, Yuyang; Song, Chao; Tian, Qinghua; Xu, Junling; Wong, Ching-Ping

    2018-05-01

    The rational construction of heterostructured electrode materials that deliver superior performances to their individual counterparts offers an attractive strategy for supercapacitors. Herein, we anchor low-crystalline nanostructured MnO2 onto soybean stalk-derived carbon matrix through chemical activation and subsequent hydrothermal reaction. The highly porous and conductive matrix can effectively enhance pseudocapacitive kinetics of nanostructured MnO2. Therefore, the obtained nanocomposite exhibits high specific capacitance (384.9 F g-1 at a current density of 0.5 A g-1), great rate capability (185.0 F g-1 at 20 A g-1), and superior cyclability (90.7% capacitance retention after 5000 cycles). Using this nanocomposite as the positive electrode material, an asymmetric supercapacitor (ASC) is assembled, and achieves high specific energy of 34.2 Wh kg-1 and high specific power of 9.58 kW kg-1. The results of this study demonstrate great potential of combining biomass-derived porous carbon with metal oxides.

  3. Poverty Dynamics, Ecological Endowments, and Land Use among Smallholders in the Brazilian Amazon

    Science.gov (United States)

    Guedes, Gilvan R.; VanWey, Leah K.; Hull, James R.; Antigo, Mariangela; Barbieri, Alisson F.

    2013-01-01

    Rural settlement in previously sparsely occupied areas of the Brazilian Amazon has been associated with high levels of forest loss and unclear long-term social outcomes. We focus here on the micro-level processes in one settlement area to answer the question of how settler and farm endowments affect household poverty. We analyze the extent to which poverty is sensitive to changes in natural capital, land use strategies, and biophysical characteristics of properties (particularly soil quality). Cumulative time spent in poverty is simulated using Markovian processes, which show that accessibility to markets and land use system are especially important for decreasing poverty among households in our sample. Wealthier households are selected into commercial production of perennials before our initial observation, and are therefore in poverty a lower proportion of the time. Land in pasture, in contrast, has an independent effect on reducing the proportion of time spent in poverty. Taken together, these results show that investments in roads and the institutional structures needed to make commercial agriculture or ranching viable in existing and new settlement areas can improve human well-being in frontiers. PMID:24267754

  4. Poverty dynamics, ecological endowments, and land use among smallholders in the Brazilian Amazon.

    Science.gov (United States)

    Guedes, Gilvan R; VanWey, Leah K; Hull, James R; Antigo, Mariangela; Barbieri, Alisson F

    2014-01-01

    Rural settlement in previously sparsely occupied areas of the Brazilian Amazon has been associated with high levels of forest loss and unclear long-term social outcomes. We focus here on the micro-level processes in one settlement area to answer the question of how settler and farm endowments affect household poverty. We analyze the extent to which poverty is sensitive to changes in natural capital, land use strategies, and biophysical characteristics of properties (particularly soil quality). Cumulative time spent in poverty is simulated using Markovian processes, which show that accessibility to markets and land use system are especially important for decreasing poverty among households in our sample. Wealtheir households are selected into commercial production of perennials before our initial observation, and are therefore in poverty a lower proportion of the time. Land in pasture, in contrast, has an independent effect on reducing the proportion of time spent in poverty. Taken together, these results show that investments in roads and the institutional structures needed to make commercial agriculture or ranching viable in existing and new settlement areas can improve human well-being in frontiers. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    Science.gov (United States)

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  6. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.

    Science.gov (United States)

    Nan, Honghong; Yu, Liutao; Ma, Wenqin; Geng, Baoyou; Zhang, Xiaojun

    2015-05-28

    Flexible supercapacitors have recently attracted increasing attention as they show unique promising advantages, such as flexibility and shape diversity, and they are light-weight and so on. Herein, we designed a series of 3D porous spinous iron oxide materials synthesized on a thin iron plate through a facile method under mild conditions. The unique nanostructural features endow them with excellent electrochemical performance. The electrochemical properties of the integrated electrodes as active electrode materials for supercapacitors have been investigated using different electrochemical techniques including cyclic voltammetry, and galvanostatic charge-discharge in Na2SO4 and LiPF6/EC : DEC electrolyte solutions. These integrated electrodes showed high specific capacitance (as high as 524.6 F g(-1) at the current density of 1 A g(-1)) in 1.0 M Na2SO4 (see Table S1). Moreover, the integrated electrodes also show high power densities and high energy densities in a LiPF6/EC : DEC electrolyte solution; for example, the energy densities were 319.3, 252.5, 152.1, 74.13 and 38.6 W h kg(-1) at different power densities of 8.81, 21.59, 56.65, 92.09 and 152.64 kW kg(-1), respectively. Additionally, the flexible superior electrode exhibited excellent stability with capacitance retention of 92.9% after 5000 cycles. Therefore, such flexible integrated devices might be used in smart and portable electronics.

  7. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T., E-mail: sakamoto.tatsuaki.mm@ehime-u.ac.jp [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Kurishita, H.; Matsuo, S.; Arakawa, H. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takahashi, S.; Tsuchida, M. [Ehime University, Matsuyama 790-8577 (Japan); Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Terasawa, M. [Laboratory of Advanced Science & Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori-cho, Hyogo 678-1205 (Japan); Yamasaki, T. [Department of Materials Science & Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Kawai, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki-ken 305-0801 (Japan)

    2015-11-15

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M{sub d} (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  8. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    International Nuclear Information System (INIS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-01-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M_d (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  9. Quantum transport in semiconductor nanostructures and nanoscale devices

    International Nuclear Information System (INIS)

    Zhen-Li, Ji.

    1991-09-01

    Only a decade ago the study and fabrication of electron devices whose smallest features were just under 1 micro represented the forefront of the field. Today that position has advanced an order of magnitude to 100 nanometers. Quantum effects are unavoidable in devices with dimensions smaller than 100 nanometers. A variety of quantum effects have been discovered over the years, such as tunneling, resonant tunneling, weak and strong localization, and the quantum Hall effect. Since 1985, experiments on nanostructures (dimension < 100 nm) have revealed a number of new effects such as the Aharanov-Bohm effect, conductance fluctuations, non-local effects and the quantized resistance of point contacts. For nanostructures at low temperature, these phenomena clearly show that electron transport is influenced by wave interference effects similar to those well-known in microwave and optical networks. New device concepts now being proposed and demonstrated are based on these wave properties. This thesis discusses our study of electron transport in nanostructures. All of the quantum phenomena that we address here are essentially one-electron phenomena, although many-body effects will sometimes play a more significant role in the electronic properties of small structures. Most of the experimental observations to date are particularly well explained, at least qualitatively, in terms of the simple one-particle picture. (au)

  10. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    Science.gov (United States)

    Kam, Kimberly Renee

    impact the field. Due to the rise in micro and nanofabrication techniques borrowed from the advances in the microelectronics industry, previously unattainable nanostructured surfaces on a variety of biomaterials can be generated. We investigated how nanostructured surfaces with varying nanofeature aspect ratios can influence fibrosis. Thus, nanostructured surfaces show substantial progress for therapeutic applications in drug delivery and wound healing.

  11. DNA nanostructure-directed assembly of metal nanoparticle superlattices

    Science.gov (United States)

    Julin, Sofia; Nummelin, Sami; Kostiainen, Mauri A.; Linko, Veikko

    2018-05-01

    Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly addressable motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1-20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20-100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.

  12. As Endowment Values Plummet, Some Institutions Consider Suing Brokers

    Science.gov (United States)

    Masterson, Kathryn

    2008-01-01

    This article reports that as many as five colleges or charitable foundations whose endowments have suffered significant investment losses or were unable to access money in their accounts in recent months are considering legal action against their brokers or investment managers, alleging misrepresentation of risk or mismanagement. Jacob H.…

  13. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  14. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    Science.gov (United States)

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  15. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures

    International Nuclear Information System (INIS)

    Nogales, E; Hidalgo, P; Mendez, B; Piqueras, J; Lorenz, K; Alves, E

    2011-01-01

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga 2 O 3 and GeO 2 structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the 5 D 0 - 7 F 2 Eu 3+ intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga 2 O 3 , which is assigned to the lattice recovery. Gd 3+ as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd 3+ is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd 3+ 6 P 7/2 - 8 S 7/2 intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  16. Laser 3D micro-manufacturing

    International Nuclear Information System (INIS)

    Piqué, Alberto; Auyeung, Raymond C Y; Kim, Heungsoo; Charipar, Nicholas A; Mathews, Scott A

    2016-01-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications. (topical review)

  17. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  18. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  19. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. User-Friendly End Station at the ALS for Nanostructure Characterization

    International Nuclear Information System (INIS)

    F. J. Himpsel; P. Alivisatos; T. Callcott; J. Carlisle; J. D. Denlinger; D. E. Eastman; D. Ederer; Z. Hussain; L.J. Terminello; T. Van Buuren; R. S. Williams

    2006-01-01

    This is a construction project for an end station at the ALS, which is optimized for measuring NEXAFS of nanostructures with fluorescence detection. Compared to the usual electron yield detection, fluorescence is able to probe buried structures and is sensitive to dilute species, such as nanostructures supported on a substrate. Since the quantum yield for fluorescence is 10 -4 -10 -5 times smaller than for electrons in the soft x-ray regime, such an end station requires bright undulator beamlines at the ALS. In order to optimize the setup for a wide range of applications, two end stations were built: (1) A simple, mobile chamber with efficient photon detection (>10 4 times the solid angle collection of fluorescence spectrographs) and a built-in magnet for MCD measurements at EPU beamlines (Fig. 1 left). It allows rapid mapping the electronic states of nanostructures (nanocrystals, nanowires, tailored magnetic materials, buried interfaces, biologically-functionalized surfaces). It was used with BL 8.0 (linear polarized undulator) and BL 4.0 (variable polarization). (2) A sophisticated, stationary end station operating at Beamline 8.0 (Fig. 1 right). It contains an array of surface characterization instruments and a micro-focus capability for scanning across graded samples (wedges for thickness variation, stoichiometry gradients, and general variations of the sample preparation conditions for optimizing nanostructures)

  1. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  2. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan; Xiao, Zhiyong; Chan, Philip C H; Lee, Yi-Kuen

    2010-01-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  3. Introduction to micro- and nanooptics

    CERN Document Server

    Jahns, Jürgen

    2012-01-01

    This first textbook on both micro- and nanooptics introduces readers to the technological development, physical background and key areas.The opening chapters on the physics of light are complemented by chapters on refractive and diffractive optical elements. The internationally renowned authors present different methods of lithographic and nonlithographic fabrication of microoptics and introduce the characterization and testing of microoptics.The second part of the book is dedicated to optical microsystems and MEMS, optical waveguide structures and optical nanostructures, including pho

  4. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  5. Universal compliance: The Carnegie Endowment's new strategy for nuclear security

    International Nuclear Information System (INIS)

    Gottemoeller, R.

    2005-01-01

    I would like to give a short briefing on Universal Compliance, the Carnegie Endowment's new strategy for nuclear security. It contains our recommendations for a new, effective nuclear non-proliferation strategy, set out against a description of the rapidly evolving security environment. I will begin with a description of that environment, but first I would like to remind you of the process that we followed in producing this report: - We launched a draft of the report at the Carnegie International Nonproliferation Conference in June 2004. In the months afterwards we sought comments and expert opinion from experts in the United States of America and around the world - we visited 15 countries. We truly tried to get comments from the broadest possible community. - I would also like to emphasize that this was a team effort, involving our President, Jessica Mathews, and four other senior experts at the Endowment

  6. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    Science.gov (United States)

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  7. Real and hypothetical endowment effects when exchanging lottery tickets: Is regret a better explanation than loss aversion?

    Science.gov (United States)

    Kogler, Christoph; Kühberger, Anton; Gilhofer, Rainer

    2013-08-01

    The endowment effect is the finding that possession of an item adds to its value. We introduce a new procedure for testing this effect: participants are divided into two groups. Possession group participants inspect a numbered lottery ticket and know it is theirs, while inspection group participants only inspect a lottery ticket without being endowed with it. Subsequently participants choose between playing the lottery with this (possessed or inspected) ticket, or exchanging it for another one. Our procedure tests for the effect of endowment while controlling for the influence of transaction costs as well as for inspection effects and the influence of bargaining roles (buyer vs. seller), which often afflict experimentation with the endowment effect. In a real setting, tickets in possession were valued significantly higher than inspected tickets. Contrary to some findings in the literature participants also correctly predicted these valuation differences in a hypothetical situation, both for themselves as well as for others. Furthermore, our results suggest that regret rather than loss aversion may be the source of the endowment effect in an experimental setting using lottery tickets. Applying our procedure to a setting employing riskless objects in form of mugs revealed rather ambiguous results, thus emphasizing that the role of regret might be less prominent in non-lottery settings.

  8. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad, E-mail: saleem.malikape@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Fang, L. [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Shaukat, Saleem F.; Ahmad, M. Ashfaq [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-04-15

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm{sup 2} cell is measured to be 1.24% under 100 mW cm{sup −2} irradiation.

  9. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Fang, L.; Shaukat, Saleem F.; Ahmad, M. Ashfaq; Raza, Rizwan; Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia; Abbas, Ghazanfar

    2015-01-01

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm 2 cell is measured to be 1.24% under 100 mW cm −2 irradiation

  10. Morphological transition of ZnO nanostructures influenced by magnesium doping

    International Nuclear Information System (INIS)

    Premkumar, T.; Zhou, Y.S.; Gao, Y.; Baskar, K.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E 2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.

  11. Novel Hierarchical Micro/Nano Modified Surfaces for Dental Implants

    Directory of Open Access Journals (Sweden)

    Gabriela STRNAD

    2018-06-01

    Full Text Available Present paper presents the modification at nano scale level of the surfaces of Ti6Al4V alloy that were previously modified at micro scale level by acid etching (AE or by sand blasting with large grit and acid etching (SLA. Continuous, self-ordered nanostructured (nanoporous/nanotubular oxide layers superimposed onto micro rough topographies were developed by using electrochemical anodization in fluoride based solutions, and optimized process parameters. Novel hierarchical micro/nano modified surfaces, with well developed oxide nanotubes of 40-110 nm in diameter, were synthesis by anodization in 1M H3PO4 + 0.4 wt% HF electrolyte, at anodization potential of 24 V, applied with a potential ramp of 0.08 V/s.

  12. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  13. The endowment effect and WTA: a quasi-experimental test

    Science.gov (United States)

    H.F. MacDonald; J. Michael Bowker

    1993-01-01

    This paper reports a test of the endowment effect in an economic analysis of localized air pollution. Regression techniques are used to test the significance of perceived property rights on household WTP for improved air quality versus WTA compensation to forgo an improvement in air quality. Our experimental contributes to the research into WTP/WTA divergence by...

  14. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    Science.gov (United States)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  15. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The effect of amount and tangibility of endowment and certainty of recipients on selfishness in a modified dictator game.

    Science.gov (United States)

    Chang, Shao-Chuan; Lin, Li-Yun; Horng, Ruey-Yun; Wang, Yau-De

    2014-06-01

    Taiwanese college students (N = 101) participated in the study to examine the effects of the amount of an endowment, the tangibility of an endowment, and the certainty of the recipient on selfishness in a modified dictator game. Results showed that dictators were more selfish when allocating tangible (money) than less tangible (honor credits) endowments. Selfishness was higher when large amounts of money were involved. The certainty of the recipient was manipulated by whether the recipient was chosen and announced before or after the decision. Unexpectedly, participants were more self-interested in the certain-recipient condition than in the uncertain-recipient condition. In the honor condition, the amount of an endowment and the certainty of the recipient did not affect participants' allocations.

  17. Micro+nanotexturing of substrates to enhance ligand-assisted cancer cell isolation

    International Nuclear Information System (INIS)

    Mahmood, Mohammed Arif I; Islam, Muhymin; Ali, Waqas; Hanif, Madiha; Iqbal, Samir M; Wan, Yuan; Kim, Young-tae

    2014-01-01

    This paper presents a simple approach to create a two-tiered surface for superior cancer cell isolation. The idea is inspired by the interactions of cells with a nanotextured basement membrane. The texture mimicked the extracellular matrix and basement membrane for superior target cell adhesion. Prepared micro+nanotextured surfaces showed enhanced cell capture. Preparation of the two-tiered surface was done using micro- and nanotexturing and was easily reproducible. It has been shown before that the larger surface area of a nanotextured surface assists the cell’s attachment through surface-anchored ligands. Taking it a step further, ligand functionalized two-level micro+nanotextured surfaces improved the sensitivity of the cancer cell isolation over simple flat nanotexturing. The isolation efficiency increased by 208% compared to the surface with a single-level nanotexture. The two-tiered surface was compatible with previously reported nanotextured devices used for cancer cell isolation. Micro-texture on the glass surface was created using simple sand gritting, followed by reactive ion etching (RIE) of the entire surface. The approach could create large surface areas within a short time while maintaining superior cell isolation efficiency. (paper)

  18. Hydrogen peroxide-assisted synthesis of novel three-dimensional octagonal-like CuO nanostructures with enhanced visible-light-driven photocatalytic activity

    Science.gov (United States)

    Chen, Xiangyu; Chu, Deqing; Wang, Limin; Hu, Wenhui; Yang, Huifang; Sun, Jingjing; Zhu, Shaopeng; Wang, Guowei; Tao, Jian; Zhang, Songsong

    2018-04-01

    Novel three-dimensional octagonal-like CuO micro-/nanostructures with diameters ranging from 10 to 15 μm have been successfully prepared by hydrogen peroxide-assisted hydrothermal method and subsequent calcination. The product morphology can be changed by simply ordering the amount of hydrogen peroxide (H2O2). When the amounts of H2O2 is increased, the length of the corner portion is increased and the width is narrower. The obtained octagonal CuO nanostructures were evaluated for their ability for the degradation of hazardous organic contaminants in water under visible-light irradiation. Comparing with commercial CuO and other CuO products, the CuO octagonal nanostructures exhibit excellent performance for photocatalytic decomposition of RhB (Rhodamine B). It is well established that effective photocatalytic performance results from its unique 3D octagonal nanostructures. We believe that the present work will provide some ideas for further fabrication of other novel nanostructures and exploration of their applications.

  19. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications.

    Science.gov (United States)

    Kunuku, Srinivasu; Sankaran, Kamatchi Jothiramalingam; Tsai, Cheng-Yen; Chang, Wen-Hao; Tai, Nyan-Hwa; Leou, Keh-Chyang; Lin, I-Nan

    2013-08-14

    We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.

  20. Reconsidering the effect of market experience on the “endowment effect”

    Czech Academy of Sciences Publication Activity Database

    Engelmann, Dirk; Hollard, G.

    2010-01-01

    Roč. 78, č. 6 (2010), s. 2005-2019 ISSN 0012-9682 Institutional research plan: CEZ:AV0Z70850503 Keywords : endowment effect * exchange asymmetry * market experience Subject RIV: AH - Economics Impact factor: 3.185, year: 2010

  1. Women Endowments of the Constitutional Functions until the End of the First Pahlavi, Case Study: Female Benefactor of Tehran

    Directory of Open Access Journals (Sweden)

    Elham Malekzade

    2017-09-01

    Full Text Available This study investigates the functions of endowments from the constitutional era to until the end of the first Pahlavi in Tehran. The dynamics of the waqf (endowment during Islamic era led to the prosperity of culture and economy, and even the cultural spheres of society. After the Constitutional Revolution and the political and social changes of the Iranian society, Waqf has also evolved and has gained a new place in cultural and social relations. This research seeks to identify, in addition to identifying the functions of the women's endowments from the Constitutional period to the end of the first Pahlavi period, the features of the women's endowments of Tehran in this era, as well as (on the basis of existing documents the areas included. In the process of this study, it was concluded that women were the main influential activists during social changes in the constitutional era and the first Pahlavi period and their endowments in the studied periods include significant differences, depending on the changes in attitudes, motivations of benefactors and social demands. In addition, it seems at least 20% of the endowment documents in the constitutional and Pahlavi era in Tehran were owned by women and at the same time, due to changes in the first Pahlavi era, female benefactors according to the social needs, gradually focused their attention on the social dimensions.

  2. Antireflective conducting nanostructures with an atomic layer deposited an AlZnO layer on a transparent substrate

    International Nuclear Information System (INIS)

    Park, Hyun-Woo; Ji, Seungmuk; Herdini, Diptya Suci; Lim, Hyuneui; Park, Jin-Seong; Chung, Kwun-Bum

    2015-01-01

    Graphical abstract: - Highlights: • We investigated the antireflective conducting nanostructures on a transparent substrate using atomic layer deposited AlZnO films. • The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance. • The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. • The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states. - Abstract: The antireflective conducting nanostructures on a transparent substrate were shown to have enhanced optical and electrical properties via colloidal lithography and atomic layer deposition. The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance, both of which were superior to those of a flat transparent conducting substrate. The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states.

  3. International meeting on micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies. Abstracts of reports

    International Nuclear Information System (INIS)

    Romanov, V.A.

    2007-01-01

    The collection contains abstracts presented on the International meeting Micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies which took place 16-18 October 2007 in Obninsk (Russian Federation). The potentialities of ion implantation for creation of nanostructures is discussed. The accelerator complexes applied for manufacture of nanostructural materials are considered [ru

  4. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  6. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  7. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi [University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

    2016-08-22

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ∼30% and ∼300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  8. Helical plant viral nanoparticles-bioinspired synthesis of nanomaterials and nanostructures.

    Science.gov (United States)

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-05-19

    Viral nanotechnology is revolutionizing the biomimetic and bioinspired synthesis of novel nanomaterials. Bottom-up nanofabrication by self-assembly of individual molecular components of elongated viral nanoparticles (VNPs) and virus-like particles (VLPs) has resulted in the production of superior materials and structures in the nano(bio)technological fields. Viral capsids are attractive materials, because of their symmetry, monodispersity, and polyvalency. Helical VNPs/VLPs are unique prefabricated nanoscaffolds with large surface area to volume ratios and high aspect ratios, and enable the construction of exquisite supramolecular nanostructures. This review discusses the genetic and chemical modifications of outer, inner, and interface surfaces of a viral protein cage that will almost certainly lead to the development of superior next-generation targeted drug delivery and imaging systems, biosensors, energy storage and optoelectronic devices, therapeutics, and catalysts.

  9. Low temperature synthesis and photoluminescent properties of CaMoO4:Eu3+ red phosphor with uniform micro-assemblies

    International Nuclear Information System (INIS)

    Yu, Fangyi; Zuo, Jian; Zhao, Zhi; Jiang, Chengying; Yang, Qing

    2011-01-01

    Highlights: → Synthesis of Eu 3+ -doped CaMoO 4 red phosphor via a facile hydrothermal method. → The morphology of the materials was manipulated using different alkaline sources. → Micro-structures were assembled by small nanostructures. → Luminescent investigations confirmed that the Eu 3+ ions have been effectively doped into the nanostructures. → Schematic diagram for the energy transfer clearly reveals the photoluminescent mechanism. -- Abstract: Scheelite-type Eu 3+ -doped CaMoO 4 red phosphor with uniform micro-assemblies has been successfully synthesized via a facile hydrothermal method at 120 o C for 10 h. The Eu 3+ -doped CaMoO 4 microstructures were assembled by small nanostructures and the morphology of materials was found to be manipulated by dropping different alkalis into the stock solution for the first time. The structure, morphology, and luminescent property were characterized and investigated by techniques of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL). The luminescent investigations confirmed that the Eu 3+ ions have been effectively doped into CaMoO 4 nanostructures. The successfully achieved Eu 3+ -doped CaMoO 4 nanostructures will be potential in technological applications on near UV chip-based white light emitting diode (WLED).

  10. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  11. Development of membrane filters with nanostructured porous layer by coating of metal nanoparticles sintered onto a micro-filter

    International Nuclear Information System (INIS)

    Park, Seok Joo; Park, Young Ok; Lee, Dong Geun; Ryu, Jeong In

    2008-01-01

    The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 KPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%

  12. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    Science.gov (United States)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming; Qu, Fengyu

    2014-12-01

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with 1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2-6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m2 g-1) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g-1 at 0.5 A g-1). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  13. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.

    Science.gov (United States)

    Zhong, Yiren; Su, Liwei; Yang, Mei; Wei, Jinping; Zhou, Zhen

    2013-11-13

    Rambutan-like FeCO3 hollow microspheres were prepared via a facile and economic one-step hydrothermal method. The structure and morphology evolution mechanism was disclosed through time-dependent experiments. After undergoing the symmetric inside-out Ostwald ripening, the resultants formed microporous/nanoporous constructions composed of numerous one-dimensional (1D) nanofiber building blocks. Tested as anode materials of Li-ion batteries, FeCO3 hollow microspheres presented attractive electrochemical performances. The capacities were over 1000 mAh g(-1) for initial charge, ~880 mAh g(-1) after 100 cycles at 50 mA g(-1), and ~710 mAh g(-1) after 200 cycles at 200 mA g(-1). The 1D nanofiber assembly and hollow interior endow this material efficient contact with electrolyte, short Li(+) diffusion paths, and sufficient void spaces to accommodate large volume variation. The cost-efficient FeCO3 with rationally designed nanostructures is a promising anode candidate for Li-ion batteries.

  14. Effect of carbonation temperature on CO_2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO_3

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-01-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO_2 capture mainly due to their high CO_2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO_3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO_3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO_2 adsorption capacity of CaO derived from aragonite CaCO_3 sample. At 300 °C, the sample reached the CO_2 adsorption capacity of 0.098 g-CO_2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO_2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO_2 adsorption capacity of the CaO derived from aragonite CaCO_3.

  15. Happiness and Memory: Affective Significance of Endowment and Contrast

    OpenAIRE

    Liberman, V; Boehm, JK; Lyubomirsky, S; Ross, LD

    2009-01-01

    Three studies (two conducted in Israel and one in the United States) examined associations between self-rated dispositional happiness and tendencies to treat memories of positive and negative events as sources of enhanced or attenuated happiness through the use of "endowment" and "contrast." Although participants generally endorsed items describing happiness-enhancing tendencies more than happiness-diminishing ones, self-reported happiness was associated with greater endorsement of "positive ...

  16. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  17. Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching

    Science.gov (United States)

    Yu, Eusun; Kim, Seul-Cham; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass. PMID:25791414

  18. Micro-, to nano-structural relationships in natural serpentines, derived from cationic substitutions.

    Science.gov (United States)

    Munoz, M.; Farges, F.; Andreani, M.; Ulrich, M.; Marcaillou, C.; Mathon, O.

    2014-12-01

    The understanding of the crystal chemistry of serpentine minerals (incl. antigorite, lizardite and chrysotile) is fundamental since serpentinization processes concern very large scientific domains: e.g., natural abiotic hydrogen production (Marcaillou et al., 2011), origins of life (Russell et al., 2010), fluid properties and mobility of metals in subduction zones (Kelley and Cottrell, 2009). This study aims at characterizing relations between the micro-, and nano-structures of the most abundant serpentine polytypes in the oceanic crust. Serpentine theoretical formula is Mg3Si2O5(OH)4 but several natural substitutions are possible and the formula may be written such as: (Mg,Fe2+,Fe3+,Al)3(Si,Al,Fe3+)2O5(OH)4; showing that Fe and Al may play an important role in the crystallization of serpentines. Preliminary crystal chemistry studies, suggest that, 1) the Al content alone cannot be directly correlated to serpentine polytypes (Andreani et al., 2008), 2) the amounts of tetrahedral iron can be significant in the presence of ferric iron (Marcaillou et al., 2011). Because magnetite is usually associated to serpentine, the Fe-speciation characterization of serpentine is delicate. Here, we provide the study of 33 magnetite-free serpentines containing various amounts of Fe and Al. The samples were characterized by SEM, Raman, XRF, as well as XANES, pre-edge, and EXAFS spectroscopy at the Fe K-edge. XANES experimental data were crosschecked and interpreted thanks to ab initio calculations and EXAFS shell-fitting. Also, preliminary 27Al-RMN data is presented. Results suggest relationships between the type and amount of substitution of trivalent cations in minerals, and the microstructures observed. Chrysotile incorporates less trivalent cations than other varieties, which tends to preserve the so-called misfit between the TO layers, and therefore the tubular structure of the mineral. Lizardites mainly involve Fe/Al Tschermak-type substitutions, while M-site vacancy charge

  19. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Titanium dioxide (TiO2 materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B, and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions.

  20. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Girija, K. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); DRDO – BU CLS, Bharathiar University, Coimbatore 641046 (India); Thirumalairajan, S. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Avadhani, G.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); DRDO – BU CLS, Bharathiar University, Coimbatore 641046 (India); Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2013-06-01

    Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{sub 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

  1. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性%3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability

    Institute of Scientific and Technical Information of China (English)

    朱英; 刘明杰; 万梅香; 江雷

    2011-01-01

    Micro/nanostructured conducting polymers have received intense interest because of their high conductivity, ease of preparation, good environmental stability, and a large variety of applications in molecular wires, chemical sensors,biosensor, light-emmiting and electronic devices.Three dimensional (3D) conducting polymer microstructures assembled from one dimensional (1D) nanofibers have been required to provide multi-functionality and high performance applications in microelectronics technology.However.the design and synthesis of such novel 3D-microstructures assembled from 1D-nanostructure remain a challenge for materials science.Recently, our researches demonstrated that the cooperation effect of the micelles served as soft-template and the molecular interactions as self-assembly driving forces provides a facile and effective approach to construct conductive and suppcrhydrophobie functional 3D-micro/nanostructures of conducting polymers assembled from 1D-nanofibers.The trick of this approach is using low surface energy organic acids as the dopants that serve four functions of dopant, soft-template, self-assembly driving force, and deducing superhydrophobicity.Moreover, 3D-microstructures assembled from 2D-nanosheets consisted of 1D-nanofibers of conducting polymer were successfully synthesized by adjusting self-assembled driving force using the relative humidity of enviroment.Our researches also demonstrated that surface wettability of conducting polymer micro/nanostructures could be reversively controlled by means of chemical methods.In liquid/liquid/solid triphase system, the wettability and adhesion of oil droplet on the surface of the conducing polymers can be intelligently controlled by adjusting the electrochemical potentials

  2. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  3. Endowments at Birth and Parents’ Investments in Children*

    Science.gov (United States)

    Adhvaryu, Achyuta; Nyshadham, Anant

    2014-01-01

    Do parents invest more in higher quality children, or do they compensate for lower quality by giving more to children with lower endowments? We answer this question in the context of a large-scale iodine supplementation programme in Tanzania. We find that children with higher programme exposure were more likely to receive necessary vaccines and were breastfed for longer. Siblings of treated children were also more likely to be immunised. Fertility behavior and investments at the time of birth were unaffected. PMID:27601732

  4. BUSINESS GAMES AS THE FORM OF ENDOWED CHILDREN PREPARATION TO RESEARCH ACTIVITY

    Directory of Open Access Journals (Sweden)

    N.I. Polikhun

    2010-11-01

    Full Text Available Modern computer business games using IT technologies provide numerous opportunities for improving ecological training of endowed children to research activities, including not only theoretical training but also the acquisition of practical skills.

  5. Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties.

    Science.gov (United States)

    Chen, Yipeng; Wang, Hanwei; Dang, Baokang; Xiong, Ye; Yao, Qiufang; Wang, Chao; Sun, Qingfeng; Jin, Chunde

    2017-05-12

    Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling high-performance composites. Inspired by the layered structure and extraordinary strength and toughness of natural nacre, nacre-like nanolignocellulose/poly (vinyl alcohol)/TiO 2 composites possessed the similar layered structure of natural nacre were constructed through hot-pressing process. Poly (vinyl alcohol) and TiO 2 nanoparticles have been used as nanofillers to improve the mechanical performance and synchronously endow the superior photocatalytic activity of the composites. This research would be provided a promising candidate for the photooxidation of volatile organic compounds also combined with outstanding mechanical property.

  6. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.

    Science.gov (United States)

    Yu, Xue; Kuai, Long; Geng, Baoyou

    2012-09-21

    Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.

  7. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  8. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    Micro- and nanostructured surfaces are interesting due to the unique properties they add to the bulk material. One example is structural colors, where the interaction between surface structures and visible light produce bright color effects without the use of paints or dyes. Several research groups...... modeling to evaluate the dimensions of subwavelength gratings, by correlating the reflected light measured from the structures with a database of simulations. A new method is developed and termed color scatterometry, since compared to typical spectroscopic scatterometry, which evaluates the full reflection...... spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...

  9. Molybdenum-rhenium superconducting suspended nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  10. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  11. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  12. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  13. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses

    Science.gov (United States)

    Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.

    2018-03-01

    The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.

  14. Backbone modified TBA analogues endowed with antiproliferative activity.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Varra, Michela; Vellecco, Valentina; Bucci, Mariarosaria; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2017-05-01

    The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 76 FR 16842 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-03-25

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... (ending time is approximate): Arts Education (application review): April 14, 2011, by teleconference. This...

  16. 76 FR 70510 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-11-14

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that ten meetings of the Arts Advisory Panel to the National Council on the Arts... (ending times are approximate): Arts Education (application review): November 29-December 2, 2011 in Room...

  17. 76 FR 20719 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-04-13

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that nine meetings of the Arts Advisory Panel to the National Council on the Arts..., evaluation, and recommendations on financial assistance under the National Foundation on the Arts and the...

  18. On the relationship between rutile/anatase ratio and the nature of defect states in sub-100 nm TiO2 nanostructures: experimental insights

    KAUST Repository

    Soliman, Moamen M.; Al Haron, Mohamed H.; Samir, Menna; Tolba, Sarah A.; Shaheen, Basamat; Amer, Ahmed W.; Mohammed, Omar F.; Allam, Nageh K.

    2018-01-01

    Black TiO2 is being widely investigated due to its superior optical activity and potential applications in photocatalytic hydrogen generation. Herein, the limitations of the hydrogenation process of TiO2 nanostructures are unraveled by exploiting

  19. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  20. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    Science.gov (United States)

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  1. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    International Nuclear Information System (INIS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-01-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  2. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  4. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming, E-mail: hiuminglin@gmail.com; Qu, Fengyu, E-mail: qufengyu2012@yahoo.cn, E-mail: qufengyu@hrbnu.edu.cn [Harbin Normal University, College of Chemistry and Chemical Engineering (China)

    2014-12-15

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with ∼1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2–6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m{sup 2} g{sup −1}) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g{sup −1} at 0.5 A g{sup −1}). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  5. Friction-induced nano-structural evolution of graphene as a lubrication additive

    Science.gov (United States)

    Zhao, Jun; Mao, Junyuan; Li, Yingru; He, Yongyong; Luo, Jianbin

    2018-03-01

    Graphene has attracted enormous attention in the field of lubrication based on its excellent physical and chemical properties. Although many studies have obtained thermally or chemically- exfoliated graphene and investigated their wide and important application, few studies have reported their physical nano-structural evolution under friction. In this study, we investigated the lubrication properties of graphene additives with different layer numbers and interlayer spacing by exfoliating. The additives with a higher degrees of exfoliation changed to ordering under friction, and had better lubrication properties, while that with a lower degrees exhibited obvious structural defects and high friction. Therefore, the original degrees of exfoliation plays a key role in the structural evolution of graphene and superior lubrication can be achieved through the physical nano-structure changing to ordering, even graphitization. Furthermore, the ordered tribofilm on the frictional interfaces was parallel to the sliding direction, meaning the highly exfoliated graphene indeed reaching slippage between its layers, which wasn't experimentally discovered in previous studies. This work provides a new understanding of the relationship between friction-induced nano-structural evolution and lubrication properties of graphene as a lubrication additive, and has great potential for the structural design of graphene as a lubrication additive.

  6. 75 FR 11940 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-03-12

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that a meeting of the Arts Advisory Committee will be held by teleconference from... National Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in...

  7. 76 FR 78316 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-12-16

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that eleven meetings of the Arts Advisory Panel to the National Council on the Arts will be held at the Nancy Hanks Center, 1100 Pennsylvania Avenue NW., Washington, DC, 20506 as...

  8. 75 FR 19664 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-04-15

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that four meetings of the Arts Advisory Panel to the National Council on the Arts... recommendations on financial assistance under the National Foundation on the Arts and the Humanities Act of 1965...

  9. 75 FR 35845 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-06-23

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that three meetings of the Arts Advisory Panel to the National Council on the Arts... the National Foundation on the Arts and the Humanities Act of 1965, as amended, including information...

  10. 76 FR 41308 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that two meetings of the Arts Advisory Panel to the National Council on the Arts... recommendations on financial assistance under the National Foundation on the Arts and the Humanities Act of 1965...

  11. 75 FR 41902 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-07-19

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that three meetings of the Arts Advisory Panel to the National Council on the Arts... financial assistance under the National Foundation on the Arts and the Humanities Act of 1965, as amended...

  12. 75 FR 44815 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-07-29

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... National Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in...

  13. 76 FR 28244 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-05-16

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that one meeting of the Arts Advisory Panel to the National Council on the Arts... Foundation on the Arts and the Humanities Act of 1965, as amended, including information given in confidence...

  14. 76 FR 81542 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2011-12-28

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that a meeting of the Arts Advisory Panel to the National Council on the Arts will... (ending times are approximate): Media Arts (application review): January 24-26, 2012 in Room 716. A...

  15. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants.

    Science.gov (United States)

    Jäger, Marcus; Jennissen, Herbert P; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise

    2017-11-13

    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.

  16. Natural resources endowment and economic growth: The West African Experience

    Directory of Open Access Journals (Sweden)

    Mohamed Jalloh

    2013-06-01

    Full Text Available This study aims at investigating the nexus between natural resource endowment and economic growth using a sample of West African countries. The study adopted a Barrow-type growth model to analyse the impact of natural resource wealth on economic growth. A dynamic panel estimation technique was employed using relevant data from West African Countries. The results from the panel regressions indicate that natural resource endowments have very minimal impact in terms of promoting economic growth in West Africa, more so in resource rich countries. In terms of relative effects, the results indicate that a 10% increase in natural resource export reduces growth in income per capita by approximately 0.4%. Part of the factors explaining this finding amongst others; include high corruption in the public sector as well as the frequency of civil conflicts in resource rich economies of West Africa. For the natural resources of the region to fully benefit its citizens, these countries require , urgently, to improve management of natural resource export revenues and to apply effective policy measures to eradicate/ mitigate incidences of rampant corruption in the public sector.

  17. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  18. Promising applications of graphene and graphene-based nanostructures

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.

  19. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  20. Structural features and electrochemical properties of nanostructured ZnCo2O4 synthesized by an oxalate precursor method

    International Nuclear Information System (INIS)

    Kang, Wenpei; Feng, Fan; Zhang, Miaomiao; Liu, Shaojie; Shen, Qiang

    2013-01-01

    As a Li-ion battery anode, the active substance with a porous nanostructure can be endowed with a high electrochemical performance because of its porosity and remarkable surface area. In this paper, the thermal decomposition of zinc–cobalt binary oxalate precursors, precipitated from a solvothermal medium of ethanol and water (75/25, v/v) at 100 °C, has been performed to synthesize phase-pure ZnCo 2 O 4 spinels, thoroughly giving porous and rod-like configurations with an average length of a few micrometers. Interestingly, each of the as-obtained porous microrods has been well characterized to consist of ∼35.2-nm single-crystalline nanoparticles with polydisperse interspaces. More interestingly, porous ZnCo 2 O 4 microrods can deliver an initial specific discharge capacity of 1,293.7 mAh g −1 with the coulombic efficiency of 76.8 % at 0.2 A g −1 , reaching a value of 937.3 mAh g −1 over 100 discharge–charge cycles. Even at a high current density of 2.0 A g −1 , the porous ZnCo 2 O 4 nanostructures can still possess a reversible discharge capacity of ∼925.0 mAh g −1 , further assigned to the synergistic effect of Zn- and Co-based oxide components. Anyway, the facile oxalate precursor method can realize the controlling synthesis of porous and rod-like ZnCo 2 O 4 nanostructures with a high electrochemical performance

  1. 45 CFR 1159.14 - Will the Endowment maintain a written account of disclosures made from its systems of records?

    Science.gov (United States)

    2010-10-01

    ... Act (5 U.S.C. 552). (b) The Endowment shall retain the accounting of each disclosure for at least five.... (c) The Endowment shall make the accounting of disclosures of a record pertaining to you available to... disclosures made from its systems of records? 1159.14 Section 1159.14 Public Welfare Regulations Relating to...

  2. Developing a Model of the Efficient Management of Reserve Capital of an Endowment Insurance Company in the Ukrainian Market

    Directory of Open Access Journals (Sweden)

    Kapustian Volodymir O.

    2017-06-01

    Full Text Available The article is concerned with developing a model of the effective management of reserve capital of an endowment insurance company or so-called endowment life insurance. Such companies are powerful actors at the international market, operate with considerable capital and are effective as active investors in different areas. The main features of functioning of endowment insurance companies, as well as the factors that guarantee the sustainable development of insurance companies in both the global and Ukrainian markets, were considered. The principles of management of financial resources of insurance companies were studied. An elaborated model of management of current and reserve capital has been provided, the mechanism for establishing and operating the insurance company’s current capital, taking into account the process of income of insurance premiums and the payment of dividends on poles, has been described. An analysis of the largest endowment insurance companies in the Ukrainian market was carried out. Based on the analysis, the recommended discount rate has been calculated for the model proposed in the article.

  3. 75 FR 26284 - National Endowment for the Arts; Arts Advisory Panel

    Science.gov (United States)

    2010-05-11

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; Arts Advisory..., notice is hereby given that nine meetings of the Arts Advisory Panel to the National Council on the Arts... meeting, from 3 p.m. to 3:30 p.m. EDT, will be closed. Folk and Traditional Arts (application review...

  4. Essential Not Optional: A Strategic Approach to Fund-Raising for Endowments

    Science.gov (United States)

    Griswold, John S.; Jarvis, William F.

    2012-01-01

    This overview of the state of endowment giving comes at a time of urgent need in the nonprofit sector. With market returns uncertain, and spending restraint difficult, the moderate but measurable increase in donations in the previous year invites institutions to consider elevating fund-raising to a more strategic position within the organization.…

  5. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  6. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    International Nuclear Information System (INIS)

    Frandsen, Christine J.; Brammer, Karla S.; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-01-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO 2 ) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO 2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO 2 nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO 2 nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface

  7. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  8. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  9. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO₂ micro and nano structures, and present the principles and growth mechanisms of TiO₂ nanostructures via different strategies...

  10. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  11. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  12. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  13. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  14. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.F.; Wang, W.J., E-mail: wenjunwang@mail.xjtu.edu.cn; Mei, X.S.; Zheng, B.X.; Yan, Z.X.

    2016-11-30

    Highlights: • The sub-5-μm microstructures on commercial pure titanium are creatively obtained based on cracks growth under 10 ns laser irradiation. • The distribution modification of laser energy induced by cambered microstructures was theoretically analyzed to produce nanostructures. • The sharp micro-nano structures under combined action of crack growth and hot-melt are obtained. - Abstract: This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm{sup 2} to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm{sup 2}, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm{sup 2}, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm{sup 2} and the sharp sub–5

  15. Experimental and DFT study of the degradation of 4-chlorophenol on hierarchical micro-/nanostructured oxide films

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Žouželka, Radek; Bíbová-Lipšová, Hana; Jirkovský, Jaromír; Rathouský, Jiří; Pauporté, T.

    2015-01-01

    Roč. 168, JUN 01 (2015), s. 132-140 ISSN 0926-3373 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : 4-Chlorophenol degradation * DFT modeling * ZnO hierarchical nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  16. MEMS Micro-Valve for Space Applications

    Science.gov (United States)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  17. Tantalum coating on TiO{sub 2} nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Christine J.; Brammer, Karla S. [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Noh, Kunbae [Corporate Research Institute, Cheil Industries, Inc., Gocheon-Dong, Uiwang-Si, Gyeonggi-Do, 437-711 (Korea, Republic of); Johnston, Gary [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Jin, Sungho, E-mail: jin@ucsd.edu [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO{sub 2}) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO{sub 2} nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO{sub 2} nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO{sub 2} nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface.

  18. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  19. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  20. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun, E-mail: hxqiu@usst.edu.cn; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe, E-mail: jhyang@usst.edu.cn

    2017-06-15

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC){sub 2} as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  1. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-01-01

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC) 2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  2. The endowment effect, status quo bias and loss aversion: rational alternative explanation

    NARCIS (Netherlands)

    Dupont, D.Y.; Lee, Gabriel S.

    2002-01-01

    The endowment effect, status quo bias, and loss aversion are robust and well documented results from experimental psychology. They introduce a wedge between the prices at which one is willing to sell or buy a good. The objective of this paper is to address this wedge. We show that the presence of

  3. The endowment effect, status quo bias and loss aversion : rational alternative explanation

    NARCIS (Netherlands)

    Dupont, D.Y.; Lee, G.S.

    2002-01-01

    The endowment effect, status quo bias, and loss aversion are robust and well documented results from experimental psychology. They introduce a wedge between the prices at which one is willing to sell or buy a good. The objective of this paper is to address this wedge. We show that the presence of

  4. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Science.gov (United States)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  5. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni

    2015-03-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  6. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni; Accardo, Angelo; Benseny-Cases, Nú ria; Burghammer, Manfred C.; Castillo-Michel, Hiram A.; Cotte, Marine; Dante, Silvia; De Angelis, Francesco De; Di Cola, Emanuela; Di Fabrizio, Enzo M.; Hauser, C.; Riekel, Christian

    2015-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  7. Self-assembly of tetrapod-shaped CdS nanostructures into 3D networks by a transverse growth process

    International Nuclear Information System (INIS)

    Fu Xiuli; Li Dan; Zhang Lei; Xiao Jinghua; Li Jiangyan; Peng Zhijian; Fang Zheyu

    2011-01-01

    Spontaneous formation of 3D tetrapod-shaped CdS nanostructure networks has been achieved for the first time by vapor diffusion-deposition growth from CdS powders. The growth mechanism of the hexagonal and preferentially oriented CdS tetrapod-shaped nanostructures is a combination of the classic vapor-liquid-solid and vapor-solid processes, and the formation of a 3D network results from the spontaneous growths along the longitudinal and across the axial directions of the primarily formed CdS nanorods. Micro-photoluminescence measurements and near-field scanning optical microscopy investigations show that the synthesized CdS tetrapod networks have an excellent luminescence property and can be used as an optical waveguide cavities in which the guided light can be extremely confined.

  8. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  9. Cost vs. Market Value: The Case for Reporting Endowment Investments at Market Value.

    Science.gov (United States)

    Bland, Harold

    1992-01-01

    The difference between cost and market value of endowment investments is significant for many colleges and universities. These investments should always be reported at market value to provide relevant, comparable, consistent, and understandable financial information. Nonmanagement users of institutional financial statements prefer market rather…

  10. Tuning the electrodeposition parameters of silver to yield micro/nano structures from room temperature protic ionic liquids

    International Nuclear Information System (INIS)

    Suryanto, Bryan H.R.; Gunawan, Christian A.; Lu Xunyu; Zhao Chuan

    2012-01-01

    Controlled electrodeposition of silver onto glassy carbon, gold and indium tin oxide-coated glass substrates has been achieved from three room temperature protic ionic liquids (PILs), ethylammonium nitrate, triethylammonium methylsulfonate, and bis(2-methoxyethyl)ammonium acetate. Cyclic voltammetric, chronoamperometric, together with microscopic and X-ray techniques reveal that micro/nanostructured Ag thin films of controlled morphology, size, density, and uniformity can be achieved by tuning the electrodeposition parameters such as potential, time, types of PILs, substrate materials, and ionic liquid viscosity by altering the water content. Chronoamperometric results provide direct evidence that electrodeposition of Ag in protic ionic liquids takes place through a progressive nucleation and diffusion-controlled 3D growth mechanism. The as prepared Ag micro/nanoparticles have been employed as electrocatalysts for oxygen reduction reaction and exhibit excellent catalytic activity. The study provides promise for using protic ionic liquids as alternative electrolytes to conventional aprotic ionic liquids for electrodeposition of metals and nanostructured electrocatalysts.

  11. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    Science.gov (United States)

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.

  12. Fabrication and characterization of nanostructured anatase TiO{sub 2} films prepared by electrochemical anodization and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yurddaskal, Metin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dikici, Tuncay, E-mail: tuncay.dikici@ikc.edu.tr [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Yildirim, Serdar [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Yurddaskal, Melis [Celal Bayar University, Department of Mechanical Engineering, Muradiye, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35390, Izmir (Turkey)

    2015-12-05

    In this study, nanostructured anatase titanium dioxide (TiO{sub 2}) films were fabricated by electrochemical anodization of titanium first, and then annealed at 500 °C for 2 h. Effect of electrolyte concentration, anodization time and electrolyte temperature on the surface morphology of the resulting TiO{sub 2} thin films were investigated. The phase structures, surface morphology and chemical composition were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the structure of nanostructured TiO{sub 2} films depended strongly on the anodization parameters. It was found that there were micro-scale pores (<10 μm) and nano-scale pores (diameter in the range from 40 to 70 nm) on the anodized titanium surfaces. This study indicated that structures, surface morphology, and surface area of the nanostructured anatase TiO{sub 2} films played an important role on their photocatalytic performance. The results clearly proved that nanostructured anatase TiO{sub 2} film prepared with optimum process parameters resulted in enhancement of the photocatalytic activity. - Highlights: • TiO{sub 2} thin films were prepared on titanium substrates by electrochemical anodization at 30 V. • Effect of various anodization parameters on the photocatalytic activity of titanium was investigated. • Micro- and nanoscale TiO{sub 2} pores formed on the titanium by anodizing. • Surface morphology of the TiO{sub 2} films plays an important role on the photocatalytic performance. • The sample anodized for 240 min showed the highest photocatalytic activity.

  13. Novel fabrication method for three-dimensional nanostructuring: an application to micro-optics

    International Nuclear Information System (INIS)

    Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cojoc, Dan; Fabrizio, Enzo Di

    2007-01-01

    We propose a 3D micro and nanofabrication method with potential applications to several nanotechnology-related fields. Our approach is based on the combination of lithographic steps and isotropic wet etchings performed on a quartz or glass substrate to form 3D structures with very accurate shape control and nanometer scale surface roughness. The resulting concavities at the quartz surface are converted into convex plastic elements by hot embossing or casting techniques. Complex all-polymer refractive optical elements have been realized by this method. Upon illumination, such micro-optics focus the light into predetermined 3D distributions of focal lines and spots. The general fabrication scheme explored here is illustrated through a series of examples in optics, but is expected to offer new solutions to other fields such as medicine, microfluidics and nano-optics

  14. Self-assembling graphene-anthraquinone-2-sulphonate supramolecular nanostructures with enhanced energy density for supercapacitors

    Science.gov (United States)

    Gao, Lifang; Gan, Shiyu; Li, Hongyan; Han, Dongxue; Li, Fenghua; Bao, Yu; Niu, Li

    2017-07-01

    Boosting the energy density of capacitive energy storage devices remains a crucial issue for facilitating applications. Herein, we report a graphene-anthraquinone supramolecular nanostructure by self-assembly for supercapacitors. The sulfonated anthraquinone exhibits high water solubility, a π-conjugated structure and redox active features, which not only serve as a spacer to interact with and stabilize graphene but also introduce extra pseudocapacitance contributions. The formed nest-like three-dimensional (3D) nanostructure with further hydrothermal treatment enhances the accessibility of ion transfer and exposes the redox-active quinone groups in the electrolytes. A fabricated all-solid-state flexible symmetric device delivers a high specific capacitance of 398.5 F g-1 at 1 A g-1 (1.5 times higher than graphene), superior energy density (52.24 Wh kg-1 at about 1 kW kg-1) and good stability (82% capacitance retention after 10 000 cycles).

  15. Mechanical Researches on Young's Modulus of SCS Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinhua Jin

    2009-01-01

    Full Text Available Nanostructures of SingleCrystalSilicon (SCS with superior electrical, mechanical, thermal, and optical properties are emerging in the development of novel nanodevices. Mechanical properties especially Young's modulus are essential in developing and utilizing such nanodevices. In this paper, experimental researches including bending tests, resonance tests, and tensile tests on Young' s modulus of nanoscaled SCS are reviewed, and their results are compared. It was found that the values of E measured by different testing methods cannot match to each other. As the differences cannot be explained as experimental errors, it should be understood by taking surface effect into account. With a simplified model, we qualitatively explained the difference in E value measured by tensile test and by resonance test for Si nanobeams.

  16. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  17. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  18. Classical elements in the endowments of Serbian XIII century donors

    OpenAIRE

    Gligorijević-Maksimović Mirjana

    2009-01-01

    In Byzantine painting, starting from the XIII and particularly during the XIV century, there was a visible return to models from the period of Antiquity. The influences of ancient, ostensibly, Hellenistic heritage were reflected in the shapes, in the content of the compositions, as well as in the drawing, modellation and colours. In the art that came into being in the course of the XIII century, in the endowments of the Serbian donors numerous elements emerged that had existed in ancient art....

  19. Effect of carbonation temperature on CO{sub 2} adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi, E-mail: hinode@ide.titech.ac.jp; Kurniawan, Winarto, E-mail: Kurniawan.w.ab@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Thant, Aye Aye, E-mail: a2thant@gmail.com [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salime, Chris, E-mail: chris.salim@surya.ac.id [Environmental Engineering, Surya University, Tangerang, 15810 Banten (Indonesia)

    2016-07-06

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.

  20. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  1. Exploring the effects of working for endowments on behaviour in standard economic games.

    Directory of Open Access Journals (Sweden)

    Freya Harrison

    Full Text Available In recent years, significant advances have been made in understanding the adaptive (ultimate and mechanistic (proximate explanations for the evolution and maintenance of cooperation. Studies of cooperative behaviour in humans invariably use economic games. These games have provided important insights into the mechanisms that maintain economic and social cooperation in our species. However, they usually rely on the division of monetary tokens which are given to participants by the investigator. The extent to which behaviour in such games may reflect behaviour in the real world of biological markets--where money must be earned and behavioural strategies incur real costs and benefits--is unclear. To provide new data on the potential scale of this problem, we investigated whether people behaved differently in two standard economic games (public goods game and dictator game when they had to earn their monetary endowments through the completion of dull or physically demanding tasks, as compared with simply being given the endowment. The requirement for endowments to be 'earned' through labour did not affect behaviour in the dictator game. However, the requirement to complete a dull task reduced cooperation in the public goods game among the subset of participants who were not familiar with game theory. There has been some effort to test whether the conclusions drawn from standard, token-based cooperation games adequately reflect cooperative behaviour 'in the wild.' However, given the almost total reliance on such games to study cooperation, more exploration of this issue would be welcome. Our data are not unduly worrying, but they do suggest that further exploration is needed if we are to make general inferences about human behaviour from the results of structured economic games.

  2. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    International Nuclear Information System (INIS)

    Jian, L K; Casse, B D F; Heussler, S P; Kong, J R; Saw, B T; Mahmood, Shahrain bin; Moser, H O

    2006-01-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding

  3. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.

  4. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  5. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  6. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties

    Energy Technology Data Exchange (ETDEWEB)

    Semenova, Irina P.; Yakushina, Evgeniya B.; Nurgaleeva, Veronika V.; Valiev, Ruslan Z. [Ufa State Aviation Technical Univ., Ufa (Russian Federation). Inst. of Physics of Advanced Materials

    2009-12-15

    This work is related to the enhancement of the fatigue properties in ultrafine-grained Ti alloys produced by severe plastic deformation techniques (SPD). To process commercially pure Ti Grade 4 and Ti-6Al-4V alloys, combined severe plastic deformation techniques that include equal channel angular pressing and additional thermal and deformation treatments were used. As a result we could produce ultrafine-grained Ti materials with a similar grain size of less than 300-400 nm but different in their shape and grain boundary structure (both low- and high-angle, equilibrium and non-equilibrium grain boundaries). It is shown that tailoring grain boundaries by severe plastic deformation techniques makes it possible to considerably enhance the strength of Ti materials while preserving high ductility. In turn, ultrafine-grained materials with enhanced strength and ductility demonstrate superior fatigue endurance and life.

  7. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry and Primary Care, College of Dentistry, Ohio State University, Columbus, OH (United States)

    2011-05-31

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H{sub 3}PO{sub 4} solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  8. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2011-01-01

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H 3 PO 4 solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  9. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  10. The nano-micro interface bridging the micro and nano worlds

    CERN Document Server

    Werner, Matthias; Fecht, Hans-Jörg

    2015-01-01

    This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs...

  11. Note: long-range scanning tunneling microscope for the study of nanostructures on insulating substrates.

    Science.gov (United States)

    Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás

    2014-02-01

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  12. Note: Long-range scanning tunneling microscope for the study of nanostructures on insulating substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Mendoza, Aday J., E-mail: aday.molina@uam.es [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Rodrigo, José G.; Rubio-Bollinger, Gabino [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Island, Joshua; Burzuri, Enrique; Zant, Herre S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Agraït, Nicolás [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid (Spain)

    2014-02-15

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  13. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2012-09-15

    Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

  14. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Shanaghi, Ali; Rouhaghdam, Ali Reza Sabour; Ahangarani, Shahrokh; Chu, Paul K.

    2012-01-01

    Highlights: ► The TiC x nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC x nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H 11 hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

  15. Mask-free surface structuring of micro- and nanocrystalline diamond films by reactive ion plasma etching

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Babchenko, Oleg; Varga, Marián; Hruška, Karel; Kromka, Alexander

    2014-01-01

    Roč. 6, č. 7 (2014), s. 780-784 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP108/12/0996; GA MPO FR-TI2/736 Institutional support: RVO:68378271 Keywords : micro- and nanocrystalline diamond * capacitively coupled plasma * reactive ion etching * nanostructuring * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Vibrating makes for better seeing: from the fly's micro eye movements to hyperacute visual sensors

    Directory of Open Access Journals (Sweden)

    Stéphane eViollet

    2014-04-01

    Full Text Available Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders' miniature eye movements have been modelled, simulated and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity. The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

  17. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  18. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    International Nuclear Information System (INIS)

    Zanoni, R.; Ioannidu, C.A.; Mazzola, L.; Politi, L.; Misiano, C.; Longo, G.; Falconieri, M.; Scandurra, R.

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides

  19. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, R., E-mail: robertino.zanoni@uniroma1.it [Dipartimento di Chimica, Università di Roma ‘La Sapienza’ p.le Aldo Moro 5, 00185 Rome (Italy); Ioannidu, C.A.; Mazzola, L.; Politi, L. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy); Misiano, C. [Romana Film Sottili, Anzio, Rome (Italy); Longo, G. [Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015 Lausanne (Switzerland); Falconieri, M. [ENEA, Unità Tecnica Applicazioni delle Radiazioni, via Anguillarese 301, 00123 Rome (Italy); Scandurra, R. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy)

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides.

  20. 76 FR 13673 - National Endowment for the Arts; Agency Information Collection Activities: Proposed Collection...

    Science.gov (United States)

    2011-03-14

    ... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... of Qualitative Feedback on Agency Service Delivery AGENCY: The National Endowment for the Arts, NFAH... Qualitative Feedback on Agency Service Delivery'' to OMB for approval under the Paperwork Reduction Act (PRA...

  1. Micro computed tomography features of laryngeal fractures in a case of fatal manual strangulation.

    Science.gov (United States)

    Fais, Paolo; Giraudo, Chiara; Viero, Alessia; Miotto, Diego; Bortolotti, Federica; Tagliaro, Franco; Montisci, Massimo; Cecchetto, Giovanni

    2016-01-01

    Cases of subtle fatal neck compression are often complicated by the lack of specificity of the post-mortem signs of asphyxia and by the lack of clear signs of neck compression. Herein we present a forensic case of a 45-year-old schizophrenic patient found on the floor of the bedroom of a psychiatric ward in cardiopulmonary arrest and who died after two days in a vegetative state. The deposition of the roommate of the deceased, who claimed responsibility for the killing of the victim by neck compression, was considered unreliable by the prosecutor. Autopsy, toxicological analyses, and multi-slice computed tomography (MSCT), micro computed tomography (micro-CT) and histology of the larynx complex were performed. Particularly, micro-CT analysis of the thyroid cartilage revealed the bilateral presence of ossified triticeous cartilages and the complete fragmentation of the right superior horn of the thyroid, but it additionally demonstrated a fracture on the contralateral superior horns, which was not clearly diagnosable at MSCT. On the basis of the evidence of intracartilaginous laryngeal hemorrhages and bilateral microfracture at the base of the superior horns of the larynx, the death was classified as a case of asphyxia due to manual strangulation. Micro-CT was confirmed as a useful tool in cases of subtle fatal neck compression, for the detection of minute laryngeal cartilage fractures, especially in complex cases with equivocal findings on MSCT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Synthesis and processing of nanostructured BN and BN/Ti composites

    Science.gov (United States)

    Horvath, Robert Steven

    corresponding multi-layered structures are in the 0.1-1.0 GPa range, well within the capabilities of today's hot-pressing technologies; thus scaling this new reactive-HPHT processing technology seems assured. Future research will focus on establishing mechanisms and kinetics of the various phase transformations observed during reactive-HPHT processing, with the objective of being able to optimize processing parameters to generate nanostructured cBN-based and TiB2/TiN-based composites that display superior mechanical properties, particularly under high-strain-rate conditions.

  3. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  4. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Zhao, Cancan; Wang, Xiaoya; Gao, Long; Jing, Linguo; Zhou, Quan; Chang, Jiang

    2018-06-01

    The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge

  5. Postnatal food restriction in the rat as a model for a low nephron endowment

    DEFF Research Database (Denmark)

    Schreuder, Michiel F.; Nyengaard, Jens Randel; Remmers, Floor

    2006-01-01

    A low nephron endowment may be associated with hypertension. Nephrogenesis is the process that leads to the formation of nephrons until week 36 of gestation in humans and may be inhibited by many factors like intrauterine growth restriction and premature birth. To study the consequences of a low ...

  6. Semiconductors and semimetals nanostructured systems

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Reed, Mark A

    1992-01-01

    This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D ele...

  7. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist

    Energy Technology Data Exchange (ETDEWEB)

    Mao Haiyang; Wu Di; Wu Wengang; Hao Yilong [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871 (China); Xu Jun, E-mail: wuwg@ime.pku.edu.c [Electron Microscopy Laboratory, Peking University, Beijing 100871 (China)

    2009-11-04

    A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 {mu}m. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.

  8. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist

    International Nuclear Information System (INIS)

    Mao Haiyang; Wu Di; Wu Wengang; Hao Yilong; Xu Jun

    2009-01-01

    A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 μm. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.

  9. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  10. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    Science.gov (United States)

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-09

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  11. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Science.gov (United States)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  12. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    International Nuclear Information System (INIS)

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Allen Haynes, J

    2013-01-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie–Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military. (paper)

  13. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  14. Synthesis and characterization of α-alumina col-gel nanometric: elaboration of biomaterials nanostructured for biomedical applications

    International Nuclear Information System (INIS)

    Passoni, L.S.; Feit, G.; Camargo, N.H.A.

    2010-01-01

    The production of nanostructured biomaterials are research themes for these present new characteristics of biocompatibility and bioactivity. The sol-gel process allows obtaining α-alumina nanometric with purity 99.99%. The use of nanoparticles of Al 2 O 3 -α, SiO 2 and TiO 2 are being employed as a second stage in the development of nanocomposites biomaterials. The presence of the second phase within a ceramic matrix leads to obtaining nanomaterials with micropores in micro and nanostructures interconnected, what contributes within the processes of osseous integration, osseous induction. The goal of this work focused on synthesis and characterization of an α- alumina by sol-gel process. Characterization studies were conducted using the various techniques: X-ray diffraction, scanning electron microscopy, exploratory differential scanning calorimetry and infrared spectrometry by Fourier transforms. The preliminary results showed the attainment the nanometric α-alumina powder. (author)

  15. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  16. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    International Nuclear Information System (INIS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-01-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe 2 O 3 /MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe 2 O 3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe 2 O 3 /MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe 2 O 3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured

  17. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  18. Effects of nano-structured photonic crystals on light extraction enhancement of nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Wu, G.M.; Yen, C.C.; Chien, H.W.; Lu, H.C.; Chang, T.W.; Nee, T.E.

    2011-01-01

    The light extraction efficiency of an InGaN/GaN light-emitting diode (LED) can be enhanced by incorporating nano-structured photonic crystals inside the LED structure. We employed plane wave expansion (PWE) method and finite difference time domain (FDTD) method to reveal the optical confinement effects with the relevant parameters. The results showed that band-gap modulation could increase the efficiency for light extraction at the lattice constant of 200 nm and depth of 200 nm for the 468-nm LED. Focused ion beam (FIB) using Ga created the desired nano-structured patterns. The LED device micro-PL (photoluminescence) results have demonstrated that the triangular photonic crystal arrays could increase the peak illumination intensity by 58%. The peak wavelength remained unchanged. The integrated area under the illumination peak was increased by 75%. As the patterned area ratio was increased to 85%, the peak intensity enhancement was further improved to 91%, and the integrated area was achieved at 106%.

  19. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  20. The addition of nanostructured hydroxyapatite to an experimental adhesive resin.

    Science.gov (United States)

    Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo; Trommer, Rafael Mello; Andrioli, Daniela Guerra; Bergmann, Carlos Pérez; Samuel, Susana Maria Werner

    2013-04-01

    Was produced nanostructured hydroxyapatite (HAnano) and evaluated the influence of its incorporation in an adhesive resin. HAnano was produced by a flame-based process and was characterized by scanning electron microscopy. The surface area, particle size, micro-Raman and cytotoxicity were evaluated. The organic phase was formulated by mixing 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. HAnano was added at seven different concentrations: 0; 0.5; 1; 2; 5; 10 and 20 wt.%. Adhesive resins with hydroxyapatite incorporation were evaluated for their radiopacity, degree of conversion, flexural strength, softening in solvent and microshear bond strength. The data were analyzed by one-way ANOVA and Tukey's post hoc test (α=0.05), except for softening in solvent (paired t-test) and cytotoxicity (two-way ANOVA and Bonferroni). HAnano presented 15.096 m(2)/g of specific surface area and a mean size of 26.7 nm. The radiopacity values were not different from those of 1-mm aluminium. The degree of conversion ranged from 52.2 to 63.8%. The incorporation of HAnano did not influence the flexural strength, which ranged from 123.3 to 143.4MPa. The percentage of reduction of the microhardness after immersion in the solvent became lower as the HAnano concentration increased. The addition of 2% nanostructured hydroxyapatite resulted in a higher value of microshear bond strength than the control group (phydroxyapatite into an adhesive resin presented the best results. The incorporation of nanostructured hydroxyapatite increases the adhesive properties and may be a promising filler for adhesive resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Indifferent, the Good Samaritan, the Brave and the Agent in Allais Paradox situation – or How Endowment Effect Influences Our Decision in Case of Allais Paradox?

    Directory of Open Access Journals (Sweden)

    Kolnhofer-Derecskei Anita

    2017-12-01

    Full Text Available Background and purpose: Mainstream economic models do not take ownership into consideration. Only after the findings of behavioural economists was endowment effect widely observed. Endowment effect means that goods that one owns are valued higher than other goods not held in endowment. At the same time the principal-agent literature is concerned with how the principal (such as employer can motivate his agent (say the employee, to act in the principal’s interests and also for their holdings. The main problem is that acting in somebody’s else’s interests can influence our values as well. Moreover, the principal as owner suffers from endowment effect. Both situations can be treated as a risky decision. Risk confuses our rationality in a predictable way.

  2. Crystallization and Thermoelectric Transport in Semiconductor Micro- and Nanostructures Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gokirmak, Ali [Univ. of Connecticut, Storrs, CT (United States); Silva, Helena [Univ. of Connecticut, Storrs, CT (United States)

    2017-08-30

    This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias, carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the past years

  3. Rational design and synthesis of yolk-shell ZnGa2O4@C nanostructure with enhanced lithium storage properties

    Science.gov (United States)

    Han, Nao; Xia, Yuguo; Han, Yanyang; Jiao, Xiuling; Chen, Dairong

    2018-03-01

    The ability to create hybrid nanostructure with synergistic effect and confined morphology to achieve high performance and long-term stability is high desirable in lithium ion batteries. Although transition metal oxides as anode material reveal high theoretical capacities, the significant volume changes during repeated lithium insertion and extraction cause pulverization of electrode materials, resulting in rapid fade in capacity. Herein, yolk-shell nanostructure of ZnGa2O4 encapsulated by amorphous carbon is rationally designed and synthesized through two-step surface coating followed by thermal treatment and etching process. It is noteworthy that ZnGa2O4@C with yolk-shell structure is superior to pristine ZnGa2O4 and ZnGa2O4@C with core-shell structure in term of lithium storage. The stable reversible capacity of yolk-shell ZnGa2O4@C can be retained at 657.2 mAh g-1 at current density of 1 A g-1 after completion of 300 cycles, which also reveals superior rate performance. The appropriate carbon shell and void space involved in the yolk-shell structure are considered to be the crucial factor in accommodating volume expansion as well as preserving the structural integrity of yolk-shell ZnGa2O4@C.

  4. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  5. Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Petrovski, Aleksandar; Paunović, Perica [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avolio, Roberto; Errico, Maria E.; Cocca, Mariacristina; Gentile, Gennaro [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Grozdanov, Anita, E-mail: anita.grozdanov@yahoo.com [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avella, Maurizio [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Barton, John [Tyndall National Institute, University College Cork, Dyke Parade, T12 R5CP, Cork (Ireland); Dimitrov, Aleksandar [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-01-01

    Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro-polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 min. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene. - Highlights: • Nanocomposites of PANI with carbon nanostructures were prepared for sensing application. • By cyclic voltammetry, conductive form of PANI (green colored emeraldine phase) is obtained 0.75 V • Using 4 Probe method, nanocomposite PANI/CNS tablet was tested for sensing application. • Micro-structural properties of nanocomposites were studied by SEM, TGA and Raman analysis.

  6. Double elevator weakening for unilateral congenital superior oblique palsy with ipsilateral superior rectus contracture and lax superior oblique tendon.

    Science.gov (United States)

    Khan, Arif O

    2012-06-01

    In unilateral congenital superior oblique palsy, a large hypertropia is sometimes associated with ipsilateral contracture of the superior rectus muscle and apparent overaction of the contralateral superior oblique. Ipsilateral double elevator weakening is one surgical approach; however, this procedure could compromise supraduction. We report a series of three consecutive patients who underwent ipsilateral superior rectus and inferior oblique recessions for unilateral superior oblique palsy. Intraoperatively, all three patients were found to have a lax ipsilateral superior oblique tendon. Postoperatively, all three patients had satisfactory correction of the hypertropia and abnormal head position with minimal supraduction defect. This procedure seems to be an acceptable initial surgical option for treating congenital superior oblique muscle palsy with ipsilateral contracture of the superior rectus muscle, even when the ipsilateral superior oblique tendon is lax. Copyright © 2012 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  7. Epicrystal modification of construction composites of different purpose with application of granulated nanostructured aggregate

    Directory of Open Access Journals (Sweden)

    STROKOVA Valeria Valerievna

    2016-10-01

    Full Text Available The paper shows that the volume impregnation of the concrete matrix in case of using granular nanostructured aggregate is an example of several anthropogenic metasomatosis such as phase replacement with the change of the chemical composition, as well as formation of new paragenesises, transformation of characteristics of final material. It is shown the impregnation of concrete with modifying solution results in microstructure impaction and homogenization; grain surface is covered with micro- and nano-sized new formations with different morphology. Considering the relevance of researches related to the development of new lightweight concrete aggregates and modification of traditionally used aggregates application of nanostructured granular aggregate for the implementation epicrystal modification of lightweight concrete based on inorganic binders is proposed. It allows creating composite macroporous structure with joint modification of the matrix on nano- and microlevel. Also, in view of increase in number of researches devoted to alkali-activated silicate and aluminosilicate systems for application as individually and as modifiers for increasing of hydrophobic properties of building materials, the possibility of creating a fine-grained concrete with low water absorption by the introduction of hydrophobic additives into the composition of granular nanostructured aggregate is demonstrated. During the steam treatment the fluids from solutions of sodium polysilicates and hydrophobic additives are form at the core of the granular aggregate with its later migration through the shell of the granules and spreading in the volume of the concrete matrix. Improving of performance characteristics presented construction composites for various purposes is defined by the infiltrational metasomatic transformation of crystalline matrix with the activated functional systems, obtained during the thermal activation of granulated nanostructured aggregate.

  8. Is there a shift to 'active nanostructures'?

    International Nuclear Information System (INIS)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure 'changes or evolves its state during its operation,' according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a 'shift' to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  9. Is there a shift to "active nanostructures"?

    Science.gov (United States)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a "shift" to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  10. Chemically Functionalized Arrays Comprising Micro and Nano-Etro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    International Nuclear Information System (INIS)

    Sepaniak, Michael J.

    2008-01-01

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project 'Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste'. These tasks are listed below in modified form followed by the report on progress. (1) Deposit chemically selective phases on model MEMS devices with nanostructured surface layers to identify optimal technological approaches. (2) Monitor mechanical (deflection) and optical (SERS) responses of the created MEMS to organic and inorganic species in aqueous environments. (3) Explore and compare different approaches to immobilization of selective phases on the thermal detectors. (4) Demonstrate improvements in selectivity and sensitivity to model pollutants due to implemented technologies of nanostructuring and multi-mode read-out. (5) Demonstrate detection of different analytes on a single hybrid MEMS (6) Implement the use of differential pairs of cantilever sensors (coated and reference) with the associated detector electronics which is expected to have an enhanced sensitivity with a low-noise low-drift response. (7) Development of methods to create differential arrays and test effectiveness at creating distinctive differential responses.

  11. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  12. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  13. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  14. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  15. PREFACE: Self-organized nanostructures

    Science.gov (United States)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  16. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)

    Science.gov (United States)

    Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang

    2018-04-01

    Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.

  17. Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors.

    Science.gov (United States)

    Liu, Shude; Sankar, Kalimuthu Vijaya; Kundu, Aniruddha; Ma, Ming; Kwon, Jang-Yeon; Jun, Seong Chan

    2017-07-05

    Transition-metal-based heteronanoparticles are attracting extensive attention in electrode material design for supercapacitors owing to their large surface-to-volume ratios and inherent synergies of individual components; however, they still suffer from limited interior capacity and cycling stability due to simple geometric configurations, low electrochemical activity of the surface, and poor structural integrity. Developing an elaborate architecture that endows a larger surface area, high conductivity, and mechanically robust structure is a pressing need to tackle the existing challenges of electrode materials. This work presents a supercapacitor electrode consisting of honeycomb-like biphasic Ni 5 P 4 -Ni 2 P (Ni x P y ) nanosheets, which are interleaved by large quantities of nanoparticles. The optimized Ni x P y delivers an ultrahigh specific capacity of 1272 C g -1 at a current density of 2 A g -1 , high rate capability, and stability. An asymmetric supercapacitor employing as-synthesized Ni x P y as the positive electrode and activated carbon as the negative electrode exhibits significantly high power and energy densities (67.2 W h kg -1 at 0.75 kW kg -1 ; 20.4 W h kg -1 at 15 kW kg -1 ). These results demonstrate that the novel nanostructured Ni x P y can be potentially applied in high-performance supercapacitors.

  18. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    Science.gov (United States)

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti

  19. Autonomy or Oligarchy? The Changing Effects of University Endowments in Winner-Take-All Markets

    Science.gov (United States)

    Meyer, Heinz-Dieter; Zhou, Kai

    2017-01-01

    This paper directs attention to important changes in the role and funding of elite private universities in the USA. At the center of these changes is the private endowment--an institution that has for much of its history been a pivotal element of innovation and autonomy, but which is recently tilting towards the production and reproduction of…

  20. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  1. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi 2 O 6 ) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  2. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.

    Science.gov (United States)

    Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua

    2018-03-01

    The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 75 FR 52857 - National Endowment for the Humanities Implementation of OMB Guidance on Drug-Free Workplace...

    Science.gov (United States)

    2010-08-30

    ... Endowment for the Humanities Implementation of OMB Guidance on Drug-Free Workplace Requirements AGENCY... the Governmentwide common rule on drug-free workplace requirements for financial assistance, currently... Federal regulations on drug-free workplace requirements for financial assistance. These changes constitute...

  4. Plastic Properties of Fine-Grained WMD After Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2014-10-01

    Full Text Available Micro-jet welding is an innovative method of weld forced cooling immediately after welding. It allows to obtain weld with superior properties in comparison to conventional welding. The reason for this is to obtain a more favorable structure of the weld metal deposit (WMD with much higher amount of acicular ferrite (AF. Different structures and mechanical properties of weld metal deposit were obtained by using various gases for cooling. The paper shows the relationship between the type of gas for micro-jet cooling and plastic properties of the weld joint. Coefficient of restitution and plastic strain were selected to describe changes of weld plastic properties for different micro-jet cooling gases. The tests were performed in dynamic conditions (impact.

  5. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  6. Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films

    International Nuclear Information System (INIS)

    Grieseler, Rolf; Hähnlein, Bernd; Stubenrauch, Mike; Kups, Thomas; Wilke, Marcus; Hopfeld, Marcus; Pezoldt, Jörg; Schaaf, Peter

    2014-01-01

    The knowledge of the mechanical properties of new materials determines essentially their usability and functionality when used in micro- and nanostructures. MAX phases are new and highly interesting materials due to their unique combination of materials properties. In this article a new method for producing the Cr 2 AlC MAX phase is presented. Thin film elemental multilayer deposition and subsequent rapid thermal annealing forms the MAX phase within seconds. Additionally, free standing microstructures (beams and cantilevers) based on this MAX phase films are prepared by plasma etching. The mechanical properties of these MAX phase microstructures are investigated

  7. Micro-optical instrumentation for process spectroscopy

    Science.gov (United States)

    Crocombe, Richard A.; Flanders, Dale C.; Atia, Walid

    2004-12-01

    Traditional laboratory ultraviolet/visible/near-infrared spectroscopy instruments are tabletop-sized pieces of equipment that exhibit very high performance, but are generally too large and costly to be widely distributed for process control applications or used as spectroscopic sensors. Utilizing a unique, and proven, micro-optical technology platform origi-nally developed, qualified and deployed in the telecommunications industry, we have developed a new class of spectro-scopic micro-instrumentation that has laboratory quality resolution and spectral range, with superior speed and robust-ness. The fundamentally lower cost and small form factor of the technology will enable widespread use in process moni-toring and control. This disruption in the ground rules of spectroscopic analysis in these processes is enabled by the re-placement of large optics and detector arrays with a high-finesse, high-speed micro electro mechanical system (MEMS) tunable filter and a single detector, that enable the manufacture of a high performance and extremely rugged spectrome-ter in the footprint of a credit card. Specific process monitoring and control applications discussed in the paper include pharmaceutical, gas sensing and chemical processing applications.

  8. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengjiao; Guo, Pengqian; Liu, Boli; Xie, Wenhe; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-28

    Silicon is the most promising anode material for the next-generation lithium-ion batteries (LIBs). However, the large volume change during lithiation/delithiation and low intrinsic conductivity hamper its electrochemical performance. Here we report a well-designed LIB anode in which carbon-coated Si nanoparticles/reduced graphene oxide (Si/rGO) multilayer was anchored to nanostructured current collector with stable mechanical support and rapid electron conduction. Furthermore, we improved the integral stability of the electrode through introducing amorphous carbon. The designed anode exhibits superior cyclability, its specific capacity remains above 800 mAh g{sup −1} after 350 cycles at a current density of 2.0 A g{sup −1}. The excellent electrochemical performance can be attributed to the fact that the Si/rGO multilayer is reinforced by the nanostructured current collector and the formed amorphous carbon, which can maintain the structural and electrical integrities of the electrode.

  9. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    Science.gov (United States)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For

  10. Peace through History? The Carnegie Endowment for International Peace's Inquiry into European Schoolbooks, 1921-1924

    Science.gov (United States)

    Irish, Tomás

    2016-01-01

    In 1924 the Carnegie Endowment for International Peace published a volume investigating the teaching of school history in former belligerent states in Europe. The project sought to reconcile former enemies through mutual understanding and educational exchange and reflected a widely held belief that although the military conflict had finished, its…

  11. Mechanical design of DNA nanostructures

    Science.gov (United States)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  12. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  13. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    Science.gov (United States)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  14. Preparation and study of nanostructured TiAlSiN thin films

    Directory of Open Access Journals (Sweden)

    Jakab-Farkas L.

    2011-12-01

    Full Text Available TiAlSiN thin film coatings were deposited by DC reactive magnetron sputtering of TiAlSi target with 40 at.% Ti, 40 at.% Al and 20 at.% Si, performed in N2-Ar gas mixture. The sputtering power used in these experiments was controlled for 400 W. The bias voltage of the substrates was kept at -20 V DC and the temperature at 500 0C. All the samples were prepared with a constant flow rate of Ar and different nitrogen flow rates, which were selected from 1.25 sccm to 4.0 sccm. Nanostructured TiAlSiN coatings were developed on Si(100 and HSS substrates. Microstructure investigation of the coatings was performed by transmission electron microscopy investigation, structure investigation was performed by XRD analysis, and the mechanical properties of the coatings have been tested by ball-on-disk tribological investigation and micro-Vickers hardness measurements. In this paper will be shown that for optimized nitrogen concentration the microstructure of TiAlSiN coating evolve from a competitive columnar growth to a dendritic growth one with very fine nano-lamellae like morphology. The developed nanostructured TiAlSiN coatingshave hardness HV exceeding 40 GPa and show an increased abrasive wear resistance

  15. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  16. Fabrication of nanowires and nanostructures

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2009-01-01

    We report on different approaches that we have adopted and developed for the fabrication of nanowires and nanostructures. Methods based on template synthesis and on self organization seem to be the most promising for the fabrication of nanomaterials and nanostructures due to their easiness and low...... cost. The development of a supported nanoporous alumina template and the possibility of using this template to combine electrochemical synthesis with lithographic methods open new ways for the fabrication of complex nanostructures. The numerous advantages of the supported template and its compatibility...

  17. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    Science.gov (United States)

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  18. Facile one-pot transformation using structure-guided combustion waves of micro-nanostructured β-Bi2O3 to α-Bi2O3@C and analysis of electrochemical capacitance

    Science.gov (United States)

    Hwang, Hayoung; Shin, Jung-ho; Lee, Kang Yeol; Choi, Wonjoon

    2018-01-01

    Precise phase-transformation can facilitate control of the properties of various materials, while an organic coating surrounding inorganic materials can yield useful characteristics. Herein, we demonstrate facile, selective manipulation of micro-nanostructured bismuth oxide (Bi2O3) for phase transformation from microflower-like β-Bi2O3 to micropill-like α-Bi2O3, with carbon-coating layer deposition, using structure-guided combustion waves (SGCWs). Microflower-like β-Bi2O3 are synthesized as core materials and nitrocellulose is coated on their surfaces for the formation of core-shell hybrid structures of Bi2O3 and chemical fuel. The SGCWs, which propagate along the core-material and fuel interfaces, apply high thermal energy (550-600 °C) and deposit incompletely combusted carbonaceous fuel on the microflower-like β-Bi2O3 to enable transformation to α-phase and carbon-coating-layer synthesis. SGCW-induced improvements to the electrochemical characteristics of the developed micropill-like α-Bi2O3@C, compared with the microflower-like β-Bi2O3, are investigated. The enhanced stability from the α-phase Bi2O3 and micropill-like structures during charge-discharge cycling improves the specific capacitance, while the carbon-coating layers facilitate increased electrical conductivity. SGCW-based methods exhibit high potential for selective phase manipulation and synthesis of carbon coatings surrounding micro-nanomaterials. They constitute a low-cost, fast, large-scale process for metal oxides, ceramics, and hybrid materials, implemented through control of the processing parameters by tuning the temperature, chemical fuel, and ambient conditions.

  19. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  20. Accelerated life test of an ONO stacked insulator film for a silicon micro-strip detector

    International Nuclear Information System (INIS)

    Okuno, Shoji; Ikeda, Hirokazu; Saitoh, Yutaka

    1996-01-01

    We have used to acquire the signal through an integrated capacitor for a silicon micro-strip detector. When we have been using a double-sided silicon micro-strip detector, we have required a long-term stability and a high feasibility for the integrated capacitor. An oxide-nitride-oxide (ONO) insulator film was theoretically expected to have a superior nature in terms of long term reliability. In order to test long term reliability for integrated capacitor of a silicon micro-strip detector, we made a multi-channel measuring system for capacitors

  1. Preparation and Characterization of TiO2 Nanostructure by TiCl4 Hydrolysis with Additive NaOH

    Directory of Open Access Journals (Sweden)

    Rashed Taleb Rasheed

    2018-04-01

    Full Text Available Titanium dioxide (TiO2 nanostructures were synthesized via the hydrolysis of TiCl4 in alcohol / water solution/with sodium hydroxide solution in the ice-bath (0-5 ◦C. The particles were char-acterized by using X-ray diffraction technique (XRD, spectroscopy of Ultra Violet-Visible (UV / Visible and infrared (FT-IR, atomic force microscope (AFM and scanning electron micro-scope (SEM analysis were used in order to gain information about the material, morphology, size and the shape of the particles

  2. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  3. 38 CFR 6.14 - Cash value; other than special endowment at age 96 plan policy.

    Science.gov (United States)

    2010-07-01

    ... special endowment at age 96 plan policy; all values, reserves, and net single premiums being based on the... shall be the reserve together with any dividend accumulations. For each month after the first policy year the reserve at the end of the preceding policy year shall be increased by one-twelfth of the...

  4. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.

    Science.gov (United States)

    Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M

    2013-09-09

    Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Stability Induced by the TiN/Ti Interlayer in Three-Dimensional Si/Ge Nanorod Arrays as Anode in Micro Lithium Ion Battery.

    Science.gov (United States)

    Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; Sun, Shibo; He, Xu; Li, Juntao; Zhao, Libo; Wu, Suntao; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-03-01

    Three-dimensional (3D) Si/Ge-based micro/nano batteries are promising lab-on-chip power supply sources because of the good process compatibility with integrated circuits and Micro/Nano-Electro-Mechanical System technologies. In this work, the effective interlayer of TiN/Ti thin films were introduced to coat around the 3D Si nanorod (NR) arrays before the amorphous Ge layer deposition as anode in micro/nano lithium ion batteries, thus the superior cycling stability was realized by reason for the restriction of Si activation in this unique 3D matchlike Si/TiN/Ti/Ge NR array electrode. Moreover, the volume expansion properties after the repeated lithium-ion insertion/extraction were experimentally investigated to evidence the superior stability of this unique multilayered Si composite electrode. The demonstration of this wafer-scale, cost-effective, and Si-compatible fabrication for anodes in Li-ion micro/nano batteries provides new routes to configurate more efficient 3D energy storage systems for micro/nano smart semiconductor devices.

  6. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass

    Science.gov (United States)

    Fedotov, S. S.; Drevinskas, R.; Lotarev, S. V.; Lipatiev, A. S.; Beresna, M.; ČerkauskaitÄ--, A.; Sigaev, V. N.; Kazansky, P. G.

    2016-02-01

    Self-assembled nanostructures created by femtosecond laser irradiation are demonstrated in alkali-free aluminoborosilicate glass. The growth of the induced retardance associated with the nanograting formation is three orders of magnitude slower than in silica glass and is observed only within a narrow range of pulse energies. However, the strength of retardance asymptotically approaches the value typically measured in pure silica glass, which is attractive for practical applications. A similar intensity threshold for nanograting formation of about 1 TW/cm2 is observed for all glasses studied. The radially polarized vortex beam micro-converter designed as a space-variant quarter-wave retarder for the near-infrared spectral range is imprinted in commercial Schott AF32 glass.

  7. Experimental and numerical studies of micro PEM fuel cell

    Science.gov (United States)

    Peng, Rong-Gui; Chung, Chen-Chung; Chen, Chiun-Hsun

    2011-10-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500 µm. A theoretical analysis is performed in this study for a novel MEMS-based design of amicro PEMFC. Themodel consists of the conservation equations of mass, momentum, species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code. The polarization curves of simulation are well correlated with experimental data. Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature, current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min). Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4V operating voltage. Model predictions are well within those known for experimental mechanism phenomena.

  8. On the thermal growth and properties of doped TiO2 and In2O3 elongated nanostructures and nanoplates

    International Nuclear Information System (INIS)

    Cremades, A.; Herrera, M.; Bartolomé, J.; Vásquez, G.C.; Maestre, D.; Piqueras, J.

    2014-01-01

    In this work, the driving forces behind the growth mechanisms of In 2 O 3 and TiO 2 micro- and nano-structures grown by an evaporation–solidification method are discussed. Effective or limited doping incorporation and its influence on the growth and morphology of the low dimensional structures are also assessed. A dislocation driven growth mechanism is proposed for indium oxide, indium tin oxide (ITO) and zinc doped indium oxide (IZO) nanowires. This growth mechanism is extended to the growth of IZO nano-plates. On the other hand, different low dimensional TiO 2 morphologies, mainly nanowires, needles, and bidimensional leaf-like nanostructures, have been obtained by an anisotropic induced growth. By introducing Cr in the precursor mixture, needles are formed showing stepped lateral faces related to oxygen defect stoichiometry areas as observed by EDS mapping

  9. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  10. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  11. Phase-Separated, Epitaxial, Nanostructured LaMnO3+MgO Composite Cap Layer Films for Propagation of Pinning Defects in YBa2Cu3O7-x Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sung Hun [ORNL; Shin, Junsoo [ORNL; Cantoni, Claudia [ORNL; Meyer III, Harry M [ORNL; Cook, Sylvester W [ORNL; Zuev, Yuri L [ORNL; Specht, Eliot D [ORNL; Xiong, Xuming [ORNL; Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Goyal, Amit [ORNL

    2009-01-01

    Nanostructural modulation in the cap layer used in coated conductors can be a potential source for nucleating microstructural defects into the superconducting layer for improving the flux-pinning. We report on the successful fabrication of phase separated, epitaxial, nanostructured films comprised of LaMnO{sub 3} (LMO) and MgO via pulsed laser deposition (PLD) on biaxially-textured MgO metallic templates with a LMO buffer layer. Scanning Auger compositional mapping and transmission electron microscopy cross sectional images confirm the nanoscale, spatial modulation corresponding to the nanostructured phase separation in the film. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films (0.8 {micro}m thick) grown using PLD on such phase separated, nanostructured cap layers show reduced field dependence of the critical current density with an ? value of -0.38 (in J{sub c}-H{sup -{alpha}}).

  12. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  13. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  14. Characterization of nanostructured CuO-porous silicon matrixformed on copper coated silicon substrate via electrochemical etching

    International Nuclear Information System (INIS)

    Naddaf, M.; Mrad, O.; Al-Zier, A.

    2015-01-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak (blue) PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.(author)

  15. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    Science.gov (United States)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  16. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    International Nuclear Information System (INIS)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-01-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel–titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO 2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces. (paper)

  17. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    Science.gov (United States)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  18. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  19. High-performance piezoelectric thick film based energy harvesting micro-generators for MEMS

    DEFF Research Database (Denmark)

    Zawada, Tomasz; Hansen, Karsten; Lou-Moeller, Rasmus

    2010-01-01

    and are transformed by the energy harvesting micro-generator into usable electrical signal. The micro-generator comprises a silicon cantilever with integrated InSensor® TF2100 PZT thick film deposited using screen-printing. The output power versus frequency and electrical load has been investigated. Furthermore......, devices based on modified, pressure treated thick film materials have been tested and compared with the commercial InSensor® TF2100 PZT thick films. It has been found that the structures based on the pressure treated materials exhibit superior properties in terms of energy output....

  20. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Glass sponges, as examples of natural biocomposites, inspire investigations aiming at both a better understanding of biomineralization mechanisms and novel developments in the synthesis of nanostructured biomimetic materials. Different representatives of marine glass sponges of the class Hexactinellida (Porifera are remarkable because of their highly flexible basal anchoring spicules. Therefore, investigations of the biochemical compositions and the micro- and nanostructure of the spicules as examples of naturally structured biomaterials are of fundamental scientific relevance. Here we present a detailed study of the structural and biochemical properties of the basal spicules of the marine glass sponge Monorhaphis chuni. The results show unambiguously that in this glass sponge a fibrillar protein of collagenous nature is the template for the silica mineralization in all silica-containing structural layers of the spicule. The structural similarity and homology of collagens derived from M. chuni spicules to other sponge and vertebrate collagens have been confirmed by us using FTIR, amino acid analysis and mass spectrometric sequencing techniques. We suggest that nanomorphology of silica formed on proteinous structures could be determined as an example of biodirected epitaxial nanodistribution of amorphous silica phase on oriented fibrillar collagen templates. Finally, the present work includes a discussion relating to silica-collagen-based hybrid materials for practical applications as biomaterials.

  1. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  2. Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing

    International Nuclear Information System (INIS)

    Azimi, Amin; Shokuhfar, Ali; Zolriasatein, Ashkan

    2014-01-01

    Nanostructured Al–7.8 wt% Zn–2.6 wt% Mg–2 wt% Cu–0.1 wt% Zr alloy was mechanically alloyed (MA) from elemental powders and consolidated by hot press technique. The effect of the milling time and hot pressing process on microstructure was investigated by means of X-ray diffraction measurements (XRD) and analytical and scanning electron microscopy (SEM). Furthermore mechanical properties of samples with different MA time as well as pure aluminum were investigated by microhardness and compression tests. The results show that an Al–Zn–Mg–Cu–Zr homogenous supersaturated solid solution with a crystallite size of 27 nm was obtained after 40 h of milling time. Microstructure refinement and morphological changes of powders from flake to spherical shape were observed by increasing milling time. Phase and microstructural characterization of high density bulk nanostructured samples revealed that increasing milling time up to 40 h leads to formation of MgZn 2 precipitation in the alloy matrix. With increasing milling time, density of the samples and crystalline size decrease. Significant enhancement of hardness and compressive strength is observed in the aluminum alloy by increasing milling time up to 40 h which is much higher than pure aluminum. Crystallite size refinement in pure aluminum samples from micro- to nanoscales resulted in 107% and 100% improvement in compressive strength and hardness, respectively. Furthermore the compressive strength and hardness of Al–Zn–Mg–Cu–Zr alloy nanostructured samples increased to 179% and 172%, respectively, compared to nanostructured pure Al, which was produced as reference specimen. 40 h of MA was the optimum case for preparing such an Al alloy and more milling up to 50 h led to deterioration of mechanical properties

  3. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  4. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  5. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    Directory of Open Access Journals (Sweden)

    Po-Sheng Hu

    2017-12-01

    Full Text Available In this research, the Zn(C5H7O22·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM, and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD, photoluminescence (PL, and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002 and (101 as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  6. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    aligned network designed to maximize device performance. Monolayers of large sized graphene nanosheets function as highly electrically conducting current collectors within a mesoporous network of smaller graphene nanosheets for improved rate capability of the electrical double layer capacitor (EDLC) electrode. This nano-architecture produces an electrode with superior performance for high power EDLC applications: a high frequency capacitative response; a nearly rectangular cyclic voltammogram at a scanning rate of 1000 mv/sec; a rapid current response; small equivalent series resistance (ESR); and fast ionic diffusion. Integration of this nanostructured graphene nanosheet architecture with conductive polymers or metal oxide nanostructurcs was also investigated to produce similar multilayered structures for electrochemical energy storage applications. These inexpensive graphene nanosheets coupled with this facile and robust nanostructuring process make both this new material and method highly advantageous for many potential applications ranging from optoelectronics to high power electrochemical energy storage applications.

  7. Metal nanostructures: from clusters to nanocatalysis and sensors

    Science.gov (United States)

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  8. Saranno Rispettati Come Per il Passato. Italian Colonial Policy towards Libyan Religious Endowments

    OpenAIRE

    GAZZINI, Claudia

    2010-01-01

    This paper offers a survey of Italian colonial policy towards Muslim religious endowments (waqf, pl. awqaf) in Libya from 1911 to 1943. Through an analysis of 41 lawsuits presented to the colonial Court of Appeals and a detailed survey of the laws promulgated to reform the administration of the awqaf in Libya, this study reveals the legal mechanisms adopted by Italian jurists to regulate awqaf matters in their only North African colony. It demonstrates that, unlike other colonial powers in th...

  9. In vitro evaluation of the sinus sagittalis superior thrombosis model in the rat using 3D micro- and nanocomputed tomography

    International Nuclear Information System (INIS)

    Langheinrich, Alexander Claus; Ostendorf, Anne; Kampschulte, Marian; Yeniguen, Mesut; Marhoffer, Simone; Nedelmann, Max; Stolz, Erwin; Gerriets, Tibo; Dierkes, Christian; Gerlach, Susanne von; Bachmann, Georg

    2010-01-01

    Thrombosis of the cerebral veins and sinus are common causes of stroke. Animal models help us to understand the underlying pathophysiology of this condition. Therefore, the purpose of our study was to evaluate a well-established model for sinus sagittalis (SSS) thrombosis using micro- and nanocomputed tomography (CT) imaging. SSS thrombosis was performed in four rats. After contrast perfusion, brains were isolated and scanned using micro-CT at (8 μm) 3 voxel size to generate 3D images of the cerebral vasculature. For more detailed information on vascular perfusion territories, nano-CT imaging was performed to investigate the boundary layer of contrast-enhanced vessels and the occluded veins. The venous and arterial vascular volume fraction and gray scale measurements were obtained in the SSS thrombosis group and compared to controls. The significance of differences in vascular volume fraction and gray scale measurements was tested with analysis of variance. Results were complemented with histology. Micro-CT proved to accurately visualize and differentiate vascular occlusion territories performed in the SSS thrombosis model. Moreover, 3D micro-CT provided quantitative information on arterial and venous vascular volume fraction. Micro-CT imaging enables a total 3D visualization of complications (ventricle rupture) in the SSS thrombosis model. We established gray scale measurements by which focal cerebral ischemia could be radiographically categorized (p < 0.001). Using nano-CT, the interface of contrast-perfused and occluded veins can be visualized. Micro-CT is feasible for analysis and differentiation of perfusion territories in an animal model of focal cerebral ischemia. (orig.)

  10. 76 FR 13240 - National Endowment for the Arts; National Council on the Arts 172nd Meeting

    Science.gov (United States)

    2011-03-10

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES National Endowment for the Arts; National Council on the Arts 172nd Meeting Pursuant to section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92-463), as amended, notice is hereby given that a meeting of the National Council on the Arts...

  11. 76 FR 62094 - National Endowment for the Arts; National Council on the Arts 174th Meeting

    Science.gov (United States)

    2011-10-06

    ... NATIONAL FOUNDATION FOR THE ARTS AND THE HUMANITIES National Endowment for the Arts; National Council on the Arts 174th Meeting Pursuant to section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92-463), as amended, notice is hereby given that a meeting of the National Council on the Arts...

  12. 75 FR 32818 - National Endowment for the Arts; National Council on the Arts 170th Meeting

    Science.gov (United States)

    2010-06-09

    ... NATIONAL FOUNDATION FOR THE ARTS AND THE HUMANITIES National Endowment for the Arts; National Council on the Arts 170th Meeting Pursuant to section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92-463), as amended, notice is hereby given that a meeting of the National Council on the Arts...

  13. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  14. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  15. Laser-assisted nanostructuring of Tungsten in liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Barberoglou, M. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Stolyarov, V.N.; Stolyarov, I.N. [Roentgenprom, 35 Lenin str., Protvino, 1442281 Moscow region (Russian Federation); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology, Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Physics Department, University of Crete, Heraklion 714 09 (Greece); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2012-05-15

    Formation of surface nanostructures on Tungsten target immersed into liquids is experimentally studied under its exposure to femtosecond laser pulses with different durations. In particular, nanotexturing of Tungsten upon its exposure to delayed femtosecond pulses is investigated. Two different types of morphological features are observed, namely periodic ripples and nanostructures. Field emission scanning electron microscopy shows that the density of nanostructures as well as their morphology depends on the time delay between pulses and reaches its maximum at 1 ps delay. Thermionic emission of nano-structured W cathode is investigated. The work function of nanostructured W surface is measured to be 0.3 eV lower than that of the pristine surface.

  16. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    Science.gov (United States)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  17. Reactor and method for production of nanostructures

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  18. Assembly of barcode-like nucleic acid nanostructures.

    Science.gov (United States)

    Wang, Pengfei; Tian, Cheng; Li, Xiang; Mao, Chengde

    2014-10-15

    Barcode-like (BC) nanopatterns from programmed self-assembly of nucleic acids (DNA and RNA) are reported. BC nanostructures are generated by the introduction of open spaces at selected sites to an otherwise closely packed, plain, rectangle nucleic acid nanostructure. This strategy is applied to nanostructures assembled from both origami approach and single stranded tile approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  20. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  1. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  2. Computer-assisted decision aid for the estimation of mineral endowment: uranium in the San Juan Basin, New Mexico, a case study

    International Nuclear Information System (INIS)

    Carrigan, F.J.

    1983-01-01

    This methodology comprises two main sections, each executed on a different computer system. The first section, the Geologic Decision Model, has been computerized as an interactive PLATO program. Using the PLATO system, the geologist describes probabilistically the perceived states of geologic processes and conditions. The decision model analyzes this information and computes a probability distribution for mineral occurrence. The second section, the Endowment Simulation Model (program MASTER), is run on the DEC 10 and Cyber 175 computers. Program MASTER takes the product of the Geologic Decision Model, combines it with other data, and produces a probabilistic estimate of mineral endowment for the region being evaluated. Development and testing of the Arizona Appraisal System were carried out simultaneously over a period of about three years. During this period, four geologists from government and industry were called upon four or five times over a period of about a year for a study of the uranium (U 3 O 8 ) endowment in the San Juan Basin of northwestern New Mexico. The results produced by the system consist, for each geologist, of a probability distribution for tons of U 3 O 8 endowment for (1) each partition of each stratigraphic unit, (2) each stratigraphic unit as a whole, (3) ''formations'' or ''merged units'' (groups of stratigraphic units), and (4) the San Juan Basin as a whole (all stratigraphic units). The system also calculates the average distribution across all geologists for the various merged units and for the basin as a whole. The result for the basin as a whole (in thousands of tons) is: mean 3,855, variance 4,108 x 10 9 , and 95th percentile 6,541

  3. Multi-periodic nanostructures for photon control

    DEFF Research Database (Denmark)

    Kluge, Christian; Adam, Jost; Barié, Nicole

    2014-01-01

    We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers...

  4. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  5. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  6. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    Ulrich, Andrea E.; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-01-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  7. What Do University Endowment Managers Worry About? An Analysis of Alternative Asset Investments and Background Income

    Science.gov (United States)

    Rosen, Harvey S.; Sappington, Alexander J. W.

    2016-01-01

    This paper examines whether university endowment managers think only in terms of the assets they manage or also take into account background income, that is, the other flows of income to the university. Specifically, we test whether the level and variability of a university's background income (e.g., from tuition and government grants) affect its…

  8. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  9. Micro-cantilevers for non-destructive characterization of nanograss uniformity

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Wang, Fei; Olesen, Mikkel Buster

    2011-01-01

    We demonstrate an application of three-way flexible micro four-point probes for indirect uniformity characterization of surface morphology. The mean sheet conductance of a quasi-planar 3D nanostructured surface is highly dependent on the surface morphology, and thus accurate sheet conductance...... measurements may be useful for process uniformity characterization. The method is applied for characterization of TiW coated nanograss uniformity. Three-way flexible L-shaped cantilever electrodes are used to avoid damage to the fragile surface, and a relative standard deviation on measurement repeatability...... of 0.12 % is obtained with a measurement yield of 97%. Finally, variations in measured sheet conductance are correlated to the surface morphology as characterized by electron microscopy....

  10. Magnetic properties of nickel nanostructures grown in AAO membrane

    International Nuclear Information System (INIS)

    Oh, S.-L.; Kim, Y.-R.; Malkinski, L.; Vovk, A.; Whittenburg, S.L.; Kim, E.-M.; Jung, J.-S.

    2007-01-01

    One-dimensional nanostructures can be built by performing chemical or electrochemical reactions in the pores of a suitable host or matrix material. We have developed a method of electrodeposition of nickel nanostructures inside cylindrical pores of the anodic aluminum oxide (AAO) membranes, which provides precise control of the nanostructure height. We were able to fabricate hexagonal arrays of particles in the form of spheres, rods and long wires. Magnetization measurements of these nanostructures as function of field and temperature were carried out using a superconducting quantum-interference device magnetometer. The shape of nickel nanostructures has been investigated by field emission scanning electron microscope. The coercivity of the nickel nanostructures measured with the field perpendicular to the membrane was increasing with increasing aspect ratio of the nanostructures. These experimental values of the coercivity, varying from 200 Oe for the spherical nanodots to 730 Oe for the nanowires, are in a fair agreement with our micromagnetic modeling calculations

  11. Magnetic properties of nickel nanostructures grown in AAO membrane

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S -L [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Kim, Y -R [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Malkinski, L [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Vovk, A [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Whittenburg, S L [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Kim, E -M [Korea Basic Science Institute, Kangnung 210-702 (Korea, Republic of); Jung, J -S [Department of Chemistry, Kangnung National University, Kangnung 210-702 (Korea, Republic of)

    2007-03-15

    One-dimensional nanostructures can be built by performing chemical or electrochemical reactions in the pores of a suitable host or matrix material. We have developed a method of electrodeposition of nickel nanostructures inside cylindrical pores of the anodic aluminum oxide (AAO) membranes, which provides precise control of the nanostructure height. We were able to fabricate hexagonal arrays of particles in the form of spheres, rods and long wires. Magnetization measurements of these nanostructures as function of field and temperature were carried out using a superconducting quantum-interference device magnetometer. The shape of nickel nanostructures has been investigated by field emission scanning electron microscope. The coercivity of the nickel nanostructures measured with the field perpendicular to the membrane was increasing with increasing aspect ratio of the nanostructures. These experimental values of the coercivity, varying from 200 Oe for the spherical nanodots to 730 Oe for the nanowires, are in a fair agreement with our micromagnetic modeling calculations.

  12. Femtosecond laser three-dimensional micro- and nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Koji, E-mail: ksugioka@riken.jp [RIKEN Center for Advanced Photonics, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Cheng, Ya, E-mail: ya.cheng@siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  13. A Crucial Nexus: Literacy, Endowment and Public Consultation in Energy Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Steven

    2010-09-15

    Private and public organizations around the world are grappling with several challenging energy issues. In Canada, a recent poll showed that, despite the country's status as an energy exporter, citizens have mixed views on their energy literacy and influence over energy-related decision making. The energy endowment of Canada's varied regions partially explains these findings, but the overall picture is more complex. This research speaks to broader themes in the global energy dialogue such as the contributions of literacy to energy development, the role of public consultation in energy decision making and the value of money in motivating energy-efficiency behaviour.

  14. Development of Cr3C2-25(Ni20Cr) nanostructured coatings

    International Nuclear Information System (INIS)

    Cunha, Cecilio Alvares da

    2012-01-01

    : Vickers micro-hardness, the Young Modulus and the fracture toughness. The properties of the coatings prepared with the nanostructured and the 'as received' powders were compared. The hardness and Young Modulus of the coatings prepared with nanostructured powders were approximately 26% higher than that of the coatings prepared with 'as received' powders. The fracture toughness of the nanostructured coating was 36% higher. The erosion-oxidation resistance of the coating produced with the nanostructured powder was around 52% higher than that of the coating prepared with the 'as received' powders at 800 deg C. The E-O wastage of both types of coatings increased with temperature beyond 450 deg C. (author)

  15. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey

    2008-01-01

    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es

  16. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  17. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  18. Enhanced sensitivity in non-enzymatic glucose detection by improved growth kinetics of Ni-based nanostructures

    Science.gov (United States)

    Urso, M.; Pellegrino, G.; Strano, V.; Bruno, E.; Priolo, F.; Mirabella, S.

    2018-04-01

    Ni-based nanostructures are attractive catalytic materials for many electrochemical applications, among which are non-enzymatic sensing, charge storage, and water splitting. In this work, we clarify the synthesis kinetics of Ni(OH)2/NiOOH nanowalls grown by chemical bath deposition at room temperature and at 50 °C. We applied the results to non-enzymatic glucose sensing, reaching a highest sensitivity of 31 mA cm-2mM-1. Using scanning electron microscopy, x-ray diffraction analysis and Rutherford backscattering spectrometry we found that the growth occurs through two regimes: first, a quick random growth leading to disordered sheets of Ni oxy-hydroxide, followed by a slower growth of well-aligned sheets of Ni hydroxide. A high growth temperature (50 °C), leading mainly to well-aligned sheets, offers superior electrochemical properties in terms of charge storage, charge carrier transport and catalytic action, as confirmed by cyclic voltammetry and electrochemical impedance spectroscopy analyses. The reported results on the optimization and application of low-cost synthesis of these Ni-based nanostructures have a large potential for application in catalysis, (bio)sensing, and supercapacitors areas.

  19. Persistent left superior vena cava with absent right superior vena cava: image findings

    International Nuclear Information System (INIS)

    Araujo Junior, Cyrillo Rodrigues de; Carvalho, Tarcisio Nunes; Fraguas Filho, Sergio Roberto; Costa, Marlos Augusto Bitencourt; Jacob, Beatriz Mahmud; Machado, Marcio Martins; Teixeira, Kim-Ir-Sen Santos; Ximenes, Carlos Alberto

    2003-01-01

    Persistent left superior vena cava absent right superior vena cava is a rare anomaly, with less than 150 cases reported in the literature. Congenitally persistent left superior vena cava is the most common variant of systemic venous return to the heart, resulting embryologically from failure of the left anterior cardinal vein to become obliterated. Its incidence varies from 0.3% in patients with otherwise normal heart to 4.3% in patients with congenital heart disease. In the majority of the patients, a right superior vena cava is present as well, but rarely the right anterior cardinal vein degenerates resulting in the absence of the normal right superior vena cava. The blood from the right side is carried by the persistent left superior vena cava to the right atrium through the coronary sinus. We report the case of a patient with a persistent left superior vena cava and absence of right superior vena cava identified by chance during a chest radiograph and computed tomography examination for investigation of chronic pulmonary obstructive disease. The patient had no congenital heart disease and the blood from the right side was drained by the persistent left superior vena cava into the right atrium through the coronary sinus. (author)

  20. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct.

    Science.gov (United States)

    Arkudas, Andreas; Beier, Justus Patrick; Pryymachuk, Galyna; Hoereth, Tobias; Bleiziffer, Oliver; Polykandriotis, Elias; Hess, Andreas; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich

    2010-12-01

    We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹⁶⁵) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹⁶⁵ and bFGF. In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.