WorldWideScience

Sample records for superior memory performance

  1. White Matter Microstructure in Superior Longitudinal Fasciculus Associated with Spatial Working Memory Performance in Children

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Madsen, Kathrine Skak; Baaré, William F C

    2011-01-01

    memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We...

  2. Mnemonic Training Reshapes Brain Networks to Support Superior Memory

    NARCIS (Netherlands)

    Dresler, M.; Shirer, W.R.; Konrad, B.N.; Muller, N.C.J.; Wagner, I.; Fernandez, G.S.E.; Czisch, M.; Greicius, M.D.

    2017-01-01

    Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI

  3. False memories in highly superior autobiographical memory individuals.

    Science.gov (United States)

    Patihis, Lawrence; Frenda, Steven J; LePort, Aurora K R; Petersen, Nicole; Nichols, Rebecca M; Stark, Craig E L; McGaugh, James L; Loftus, Elizabeth F

    2013-12-24

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants' and age- and sex-matched controls' susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed higher overall false memory compared with that of controls for details in a photographic slideshow. HSAM participants were equally as likely as controls to mistakenly report they had seen nonexistent footage of a plane crash. Finding false memories in a superior-memory group suggests that malleable reconstructive mechanisms may be fundamental to episodic remembering. Paradoxically, HSAM individuals may retrieve abundant and accurate autobiographical memories using fallible reconstructive processes.

  4. Mnemonic Training Reshapes Brain Networks to Support Superior Memory.

    Science.gov (United States)

    Dresler, Martin; Shirer, William R; Konrad, Boris N; Müller, Nils C J; Wagner, Isabella C; Fernández, Guillén; Czisch, Michael; Greicius, Michael D

    2017-03-08

    Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that, in a group of naive controls, functional connectivity changes induced by 6 weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain's functional network organization to enable superior memory performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Memory skills mediating superior memory in a world-class memorist.

    Science.gov (United States)

    Ericsson, K Anders; Cheng, Xiaojun; Pan, Yafeng; Ku, Yixuan; Ge, Yi; Hu, Yi

    2017-10-01

    Laboratory studies have investigated how individuals with normal memory spans attained digit spans over 80 digits after hundreds of hours of practice. Experimental analyses of their memory skills suggested that their attained memory spans were constrained by the encoding time, for the time needed will increase if the length of digit sequences to be memorised becomes longer. These constraints seemed to be violated by a world-class memorist, Feng Wang (FW), who won the World Memory Championship by recalling 300 digits presented at 1 digit/s. In several studies we examined FW's memory skills underlying his exceptional performance. First FW reproduced his superior memory span of 200 digits under laboratory condition, and we obtained his retrospective reports describing his encoding/retrieval processes (Experiment 1). Further experiments used self-paced memorisation to identify temporal characteristics of encoding of digits in 4-digit clusters (Experiment 2), and explored memory encoding at presentation speeds much faster than 1 digit/s (Experiment 3). FW's superiority over previous digit span experts is explained by his acquisition of well-known mnemonic techniques and his training that focused on rapid memorisation. His memory performance supports the feasibility of acquiring memory skills for improved working memory based on storage in long-term memory.

  6. Do Children with Visual Impairments Demonstrate Superior Short-term Memory, Memory Strategies, and Metamemory?

    Science.gov (United States)

    Wyver, Shirley R.; Markham, Roslyn

    1998-01-01

    This study compared the memory processes underpinning the performance of 19 children with visual impairments and 19 sighted children on the Digit Span subtest of the Wechsler Intelligence Scales. No support was found for claims of the superior performance of children with visual impairments on the subtest nor of a greater awareness of memory…

  7. Illusory superiority in self-reported memory of older adults

    NARCIS (Netherlands)

    Schmidt, IW; Berg, IJ; Deelman, BG

    1999-01-01

    Older adults (N = 117, 46-89 years) compared their memory to that of age peers, 25-year-old young adults, and their own performance at the age of 25. In line with social comparison theory most participants were very positive about their memory when age peers and young adults were the points of refer

  8. Illusory superiority in self-reported memory of older adults

    NARCIS (Netherlands)

    Schmidt, IW; Berg, IJ; Deelman, BG

    1999-01-01

    Older adults (N = 117, 46-89 years) compared their memory to that of age peers, 25-year-old young adults, and their own performance at the age of 25. In line with social comparison theory most participants were very positive about their memory when age peers and young adults were the points of

  9. Development of a superior frontal-intraparietal network for visuo-spatial working memory.

    Science.gov (United States)

    Klingberg, Torkel

    2006-01-01

    Working memory capacity increases throughout childhood and adolescence, which is important for the development of a wide range of cognitive abilities, including complex reasoning. The spatial-span task, in which subjects retain information about the order and position of a number of objects, is a sensitive task to measure development of spatial working memory. This review considers results from previous neuroimaging studies investigating the neural correlates of this development. Older children and adolescents, with higher capacity, have been found to have higher brain activity in the intraparietal cortex and in the posterior part of the superior frontal sulcus, during the performance of working memory tasks. The structural maturation of white matter has been investigated by diffusion tensor magnetic resonance imaging (DTI). This has revealed several regions in the frontal lobes in which white matter maturation is correlated with the development of working memory. Among these is a superior fronto-parietal white matter region, located close to the grey matter regions that are implicated in the development of working memory. Furthermore, the degree of white matter maturation is positively correlated with the degree of cortical activation in the frontal and parietal regions. This suggests that during childhood and adolescence, there is development of networks related to specific cognitive functions, such as visuo-spatial working memory. These networks not only consist of cortical areas but also the white matter tracts connecting them. For visuo-spatial working memory, this network could consist of the superior frontal and intraparietal cortex.

  10. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  11. Superior digit memory of abacus experts: an event-related functional MRI study.

    Science.gov (United States)

    Tanaka, Satoshi; Michimata, Chikashi; Kaminaga, Tatsuro; Honda, Manabu; Sadato, Norihiro

    2002-12-01

    Abacus experts exhibit superior short-term memory for digits, but the underlying neurophysiological mechanism remains unknown. Using event-related fMRI, we examined the brain activity of abacus experts and non-experts during the memory retention period of a delayed match-to-sample task using digits as stimuli. In controls, activity was greater in cortical areas related to verbal working memory, including Broca's area. In contrast, in experts, activity was greater in cortical areas related to visuo-spatial working memory, including the bilateral superior frontal sulcus and superior parietal lobule. This provides neurophysiological evidence that abacus experts utilize a visuo-spatial representation for digit memory.

  12. Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions.

    Directory of Open Access Journals (Sweden)

    Stephanie Jacobs

    Full Text Available The opening-duration of the NMDA receptors implements Hebb's synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the "synaptic coincidence-detection time-duration" hypothesis vs. "GluN2B intracellular signaling domain" hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the "GluN2B intracellular signaling domain" hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10-100 Hz range while requiring intact long-term depression capacity at the 1-5 Hz range.

  13. Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions.

    Science.gov (United States)

    Jacobs, Stephanie; Cui, Zhenzhong; Feng, Ruiben; Wang, Huimin; Wang, Deheng; Tsien, Joe Z

    2014-01-01

    The opening-duration of the NMDA receptors implements Hebb's synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the "synaptic coincidence-detection time-duration" hypothesis vs. "GluN2B intracellular signaling domain" hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the "GluN2B intracellular signaling domain" hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10-100 Hz range while requiring intact long-term depression capacity at the 1-5 Hz range.

  14. The Business Value of Superior Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Scheihing, Paul; Evans, Tracy; Glatt, Sandy; Meffert, William

    2015-08-04

    Industrial facilities participating in the U.S. Department of Energy’s (US DOE) Superior Energy Performance (SEP) program are finding that it provides them with significant business value. This value starts with the implementation of ISO 50001-Energy management system standard, which provides an internationally-relevant framework for integration of energy management into an organization’s business processes. The resulting structure emphasizes effective use of available data and supports continual improvement of energy performance. International relevance is particularly important for companies with a global presence or trading interests, providing them with access to supporting ISO standards and a growing body of certified companies representing the collective knowledge of communities of practice. This paper examines the business value of SEP, a voluntary program that builds on ISO 50001, inviting industry to demonstrate an even greater commitment through third-party verification of energy performance improvement to a specified level of achievement. Information from 28 facilities that have already achieved SEP certification will illustrate key findings concerning both the value and the challenges from SEP/ISO 50001 implementation. These include the facilities’ experience with implementation, internal and external value of third-party verification of energy performance improvement; attractive payback periods and the importance of SEP tools and guidance. US DOE is working to bring the program to scale, including the Enterprise-Wide Accelerator (SEP for multiple facilities in a company), the Ratepayer-Funded Program Accelerator (supporting tools for utilities and program administrators to include SEP in their program offerings), and expansion of the program to other sectors and industry supply chains.

  15. Motivation and episodic memory performance

    OpenAIRE

    Ngaosuvan, Leonard

    2004-01-01

    In everyday life, motivation and learning are connected like music and dancing. Many educators realize this and work hard to improve their students' motivation. A motivated student may repeat and self-rehearse the content of a chapter more often, which leads to better learning. However, from a cognitive psychology point of view, it is still uncertain if motivation without differences in repetition or attention, affects episodic memory performance. That is, would a motivated student perform be...

  16. Comparing Music Literacy Performance with Memory Functioning.

    Science.gov (United States)

    Danley, William E., Jr.; Tanner, Don R.

    1982-01-01

    Describes the development of a memory assessment instrument, the Perceptual Memory Test (PMT), which allows the nonverbal evaluation of various memory modalities. Compares the PMT with the Iowa Test of Musical Literacy and concludes that memory in a general sense might be important in performance on a musical assessment device. (FL)

  17. Relations between subjective evaluations of memory and objective memory performance

    NARCIS (Netherlands)

    Schmidt, IW; Berg, IJ; Deelman, BG

    2001-01-01

    Several explanations for the weak relations between subjective memory judgments and objective memory performance were investigated in two groups of normal older adults. Group 1 sampled a general population (mean age 61.6 yr., range 46-891, while Group 2 sampled subjects who were on a waiting Est for

  18. Sleep enhances false memories depending on general memory performance.

    Science.gov (United States)

    Diekelmann, Susanne; Born, Jan; Wagner, Ullrich

    2010-04-02

    Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded.

  19. Mechanisms Supporting Superior Source Memory for Familiar Items: A Multi-Voxel Pattern Analysis Study

    Science.gov (United States)

    Poppenk, Jordan; Norman, Kenneth A.

    2012-01-01

    Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting…

  20. Metacognitive inferences from other people's memory performance.

    Science.gov (United States)

    Smith, Robert W; Schwarz, Norbert

    2016-09-01

    Three studies show that people draw metacognitive inferences about events from how well others remember the event. Given that memory fades over time, detailed accounts of distant events suggest that the event must have been particularly memorable, for example, because it was extreme. Accordingly, participants inferred that a physical assault (Study 1) or a poor restaurant experience (Studies 2-3) were more extreme when they were well remembered one year rather than one week later. These inferences influence behavioral intentions. For example, participants recommended a more severe punishment for a well-remembered distant rather than recent assault (Study 1). These metacognitive inferences are eliminated when people attribute the reporter's good memory to an irrelevant cause (e.g., photographic memory), thus undermining the informational value of memory performance (Study 3). These studies illuminate how people use lay theories of memory to learn from others' memory performance about characteristics of the world. (PsycINFO Database Record

  1. Dissociation and memory fragmentation: Experimental effects on meta-memory but not on actual memory performance.

    NARCIS (Netherlands)

    van den Hout, M.; Kindt, M.

    2003-01-01

    The relation between state dissociation and fragmentary memory was investigated by assessing both actual memory performance and meta-memory. From a sample of 330 normal subjects, 2 subsamples were selected on basis of trait dissociation, as measured by the Dissociative Experience Scale. 20 subjects

  2. Dissociation and memory fragmentation: Experimental effects on meta-memory but not on actual memory performance.

    NARCIS (Netherlands)

    van den Hout, M.; Kindt, M.

    2003-01-01

    The relation between state dissociation and fragmentary memory was investigated by assessing both actual memory performance and meta-memory. From a sample of 330 normal subjects, 2 subsamples were selected on basis of trait dissociation, as measured by the Dissociative Experience Scale. 20 subjects

  3. Performing an allreduce operation using shared memory

    Science.gov (United States)

    Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  4. Infants' Memory for Musical Performances

    Science.gov (United States)

    Volkova, Anna; Trehub, Sandra E.; Schellenberg, E. Glenn

    2006-01-01

    We evaluated 6- and 7-month-olds' preference and memory for expressive recordings of sung lullabies. In Experiment 1, both age groups preferred lower-pitched to higher-pitched renditions of unfamiliar lullabies. In Experiment 2, infants were tested after 2 weeks of daily exposure to a lullaby at one pitch level. Seven-month-olds listened…

  5. Memory Performance among Children with ADHD

    Directory of Open Access Journals (Sweden)

    Afsaneh Zarghi

    2012-09-01

    Full Text Available Introduction: The present post-eventual research study was conducted with the purpose of comparing the memory performance between two distinct groups of 50 healthy children and 50 attention deficit hyperactivity disorder (ADHD children (25 girls and 25 boys in Tehran with an age range of 10-12.Methods.The whole students were selected through simple random sampling method and were assessed in children's medical center, the Clinic of Roozbeh Hospital, and Tehran's Andishe primary school (both girls' and boys' branches. The applied tools for data gathering were the Benton test and Wechsler memory sub-test (form A.Results:The results showed a significant difference between Benton test scores and Wechsler memory sub-test scores (i.e. personal and general information, orientation, mind control, logical memory, repeating numbers straightly or reversely, learning and memory among healthy children and those with ADHD.Discussion:memory performance in children with ADHD was weaker than healthy children. In general, with regard to the memory deficit and attention disorder, these patients require both memory and attention rehabilitation for a better quality of l

  6. Balanced Allocation: Memory Performance Tradeoffs

    CERN Document Server

    Benjamini, Itai

    2009-01-01

    Suppose that we sequentially put $n$ balls into $n$ bins. If we put each ball into a random bin then the heaviest bin will contain $\\log n /\\log\\log n$ balls (w.h.p.). However, Azar, Broder, Karlin and Upfal showed that if for each ball we choose two bins at random and put it in the least loaded bin among the two then the heaviest bin will contain only $\\log\\log n$ balls (w.h.p). How much memory do we need to implement this scheme? We need roughly $\\log\\log\\log n$ bits per bin, and $n\\log\\log\\log n$ bits in total. Let us assume now that we have limited amount of memory. For each ball, we are given two random bins and we have to put the ball into one of them. Our goal is to minimize the load of the heaviest bin. We prove that if we have $n^{1-\\delta}$ bits then the heaviest bin will contain at least $\\Omega(\\delta \\log n/\\log\\log n)$ balls. The bound is tight in the communication complexity model.

  7. Biological Motion Task Performance Predicts Superior Temporal Sulcus Activity

    Science.gov (United States)

    Herrington, John D.; Nymberg, Charlotte; Schultz, Robert T.

    2011-01-01

    Numerous studies implicate superior temporal sulcus (STS) in the perception of human movement. More recent theories hold that STS is also involved in the "understanding" of human movement. However, almost no studies to date have associated STS function with observable variability in action understanding. The present study directly associated STS…

  8. Visuospatial working memory in very preterm and term born children--impact of age and performance.

    Science.gov (United States)

    Mürner-Lavanchy, I; Ritter, B C; Spencer-Smith, M M; Perrig, W J; Schroth, G; Steinlin, M; Everts, R

    2014-07-01

    Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7-12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults

    Science.gov (United States)

    Nissim, Nicole R.; O’Shea, Andrew M.; Bryant, Vaughn; Porges, Eric C.; Cohen, Ronald; Woods, Adam J.

    2017-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance (N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p brain structural integrity) in right frontal regions may underlie age-related decline of working memory function. PMID:28101053

  10. Common Kibra alleles are associated with human memory performance.

    Science.gov (United States)

    Papassotiropoulos, Andreas; Stephan, Dietrich A; Huentelman, Matthew J; Hoerndli, Frederic J; Craig, David W; Pearson, John V; Huynh, Kim-Dung; Brunner, Fabienne; Corneveaux, Jason; Osborne, David; Wollmer, M Axel; Aerni, Amanda; Coluccia, Daniel; Hänggi, Jürgen; Mondadori, Christian R A; Buchmann, Andreas; Reiman, Eric M; Caselli, Richard J; Henke, Katharina; de Quervain, Dominique J-F

    2006-10-20

    Human memory is a polygenic trait. We performed a genome-wide screen to identify memory-related gene variants. A genomic locus encoding the brain protein KIBRA was significantly associated with memory performance in three independent, cognitively normal cohorts from Switzerland and the United States. Gene expression studies showed that KIBRA was expressed in memory-related brain structures. Functional magnetic resonance imaging detected KIBRA allele-dependent differences in hippocampal activations during memory retrieval. Evidence from these experiments suggests a role for KIBRA in human memory.

  11. BOLD frequency power indexes working memory performance

    Directory of Open Access Journals (Sweden)

    Joshua Henk Balsters

    2013-05-01

    Full Text Available Electrophysiology studies routinely investigate the relationship between neural oscillations and task performance. However, the sluggish nature of the BOLD response means that few researchers have investigated the spectral properties of the BOLD signal in a similar manner. For the first time we have applied group ICA to fMRI data collected during a standard working memory task (delayed match-to-sample and using a multivariate analysis, we investigate the relationship between working memory performance (accuracy and reaction time and BOLD spectral power within functional networks. Our results indicate that BOLD spectral power within specific networks (visual, temporal-parietal, posterior default-mode network, salience network, basal ganglia correlated with task accuracy. Multivariate analyses show that the relationship between task accuracy and BOLD spectral power is stronger than the relationship between BOLD spectral power and other variables (age, gender, head movement, and neuropsychological measures. A traditional General Linear Model (GLM analysis found no significant group differences, or regions that covaried in signal intensity with task accuracy, suggesting that BOLD spectral power holds unique information that is lost in a standard GLM approach. We suggest that the combination of ICA and BOLD spectral power is a useful novel index of cognitive performance that may be more sensitive to brain-behaviour relationships than traditional approaches.

  12. Advanced Modeling of Teaming Data to Enable Superior Team Performance

    Science.gov (United States)

    2014-11-04

    permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu. CMMI ® is registered in the U.S. Patent and Trademark...Hill AFB) has had a long-term initiative to improve performance based on CMMI  and TSP. Work Progress • Multi-year effort with SEI support and...internal resource commitments • Training in the basic SEI technologies plus extensive training in six-sigma methods . Plan: sustain and improve Goal

  13. EMDR: eye movements superior to beeps in taxing working memory and reducing vividness of recollections.

    Science.gov (United States)

    van den Hout, Marcel A; Engelhard, Iris M; Rijkeboer, Marleen M; Koekebakker, Jutte; Hornsveld, Hellen; Leer, Arne; Toffolo, Marieke B J; Akse, Nienke

    2011-02-01

    Posttraumatic stress disorder (PTSD) is effectively treated with eye movement desensitization and reprocessing (EMDR) with patients making eye movements during recall of traumatic memories. Many therapists have replaced eye movements with bilateral beeps, but there are no data on the effects of beeps. Experimental studies suggest that eye movements may be beneficial because they tax working memory, especially the central executive component, but the presence/degree of taxation has not been assessed directly. Using discrimination Reaction Time (RT) tasks, we found that eye movements slow down RTs to auditive cues (experiment I), but binaural beeps do not slow down RTs to visual cues (experiment II). In an arguably more sensitive "Random Interval Repetition" task using tactile stimulation, working memory taxation of beeps and eye movements were directly compared. RTs slowed down during beeps, but the effects were much stronger for eye movements (experiment III). The same pattern was observed in a memory experiment with healthy volunteers (experiment IV): vividness of negative memories was reduced after both beeps and eye movements, but effects were larger for eye movements. Findings support a working memory account of EMDR and suggest that effects of beeps on negative memories are inferior to those of eye movements.

  14. Shape memory alloy-based moment connections with superior self-centering properties

    Science.gov (United States)

    Farmani, Mohammad Amin; Ghassemieh, Mehdi

    2016-07-01

    Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam-column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.

  15. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    Science.gov (United States)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  16. Contributions of Language and Memory Demands to Verbal Memory Performance in Language-Learning Disabilities

    Science.gov (United States)

    Isaki, Emi; Spaulding, Tammie J.; Plante, Elena

    2008-01-01

    The purpose of this study is to investigate the performance of adults with language-based learning disorders (L/LD) and normal language controls on verbal short-term and verbal working memory tasks. Eighteen adults with L/LD and 18 normal language controls were compared on verbal short-term memory and verbal working memory tasks under low,…

  17. Experts' memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis.

    Science.gov (United States)

    Sala, Giovanni; Gobet, Fernand

    2017-02-01

    Experts' remarkable ability to recall meaningful domain-specific material is a classic result in cognitive psychology. Influential explanations for this ability have focused on the acquisition of high-level structures (e.g., schemata) or experts' capability to process information holistically. However, research on chess players suggests that experts maintain some reliable memory advantage over novices when random stimuli (e.g., shuffled chess positions) are presented. This skill effect cannot be explained by theories emphasizing high-level memory structures or holistic processing of stimuli, because random material does not contain large structures nor wholes. By contrast, theories hypothesizing the presence of small memory structures-such as chunks-predict this outcome, because some chunks still occur by chance in the stimuli, even after randomization. The current meta-analysis assessed the correlation between level of expertise and recall of random material in diverse domains. The overall correlation was moderate but statistically significant ([Formula: see text]), and the effect was observed in nearly every study. This outcome suggests that experts partly base their superiority on a vaster amount of small memory structures, in addition to high-level structures or holistic processing.

  18. Cross-frequency power correlations reveal the right superior temporal gyrus as a hub region during working memory maintenance.

    Science.gov (United States)

    Park, Hyojin; Kang, Eunjoo; Kang, Hyejin; Kim, June Sic; Jensen, Ole; Chung, Chun Kee; Lee, Dong Soo

    2011-01-01

    In the present study, we characterized within- and cross-frequency power correlations from magnetoencephalography (MEG) data in order to understand how different brain regions cooperate as a network to maintain working memory representations with several features. The working memory items were composed of spatially arranged dots supposedly requiring both the dorsal and the ventral stream to be engaged during maintenance. Using a beamforming technique, we localized memory-dependent sources in the alpha, beta, and gamma bands. After the single-trial power values were extracted from these frequency bands with respect to each source, we calculated the correlations within- and cross-frequency bands. The following general picture emerged: gamma power in right superior temporal gyrus (STG) during working memory maintenance was correlated with numerous other sources in the alpha band in prefrontal, parietal, and posterior regions. In addition, the power correlations within the alpha band showed correlations across posterior-parietal-frontal regions. From these findings, we suggest that the STG dominated by gamma activity serves as a hub region for the network nodes responsible for the retention of the stimulus used in this study, which is likely to depend on both the "where-" and the "what-" visual system simultaneously. The present study demonstrates how oscillatory dynamics reflecting the interaction between cortical areas can be investigated by means of cross-frequency power correlations in source space. This methodological framework could be of general utility when studying functional network properties of the working brain.

  19. Flash memories economic principles of performance, cost and reliability optimization

    CERN Document Server

    Richter, Detlev

    2014-01-01

    The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined.   Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based pr...

  20. Metamemory and memory test performance in stroke patients

    NARCIS (Netherlands)

    Aben, L.; Kessel, M.A. van; Duivenvoorden, H.J.; Busschbach, J.J. van; Eling, P.A.T.M.; Bogert, M.A.; Ribbers, G.M.

    2009-01-01

    Memory Self-Efficacy (MSE) has been shown to be related to memory performance and social participation in a healthy elderly population. This relation is unclear in stroke. As about 30% of all stroke survivors report memory complaints, there is an urgent need for effective treatment strategies. Befor

  1. Memory Benchmarks for SMP-Based High Performance Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, A B; de Supinski, B; Mueller, F; Mckee, S A

    2001-11-20

    As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even more complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.

  2. Superior intraparietal sulcus controls the variability of visual working memory precision

    NARCIS (Netherlands)

    Galeano Weber, E.M.; Peters, B.; Hahn, T.; Bledowski, C.; Fiebach, C.J.

    2016-01-01

    Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision o

  3. Next High Performance and Low Power Flash Memory Package Structure

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Lee

    2007-01-01

    In general, SAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the SAND flash memory is the slow access time for random read operations. Therefore, we proposed the new SAND flash memory package for overcoming this major drawback. We present a high performance and low power SAND flash memory system with a dual cache memory. The proposed SAND flash package consists of two parts, i.e., an SAND flash memory module, and a dual cache module. The new SAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventional NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.

  4. Intangible Assets and Superior and Sustained Performance of Innovative Brazilian Firms

    Directory of Open Access Journals (Sweden)

    Márcia Martins Mendes De Luca

    2014-10-01

    Full Text Available According to the Resource-Based View, the nature of the resources, competences and knowledge accumulated by firms are the major causes of variation in business performance. In view of the importance attributed to intangible assets, the purpose of the present study was to investigate whether innovative firms with superior and sustained performance and firms without superior and sustained performance differ with regard to investments in intangible assets. The sample consisted of 137 firms listed on the Brazilian stock exchange from 2007 to 2010 and belonging to innovative sectors according to the Brazilian Innovation Index. Only 51 firms with profitability above the sector average during the entire study period (four years met the criterion of superior and sustained performance. Thus, using return on assets as a proxy for performance, investments in intangibles were found to be greater in firms without superior and sustained performance, particularly with regard to the categories intellectual property assets (the predominant category and infrastructure assets. Based on the lack of evidence for a significant correlation between corporate performance and investment in intangible assets, our initial hypothesis that a positive relation exists between the composition of investments in intangible assets and the performance of innovative firms could not be confirmed.

  5. Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance.

    Science.gov (United States)

    de Chastelaine, Marianne; Mattson, Julia T; Wang, Tracy H; Donley, Brian E; Rugg, Michael D

    2015-07-01

    The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n=136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. This article is part of a Special Issue entitled SI: Memory.

  6. Competitively Distinct Operations as a Key for Superior and Sustainable Business Performance: An Example from Walmart

    Directory of Open Access Journals (Sweden)

    Binod Timilsina

    2015-09-01

    Full Text Available Existing research on the resource-based view (RBV has provided limited evidence on how firms achieve superior and sustainable business performance; this failure is because current literature de-emphasizes the importance of operations. This paper argues that to gain and sustain superior business performance, a firm’s sustainable competitive advantage is not enough, its operations also needs to be competitively distinct. Therefore, through unifying the necessary conditions of superior and sustainable business performance the paper presents a better understanding of the RBV. The success story of Walmart, from existing literature, is considered as an example to support the proposed framework. The paper concludes that the cost of operations, opportunity cost, cost of resources and possible output are the crucial factors in resource choice and operations decision to secure competitively distinct operations. Finally, theoretical and managerial implications, research limitations and future research possibilities are discussed.

  7. Using DMA for copying performance counter data to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W

    2013-12-31

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance data.

  8. Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults.

    Science.gov (United States)

    Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N

    2016-03-31

    Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific

  9. Brain Connectivity Related to Working Memory Performance

    National Research Council Canada - National Science Library

    Hampson, Michelle; Driesen, Naomi R; Skudlarski, Pawel; Gore, John C; Constable, R. Todd

    2006-01-01

    .... This study investigated the functional connectivity between the PCC and MFG/vACC during a working memory task and at rest by examining temporal correlations in magnetic resonance signal levels between the regions...

  10. Distributed trace using central performance counter memory

    Science.gov (United States)

    Satterfield, David L.; Sexton, James C.

    2013-01-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  11. Static Memory Deduplication for Performance Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Gangyong Jia

    2017-04-01

    Full Text Available In a cloud computing environment, the number of virtual machines (VMs on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  12. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    Science.gov (United States)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  13. Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation

    Science.gov (United States)

    Goodman, Robert J.; Ryan, Richard M.; Anālayo, Bhikkhu

    2016-01-01

    Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training—episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance. PMID:27115491

  14. Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation.

    Directory of Open Access Journals (Sweden)

    Kirk Warren Brown

    Full Text Available Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143, a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K paradigm. In Study 2 (N = 93, very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57 extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training-episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance.

  15. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  16. Improving working memory performance in brain-injured patients using hypnotic suggestion

    DEFF Research Database (Denmark)

    Lindeløv, Jonas Kristoffer; Overgaard, Rikke; Overgaard, Morten

    2017-01-01

    be effectively restored by suggesting to hypnotized patients that they have regained their pre-injury level of working memory functioning. Following four 1-h sessions, 27 patients had a medium-sized improvement relative to 22 active controls (Bayes factors of 342 and 37.5 on the two aggregate outcome measures...... group was crossed over to the working memory suggestion and showed superior improvement. By the end of the study, both groups reached a performance level at or above the healthy population mean with standardized mean differences between 1.55 and 2.03 relative to the passive control group. We conclude...... that, if framed correctly, hypnotic suggestion can effectively improve working memory following acquired brain injury. The speed and consistency with which this improvement occurred, indicate that there may be a residual capacity for normal information processing in the injured brain....

  17. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  18. Music-related reward responses predict episodic memory performance.

    Science.gov (United States)

    Ferreri, Laura; Rodriguez-Fornells, Antoni

    2017-09-22

    Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.

  19. Comparing Performance on Implicit Memory Tests

    Science.gov (United States)

    1994-08-31

    or dissertation in the psychology of learning and memory" for 1994. McDermott received the award at the summer meetings of the American Psychological...1993). Remembering, knowing and reconstructing the past. In D. L. Medin (Ed.), The psychology of learning and motivation: Advances in research and

  20. Virtual Prototyping and Performance Analysis of Two Memory Architectures

    Directory of Open Access Journals (Sweden)

    Huda S. Muhammad

    2009-01-01

    Full Text Available The gap between CPU and memory speed has always been a critical concern that motivated researchers to study and analyze the performance of memory hierarchical architectures. In the early stages of the design cycle, performance evaluation methodologies can be used to leverage exploration at the architectural level and assist in making early design tradeoffs. In this paper, we use simulation platforms developed using the VisualSim tool to compare the performance of two memory architectures, namely, the Direct Connect architecture of the Opteron, and the Shared Bus of the Xeon multicore processors. Key variations exist between the two memory architectures and both design approaches provide rich platforms that call for the early use of virtual system prototyping and simulation techniques to assess performance at an early stage in the design cycle.

  1. Memory concerns, memory performance and risk of dementia in patients with mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Steffen Wolfsgruber

    Full Text Available Concerns about worsening memory ("memory concerns"; MC and impairment in memory performance are both predictors of Alzheimer's dementia (AD. The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI.We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n = 305 vs. absence (n = 112 of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models.Risk of incident AD was increased by MC (HR = 2.55, 95%CI: 1.33-4.89, lower memory performance (HR = 0.63, 95%CI: 0.56-0.71 and ApoE4-genotype (HR = 1.89, 95%CI: 1.18-3.02. An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment.Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI.

  2. Motor threshold predicts working memory performance in healthy humans.

    Science.gov (United States)

    Schicktanz, Nathalie; Schwegler, Kyrill; Fastenrath, Matthias; Spalek, Klara; Milnik, Annette; Papassotiropoulos, Andreas; Nyffeler, Thomas; de Quervain, Dominique J-F

    2014-01-01

    Cognitive functions, such as working memory, depend on neuronal excitability in a distributed network of cortical regions. It is not known, however, if interindividual differences in cortical excitability are related to differences in working memory performance. In the present transcranial magnetic stimulation study, which included 188 healthy young subjects, we show that participants with lower resting motor threshold, which is related to higher corticospinal excitability, had increased 2-back working memory performance. The findings may help to better understand the link between cortical excitability and cognitive functions and may also have important clinical implications with regard to conditions of altered cortical excitability.

  3. MODA A Framework for Memory Centric Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Sunil; Su, Chun-Yi; White, Amanda M.; Manzano Franco, Joseph B.; Marquez, Andres; Feo, John T.

    2012-06-29

    In the age of massive parallelism, the focus of performance analysis has switched from the processor and related structures to the memory and I/O resources. Adapting to this new reality, a performance analysis tool has to provide a way to analyze resource usage to pinpoint existing and potential problems in a given application. This paper provides an overview of the Memory Observant Data Analysis (MODA) tool, a memory-centric tool first implemented on the Cray XMT supercomputer. Throughout the paper, MODA's capabilities have been showcased with experiments done on matrix multiply and Graph-500 application codes.

  4. The relationships between age, associative memory performance, and the neural correlates of successful associative memory encoding.

    Science.gov (United States)

    de Chastelaine, Marianne; Mattson, Julia T; Wang, Tracy H; Donley, Brian E; Rugg, Michael D

    2016-06-01

    Using functional magnetic resonance imaging, subsequent memory effects (greater activity for later remembered than later forgotten study items) predictive of associative encoding were compared across samples of young, middle-aged, and older adults (total N = 136). During scanning, participants studied visually presented word pairs. In a later test phase, they discriminated between studied pairs, "rearranged" pairs (items studied on different trials), and new pairs. Subsequent memory effects were identified by contrasting activity elicited by study pairs that went on to be correctly judged intact or incorrectly judged rearranged. Effects in the hippocampus were age-invariant and positively correlated across participants with associative memory performance. Subsequent memory effects in the right inferior frontal gyrus (IFG) were greater in the older than the young group. In older participants only, both left and, in contrast to prior reports, right IFG subsequent memory effects correlated positively with memory performance. We suggest that the IFG is especially vulnerable to age-related decline in functional integrity and that the relationship between encoding-related activity in right IFG and memory performance depends on the experimental context.

  5. Investigation on Superior Performance by Fractional Controller for Cart-Servo Laboratory Set-Up

    Directory of Open Access Journals (Sweden)

    Ameya Anil Kesarkar

    2014-01-01

    Full Text Available In this paper, an investigation is made on the superiority of fractional PID controller (PI^alpha D^beta over conventional PID for the cart-servo laboratory set-up. The designed controllers are optimum in the sense of Integral Absolute Error (IAE and Integral Square Error (ISE. The paper contributes in three aspects: 1 Acquiring nonlinear mathematical model for the cart-servo laboratory set-up, 2 Designing fractional and integer order PID for minimizing IAE, ISE, 3 Analyzing the performance of designed controllers for simulated plant model as well as real plant. The results show a significantly superior performance by PI^alpha D^beta as compared to the conventional PID controller.

  6. An Investigation of Unified Memory Access Performance in CUDA.

    Science.gov (United States)

    Landaverde, Raphael; Zhang, Tiansheng; Coskun, Ayse K; Herbordt, Martin

    2014-09-01

    Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations.

  7. Superior performance of cone beam tomography in detecting a calcaneus fracture.

    Science.gov (United States)

    Lohse, Christian; Catala-Lehnen, Philip; Regier, Marc; Heiland, Max

    2015-01-01

    Cone beam computed tomography is a state-of-the-art imaging tool, initially developed for dental and maxillofacial application. With its high resolution and low radiation dose, cone beam tomography has been expanding its application fields, for example, to diagnosis of traumata and fractures in the head and neck area. In this study, we demonstrate superior and satisfactory performance of cone beam tomography for the imaging of a calcaneus fracture in comparison to conventional X-ray and computed tomography.

  8. Unique properties of halide perovskites as possible origins of the superior solar cell performance.

    Science.gov (United States)

    Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa

    2014-07-16

    Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

  9. Entity versus incremental theories predict older adults' memory performance.

    Science.gov (United States)

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Self-regulation and working memory in musical performers.

    Science.gov (United States)

    Killough, Cynthia M; Thompson, Laura A; Morgan, Gin

    2015-01-01

    Performing music in front of others can be stressful, even for experienced performers. The physiological effects of stress, namely, increases in cortisol and sympathetic nervous system activity, have been shown to have detrimental effects on cognition, particularly working memory. This study used an audition-like performance scenario to elicit a stress response in performers who differed in their degree of musical experience. We expected that participants with more musical experience would be better able to regulate their stress response, would report lower levels of anxiety, insecurity, and nervousness, and would show better working memory following the stressor, compared to participants with less musical experience. Although we did not find differences between more and less experienced performers in their sympathetic nervous system activity or their self-reported feelings of anxiety and nervousness, we did find some important differences: following the stressor, more experienced performers were less insecure, they showed better regulation of their cortisol response, and they demonstrated better working memory.

  11. Assessing the Costs and Benefits of the Superior Energy Performance Program

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  12. Short-term memory and dual task performance

    Science.gov (United States)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  13. Effect of background music on auditory-verbal memory performance

    OpenAIRE

    Sona Matloubi; Ali Mohammadzadeh; Zahra Jafari; Alireza Akbarzade Baghban

    2014-01-01

    Background and Aim: Music exists in all cultures; many scientists are seeking to understand how music effects cognitive development such as comprehension, memory, and reading skills. More recently, a considerable number of neuroscience studies on music have been developed. This study aimed to investigate the effects of null and positive background music in comparison with silence on auditory-verbal memory performance.Methods: Forty young adults (male and female) with normal hearing, aged betw...

  14. Improvement in verbal memory performance in depressed in-patients after treatment with electroconvulsive therapy.

    Science.gov (United States)

    Biedermann, S V; Bumb, J M; Demirakca, T; Ende, G; Sartorius, A

    2016-12-01

    Electroconvulsive therapy (ECT) is a highly effective and well-tolerated therapy for severe and treatment-resistant depression. Cognitive side-effects are still feared by some patients and clinicians. Importantly, cognitive impairments are among the most disabling symptoms of depression itself. Patients suffering from a severe episode of depression were treated with either ECT or treatment as usual (TAU) in an in-patient setting. Matched healthy participants served as controls (HC). Verbal memory was tested with the California Verbal Learning Test (CVLT) before the specific treatment started (ECT = 15, TAU = 16, HC = 31) and 2 months after the last ECT session or 2 months after discharge respectively. Before the specific treatment started, depressed patients performed substantially worse compared with HC in total, short- and long-delay recall in the CVLT, while the ECT group showed the worst performance. More severely depressed patients showed worse performances in these measures. Intriguingly, verbal memory showed a significant improvement in ECT-treated patients, but not in the other groups. No differences between the groups were found at follow-up. Contrary to the widely feared assumption that ECT has long-term impact on memory functions, we found evidence that ECT is superior to TAU in improving verbal memory in depressed patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Game elements improve performance in a working memory training task

    Directory of Open Access Journals (Sweden)

    Manuel Ninaus

    2015-02-01

    Full Text Available The utilization of game elements in a non-game context is currently used in a vast range of different domains. However, research on game elements’ effects in cognitive tasks is still sparse. Thus, in this study we implemented three game elements, namely, progress bar, level indicator, and a thematic setting, in a working memory training task. We evaluated the impact of game elements on user performance and perceived state of flow when compared to a conventional version of the task. Participants interacting with game elements showed higher scores in the working memory training task than participants from a control group who completed the working memory training task without the game elements. Moreover, game elements facilitated the individuals’ performance closer to their maximum working memory capacity. Finally, the perceived flow did not differ between the two groups, which indicates that game elements can induce better performance without changing the perception of being “in the zone”, that is without an increase in anxiety or boredom. This empirical study indicates that certain game elements can improve the performance and efficiency in a working memory task by increasing users’ ability and willingness to train at their optimal performance level. 

  16. Aerobic fitness predicts relational memory but not item memory performance in healthy young adults.

    Science.gov (United States)

    Baym, Carol L; Khan, Naiman A; Pence, Ari; Raine, Lauren B; Hillman, Charles H; Cohen, Neal J

    2014-11-01

    Health factors such as an active lifestyle and aerobic fitness have long been linked to decreased risk of cardiovascular disease, stroke, and other adverse health outcomes. Only more recently have researchers begun to investigate the relationship between aerobic fitness and memory function. Based on recent findings in behavioral and cognitive neuroscience showing that the hippocampus might be especially sensitive to the effects of exercise and fitness, the current study assessed hippocampal-dependent relational memory and non-hippocampal-dependent item memory in young adults across a range of aerobic fitness levels. Aerobic fitness was assessed using a graded exercise test to measure oxygen consumption during maximal exercise (VO2max), and relational and item memory were assessed using behavioral and eye movement measures. Behavioral results indicated that aerobic fitness was positively correlated with relational memory performance but not item memory performance, suggesting that the beneficial effects of aerobic fitness selectively affect hippocampal function and not that of the surrounding medial temporal lobe cortex. Eye movement results further supported the specificity of this fitness effect to hippocampal function, in that aerobic fitness predicted disproportionate preferential viewing of previously studied relational associations but not of previously viewed items. Potential mechanisms underlying this pattern of results, including neurogenesis, are discussed.

  17. Exceptional memory performance in the Long Life Family Study

    DEFF Research Database (Denmark)

    Barral, Sandra; Cosentino, Stephanie; Costa, Rosann;

    2013-01-01

    Research to understand variability at the highest end of the cognitive performance distribution has been scarce. Our aim was to define a cognitive endophenotype based on exceptional episodic memory (EM) performance and to investigate familial aggregation of EM in families from the Long Life Family...

  18. A DRAM compiler algorithm for high performance VLSI embedded memories

    Science.gov (United States)

    Eldin, A. G.

    1992-01-01

    In many applications, the limited density of the embedded SRAM does not allow integrating the memory on the same chip with other logic and functional blocks. In such cases, the embedded DRAM provides the optimum combination of very high density, low power, and high performance. For ASIC's to take full advantage of this design strategy, an efficient and highly reliable DRAM compiler must be used. The embedded DRAM architecture, cell, and peripheral circuit design considerations and the algorithm of a high performance memory compiler are presented .

  19. Review of Cultural performance on Nanking Massacre Memorial Squares

    Institute of Scientific and Technical Information of China (English)

    黄妍

    2015-01-01

    For this nation,the memory of Nanking Massacre has been a trauma.300,000 Chinese killed,an apology is still owed.Chinese people seek to speak in international community about their grief,discontent and wounded pride.Anti-Japanese activism including boycott of Japanese products and on street demonstration were irrational and once extreme.There have been cultural performances on Nanking Massacre Memorial Squares since 1985.Wishes from rational and irrational Chinese people gathered,a nation’s culture and mentality are performed.

  20. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu; Gu, Yuzong [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  1. A new C=C embedded porphyrin sheet with superior oxygen reduction performance

    Institute of Scientific and Technical Information of China (English)

    Yawei Li[1; Shunhong Zhang[2; Jiabing Yu[1; Qian Wang[2; Qiang Sun[1,2,3; Puru Jena[3

    2015-01-01

    C2 is a well-known pseudo-oxygen unit with an electron affinity of 3.4 eV. We show that it can exhibit metal-ion like behavior when embedded in a porphyrin sheet and form a metal-free two-dimensional material with superior oxygen reduction performance. Here, the positively charged C=C units are highly active for oxygen reduction reaction (ORR) via dissociation pathways with a small energy barrier of 0.09 eV, much smaller than that of other non-platinum group metal (non-PGM) ORR catalysts. Using a microkinetics-based model we calculated the partial current density to be 3.0 mA/cm2 at 0.65 V vs. a standard hydrogen electrode (SHE), which is comparable to that of the state-of-the-art Pt/C catalyst. We further confirm that the C=C embedded porphyrin sheet is dynamically and thermally stable with a quasi-direct band gap of 1.14 eV. The superior catalytic performance and geometric stability make the metal-free C=C porphyrin sheet ideal for fuel cell applications.

  2. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Science.gov (United States)

    Liu, Xiangyang; Wang, Shun; Zheng, Haiwu; Gu, Yuzong

    2016-07-01

    ZnO nanowires/Cu4Bi4S9 (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V2O5 can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  3. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    Science.gov (United States)

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  4. Analyzing the trade-off between multiple memory controllers and memory channels on multi-core processor performance

    Energy Technology Data Exchange (ETDEWEB)

    Sancho Pitarch, Jose Carlos [Los Alamos National Laboratory; Kerbyson, Darren [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory

    2010-01-01

    Increasing the core-count on current and future processors is posing critical challenges to the memory subsystem to efficiently handle concurrent memory requests. The current trend to cope with this challenge is to increase the number of memory channels available to the processor's memory controller. In this paper we investigate the effectiveness of this approach on the performance of parallel scientific applications. Specifically, we explore the trade-off between employing multiple memory channels per memory controller and the use of multiple memory controllers. Experiments conducted on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-core Intel Nehalem-EP, for a wide range of production applications shows that there is a diminishing return when increasing the number of memory channels per memory controller. In addition, we show that this performance degradation can be efficiently addressed by increasing the ratio of memory controllers to channels while keeping the number of memory channels constant. Significant performance improvements can be achieved in this scheme, up to 28%, in the case of using two memory controllers with each with one channel compared with one controller with two memory channels.

  5. Nap sleep preserves associative but not item memory performance.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2015-04-01

    Many studies have shown that sleep improves memory performance, and that even short naps during the day are beneficial. Certain physiological components of sleep such as spindles and slow-wave-sleep are thought to be particularly important for memory consolidation. The aim of this experiment was to reveal the role of naps for hippocampus-dependent associative memory (AM) and hippocampus-independent item memory (IM) alongside their corresponding ERP old/new effects. Participants learnt single words and word-pairs before performing an IM- and an AM-test (baseline). One group was subsequently allowed to nap (∼90min) while the other watched DVDs (control group). Afterwards, both groups performed a final IM- and AM-test for the learned stimuli (posttest). IM performance decreased for both groups, while AM performance decreased for the control group but remained constant for the nap group, consistent with predictions concerning the selective impact of napping on hippocampus-dependent recognition. Putative ERP correlates of familiarity and recollection were observed in the IM posttest, whereas only the later recollection-related effect was present in the AM test. Notably, none of these effects varied with group. Positive correlations were observed between spindle density during slow-wave-sleep and AM posttest performance as well as between spindle density during non-REM sleep and AM baseline performance, showing that successful learning and retrieval both before and after sleep relates to spindle density during nap sleep. Together, these results speak for a selective beneficial impact of naps on hippocampus-dependent memories.

  6. STRATEGIES FOR SUPERIOR PERFORMANCE IN RECESSIONS: PRO OR COUNTER-CYCLICAL?

    Directory of Open Access Journals (Sweden)

    Claudio Ramos Conti

    2015-04-01

    Full Text Available Recessions are recurring events in which most firms suffer severe impacts while others are less affected or may even prosper. Strategic management has made little progress in understanding such performance differences. In a scenario of decreased demand, intensified competition, and higher uncertainty, most firms try to survive by pro-cyclically cutting costs and investments. But firms could take advantage of undervalued resources in the market to counter-cyclically invest in new business opportunities to overtake competitors. We survey Brazilian firms in various industries about the 2008-2009 recession and analyze data using PLS-SEM. We find that while most firms pro-cyclically reduce costs and investments in recessions, a counter-cyclical strategy of investing in opportunities created by changes in the market enables superior performance. Most successful are firms with a propensity to recognize opportunities, an entrepreneurial orientation to invest, and the flexibility to efficiently implement investments.

  7. Phonological Short-Term Memory, Working Memory and Foreign Language Performance in Intensive Language Learning

    Science.gov (United States)

    Kormos, Judit; Safar, Anna

    2008-01-01

    In our research we addressed the question what the relationship is between phonological short-term and working memory capacity and performance in an end-of-year reading, writing, listening, speaking and use of English test. The participants of our study were 121 secondary school students aged 15-16 in the first intensive language training year of…

  8. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults.

    Science.gov (United States)

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2016-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.

  9. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults

    Science.gov (United States)

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2017-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597

  10. MMPI-2 Variables in Attention and Memory Test Performance.

    Science.gov (United States)

    Gass, Carlton S.

    1996-01-01

    Attention span, verbal list learning, and memory test performance were examined in relation to Minnesota Multiphasic Personality Inventory-2 (MMPI-2) measures of depression, anxiety, and psychotic thinking in 128 male head-injury and psychiatric patients. Results support the view that MMPI-2 scores are relevant to neuropsychological test…

  11. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  12. Memory complaints and test performance in healthy elderly persons

    Directory of Open Access Journals (Sweden)

    Mattos Paulo

    2003-01-01

    Full Text Available In order to compare the use of a structured self-report questionnaire with direct questioning about memory problems, 71 healthy and independent aged individuals (63 women from the community without risk factors for cognitive deficits were objectively asked about subjective memory complaints (SMC, given the Memory Complaint Questionnaire (MAC-Q and then submitted to the Rey Auditory Verbal Learning Test (RAVLT. SMC positively correlated with higher scores on MAC-Q, although a significant percentage of the sample had SMC and lower scores on MAC-Q and also no SMC and higher scores on MAC-Q. Performance on RAVLT was significantly worse (p<0.05 for the group presenting SMC but not for the group with higher scores on the MAC-Q. We conclude that direct questioning maybe more clinically significant than a self report questionnaire, at least for elderly persons from the community without risk factors for cognitive decline or depression.

  13. Effect of background music on auditory-verbal memory performance

    Directory of Open Access Journals (Sweden)

    Sona Matloubi

    2014-12-01

    Full Text Available Background and Aim: Music exists in all cultures; many scientists are seeking to understand how music effects cognitive development such as comprehension, memory, and reading skills. More recently, a considerable number of neuroscience studies on music have been developed. This study aimed to investigate the effects of null and positive background music in comparison with silence on auditory-verbal memory performance.Methods: Forty young adults (male and female with normal hearing, aged between 18 and 26, participated in this comparative-analysis study. An auditory and speech evaluation was conducted in order to investigate the effects of background music on working memory. Subsequently, the Rey auditory-verbal learning test was performed for three conditions: silence, positive, and null music.Results: The mean score of the Rey auditory-verbal learning test in silence condition was higher than the positive music condition (p=0.003 and the null music condition (p=0.01. The tests results did not reveal any gender differences.Conclusion: It seems that the presence of competitive music (positive and null music and the orientation of auditory attention have negative effects on the performance of verbal working memory. It is possibly owing to the intervention of music with verbal information processing in the brain.

  14. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance.

    Science.gov (United States)

    Huang, Yongchao; Li, Haibo; Balogun, Muhammad-Sadeeq; Liu, Wenyue; Tong, Yexiang; Lu, Xihong; Ji, Hongbing

    2014-12-24

    With the increasingly serious environmental problems, photocatalysis has recently attracted a great deal of attention, with particular focus on water and air purification and disinfection. Herein, we show an electroreduction strategy to improve significantly the solar absorption and donor density of BiOI nanosheet photocatalyst by introducing oxygen vacancies. These oxygen-deficient BiOI nanosheets exhibit an unexpected red shift of about 100 nm in light absorption band and 1 order of magnitude improvement in donor density compared to the untreated BiOI nanosheets and show 10 times higher photocatalytic activity than the untreated BiOI nanosheets for methyl orange (MO) degradation under visible light irradiation. Moreover, the as-prepared oxygen-deficient BiOI nanosheets also have excellent cycling stability and superior photocatalytic performance toward other dye pollutants.

  15. Improving working memory performance in brain-injured patients using hypnotic suggestion.

    Science.gov (United States)

    Lindeløv, Jonas K; Overgaard, Rikke; Overgaard, Morten

    2017-04-01

    Working memory impairment is prevalent in brain injured patients across lesion aetiologies and severities. Unfortunately, rehabilitation efforts for this impairment have hitherto yielded small or no effects. Here we show in a randomized actively controlled trial that working memory performance can be effectively restored by suggesting to hypnotized patients that they have regained their pre-injury level of working memory functioning. Following four 1-h sessions, 27 patients had a medium-sized improvement relative to 22 active controls (Bayes factors of 342 and 37.5 on the two aggregate outcome measures) and a very large improvement relative to 19 passive controls (Bayes factor = 1.7 × 1013). This was a long-term effect as revealed by no deterioration following a 6.7 week no-contact period (Bayes factors = 7.1 and 1.3 in favour of no change). To control for participant-specific effects, the active control group was crossed over to the working memory suggestion and showed superior improvement. By the end of the study, both groups reached a performance level at or above the healthy population mean with standardized mean differences between 1.55 and 2.03 relative to the passive control group. We conclude that, if framed correctly, hypnotic suggestion can effectively improve working memory following acquired brain injury. The speed and consistency with which this improvement occurred, indicate that there may be a residual capacity for normal information processing in the injured brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Out of sight but not out of mind : The neurophysiology of iconic memory in the superior temporal sulcus

    NARCIS (Netherlands)

    Keysers, C; Xiao, DK; Foldiak, P; Perrett, DI

    2005-01-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without intersti

  17. Development of an Enhanced Payback Function for the Superior Energy Performance Program

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter; Rao, Prakash; McKane, Aimee; Sabouni, Ridah; Sheihing, Paul

    2015-08-03

    The U.S. DOE Superior Energy Performance (SEP) program provides recognition to industrial and commercial facilities that achieve certification to the ISO 50001 energy management system standard and third party verification of energy performance improvements. Over 50 industrial facilities are participating and 28 facilities have been certified in the SEP program. These facilities find value in the robust, data driven energy performance improvement result that the SEP program delivers. Previous analysis of SEP certified facility data demonstrated the cost effectiveness of SEP and identified internal staff time to be the largest cost component related to SEP implementation and certification. This paper analyzes previously reported and newly collected data of costs and benefits associated with the implementation of an ISO 50001 and SEP certification. By disaggregating “sunk energy management system (EnMS) labor costs”, this analysis results in a more accurate and detailed understanding of the costs and benefits of SEP participation. SEP is shown to significantly improve and sustain energy performance and energy cost savings, resulting in a highly attractive return on investment. To illustrate these results, a payback function has been developed and is presented. On average facilities with annual energy spend greater than $2M can expect to implement SEP with a payback of less than 1.5 years. Finally, this paper also observes and details decreasing facility costs associated with implementing ISO 50001 and certifying to the SEP program, as the program has improved from pilot, to demonstration, to full launch.

  18. Physical Mechanism and Fundamental Performance Limits on Graphene Non-Volatile Memory Technologies

    OpenAIRE

    Song, Emil Beom

    2012-01-01

    Non–volatile memory (NVM) constitutes a vital portion in electronics to retain information for both archiving and data processing. Limitations encountered in flash technology upon increasing density and reducing cost by scaling necessitates alternative memory structures beyond complementary–metal–oxide–semiconductor (CMOS). The single atomic two–dimensional profile and the superior physical properties of graphene allow advancements in a variety of memory metrics ...

  19. The neural correlates of unsuccessful memory performance in MCI

    Directory of Open Access Journals (Sweden)

    Natalya eChechko

    2014-08-01

    Full Text Available People with MCI (mild cognitive impairment are at an increased risk of developing Alzheimer's disease or other forms of dementia. Although the neural correlates of successful memory performance in MCI have been widely investigated, the neural mechanisms involved in unsuccessful memory performance remain unknown. The current study examines the differences between patients with stable amnestic MCI with multiple deficit syndromes and healthy elderly controls in relation to the neural correlates of both successful and unsuccessful encoding and recognition. 46 subjects (27 controls, 19 MCI from the HelMA (Helmholtz Alliance for Mental Health in an Ageing Society completed a comprehensive neuropsychological test battery and participated in an fMRI experiment for associative face-name memory. In patients, the areas of frontal, parietal and temporal cortices were less involved during unsuccessful encoding and recognition. A temporary dysfunction of the top-down control of frontal or parietal (or both areas might result in a non-selective propagation of task-related information to memory.

  20. Metacognitive monitoring and strategic behaviour in working memory performance.

    Science.gov (United States)

    Touron, Dayna R; Oransky, Natalie; Meier, Matthew E; Hines, Jarrod C

    2010-08-01

    Research indicates that cognitive age differences can be influenced by metacognitive factors. This research has generally focused on simple memory tasks. Age differences in working memory (WM) performance are pronounced, but are typically attributed to basic cognitive deficits rather than metacognitive factors. However, WM performance can be influenced by strategic behaviour that might be driven by metacognitive monitoring. In the current project, we attempted to connect these lines of research by examining age differences in metacognitive WM monitoring and strategies. In Experiment 1, younger and older adult participants completed a computerized operation span task in conditions that either required or did not require monitoring reports. Participants in the monitoring condition predicted and postdicted global performance for each block and rated their responses following each trial within a block. In Experiment 2, participants also reported their trial-level strategic approach. In contrast to the age equivalence typically found for simple memory monitoring, results demonstrated age differences in WM monitoring accuracy. Overall age differences in strategy use were not found, but using effective strategies benefited older adults' performance more than younger adults'. Furthermore, age-related differences in the WM task appear to be mediated by the accuracy of performance monitoring.

  1. Dieting and food cue-related working memory performance

    Directory of Open Access Journals (Sweden)

    Adrian Meule

    2016-12-01

    Full Text Available Executive functioning (e.g., working memory is tightly intertwined with self-regulation. For example, food cue-elicited craving has been found to impair working memory performance. Furthermore, current dieters have been found to show lower working memory performance than non-dieters. Recent research, however, suggests that it is crucial to consider dieting success in addition to current dieting status or restrained eating in order to reveal cognitive mechanisms that are associated with successful eating-related self-regulation. The current study investigated food cue-related working memory performance as a function of dieting status and dieting success in female students. Participants performed an n-back task with pictures of food and neutral objects. Reaction time in response to food pictures was slower than in response to neutral pictures, whereas omission errors did not differ between picture types. Current food craving was increased after performing the food block, but not after the neutral block. There was an indirect effect of current dieting status on higher food craving after the food block, which was mediated by slower reaction time to food vs. neutral pictures. Furthermore, higher dieting success was associated with fewer omission errors in the food vs. neutral block in current dieters. There were no relationships of restrained eating with current food craving and task performance. Results further highlight the need to differentiate between successful and unsuccessful dieting in addition to current dieting status or restrained eating when examining possible mechanisms of overeating or successful restraint. Although palatable food cues induce food craving regardless of dieting success, they may boost executive functioning in successful dieters, which helps them to overcome these temptations.

  2. The encoding/retrieval flip: interactions between memory performance and memory stage and relationship to intrinsic cortical networks.

    Science.gov (United States)

    Huijbers, Willem; Schultz, Aaron P; Vannini, Patrizia; McLaren, Donald G; Wigman, Sarah E; Ward, Andrew M; Hedden, Trey; Sperling, Reisa A

    2013-07-01

    fMRI studies have linked the posteromedial cortex to episodic learning (encoding) and remembering (retrieval) processes. The posteromedial cortex is considered part of the default network and tends to deactivate during encoding but activate during retrieval, a pattern known as the encoding/retrieval flip. Yet, the exact relationship between the neural correlates of memory performance (hit/miss) and memory stage (encoding/retrieval) and the extent of overlap with intrinsic cortical networks remains to be elucidated. Using task-based fMRI, we isolated the pattern of activity associated with memory performance, memory stage, and the interaction between both. Using resting-state fMRI, we identified which intrinsic large-scale functional networks overlapped with regions showing task-induced effects. Our results demonstrated an effect of successful memory performance in regions associated with the control network and an effect of unsuccessful memory performance in the ventral attention network. We found an effect of memory retrieval in brain regions that span the default and control networks. Finally, we found an interaction between memory performance and memory stage in brain regions associated with the default network, including the posteromedial cortex, posterior parietal cortex, and parahippocampal cortex. We discuss these findings in relation to the encoding/retrieval flip. In general, the findings demonstrate that task-induced effects cut across intrinsic cortical networks. Furthermore, regions within the default network display functional dissociations, and this may have implications for the neural underpinnings of age-related memory disorders.

  3. Identifying blood biomarkers and physiological processes that distinguish humans with superior performance under psychological stress.

    Directory of Open Access Journals (Sweden)

    Amanda M Cooksey

    Full Text Available BACKGROUND: Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB, which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others. METHODOLOGY/PRINCIPAL FINDINGS: Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology. CONCLUSIONS/SIGNIFICANCE: The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.

  4. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance

    KAUST Repository

    Wei, Wei

    2012-04-20

    Upconversion rare-earth nanomaterials (URENs) possess highly efficient near-infrared (NIR), e.g., 980 nm, laser absorption and unique energy upconversion capabilities. On the other hand, graphene and its derivatives, such as graphene oxide (GO), show excellent performance in optical limiting (OL); however, the wavelengths of currently used lasers for OL studies mainly focus on either 532 or 1064 nm. To design new-generation OL materials working at other optical regions, such as the NIR, a novel nanocomposites, GO-URENs, which combines the advantages of both its components, is synthesized by a one-step chemical reaction. Transmission electron microscopy, X-ray diffraction, infrared spectroscopy, and fluorescence studies prove that the α-phase URENs uniformly attach on the GO surface via covalent chemical bonding, which assures highly efficient energy transfer between URENs and GO, and also accounts for the significantly improved OL performance compared to either GO or URENs. The superior OL effect is also observed in the proof-of-concept thin-film product, suggesting immediate applications in making high-performance laser-protecting products and optoelectronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identifying Blood Biomarkers and Physiological Processes That Distinguish Humans with Superior Performance under Psychological Stress

    Science.gov (United States)

    Cooksey, Amanda M.; Momen, Nausheen; Stocker, Russell; Burgess, Shane C.

    2009-01-01

    Background Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB), which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others. Methodology/Principal Findings Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology. Conclusions/Significance The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress. PMID:20020041

  6. [Memory performance and general achievement motivation in the aged].

    Science.gov (United States)

    Heineken, E; Gekeler, C

    1985-01-01

    Memory achievement is generally confounded with motivational factors in memory research. Therefore, the interpretation of age specific differences in recall renders difficult. The effect of a mnemonic device (method of loci) on recall is studied in a multitrial free recall experiment with 48 seniors aged from 60 to 92. Recall, performance in "Pauli"-tasks as an indicator of general achievement motivation, and subjective organization are measured. The experiment is planned as a three-factorial randomized group design with the factors "mnemonic device", "age", and "concreteness of learning material". The mnemonic device has a strong effect on recall as well as on performance "Pauli"-tasks. Its effect on recall is attributed to the increased achievement motivation.

  7. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    Science.gov (United States)

    Tomasello, R.; Puliafito, V.; Martinez, E.; Manchon, A.; Ricci, M.; Carpentieri, M.; Finocchio, G.

    2017-08-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii-Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s-1 if a spin-orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  8. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R

    2017-06-20

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  9. Testing the performance of technical trading rules in the Chinese markets based on superior predictive test

    Science.gov (United States)

    Wang, Shan; Jiang, Zhi-Qiang; Li, Sai-Ping; Zhou, Wei-Xing

    2015-12-01

    Technical trading rules have a long history of being used by practitioners in financial markets. The profitable ability and efficiency of technical trading rules are yet controversial. In this paper, we test the performance of more than seven thousand traditional technical trading rules on the Shanghai Securities Composite Index (SSCI) from May 21, 1992 through June 30, 2013 and China Securities Index 300 (CSI 300) from April 8, 2005 through June 30, 2013 to check whether an effective trading strategy could be found by using the performance measurements based on the return and Sharpe ratio. To correct for the influence of the data-snooping effect, we adopt the Superior Predictive Ability test to evaluate if there exists a trading rule that can significantly outperform the benchmark. The result shows that for SSCI, technical trading rules offer significant profitability, while for CSI 300, this ability is lost. We further partition the SSCI into two sub-series and find that the efficiency of technical trading in sub-series, which have exactly the same spanning period as that of CSI 300, is severely weakened. By testing the trading rules on both indexes with a five-year moving window, we find that during the financial bubble from 2005 to 2007, the effectiveness of technical trading rules is greatly improved. This is consistent with the predictive ability of technical trading rules which appears when the market is less efficient.

  10. Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes

    KAUST Repository

    Rasul, Shahid

    2016-10-24

    Strategies to synthesize reduced graphene oxide (rGO) abound but, in most studies, research teams select one particular oxidation-reduction method without providing a methodic reasoning for doing so. Herein, it is analyzed how diverse oxidation-reduction strategies commonly used can result in considerable performance differences of rGO for supercapacitor applications. Depending on the graphite oxidation method followed, the surface chemistry analysis of the products confirms that there is a marked disparity in the degree of oxidation and the nature of the oxygen functional groups present. Subsequent reduction of the oxidized graphite (using three different methods) showed that the maximum specific capacitance of rGOs produced from the classical Hummers\\' method was 128 F g−1 whereas an analogous material obtained from an improved Hummers\\' method reached ∼274 F g−1 (both via an hydrothermal reduction route). Besides showing that the improved oxidation method results in superior capacitance performance, explained by the higher number of structural defects allied to a surface chemistry where residual hydroxyl and epoxy functional groups predominate, this study highlights the need to rationalize the oxidation-reduction strategies followed when investigating applications of rGO materials.

  11. Performance of Compiler-Assisted Memory Safety Checking

    Science.gov (United States)

    2014-08-01

    Performance of Compiler -Assisted Memory Safety Checking David Keaton Robert C. Seacord August 2014 TECHNICAL NOTE CMU/SEI-2014-TN...014 | vii Abstract Buffer overflows affect a large installed base of C code. This technical note describes the criteria for deploying a compiler ...describes a modification to the LLVM compiler to enable hoisting bounds checks from loops and functions. This proof-of-concept prototype has been used

  12. Game elements improve performance in a working memory training task

    OpenAIRE

    Manuel Ninaus; Gonçalo Pereira; René Stefitz; Rui Prada; Ana Paiva; Christa Neuper; Guilherme Wood

    2015-01-01

    The utilization of game elements in a non-game context is currently used in a vast range of different domains. However, research on game elements’ effects in cognitive tasks is still sparse. Thus, in this study we implemented three game elements, namely, progress bar, level indicator, and a thematic setting, in a working memory training task. We evaluated the impact of game elements on user performance and perceived state of flow when compared to a conventional version of the task. Participan...

  13. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities

    Directory of Open Access Journals (Sweden)

    Jan-Christoph Kattenstroth

    2010-07-01

    Full Text Available Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years amateur dancing (AD in a group of elderly subjects (aged 65 to 84 years as compared to education-, gender- and aged-matched controls (CG having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  14. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities.

    Science.gov (United States)

    Kattenstroth, Jan-Christoph; Kolankowska, Izabella; Kalisch, Tobias; Dinse, Hubert R

    2010-01-01

    Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years) amateur dancing (AD) in a group of elderly subjects (aged 65-84 years) as compared to education-, gender- and aged-matched controls (CG) having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  15. Designing Appraisal Pattern for Performance of Superior League Football Teams by Emphasizing on Stakeholders’ Benefits

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi TAYEBI

    2016-03-01

    Full Text Available Performance assessment by stakeholders is a strategic process that this research formed based on Freeman Stakeholders’ theory (1986 and Lee Stakeholders’ model and its goal is replying to following questions in order to present proper model for performance assessment: Who are most important stakeholders of superior football teams? What are their most important purposes? What are most important actions for fulfilling their needs? The research information collected from ministry of sport and youth, federation, club universalities, library and f iled experts and in first stage based on Freeman theory and past studies and experts’ opinions, a questionnaire was developed with Cronbach alpha coefficient of 0.891 and by using Shannon entropy model and TOPSIS method extracted 9 priorities out of 21. In second stage, a second questionnaire was developed with Cronbach alpha coefficient of 0.928 and 20 most important requests out of 71extracted by TOPSIS method. In 3rd stage, a third questionnaire was developed through interview with managers of 3 sup erior leagues and took measures to examine most implorations actions for providing stakeholders requests that 49 executive actions was recognized and performed by QFD model and quality house model indicated relation among requests of stakeholders, actions, weighting and ranked ultimately 24 important actions was recognized and by using results and normalization, performance assessment model extracted from above three processes that indicated victory result and monetary benefits included their most important requests and teams shall take action to establish clear financial and planning unit and shall be assessed periodically.

  16. Resting-state neuronal oscillatory correlates of working memory performance.

    Directory of Open Access Journals (Sweden)

    David Heister

    Full Text Available PURPOSE: Working memory (WM represents the brain's ability to maintain information in a readily available state for short periods of time. This study examines the resting-state cortical activity patterns that are most associated with performance on a difficult working-memory task. METHODS: Magnetoencephalographic (MEG band-passed (delta/theta (1-7 Hz, alpha (8-13 Hz, beta (14-30 Hz and sensor based regional power was collected in a population of adult men (18-28 yrs, n = 24 in both an eyes-closed and eyes-open resting state. The normalized power within each resting state condition as well as the normalized change in power between eyes closed and open (zECO were correlated with performance on a WM task. The regional and band-limited measures that were most associated with performance were then combined using singular value decomposition (SVD to determine the degree to which zECO power was associated with performance on the three-back verbal WM task. RESULTS: Changes in power from eyes closed to open revealed a significant decrease in power in all band-widths that was most pronounced in the posterior brain regions (delta/theta band. zECO right posterior frontal and parietal cortex delta/theta power were found to be inversely correlated with three-back working memory performance. The SVD evaluation of the most correlated zECO metrics then provided a singular measure that was highly correlated with three-back performance (r = -0.73, p<0.0001. CONCLUSION: Our results indicate that there is an association between WM performance and changes in resting-state power (right posterior frontal and parietal delta/theta power. Moreover, an SVD of the most associated zECO measures produces a composite resting-state metric of regional neural oscillatory power that has an improved association with WM performance. To our knowledge, this is the first investigation that has found that changes in resting state electromagnetic neural patterns are highly

  17. Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures

    Science.gov (United States)

    Zhang, Feng; Zhang, Yu; Song, Shuyan; Zhang, Hongjie

    2011-10-01

    Mesoporous hollow TiO2 microspheres with controlled size and hierarchical nanostructures are designed from a process employing in suit template-assisted and hydrothermal methods. The results show that the hollow microspheres composed of mesoporous nanospheres possess very stable reversible capacity of 184 mAh g-1 at 0.25C and exhibit extremely high power of 122 mAh g-1 at the high rate of 10C. The superior high-rate and high-capacity performance of the sample is attributed to the efficient hierarchical nanostructures. The hollow structure could shorten the diffusion length for lithium ion in the microspheres. The large mesoporous channels between the mesoporous nanospheres provide an easily-accessed system which facilitates electrolyte transportation and lithium ion diffusion within the electrode materials. The electrolyte, flooding the mesoporous channels, can also lead to a high electrolyte/electrode contact area, facilitating transport of lithium ions across the electrolyte/electrode interface. The small mesopores in the meosporous nanospheres can make the electrolyte and lithium ion further diffuse into the interior of electrode materials and increase electrolyte/electrode contact area. The small nanoparticles can also ensure high reversible capacity.

  18. Performance of defect-tolerant set-associative cache memories

    Science.gov (United States)

    Frenzel, J. F.

    1991-01-01

    The increased use of on-chip cache memories has led researchers to investigate their performance in the presence of manufacturing defects. Several techniques for yield improvement are discussed and results are presented which indicate that set-associativity may be used to provide defect tolerance as well as improve the cache performance. Tradeoffs between several cache organizations and replacement strategies are investigated and it is shown that token-based replacement may be a suitable alternative to the widely-used LRU strategy.

  19. Performance and Reliability of Multilayer Silicon Nanocrystal Nonvolatile Memory

    Institute of Scientific and Technical Information of China (English)

    WANG Liudi; ZHANG Zhigang; ZHAO Yue; MAO Ping; PAN Liyang

    2009-01-01

    Nonvolatile memories (NVMs) with triple layers of silicon nanocrystals were fabricated with conventional CMOS technology.This paper explores the program/erase performance and reliability of NVMs with three layers of nanocrystals.The results indicate that the nanocrystals in the triple-layer nanocrystal NVM (NCNVM) are difficult to fully charge during the programming process.The programming speed of the triple-layer NCNVMs is quicker than that of single-layer NCNVMs,which means that the second and third layers of nanocrystals in the triple-layer NCNVM affect the charge of the first layer nanocrystals.Reliability tests show that the memory window has little degradation after 1×104 cycles.

  20. Neem leaf glycoprotein generates superior tumor specific central memory CD8(+) T cells than cyclophosphamide that averts post-surgery solid sarcoma recurrence.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2017-08-03

    The success of cancer vaccines is limited as most of them induce corrupted CD8(+) T cell memory populations. We reported earlier that a natural immunomodulator, neem leaf glycoprotein (NLGP), therapeutically restricts tumor growth in a CD8(+) T cell-dependent manner. Here, our objective is to study whether memory CD8(+) T cell population is generated in sarcoma hosts after therapeutic NLGP treatment and their role in prevention of post-surgery tumor recurrence, in comparison to the immunostimulatory metronomic cyclophosphamide (CTX) treatment. We found that therapeutic NLGP and CTX treatment generates central memory CD8(+) T (TCM) cells with characteristic CD44(+)CD62L(high)CCR7(high)IL-2(high) phenotypes. But these TCM cells are functionally impaired to prevent re-appearance of tumors along with compromised proliferative, IL-2 secretive and cytotoxic status. This might be due to the presence of tumor load, even a small one in the host, which serves as a persistent source of tumor antigens thereby corrupting the TCM cells so generated. Surgical removal of the persisting tumors from the host restored the functional characteristics of memory CD8(+) T cells, preventing tumor recurrence after surgery till end of the experiment. Moreover, we observed that generation of superior TCM cells in NLGP treated surgically removed tumor hosts is related to the activation of Wnt signalling in memory CD8(+) T cells with concomitant inhibition of GSK-3β and stabilisation of β-catenin, which ultimately activates transcription of Wnt target genes, like, eomesodermin, a signature molecule of CD8(+) TCM cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Working-memory performance is related to spatial breadth of attention.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2015-11-01

    Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.

  2. Rewarded remembering: dissociations between self-rated motivation and memory performance.

    Science.gov (United States)

    Ngaosuvan, Leonard; Mäntylä, Timo

    2005-08-01

    People often claim that they perform better in memory performance tasks when they are more motivated. However, past research has shown minimal effects of motivation on memory performance when factors contributing to item-specific biases during encoding and retrieval are taken into account. The purpose of the present study was to examine the generality of this apparent dissociation by using more sensitive measures of experienced motivation and memory performance. Extrinsic motivation was manipulated through competition instructions, and subjective ratings of intrinsic and extrinsic motivation were obtained before and after study instructions. Participants studied a series of words, and memory performance was assessed by content recall (Experiment 1) and source recall (Experiment 2). Both experiments showed dissociation between subjective ratings of extrinsic motivation and actual memory performance, so that competition increased self-rated extrinsic motivation but had no effects on memory performance, including source recall. Inconsistent with most people's expectations, the findings suggest that extrinsic motivation has minimal effects on memory performance.

  3. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  4. Transactive memory system links work team characteristics and performance.

    Science.gov (United States)

    Zhang, Zhi-Xue; Hempel, Paul S; Han, Yu-Lan; Tjosvold, Dean

    2007-11-01

    Teamwork and coordination of expertise among team members with different backgrounds are increasingly recognized as important for team effectiveness. Recently, researchers have examined how team members rely on transactive memory system (TMS; D. M. Wegner, 1987) to share their distributed knowledge and expertise. To establish the ecological validity and generality of TMS research findings, this study sampled 104 work teams from a variety of organizational settings in China and examined the relationships between team characteristics, TMS, and team performance. The results suggest that task interdependence, cooperative goal interdependence, and support for innovation are positively related to work teams' TMS and that TMS is related to team performance; moreover, structural equation analysis indicates that TMS mediates the team characteristics-performance links. Findings have implications both for team leaders to manage their work teams effectively and for team members to improve their team performance.

  5. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    Science.gov (United States)

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C.

  6. The Contribution of Memory and Anxiety to the Math Performance of College Students with Learning Disabilities

    Science.gov (United States)

    Prevatt, Frances; Welles, Theresa L.; Li, Huijun; Proctor, Briley

    2010-01-01

    The impact of memory and anxiety on math performance was analyzed in a sample of 115 college undergraduates, all of whom had a diagnosed learning disability. The direct effects of memory and anxiety on math performance were first examined, followed by an examination of whether anxiety moderates the relationship between memory and math. Both memory…

  7. EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance

    NARCIS (Netherlands)

    Tsoneva, T.; Baldo, D.; Lema, V.; Garcia Molina, G.

    2012-01-01

    Working memory is an essential component of human cognition and determines to a large extent an individual's intellectual ability. Thehuman brain oscillatory response system associated with working memory performance is evaluated in an experimental and analysis settinginvolving 10 volunteers perfo

  8. Face recognition performance of individuals with Asperger syndrome on the Cambridge Face Memory Test.

    Science.gov (United States)

    Hedley, Darren; Brewer, Neil; Young, Robyn

    2011-12-01

    Although face recognition deficits in individuals with Autism Spectrum Disorder (ASD), including Asperger syndrome (AS), are widely acknowledged, the empirical evidence is mixed. This in part reflects the failure to use standardized and psychometrically sound tests. We contrasted standardized face recognition scores on the Cambridge Face Memory Test (CFMT) for 34 individuals with AS with those for 42, IQ-matched non-ASD individuals, and age-standardized scores from a large Australian cohort. We also examined the influence of IQ, autistic traits, and negative affect on face recognition performance. Overall, participants with AS performed significantly worse on the CFMT than the non-ASD participants and when evaluated against standardized test norms. However, while 24% of participants with AS presented with severe face recognition impairment (>2 SDs below the mean), many individuals performed at or above the typical level for their age: 53% scored within +/- 1 SD of the mean and 9% demonstrated superior performance (>1 SD above the mean). Regression analysis provided no evidence that IQ, autistic traits, or negative affect significantly influenced face recognition: diagnostic group membership was the only significant predictor of face recognition performance. In sum, face recognition performance in ASD is on a continuum, but with average levels significantly below non-ASD levels of performance.

  9. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  10. Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.

    Science.gov (United States)

    de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2006-03-14

    Experimental work in animals has shown that memory formation depends on a cascade of molecular events. Here we show that variability of human memory performance is related to variability in genes encoding proteins of this signaling cascade, including the NMDA and metabotrobic glutamate receptors, adenylyl cyclase, CAMKII, PKA, and PKC. The individual profile of genetic variability in these signaling molecules correlated significantly with episodic memory performance (P < 0.00001). Moreover, functional MRI during memory formation revealed that this genetic profile correlated with activations in memory-related brain regions, including the hippocampus and parahippocampal gyrus. The present study indicates that genetic variability in the human homologues of memory-related signaling molecules contributes to interindividual differences in human memory performance and memory-related brain activations.

  11. Acute social stress before the planning phase improves memory performance in a complex real life-related prospective memory task.

    Science.gov (United States)

    Glienke, Katharina; Piefke, Martina

    2016-09-01

    Successful execution of intentions, but also the failure to recall are common phenomena in everyday life. The planning, retention, and realization of intentions are often framed as the scientific concept of prospective memory. The current study aimed to examine the influence of acute stress on key dimensions of complex "real life" prospective memory. To this end, we applied a prospective memory task that involved the planning, retention, and performance of intentions during a fictional holiday week. Forty healthy males participated in the study. Half of the subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions, and the other half of the participants underwent a control procedure at the same time. Salivary cortisol was used to measure the effectiveness of the SECPT stress induction. Stressed participants did not differ from controls in planning accuracy. However, when we compared stressed participants with controls during prospective memory retrieval, we found statistically significant differences in PM across the performance phase. Participants treated with the SECPT procedure before the planning phase showed improved prospective memory retrieval over time, while performance of controls declined. Particularly, there was a significant difference between the stress and control group for the last two days of the holiday week. Interestingly, control participants showed significantly better performance for early than later learned items, which could be an indicator of a primacy effect. This differential effect of stress on performance was also found in time- and event-dependent prospective memory. Our results demonstrate for the first time, that acute stress induced before the planning phase may improve prospective memory over the time course of the performance phase in time- and event-dependent prospective memory. Our data thus indicate that prospective memory can be enhanced by acute stress.

  12. The hard fall effect: high working memory capacity leads to a higher, but less robust short-term memory performance.

    Science.gov (United States)

    Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc

    2015-01-01

    Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.

  13. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    Science.gov (United States)

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  14. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    Science.gov (United States)

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  15. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael; Verzi, Stephen Joseph

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  16. Age differences in short-term memory binding are related to working memory performance across the lifespan.

    Science.gov (United States)

    Fandakova, Yana; Sander, Myriam C; Werkle-Bergner, Markus; Shing, Yee Lee

    2014-03-01

    Memory performance increases during childhood and adolescence, and decreases in old age. Among younger adults, better ability to bind items to the context in which they were experienced is associated with higher working memory performance (Oberauer, 2005). Here, we examined the extent to which age differences in binding contribute to life span age differences in short-term memory (STM). Younger children (N = 85; 10 to 12 years), teenagers (N = 41; 13 to 15 years), younger adults (N = 84; 20 to 25 years), and older adults (N = 86; 70 to 75 years) worked on global and local short-term recognition tasks that are assumed to measure item and item-context memory, respectively. Structural equation models showed that item-context bindings are functioning less well in children and older adults compared with younger adults and teenagers. This result suggests protracted development of the ability to form and recollect detailed short-term memories, and decline of this ability in aging. Across all age groups, better item-context binding was associated with higher working memory performance, indicating that developmental differences in binding mechanisms are closely related to working memory development in childhood and old age. (c) 2014 APA, all rights reserved.

  17. Do intensive studies of a foreign language improve associative memory performance?

    Science.gov (United States)

    Mårtensson, Johan; Lövdén, Martin

    2011-01-01

    Formal education has been proposed to shape life-long cognitive development. Studies reporting that gains from cognitive training transfer to untrained tasks suggest direct effects of mental activity on cognitive processing efficiency. However, associative memory practice has not been known to produce transfer effects, which is odd considering that the key neural substrate of associative memory, the hippocampus, is known to be particularly plastic. We investigated whether extremely intensive studies of a foreign language, entailing demands on associative memory, cause improvements in associative memory performance. In a pretest-training-post-test design, military conscript interpreters and undergraduate students were measured on a battery of cognitive tasks. We found transfer from language studies to a face-name associative-memory task, but not to measures of working memory, strategy-sensitive episodic memory, or fluid intelligence. These findings provide initial evidence suggesting that associative memory performance can be improved in early adulthood, and that formal education can have such effects.

  18. Caffeine enhances memory performance in young adults during their non-optimal time of day

    Directory of Open Access Journals (Sweden)

    Stephanie M Sherman

    2016-11-01

    Full Text Available Many college students struggle to perform well on exams in the early morning. Although students drink caffeinated beverages to feel more awake, it is unclear whether these actually improve performance. After consuming coffee (caffeinated or decaffeinated, college-age adults completed implicit and explicit memory tasks in the early morning and late afternoon (Experiment 1. During the morning, participants ingesting caffeine demonstrated a striking improvement in explicit memory, but not implicit memory. Caffeine did not alter memory performance in the afternoon. In Experiment 2, participants engaged in cardiovascular exercise in order to examine whether increases in physiological arousal similarly improved memory. Despite clear increases in arousal, exercise did not improve memory performance compared to a stretching control condition. These results suggest that caffeine has a specific benefit for memory during students’ non-optimal time of day – early morning. These findings have real-world implications for students taking morning exams.

  19. Aristotle: A performance Impact Indicator for the OpenCL Kernels Using Local Memory

    Directory of Open Access Journals (Sweden)

    Jianbin Fang

    2014-01-01

    Full Text Available Due to the increasing complexity of multi/many-core architectures (with their mix of caches and scratch-pad memories and applications (with different memory access patterns, the performance of many workloads becomes increasingly variable. In this work, we address one of the main causes for this performance variability: the efficiency of the memory system. Specifically, based on an empirical evaluation driven by memory access patterns, we qualify and partially quantify the performance impact of using local memory in multi/many-core processors. To do so, we systematically describe memory access patterns (MAPs in an application-agnostic manner. Next, for each identified MAP, we use OpenCL (for portability reasons to generate two microbenchmarks: a “naive” version (without local memory and “an optimized” version (using local memory. We then evaluate both of them on typically used multi-core and many-core platforms, and we log their performance. What we eventually obtain is a local memory performance database, indexed by various MAPs and platforms. Further, we propose a set of composing rules for multiple MAPs. Thus, we can get an indicator of whether using local memory is beneficial in the presence of multiple memory access patterns. This indication can be used to either avoid the hassle of implementing optimizations with too little gain or, alternatively, give a rough prediction of the performance gain.

  20. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  1. A single bout of resistance exercise can enhance episodic memory performance

    OpenAIRE

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a ...

  2. Specificity in autobiographical memory narratives correlates with performance on the autobiographical memory test and prospectively predicts depressive symptoms.

    Science.gov (United States)

    Sumner, Jennifer A; Mineka, Susan; McAdams, Dan P

    2013-01-01

    Reduced autobiographical memory specificity (AMS) is an important cognitive marker in depression that is typically measured with the Autobiographical Memory Test (AMT; Williams & Broadbent, 1986). The AMT is widely used, but the over-reliance on a single methodology for assessing AMS is a limitation in the field. The current study investigated memory narratives as an alternative measure of AMS in an undergraduate student sample selected for being high or low on a measure of depressive symptoms (N=55). We employed a multi-method design to compare narrative- and AMT-based measures of AMS. Participants generated personally significant self-defining memory narratives, and also completed two versions of the AMT (with and without instructions to retrieve specific memories). Greater AMS in self-defining memory narratives correlated with greater AMS in performance on both versions of the AMT in the full sample, and the patterns of relationships between the different AMS measures were generally similar in low and high dysphoric participants. Furthermore, AMS in self-defining memory narratives was prospectively associated with depressive symptom levels. Specifically, greater AMS in self-defining memory narratives predicted fewer depressive symptoms at a 10-week follow-up over and above baseline symptom levels. Implications for future research and clinical applications are discussed.

  3. Little evidence for links between memory complaints and memory performance in very old age: longitudinal analyses from the Berlin Aging Study.

    Science.gov (United States)

    Pearman, Ann; Hertzog, Christopher; Gerstorf, Denis

    2014-12-01

    Cross-sectional and longitudinal relationships between memory complaint and memory performance were examined in a sample of old-old participants from the Berlin Aging Study (BASE; N = 504, ages 70 to 100, age M = 84.7 at study onset). Participants were measured 4 times over the course of 6 years. Similar to many previous studies, initial cross-sectional memory complaints were predicted by depression and neuroticism, but not memory performance. Subjective age also predicted memory complaint independent of other variables. Latent growth curve models based on age and time in the study revealed that memory complaints did not change in level with age or time, and manifested no reliable random effects (individual differences in change). These models also detected no significant relationship between changes in memory and either initial memory complaint or changes in memory complaint over age or over time. None of the covariates that predicted initial memory complaints were related to changes in memory complaints over time. An autoregressive latent variable model for memory complaints, consistent with a conceptualization of complaints as judgments constructed from beliefs and other influences in the moment, did detect a concurrent effect of memory on memory complaints at the third occasion, controlling on initial complaints. These results suggest that for the oldest-old, changes in memory complaints may not primarily reflect monitoring of actual age-related memory changes, but rather are affected by other variables, including age-based memory stereotypes, neuroticism, depression, and concerns about aging.

  4. Toward a high performance distributed memory climate model

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, M.F.; Ambrosiano, J.J.; Brown, J.C.; Dannevik, W.P.; Eltgroth, P.G.; Mirin, A.A. [Lawrence Livermore National Lab., CA (United States); Farrara, J.D.; Ma, C.C.; Mechoso, C.R.; Spahr, J.A. [Univ. of California, Los Angeles, CA (US). Dept. of Atmospheric Sciences

    1993-02-15

    As part of a long range plan to develop a comprehensive climate systems modeling capability, the authors have taken the Atmospheric General Circulation Model originally developed by Arakawa and collaborators at UCLA and have recast it in a portable, parallel form. The code uses an explicit time-advance procedure on a staggered three-dimensional Eulerian mesh. The authors have implemented a two-dimensional latitude/longitude domain decomposition message passing strategy. Both dynamic memory management and interprocessor communication are handled with macro constructs that are preprocessed prior to compilation. The code can be moved about a variety of platforms, including massively parallel processors, workstation clusters, and vector processors, with a mere change of three parameters. Performance on the various platforms as well as issues associated with coupling different models for major components of the climate system are discussed.

  5. The impact of strategic planning process variation on superior organizational performance in nonprofit human service organizations providing mental health services

    Science.gov (United States)

    Singh, Karun Krishna

    This research investigated the question: What is the impact of strategic planning process variation on superior organizational performance in nonprofit human service organizations providing mental health services? The study employed a retrospective, cross-sectional, comparison group design using a combination of survey data, unobtrusive agency backup data, and follow-up in-person interview data. The sample was comprised of two main groups of organizations, those that were doing strategic planning and those that were not engaged in strategic planning. Responses were obtained from the chief executive officers of 306 of the 380 randomly selected organizations resulting in a response rate of 81%. Hypotheses were tested using multiple and logistic regression procedures. The major finding of this study was that complete strategic planning is highly correlated with superior organizational performance. The implications of the findings for administration, policy, research, and the social work profession are discussed.

  6. Monitoring supports performance in a dual-task paradigm involving a risky decision-making task and a working memory task

    Directory of Open Access Journals (Sweden)

    Bettina eGathmann

    2015-02-01

    Full Text Available Performing two cognitively demanding tasks at the same time is known to decrease performance. The current study investigates the underlying executive functions of a dual-tasking situation involving the simultaneous performance of decision making under explicit risk and a working memory task. It is suggested that making a decision and performing a working memory task at the same time should particularly require monitoring - an executive control process supervising behavior and the state of processing on two tasks. To test the role of a supervisory/monitoring function in such a dual-tasking situation we investigated 122 participants with the Game of Dice Task plus 2-back task (GDT plus 2-back task. This dual task requires participants to make decisions under risk and to perform a 2-back working memory task at the same time. Furthermore, a task measuring a set of several executive functions gathered in the term concept formation (Modified Card Sorting Test, MCST and the newly developed Balanced Switching Task (BST, measuring monitoring in particular, were used. The results demonstrate that concept formation and monitoring are involved in the simultaneous performance of decision making under risk and a working memory task. In particular, the mediation analysis revealed that BST performance partially mediates the influence of MCST performance on the GDT plus 2-back task. These findings suggest that monitoring is one important subfunction for superior performance in a dual-tasking situation including decision making under risk and a working memory task.

  7. Changes in brain network efficiency and working memory performance in aging.

    Science.gov (United States)

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  8. Changes in brain network efficiency and working memory performance in aging.

    Directory of Open Access Journals (Sweden)

    Matthew L Stanley

    Full Text Available Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14 and older (n = 15 adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency. Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  9. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shijie; Liu, Yinong; Ren, Yang; Jiang, Daqiang; Yang, Feng; Cong, Daoyong; Wang, Yandong; Cui, Lishan

    2016-06-08

    Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa and a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.

  10. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy.

    Science.gov (United States)

    Hao, Shijie; Liu, Yinong; Ren, Yang; Jiang, Daqiang; Yang, Feng; Cong, Daoyong; Wang, Yandong; Cui, Lishan

    2016-06-29

    Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultralarge elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nanobias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice as high as that (∼500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa and a mechanical work output of 1.08 × 10(6) J/m(3), which are about three and five times higher than those of reported two-way SMAs, respectively. It was revealed that the massive number of Nb nanoribbons in the compressive state provides the high actuation stress and high work output upon cooling, and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with a small volume and simple construct works well with the miniaturization and simplification of actuators.

  11. Improving Packet Processing Performance of a Memory-Bounded Application

    CERN Document Server

    Schumacher, Jorn; The ATLAS collaboration; Borga, Andrea; Boterenbrood, Hendrik; Chen, Hucheng; Chen, Kai; Drake, Gary; Francis, David; Gorini, Benedetto; Lanni, Francesco; Lehmann Miotto, Giovanna; Levinson, Lorne; Narevicius, Julia; Roich, Alexander; Ryu, Soo; Schreuder, Frans Philip; Vandelli, Wainer; Zhang, Jinlong; Vermeulen, Jos

    2015-01-01

    Experiments in high-energy physics (HEP) and related fields often impose constraints and challenges on data acquisition systems. As a result, these systems are implemented as unique mixtures of custom and commercial-off-the-shelf electronics (COTS), involving and connecting radiation-hard devices, large high-performance networks, and computing farms. FELIX, the Frontend Link Exchange, is a new PC-based general purpose data routing device for the data-acquisition system of the ATLAS experiment at CERN. Performance is a very crucial point for devices like FELIX, which have to be capable of processing tens of gigabyte of data per second. Thus it is important to understand the performance limitations for typical workloads on modern hardware. We present an analysis of a packet processing algorithm that is used in FELIX, and show how the PC system's memory architecture plays a key factor in the overall data throughput achieved by the application. Finally, we present optimizations that increase the processing throug...

  12. Performance-approach goals deplete working memory and impair cognitive performance.

    Science.gov (United States)

    Crouzevialle, Marie; Butera, Fabrizio

    2013-08-01

    Although longitudinal studies have consistently shown the positive impact of performance-approach goals (i.e., the desire to demonstrate one's abilities and outperform others) on academic success, they might allow some strategic behaviors such as cheating and surface studying, leaving open the question of the sheer impact of performance-approach goals on cognitive performance. We argued that the pressure to outperform others might generate outcome concerns and thus deplete working memory resources available for the activity, thereby hindering cognitive performance. Three studies carried out in a laboratory context confirmed this hypothesis. During a demanding cognitive task, performance-approach goal manipulation hampered performance (Experiment 1) by generating distractive concerns that drew on the limited verbal component of working memory (Experiment 2). Moreover, this interference was shown to be specifically due to the activation of performance-approach goal-related thoughts during the task solving (Experiment 3). Together, the present results highlight the distractive consequence of performance-approach goals on cognitive performance, suggesting that cognitive resource allocation is divided among the storage, processing, and retrieval of task-relevant information and the activation of normative goal-attainment concerns.

  13. On the Performance of Three In-Memory Data Systems for On Line Analytical Processing

    Directory of Open Access Journals (Sweden)

    Ionut HRUBARU

    2017-01-01

    Full Text Available In-memory database systems are among the most recent and most promising Big Data technologies, being developed and released either as brand new distributed systems or as extensions of old monolith (centralized database systems. As name suggests, in-memory systems cache all the data into special memory structures. Many are part of the NewSQL strand and target to bridge the gap between OLTP and OLAP into so-called Hybrid Transactional Analytical Systems (HTAP. This paper aims to test the performance of using such type of systems for TPCH analytical workloads. Performance is analyzed in terms of data loading, memory footprint and execution time of the TPCH query set for three in-memory data systems: Oracle, SQL Server and MemSQL. Tests are subsequently deployed on classical on-disk architectures and results compared to in-memory solutions. As in-memory is an enterprise edition feature, associated costs are also considered.

  14. Imagination inflation in the mirror: Can imagining others' actions induce false memories of self-performance?

    Science.gov (United States)

    Lindner, Isabel; Echterhoff, Gerald

    2015-06-01

    Imagining oneself performing a simple action can trigger false memories of self-performance, a phenomenon called imagination inflation. However, people can, and often do, imagine others' behavior and actions. According to a visual-similarity account, imagining another person's actions should induce the same kind of memory error, a false memory of self-performance. We tested this account in three experiments, in which performance was followed by imagination. In the imagination phase, participants were asked to either imagine themselves or to imagine another person performing actions, some of which were not previously performed. Two weeks later, a surprise source-memory test was administered in which participants had to decide whether a depicted action had been performed or not performed. Results revealed that imagining another person can trigger false memories of self-performance. However, visual similarity between performance and imagination predicted the amount of false memories only for other-imagination but not for self-imagination. These findings are consistent with research suggesting that other- and self-imagination rely on different mechanisms: While other-imagination primarily involves visual imagery, self-imagination primarily involves motor imagery. Accordingly, false action memories from other-imagination may result from visual similarity, whereas false action memories from self-imagination may result from motor simulation.

  15. Memory Test Performance on Analogous Verbal and Nonverbal Memory Tests in Patients with Frontotemporal Dementia and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Deanna Baldock

    2016-01-01

    Full Text Available Background: Patients with frontotemporal dementia (FTD typically have initial deficits in language or changes in personality, while the defining characteristic of Alzheimer's disease (AD is memory impairment. Neuropsychological findings in the two diseases tend to differ, but can be confounded by verbal impairment in FTD impacting performance on memory tests in these patients. Methods: Twenty-seven patients with FTD and 102 patients with AD underwent a neuropsychological assessment before diagnosis. By utilizing analogous versions of a verbal and nonverbal memory test, we demonstrated differences in these two modalities between AD and FTD. Discussion: Better differentiation between AD and FTD is found in a nonverbal memory test, possibly because it eliminates the confounding variable of language deficits found in patients with FTD. These results highlight the importance of nonverbal learning tests with multiple learning trials in diagnostic testing.

  16. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and subseq

  17. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia.

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  18. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and

  19. The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia.

    NARCIS (Netherlands)

    Geldorp, B. van; Bergmann, H.C.; Robertson, J.; Wester, A.J.; Kessels, R.P.C.

    2012-01-01

    Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and subseq

  20. How performance feedback and reflection affect transactive memory

    NARCIS (Netherlands)

    Kleij, R. van der; Hoeppermans, M.

    2011-01-01

    Research on transactive memory has showed the positive effects of training together. This study investigated how feedback and reflection affect transactive memory in settings where there is no time for elaborate team training. Newly formed teams were given accurate, false or no feedback about their

  1. PERFORMANCE COMPARISON OF CELL-BASED AND PACKET-BASED SWITCHING SCHEMES FOR SHARED MEMORY SWITCHES

    Institute of Scientific and Technical Information of China (English)

    Xi Kang; Ge Ning; Feng Chongxi

    2004-01-01

    Shared Memory (SM) switches are widely used for its high throughput, low delay and efficient use of memory. This paper compares the performance of two prominent switching schemes of SM packet switches: Cell-Based Switching (CBS) and Packet-Based Switching (PBS).Theoretical analysis is carried out to draw qualitative conclusion on the memory requirement,throughput and packet delay of the two schemes. Furthermore, simulations are carried out to get quantitative results of the performance comparison under various system load, traffic patterns,and memory sizes. Simulation results show that PBS has the advantage of shorter time delay while CBS has lower memory requirement and outperforms in throughput when the memory size is limited. The comparison can be used for tradeoff between performance and complexity in switch design.

  2. Prediction and Evaluation of Memory Performance by Young and Old Adults.

    Science.gov (United States)

    Lovelace, Eugene A.; And Others

    The poorer performance of older people in laboratory tests of episodic memory may result from failures or deficiencies in metamemory processes, e.g., failure to monitor task or individual item difficulty. To study age differences in prediction of memory performance, an associative matching task was used to compare young (N=20) and older (N=20)…

  3. Oracle database 12c release 2 in-memory tips and techniques for maximum performance

    CERN Document Server

    Banerjee, Joyjeet

    2017-01-01

    This Oracle Press guide shows, step-by-step, how to optimize database performance and cut transaction processing time using Oracle Database 12c Release 2 In-Memory. Oracle Database 12c Release 2 In-Memory: Tips and Techniques for Maximum Performance features hands-on instructions, best practices, and expert tips from an Oracle enterprise architect. You will learn how to deploy the software, use In-Memory Advisor, build queries, and interoperate with Oracle RAC and Multitenant. A complete chapter of case studies illustrates real-world applications. • Configure Oracle Database 12c and construct In-Memory enabled databases • Edit and control In-Memory options from the graphical interface • Implement In-Memory with Oracle Real Application Clusters • Use the In-Memory Advisor to determine what objects to keep In-Memory • Optimize In-Memory queries using groups, expressions, and aggregations • Maximize performance using Oracle Exadata Database Machine and In-Memory option • Use Swingbench to create d...

  4. Origin of the superior performance of (thio)squaramides over (thio)ureas in organocatalysis.

    Science.gov (United States)

    Lu, Tongxiang; Wheeler, Steven E

    2013-11-04

    The Diels-Alder cycloaddition of anthracene and nitrostyrene catalyzed by the squaramide-derived aminocatalysts (Sq) recently reported by Jørgensen and co-workers (Angew. Chem. 2012, 124, 10417; Angew. Chem. Int. Ed. 2012, 51, 10271) has been studied by using modern tools of computational quantum chemistry. This catalyst is compared with analogous urea-, thiourea-, and thiosquaramide-derived aminocatalysts. Ultimately, a thiosquar-amide-derived catalyst is predicted to result in the lowest free-energy barrier, while retaining the same high degree of enantioselectivity as Sq. This stems in part from the superior hydrogen-bonding ability of thiosquaramides, compared to squaramides and (thio)ureas. We also examine the hydrogen-bonding ability of (thio)ureas and (thio)-squaramides in model complexes. In contrast to previous work, we show that aromaticity does not contribute significantly to the enhanced hydrogen-bonding interactions of squaramides. Overall, thiosquaramide, which has not been explored in the context of either organocatalysis or molecular recognition, is predicted to lead to strong, co-planar hydrogen bonds, and should serve as a potent hydrogen-bonding element in a myriad of applications.

  5. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins

    Science.gov (United States)

    Su, Xiao-Li; Cheng, Ming-Yu; Fu, Lin; Yang, Jing-He; Zheng, Xiu-Cheng; Guan, Xin-Xin

    2017-09-01

    The hollow activated carbon nanomesh (PCACM) with a hierarchical porous structure is derived from biowaste-poplar catkins by in-situ calcination etching with Ni(NO3)2·6H2O and KOH in N2 flow combined with an acid dissolution technique. This procedure not only inherits the natural tube morphology of poplar catkins, but also generates a fascinating nanomesh structure on the walls. PCACM possesses a large specific surface area (SBET = 1893.0 m2 g-1) and high total pore volume (Vp = 1.495 cm3 g-1), and displays an exciting meso-macoporous structure with a concentrated pore size distribution of 4.53 nm. The specific capacitance of PCACM is as high as 314.6 F g-1 at 1.0 A g-1 when used as the electrode materials for supercapacitor. Furthermore, the symmetric supercapacitor of PCACM with 1.0 M Na2SO4 solution as the electrolyte displays a high energy density of 20.86 Wh kg-1 at a power density of 180.13 W kg-1 within a wide voltage rage of 0-1.8 V, which is comparable or even obviously higher than those of other biomass derived carbon reported. It is noteworthy that PCACM also exhibits superior cycling stability and coulombic efficiency. The excellent electrochemical behaviors enable PCACM to be a promising electrode material for supercapacitors.

  6. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  7. Graphite assisted synthesis of nanoparticles interconnected porous two-dimensional LiMn2O4 nanoplates with superior performance

    Science.gov (United States)

    Tan, X. H.; Liu, H. Q.; Jiang, Y.; Liu, G. Y.; Guo, Y. J.; Wang, H. F.; Sun, L. F.; Chu, W. G.

    2016-10-01

    A facile graphite assisted approach is proposed to synthesize high performance LiMn2O4 nanostructures. Graphite plates with different sizes and thicknesses are found to have different influences on the structure, morphology and performance of LiMn2O4. Larger and thicker graphite plates result in 2-D porous LiMn2O4 nanoplates whereas smaller and thinner ones lead to the formation of dispersed nanoparticles. Despite the smaller lattice constant, the shorter Lisbnd O and longer Mnsbnd O bonds, and the lower BET surface area compared to dispersed LiMn2O4 nanoparticles, LiMn2O4 nanoplates formed by primary nanoparticles with similar sizes and morphologies exhibit the superior performance because of the better interparticle electronic conductivity. LiMn2O4 nanoplates show the discharge capacity of 104 mAh g-1 at 50 C and the capacity retention of 70.0% after 1000 cycles for 1 C at RT, better than the corresponding values, 95 mAh g-1 and 64.5% for dispersed LiMn2O4 nanoparticles, respectively. The more superior performance of LiMn2O4 nanoplates compared to dispersed LiMn2O4 nanoparticles is particularly manifested in the case of lower percentage conductive additive, which is very significant for practical application. This simple, cost effective, green and up scalable approach can also be employed to synthesize other 2-D nanostructured materials.

  8. VMware vSphere performance designing CPU, memory, storage, and networking for performance-intensive workloads

    CERN Document Server

    Liebowitz, Matt; Spies, Rynardt

    2014-01-01

    Covering the latest VMware vSphere software, an essential book aimed at solving vSphere performance problems before they happen VMware vSphere is the industry's most widely deployed virtualization solution. However, if you improperly deploy vSphere, performance problems occur. Aimed at VMware administrators and engineers and written by a team of VMware experts, this resource provides guidance on common CPU, memory, storage, and network-related problems. Plus, step-by-step instructions walk you through techniques for solving problems and shed light on possible causes behind the problems. Divu

  9. Performance study of a clustered shared-memory multiprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Naji, A.R.

    1988-01-01

    A shared-memory multiprocessor having clusters of processing elements and memory modules is proposed. Since the delay through a multistage interconnection network, which increases logarithmically, can be large when the number of processors is large, clustering helps reduce the average delay to access a memory module. Each cluster has two others as its neighbors. The clusters are interconnected in such a way that the memory modules of a cluster can also be accessed by the processors of the neighboring clusters besides its own processors via its interconnection network. The coupling between the clusters provides flexibility for the scheduling of tasks. The processors and memory modules of all clusters are also connected to a shared interconnection network allowing the processors to access memory modules of the nonneighboring clusters. A Markov-chain model is developed for the circuit-switching strategy, and queueing models are used for the packet-switching strategy. The circuit-switching model is extended to include synchronized memory accesses. Sharing of network ports by the processors is also considered. A scheduling algorithm is proposed to assign tasks from directed acyclic task graphs to processors using 0-1 integer programming and a lookahead technique.

  10. Performance of a base isolator with shape memory alloy bars

    Institute of Scientific and Technical Information of China (English)

    Fabio Casciati; Lucia Faravelli; Karim Hamdaoui

    2007-01-01

    A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers.A prototype of the device was built and experimentally tested on the shaking table.The new base isolation device consists of two disks,one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers,and at least three inclined shape memory alloy(SMA) bars.The role of the SMA bars is to limit the relative motion between the base and the superstructure,to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device.To verify the expected performance,a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes.It is shown that the main feature of the proposed base isolation device is that for cyclic loading,the super-elastic behavior of the alloy results in wide load-displacement loops,where a large amount of energy is dissipated.

  11. The strategic regulation of children's memory performance and suggestibility.

    Science.gov (United States)

    Roebers, Claudia M; Schneider, Wolfgang

    2005-05-01

    We report two empirical studies that investigated previously reported benefits of a high accuracy motivation, and thus a high threshold, for children's and adults' event recall and for their ability to resist false suggestions. In the studies, 6-, 7-, and 8-year-olds, as well as adults, were shown a brief video about an event and were later asked unbiased and misleading questions about it. In Study 1, participants were either (a) given the typical accuracy instructions (including the option to answer with "I don't know"), (b) reminded of the accuracy instructions during the interview, or (c) immediately given feedback and a token for every correct answer. The results showed that the reminders were ineffective in stimulating strategic control behavior in children, independent of age. In Study 2, the confounding effects of feedback and incentives were disentangled by contrasting (a) free report, (b) feedback only, (c) incentives only, and (d) feedback plus incentives. Analyses on recall performance and suggestibility revealed that both feedback and incentives are necessary to increase children's accurate memory reports.

  12. Performance evaluation of apriori with memory mapped files

    Directory of Open Access Journals (Sweden)

    T.Anuradha

    2013-01-01

    Full Text Available The concept of memory mapped files reduces the I/O data movement by mapping file data directly to the process address space. This is best suitable for the data mining applications which involve accessing large data files. The recent improvement in parallel processor architectures is the multi-core architectures. To get the real benefit from these architectures we have to redesign the existing serial algorithms so that they can be parallelized on multi-core architectures. OpenMP is an API for parallel programming which make a serial program to run in parallel without much redesigning job. Our main concern in this paper is to evaluate the performance of apriori using linux mmap( function compared to fread( function in both the serial and parallel environments. Experiments are conducted with both simulated and standard datasets on multi-core architectures using openMP threads. Our experiments show that mmap( function gives better results than fread( function with both serial as well as parallel implementations of apriori on dual core.

  13. Improving the Performance and Energy Efficiency of Phase Change Memory Systems

    Institute of Scientific and Technical Information of China (English)

    王琪; 李佳芮; 王东辉

    2015-01-01

    Phase change memory (PCM) is a promising technology for future memory thanks to its better scalability and lower leakage power than DRAM (dynamic random-access memory). However, adopting PCM as main memory needs to overcome its write issues, such as long write latency and high write power. In this paper, we propose two techniques to improve the performance and energy-efficiency of PCM memory systems. First, we propose a victim cache technique utilizing the existing buffer in the memory controller to reduce PCM memory accesses. The key idea is reorganizing the buffer into a victim cache structure (RBC) to provide additional hits for the LLC (last level cache). Second, we propose a chip parallelism-aware replacement policy (CPAR) for the victim cache to further improve performance. Instead of evicting one cache line once, CPAR evicts multiple cache lines that access different PCM chips. CPAR can reduce the frequent victim cache eviction and improve the write parallelism of PCM chips. The evaluation results show that, compared with the baseline, RBC can improve PCM memory system performance by up to 9.4% and 5.4% on average. Combing CPAR with RBC (RBC+CPAR) can improve performance by up to 19.0% and 12.1% on average. Moreover, RBC and RBC+CPAR can reduce memory energy consumption by 8.3%and 6.6%on average, respectively.

  14. Lignocellulose Nanofiber-Reinforced Polystyrene Produced from Composite Microspheres Obtained in Suspension Polymerization Shows Superior Mechanical Performance.

    Science.gov (United States)

    Ballner, Daniel; Herzele, Sabine; Keckes, Jozef; Edler, Matthias; Griesser, Thomas; Saake, Bodo; Liebner, Falk; Potthast, Antje; Paulik, Christian; Gindl-Altmutter, Wolfgang

    2016-06-01

    A facile approach to obtaining cellulose nanofiber-reinforced polystyrene with greatly improved mechanical performance compared to unreinforced polystyrene is presented. Cellulose nanofibers were obtained by mechanical fibrillation of partially delignified wood (MFLC) and compared to nanofibers obtained from bleached pulp. Residual hemicellulose and lignin imparted amphiphilic surface chemical character to MFLC, which enabled the stabilization of emulsions of styrene in water. Upon suspension polymerization of styrene from the emulsion, polystyrene microspheres coated in MFLC were obtained. When processed into polymer sheets by hot-pressing, improved bending strength and superior impact toughness was observed for the polystyrene-MFLC composite compared to the un-reinforced polystyrene.

  15. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.

    Science.gov (United States)

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.

  16. Toward a science of exceptional achievement: attaining superior performance through deliberate practice.

    Science.gov (United States)

    Ericsson, K Anders; Nandagopal, Kiruthiga; Roring, Roy W

    2009-08-01

    Exceptional performance is frequently attributed to genetic differences in talent. Since Sir Francis Galton's book, Hereditary Genius, many scientists have cited heritable factors that set limits of performance and only allow some individuals to attain exceptional levels. However, thus far these accounts have not explicated the causal processes involved in the activation and expression of unique genes in DNA that lead to the emergence of distinctive physiological attributes and cognitive capacities (innate talent). This article argues on the basis of our current knowledge that it is possible to account for the development of elite performance among healthy children without recourse to innate talent (genetic endowment)--excepting the innate determinants of body size. Our account is based on the expert-performance approach and proposes that the distinctive characteristics of exceptional performers are the result of adaptations to extended and intense practice activities that selectively activate dormant genes that are contained within all healthy individuals' DNA. Furthermore, the theoretical framework of expert performance explains the apparent emergence of early talent by identifying factors that influence starting ages for training and the accumulated engagement in sustained extended deliberate practice, such as motivation, parental support, and access to the best training environments and teachers. In sum, our empirical investigations and extensive reviews show that the development of expert performance will be primarily constrained by individuals' engagement in deliberate practice and the quality of the available training resources.

  17. Effects of Different Exercise Strategies and Intensities on Memory Performance and Neurogenesis

    Science.gov (United States)

    Diederich, Kai; Bastl, Anna; Wersching, Heike; Teuber, Anja; Strecker, Jan-Kolja; Schmidt, Antje; Minnerup, Jens; Schäbitz, Wolf-Rüdiger

    2017-01-01

    It is well established that physical exercise affects both hippocampal neurogenesis and memory functions. Until now, distinctive effects of controlled and voluntary training (VT) on behavior and neurogenesis as well as interactions between exercise intensity, neurogenesis and memory performance are still elusive. The present study tested the impact of moderate controlled and VT on memory formation and hippocampal neurogenesis and evaluated interactions between exercise performance, learning efficiency and proliferation of progenitor cells in the hippocampus. Our data show that both controlled and VT augmented spatial learning and promoted hippocampal neurogenesis. Regression analysis revealed a significant linear increase of the amount of new hippocampal neurons with increased exercise intensity. Regression analysis of exercise performance on retention memory performance revealed a quadratic, inverted u-shaped relationship between exercise performance and retention of spatial memory. No association was found between the amount of newborn neurons and memory performance. Our results demonstrate that controlled training (CT), if performed with an appropriate combination of speed and duration, improves memory performance and neurogenesis. Voluntary exercise elevates neurogenesis dose dependently to high levels. Best cognitive improvement was achieved with moderate exercise performance. PMID:28360847

  18. Relationship between memory performance, visuospatial function and functional lateralization in adults

    OpenAIRE

    Bilić, Katja

    2011-01-01

    Age-related decline in memory and other cognitive functions, such as visuospatial functions is widely studied and well documented. In recent years, some studies have also found relationships between memory performance and functional body lateralization, with individuals who are inconsistently lateralized (e.g. have inconsistent handedness) scoring higher on episodic memory tests. The objectives of this study were to investigate relationships and possible differences between episodic and seman...

  19. MicroRNA-138 is a potential regulator of memory performance in humans

    OpenAIRE

    Schröder, Julia; Ansaloni, Sara; Schilling, Marcel; Liu, Tian; Radke, Josefine; Jaedicke, Marian; Schjeide, Brit-Maren M.; Mashychev, Andriy; Tegeler, Christina; Radbruch, Helena; Papenberg, Goran; Düzel, Sandra; Demuth, Ilja; Bucholtz, Nina; Lindenberger, Ulman

    2014-01-01

    Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate "memory genes," these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyse...

  20. MicroRNA-138 is a potential regulator of memory performance in humans

    OpenAIRE

    Julia eSchröder; Sara eAnsaloni; Marcel eSchilling; Tian eLiu; Josefine eRadke; Marian eJädicke; Schjeide, Brit-Maren M.; Andriy eMashychev; Christina eTegeler; Helena eRadbruch; Goran ePapenberg; Sandra eDüzel; Ilja eDemuth; Nina eBucholtz; Ulman eLindenberger

    2014-01-01

    Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate memory genes, these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1,318 participants of the Berlin Aging Study II aged 60 years or older. The analyses...

  1. Identifying Blood Biomarkers and Physiological Processes That Distinguish Humans with Superior Performance under Psychological Stress

    Science.gov (United States)

    2009-12-18

    Analysis of the factors contributing to serum retinol binding protein and transthyretin levels in Japanese adults. J Atheroscler Thromb 13: 209–215. 23...susceptible low perform- ing colleagues, we compared expression levels of low and median- scoring vs. high-scoring performers. This resulted in nine...effect of catecholamines (eg. epinephrine) either by increasing the release or preventing the reuptake of catecholamines at a pre-synaptic level [11,12

  2. Antisaccade Performance in Schizophrenia: A Neural Model of Decision Making in the Superior Colliculus

    Directory of Open Access Journals (Sweden)

    Vassilis eCutsuridis

    2014-02-01

    Full Text Available Antisaccade performance deficits in schizophrenia are generally interpreted as an impaired top-down inhibitory signal failing to suppress the erroneous response. We recorded the antisaccade performance (error rates and latencies of healthy and schizophrenia subjects performing the mirror antisaccade task. A neural rise-to-threshold model of antisaccade performance was developed to uncover the biophysical mechanisms giving rise to the observed deficits in schizophrenia. Schizophrenia patients displayed greater variability in the antisaccade and corrected antisaccade latency distributions, increased error rates and decreased corrected errors, relative to healthy participants. Our model showed that i increased variability is due to a more noisy accumulation of information by schizophrenia patients, but their confidence level required before making a decision is unaffected, and ii competition between the correct and erroneous decision processes, and not a third top-down inhibitory signal of the erroneous response, accounts for the antisaccade performance of healthy and schizophrenia subjects. Local competition further ensured that a correct antisaccade is never followed by an error prosaccade.

  3. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Directory of Open Access Journals (Sweden)

    Nesli Avgan

    2017-03-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265 and long-term visual memory (p-value = 0.003 in a small cohort (n = 181 comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II. VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006 that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  4. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  5. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  6. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    NARCIS (Netherlands)

    H.L. Castricum; R. Kreiter; H.M. van Veen; D.H.A. Blank; J.F. Vente; J.E. ten Elshof

    2008-01-01

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables sel

  7. Physical Performance Is Associated with Working Memory in Older People with Mild to Severe Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    K. M. Volkers

    2014-01-01

    Full Text Available Background. Physical performances and cognition are positively related in cognitively healthy people. The aim of this study was to examine whether physical performances are related to specific cognitive functioning in older people with mild to severe cognitive impairment. Methods. This cross-sectional study included 134 people with a mild to severe cognitive impairment (mean age 82 years. Multiple linear regression was performed, after controlling for covariates and the level of global cognition, with the performances on mobility, strength, aerobic fitness, and balance as predictors and working memory and episodic memory as dependent variables. Results. The full models explain 49–57% of the variance in working memory and 40–43% of episodic memory. Strength, aerobic fitness, and balance are significantly associated with working memory, explaining 3–7% of its variance, irrespective of the severity of the cognitive impairment. Physical performance is not related to episodic memory in older people with mild to severe cognitive impairment. Conclusions. Physical performance is associated with working memory in older people with cognitive impairment. Future studies should investigate whether physical exercise for increased physical performance can improve cognitive functioning. This trial is registered with ClinicalTrials.gov NTR1482.

  8. Processing efficiency theory in children: working memory as a mediator between trait anxiety and academic performance.

    Science.gov (United States)

    Owens, Matthew; Stevenson, Jim; Norgate, Roger; Hadwin, Julie A

    2008-10-01

    Working memory skills are positively associated with academic performance. In contrast, high levels of trait anxiety are linked with educational underachievement. Based on Eysenck and Calvo's (1992) processing efficiency theory (PET), the present study investigated whether associations between anxiety and educational achievement were mediated via poor working memory performance. Fifty children aged 11-12 years completed verbal (backwards digit span; tapping the phonological store/central executive) and spatial (Corsi blocks; tapping the visuospatial sketchpad/central executive) working memory tasks. Trait anxiety was measured using the State-Trait Anxiety Inventory for Children. Academic performance was assessed using school administered tests of reasoning (Cognitive Abilities Test) and attainment (Standard Assessment Tests). The results showed that the association between trait anxiety and academic performance was significantly mediated by verbal working memory for three of the six academic performance measures (math, quantitative and non-verbal reasoning). Spatial working memory did not significantly mediate the relationship between trait anxiety and academic performance. On average verbal working memory accounted for 51% of the association between trait anxiety and academic performance, while spatial working memory only accounted for 9%. The findings indicate that PET is a useful framework to assess the impact of children's anxiety on educational achievement.

  9. Theory of mind and switching predict prospective memory performance in adolescents.

    Science.gov (United States)

    Altgassen, Mareike; Vetter, Nora C; Phillips, Louise H; Akgün, Canan; Kliegel, Matthias

    2014-11-01

    Research indicates ongoing development of prospective memory as well as theory of mind and executive functions across late childhood and adolescence. However, so far the interplay of these processes has not been investigated. Therefore, the purpose of the current study was to investigate whether theory of mind and executive control processes (specifically updating, switching, and inhibition) predict prospective memory development across adolescence. In total, 42 adolescents and 41 young adults participated in this study. Young adults outperformed adolescents on tasks of prospective memory, theory of mind, and executive functions. Switching and theory of mind predicted prospective memory performance in adolescents.

  10. A framework for the integration of Green and Lean Six Sigma for superior sustainability performance

    DEFF Research Database (Denmark)

    Cherrafi, Anass; Elfezazi, Said; Govindan, Kannan

    2017-01-01

    Evidence suggests that Lean, Six Sigma and Green approaches make a positive contribution to the economic, social and environmental (i.e. sustainability) performance of organisations. However, evidence also suggests that organisations have found their integration and implementation challenging....... The purpose of this research is therefore to present a framework that methodically guides companies through a five stages and sixteen steps process to effectively integrate and implement the Green, Lean and Six Sigma approaches to improve their sustainability performance. To achieve this, a critical review...... of industries. The results showed that the integration of Lean Six Sigma and Green helped the organisations to averagely reduce their resources consumption from 20 to 40% and minimise the cost of energy and mass streams by 7–12%. The application of the framework should be gradual, the companies should assess...

  11. Superior recognition performance for happy masked and unmasked faces in both younger and older adults.

    Directory of Open Access Journals (Sweden)

    Joakim eSvard

    2012-11-01

    Full Text Available In the aging literature it has been shown that even though emotion recognition performance decreases with age, the decrease is less for happiness than other facial expressions. Studies in younger adults have also revealed that happy faces are more strongly attended to and better recognized than other emotional facial expressions. Thus, there might be a more age independent happy face advantage in facial expression recognition. By using a backward masking paradigm and varying stimulus onset asynchronies (17–267 ms the temporal development of a happy face advantage, on a continuum from low to high levels of visibility, was examined in younger and older adults. Results showed that across age groups, recognition performance for happy faces was better than for neutral and fearful faces at durations longer than 50 ms. Importantly, the results showed a happy face advantage already during early processing of emotional faces in both younger and older adults. This advantage is discussed in terms of processing of salient perceptual features and elaborative processing of the happy face. We also investigate the combined effect of age and neuroticism on emotional face processing. The rationale was previous findings of age related differences in physiological arousal to emotional pictures and a relation between arousal and neuroticism. Across all durations, there was an interaction between age and neuroticism, showing that being high in neuroticism might be disadvantageous for younger, but not older adults’ emotion recognition performance during arousal enhancing tasks. These results indicate that there is a relation between aging, neuroticism, and performance, potentially related to physiological arousal.

  12. How Quickly They Forget: The Relationship between Forgetting and Working Memory Performance

    Science.gov (United States)

    Bayliss, Donna M.; Jarrold, Christopher

    2015-01-01

    This study examined the contribution of individual differences in rate of forgetting to variation in working memory performance in children. One hundred and twelve children (mean age 9 years 4 months) completed 2 tasks designed to measure forgetting, as well as measures of working memory, processing efficiency, and short-term storage ability.…

  13. Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H.; Schmand, B.A.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    Introduction. Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the ide

  14. A single bout of resistance exercise can enhance episodic memory performance

    Science.gov (United States)

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  15. Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H; Schmand, B.A.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    INTRODUCTION: Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the

  16. Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H.; Schmand, B.A.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    Introduction. Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the

  17. Indicators of suboptimal performance embedded in the Wechsler Memory Scale : Fourth Edition (WMS-IV)

    NARCIS (Netherlands)

    Bouman, Z.; Hendriks, M.P.H.; Schmand, B.A.; Kessels, R.P.C.; Aldenkamp, A.P.

    2016-01-01

    INTRODUCTION: Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the

  18. How Quickly They Forget: The Relationship between Forgetting and Working Memory Performance

    Science.gov (United States)

    Bayliss, Donna M.; Jarrold, Christopher

    2015-01-01

    This study examined the contribution of individual differences in rate of forgetting to variation in working memory performance in children. One hundred and twelve children (mean age 9 years 4 months) completed 2 tasks designed to measure forgetting, as well as measures of working memory, processing efficiency, and short-term storage ability.…

  19. Memory monitoring performance and PFC activity are associated with 5-HTTLPR genotype in older adults

    Science.gov (United States)

    Pacheco, Jennifer; Beevers, Christopher G.; McGeary, John E.; Schnyer, David M.

    2012-01-01

    Older adults show extensive variability in cognitive performance, including episodic memory. A portion of this variability could potentially be explained by genetic factors. Recent literature shows that the neurotransmitter serotonin plays an important role in memory processes, as enhancements of brain serotonin have led to memory improvement. Here, we have begun to explore genetic contributions to the performance and underlying brain activity associated with source memory monitoring. Using a source recognition memory task during fMRI scanning, this study offers evidence that older adults who carry a short allele (S-car) of the serotonin transporter linked polymorphic region (5-HTTLPR) in the SLC6A4 gene show specific deficits in source memory monitoring relative to older adults who are homozygous for the long allele (LL). These deficits are accompanied by less neural activity in regions of prefrontal cortex that have been shown to support accurate memory monitoring. Moreover, while the older adult LL group’s behavioral performance does not differ from younger adults, their brain activation reveals evidence of compensatory activation that likely supports their higher performance level. These results provide preliminary evidence that the long-allele homozygous profile is cognitively beneficial to older adults, particularly for memory functioning. PMID:22705442

  20. A single bout of resistance exercise can enhance episodic memory performance.

    Science.gov (United States)

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-11-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise.

  1. Working memory performance and executive function behaviors in young children with SLI

    NARCIS (Netherlands)

    Vugs, B.A.M.; Hendriks, M.P.H.; Cuperus, J.M.; Verhoeven, L.T.W.

    2014-01-01

    The present study compared the performances of young children with specific language impairment (SLI) to that of typically developing (TD) children on cognitive measures of working memory (WM) and behavioral ratings of executive functions (EF). The Automated Working Memory Assessment was administere

  2. Response to psychotherapy for posttraumatic stress disorder: the role of pretreatment verbal memory performance.

    Science.gov (United States)

    Nijdam, Mirjam J; de Vries, Giel-Jan; Gersons, Berthold P R; Olff, Miranda

    2015-08-01

    Neuropsychological studies have consistently demonstrated impaired verbal memory in posttraumatic stress disorder (PTSD). Trauma-focused treatment for PTSD is thought to rely on memory, but it is largely unknown whether treatment outcome is influenced by memory performance. The aim of the study, therefore, was to examine the relationship between verbal memory performance and treatment response to trauma-focused psychotherapy. Participants were referred to our outpatient clinic and recruited between December 2003 and January 2009 upon diagnosis of PTSD according to DSM-IV. Secondary analyses of a randomized controlled trial comparing eye movement desensitization and reprocessing therapy (n = 70) and brief eclectic psychotherapy (n = 70), a cognitive-behavioral intervention, are reported. Response to treatment was measured by self-reported PTSD symptom severity (Impact of Event Scale-Revised) over 17 weeks. Pretreatment verbal memory measures (California Verbal Learning Test, Rivermead Behavioral Memory Test) were included in the mixed linear model analyses in order to investigate the influence of memory on treatment outcome. Pretreatment encoding, short-term retrieval, long-term retrieval, and recognition performance were significantly associated with treatment response in terms of self-reported PTSD symptom severity for both treatments (P ≤ .013). Receiver operating characteristic curves predicting treatment response with pretreatment memory indices showed that 75.6% of the patients could be correctly classified as responder. Poor verbal memory performance represents a risk factor for worse treatment response to trauma-focused psychotherapy. Memory measures can be helpful in determining which patients are unable to benefit from trauma-focused psychotherapy. Future research should explore how treatment perspectives of patients with poor verbal memory can be improved. ISRCTN.com identifier: ISRCTN64872147. © Copyright 2015 Physicians Postgraduate Press, Inc.

  3. Effects of memory strategy training on performance and event-related brain potentials of children with ADHD in an episodic memory task.

    Science.gov (United States)

    Jonkman, Lisa M; Hurks, Petra P; Schleepen, Tamara M J

    2016-10-01

    Evidence for memory problems in children with attention deficit hyperactivity disorder (ADHD) is accumulating. Attempting to counter such problems, in the present study children with ADHD aged 8-12 years underwent a six-week metacognitive memory strategy training (MST) or one of two other active trainings, either a metacognitive attention-perceptual-motor training (APM) or placebo training consisting of playing board games (PLA). Effects of the training on episodic memory and underlying brain processes were investigated by comparing performance and event-related brain potentials (ERPs) on pre- and post-training sessions in an old/new recognition task between the three training groups. Potential far transfer effects of the memory strategy training were investigated by measuring performance on neuropsychological attention and memory-span tasks and parent-rated ADHD symptoms. The metacognitive memory strategy training led to significantly improved memory performance and enhanced amplitude of left parietal P600 activity associated with the process of memory recollection when compared to PLA, but APM training evoked similar improvements. Memory performance gains were significantly correlated with the memory-related ERP effects. Preliminary far transfer effects of MST training were found on attention and working memory performance and on parent-rated ADHD symptoms, although these results need replication with larger and better IQ-matched groups.

  4. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application

    Science.gov (United States)

    Li, Xifei; Liu, Jian; Zhang, Yong; Li, Yongliang; Liu, Hao; Meng, Xiangbo; Yang, Jinli; Geng, Dongsheng; Wang, Dongniu; Li, Ruying; Sun, Xueliang

    2012-01-01

    A floating catalyst chemical vapor deposition method has been developed to synthesize carbon nanotubes doped with a high concentration of nitrogen. Their electrochemical performance as anodes for lithium ion batteries (LIBs) in comparison to pristine carbon nanotubes (CNTs) has been investigated. X-ray photoelectron spectroscopy results indicated that the nitrogen content reaches as high as 16.4 at.%. Bamboo-like compartments were fabricated as shown by high resolution transmission electron microscopy. High concentration nitrogen doped carbon nanotubes (HN-CNTs) show approximately double reversible capacity of CNTs: 494 mAh g-1 vs. 260 mAh g-1, and present a much better rate capability than CNTs. The significantly superior electrochemical performance could be related to the high electrical conductivity and the larger number of defect sites in HN-CNTs for anodes of LIBs.

  5. Dissociative tendencies and memory performance on directed-forgetting tasks.

    Science.gov (United States)

    Devilly, Grant J; Ciorciari, Joseph; Piesse, Amy; Sherwell, Sarah; Zammit, Sonia; Cook, Fallon; Turton, Christie

    2007-03-01

    The current article presents two studies that aimed to replicate DePrince and Freyd's (2001, 2004) studies demonstrating that high and low dissociators differentially recall neutral and trauma words under conditions of varying cognitive load. We did not find this effect. This lack of replication was apparent for both free recall and word recognition memory and in both studies. In effect, we found little evidence to support betrayal trauma theory, yet observed increased memory fallibility, as demonstrated by lower general recall and (in one study) commission errors, in high dissociators.

  6. Cobalt-based metal organic framework with superior lithium anodic performance

    Science.gov (United States)

    Hu, Xiaoshi; Hu, Huiping; Li, Chao; Li, Tian; Lou, Xiaobing; Chen, Qun; Hu, Bingwen

    2016-10-01

    The reversible charging of a Co-1,4-benzenedicarboxylate MOF (Co-BDC MOF) prepared via an one-pot solvothermal method was studied for use as the anode in a Li-ion cell. It was found that this MOF anode provides high reversible capacities (1090 and 611 mA h g-1 at current densities of 0.2 and 1 A g-1, respectively), and an impressive rate performance. Such an outstanding Li-ion storage property has not been reported previously for the LIB anodes within the MOFs category. Ex-situ X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) studies of this material at different state of charge suggest that cobalt stays at Co2+ state during discharge/charge process, so that in this case Li+ may be inserted into the organic moiety without the direct participation of cobalt ions.

  7. Multifunctional graphene sheets embedded in silicone encapsulant for superior performance of light-emitting diodes.

    Science.gov (United States)

    Lee, Seungae; Hong, Jin-Yong; Jang, Jyongsik

    2013-07-23

    Graphene nanosheets with uniform shape are successfully incorporated into a silicone encapsulant of a light-emitting diode (LED) using a solvent-exchange approach which is a facile and straightforward method. The graphene nanosheets embedded in the silicone encapsulant have a multifunctional role which improves the performance of light-emitting diodes. The presence of graphene gives rise to effective heat dissipation, improvement of protection ability from external stimuli, such as moisture and hazardous gas, and enhancement of mechanical properties such as elastic modulus and fracture toughness. Consequently, the LEDs composed of a graphene-embedded silicone encapsulant exhibit long-term stability without loss of luminous efficiency by addition of relatively small amounts of graphene. This novel strategy offers a feasible candidate for their practical or industrial applications.

  8. TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal

    Science.gov (United States)

    Wang, Ran; Cai, Xia; Shen, Fenglei

    2014-06-01

    TiO2 hollow microspheres with mesoporous surface were synthesized by a facile template-assisted solvothermal reaction. The adsorption performance of TiO2 hollow microspheres for removing Methylene Blue from aqueous solution has been investigated. The comparative adsorption study indicated that adsorption capacity of TiO2 hollow microspheres with mesoporous surface is markedly higher than that of solid microsphere. The equilibrium data fitted well with the Langmuir model and the maximum adsorption capacity reached 196.83 mg/g. The kinetics of dye adsorption followed the pseudo-second-order model and the adsorbed dye could be degraded completely by the subsequent photocatalytic process. These TiO2 hollow microspheres can be considered as a low-cost alternative adsorbent for removal of organic pollutants from wastewater.

  9. Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Li, Zhenghui; Huang, Zhikun; Xu, Xingfa [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Li, Yunyong; Shi, Zhicong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China)

    2015-09-25

    Highlights: • G/NiO was synthesized by using alcohols-reduced graphene as substrate. • G/NiO presents a globule-on-sheet structure and reveals a synergistic effect. • G/NiO displays high specific capacitance and superior cycling stability. - Abstract: Graphene/nickel oxide composite (G/NiO) was synthesized through a facile hydrothermal method and subsequently microwave thermal treatment by using alcohols-reduced graphene as substrate. The as-prepared G/NiO was characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The results indicate that the graphene oxide has been successfully reduced to graphene, and NiO nanoparticles are homogeneous anchored on the surface of graphene, forming a globule-on-sheet structure. The loading content of NiO nanoparticles anchoring on the surface of graphene nanosheets can be controlled by adjusting the hydrothermal temperature. The G/NiO displays superior electrochemical performance with a specific capacitance of 530 F g{sup −1} at 1 A g{sup −1} in 2 M of NaOH. After 5000 cycles, the supercapacitor still maintains a specific capacitance of 490 F g{sup −1} (92% retention of the initial capacity), exhibiting excellent cycling stability.

  10. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine.

  11. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  12. The Effects of Maltreatment and Neuroendocrine Regulation on Memory Performance

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.; Howe, Mark L.; Toth, Sheree L.

    2010-01-01

    This investigation examined basic memory processes, cortisol, and dissociation in maltreated children. School-aged children (age range = 6-13), 143 maltreated and 174 nonmaltreated, were administered the California Verbal Learning Test-Children (D. C. Delis, J. H. Kramer, E. Kaplan, & B. A. Ober, 1994) in a week-long camp setting, daily…

  13. Task Dissociation in Prospective Memory Performance in Individuals With ADHD

    NARCIS (Netherlands)

    Altgassen, A.M.; Kretschmer, A.; Kliegel, M.

    2014-01-01

    OBJECTIVE: The present study investigated, for the first time, event- and time-based prospective memory (PM) in the same sample of adults with ADHD within one paradigm using parallel task constraints. METHOD: A total of 25 individuals with ADHD and 25 matched neurotypical controls completed a comput

  14. Working memory capacity predicts conflict-task performance

    NARCIS (Netherlands)

    Gulbinaite, Rasa; Johnson, Addie

    2014-01-01

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of co

  15. Future thinking instructions improve prospective memory performance in adolescents

    NARCIS (Netherlands)

    Altgassen, A.M.; Kretschmer, A.; Schnitzspahn, K.M.

    2017-01-01

    Studies on prospective memory (PM) development in adolescents point to age-related increases through to adulthood. The goal of the present study was to examine whether instructing adolescents to engage in an episodic prospection of themselves executing future actions (i.e., future thinking) when

  16. Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs.

    Science.gov (United States)

    Rosales Nieto, C A; Ferguson, M B; Macleay, C A; Briegel, J R; Martin, G B; Thompson, A N

    2013-06-01

    The reproductive efficiency of the entire sheep flock could be improved if ewe lambs go through puberty early and produce their first lamb at 1 year of age. The onset of puberty is linked to the attainment of critical body mass, and therefore we tested whether it would be influenced by genetic selection for growth rate or for rate of accumulation of muscle or fat. We studied 136 Merino ewe lambs with phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values at post-weaning age (200 days) for live weight (PWT), eye muscle depth (PEMD) and fat depth (PFAT). First oestrus was detected with testosterone-treated wethers and then entire rams as the ewes progressed from 6 to 10 months of age. Blood concentrations of leptin and IGF-I were measured to test whether they were related to production traits and reproductive performance (puberty, fertility and reproductive rate). In total, 97% of the lambs reached first oestrus at average weight 39.4 ± 0.4 kg (mean ± s.e.m.) and age 219 days (range 163 to 301). Age at first oestrus decreased with increases in values for PWT (P growth can accelerate the onset of puberty and increase fertility and reproductive rate of Merino ewe lambs. The metabolic hormones, IGF-I and leptin, might act as a physiological link between the growing tissues and the reproductive axis.

  17. Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties.

    Science.gov (United States)

    Scholz, Melanie N; D'Août, Kristiaan; Bobbert, Maarten F; Aerts, Peter

    2006-09-07

    Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3-0.4m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 Wkg-1 and 92 Jkg-1, respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo.

  18. Differential patterns of memory performance in relapsing, remitting and secondary progressive multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Drake Marina

    2006-01-01

    Full Text Available Background: Memory dysfunction is common in multiple sclerosis (MS. A retrieval failure has been reported as the primary cause for the memory deficits, although some studies also described a faulty acquisition. Aims: The aim of the study was to examine memory function in relapsing remitting (RR and secondary progressive (SP MS patients, analyze the patterns of performance and to investigate whether disease course influences this performance. Design and settings: Case-control prospective study conducted in a clinical setting. Materials and Methods: Fifty-five RR, 23 SP MS patients and 80 normal subjects were evaluated with a comprehensive neuropsychological battery. Memory was assessed with tasks from the Signoret memory battery. Attention and executive function were also assessed. Statistical Analysis : Univariate analysis of variance, Mann-Whitney U-test, multivariate logistic regression and Chi-square test were used as appropriate. Results: MS patients performed significantly worse than controls on almost all measures of memory ( P < 0,001. MS subgroups differed in tasks of delayed recall (logical memory- P =0,019; wordlist delayed recall, P < 0,001, semantic cued recall ( P < 0,001, recognition trials ( P =0,006 rate of forgetting ( P < 0,001 and confabulation and intrusion errors ( P =0,004. Conclusions: Memory is consistently impaired in MS patients and disease course differentially affects the pattern of performance. SP patients show greater difficulties and a more pervasive pattern of dysfunction than RR patients. Delayed recall was the most affected memory measure and performance on this task discriminates between RR and SP MS patients. Relapsing remitting patients performed within the mildly impaired range while SP patients showed a moderate to severe impairment.

  19. Improving Memory Subsystem Performance Using ViVA: Virtual Vector Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Gebis, Joseph; Oliker, Leonid; Shalf, John; Williams, Samuel; Yelick, Katherine

    2009-01-12

    The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changes to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.

  20. Cognitive psychopathology in Schizophrenia: Comparing memory performances with Obsessive-compulsive disorder patients and normal subjects on the Wechsler Memory Scale-IV.

    Science.gov (United States)

    Cammisuli, Davide Maria; Sportiello, Marco Timpano

    2016-06-01

    Memory system turns out to be one of the cognitive domains most severely impaired in schizophrenia. Within the theoretical framework of cognitive psychopathology, we compared the performance of schizophrenia patients on the Wechsler Memory Scale-IV with that in matched patients with Obsessive-compulsive disorder and that in healthy control subjects to establish the specific nature of memory deficits in schizophrenia. 30 schizophrenia patients, 30 obsessive-compulsive disorder patients and 40 healthy controls completed the Wechsler Memory Scale-IV. Schizophrenia symptom severity was assessed by the Positive and Negative Syndrome Scale (PANSS). Performances on memory battery including Indexes and subtests scores were compared by a One-Way ANOVA (Scheffé post-hoc test). Spearman Rank correlations were performed between scores on PANSS subscales and symptoms and WMS-IV Indexes and subtests, respectively. Schizophrenia patients showed a memory profile characterized by mild difficulties in auditory memory and visual working memory and poor functioning of visual, immediate and delayed memory. As expected, schizophrenia patients scored lower than healthy controls on all WMS-IV measures. With regard to the WMS-IV Indexes, schizophrenia patients performed worse on Auditory Memory, Visual Memory, Immediate and Delayed Memory than Obsessive-compulsive disorder patients but not on Visual Working Memory. Such a pattern was made even clearer for specific tasks such as immediate and delayed recall and spatial recall and memory for visual details, as revealed by the lowest scores on Logical Memory (immediate and delayed conditions) and Designs (immediate condition) subtests, respectively. Significant negative correlations between Logical Memory I and II were found with PANSS Excitement symptom as well as between DE I and PANSS Tension symptom. Significant positive correlations between LM II and PANSS Blunted affect and Poor rapport symptoms as well as DE I and PANSS Blunted affect

  1. Item and associative memory in amnestic mild cognitive impairment: performance on standardized memory tests.

    Science.gov (United States)

    Troyer, Angela K; Murphy, Kelly J; Anderson, Nicole D; Hayman-Abello, Brent A; Craik, Fergus I M; Moscovitch, Morris

    2008-01-01

    The earliest neuroanatomical changes in amnestic mild cognitive impairment (aMCI) involve the hippocampus and entorhinal cortex, structures implicated in the integration and learning of associative information. The authors hypothesized that individuals with aMCI would have impairments in associative memory above and beyond the known impairments in item memory. A group of 29 individuals with aMCI and 30 matched control participants were administered standardized tests of object-location recall and symbol-symbol recall, from which both item and associative recall scores were derived. As expected, item recall was impaired in the aMCI group relative to controls. Associative recall in the aMCI group was even more impaired than was item recall. The best group discriminators were measures of associative recall, with which the sensitivity and specificity for detecting aMCI were 76% and 90% for symbol-symbol recall and were 86% and 97% for object-location recall. Associative recall may be particularly sensitive to early cognitive change in aMCI, because this ability relies heavily on the medial temporal lobe structures that are affected earliest in aMCI. Incorporating measures of associative recall into clinical evaluations of individuals with memory change may be useful for detecting aMCI.

  2. High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites.

    Science.gov (United States)

    Liu, Yayun; Zhao, Jun; Zhao, Lingyu; Li, Weiwei; Zhang, Hui; Yu, Xiang; Zhang, Zhong

    2016-01-13

    A series of shape memory nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) E51/methylhexahydrophthalic anhydride (MHHPA)/multiwalled carbon nanotube (MWCNT) with various stoichiometric ratios (rs) of DGEBA/MHHPA from 0.5 to 1.2 and filler contents of 0.25 and 0.75 wt % are fabricated. Their morphology, curing kinetics, phase transition, mechanical properties, thermal conduction, and shape memory behaviors are systematically investigated. The prepared materials show a wide range of glass transition temperatures (Tg) of ca. 65-140 °C, high flexural modulus (E) at room temperature up to ca. 3.0 GPa, high maximum stress (σm) up to ca. 30 MPa, high strain at break (εb) above 10%, and a fast recovery of 32 s. The results indicate that a small amount of MWCNT fillers (0.75 wt %) can significantly increase all three key mechanical properties (E, σm, and εb) at temperatures close to Tg, the recovery rate, and the repetition stability of the shape memory cycles. All of these remarkable advantages make the materials good candidates for the applications in aerospace and other important fields.

  3. Hierarchical porous NiCo2O4 nanosheet arrays directly grown on carbon cloth with superior lithium storage performance.

    Science.gov (United States)

    Zhao, Li; Wang, Lei; Yu, Peng; Tian, Chungui; Feng, He; Diao, Zhongwei; Fu, Honggang

    2017-03-23

    Binary metal oxides have been explored as advanced candidates in lithium-ion battery (LIB) anodes due to their high specific capacity. Herein, the hierarchical structures of porous NiCo2O4 nanosheets directly grown on a conductive carbon cloth substrate (3D NCO-PSA/CC) were obtained by a facile in situ synthetic strategy. When applied as a binder-free LIB anode, it exhibited satisfactory performance with a high discharge capacity (a first discharge capacity of 2090.8 mA h g(-1) and a stable capacity of 1687.6 mA h g(-1) at 500 mA g(-1)), superior rate capacity (discharge capacity of 375.5 mA h g(-1) at 6000 mA g(-1)) and excellent reversibility (coulombic efficiency of approximately 100%). The outstanding performances should be attributed to the 3D porous structures, nanosheets and good conductivity of NCO-PSA/CC that could not only ensure the rapid transport of Li(+) ions and electrons but also remit the huge volume change during lithiation/delithiation processes. Undoubtedly, the present facile and effective strategy can be extended to other binary metal-oxide materials for use as high-performance energy storage and conversion devices.

  4. Using Shared Memory As A Cache In High Performance Cellular Automata Water Flow Simulations

    Directory of Open Access Journals (Sweden)

    Paweł Topa

    2013-01-01

    Full Text Available Graphics processors (GPU -- Graphic Processor Units recently have gained a lot of interest as an efficient platform for general-purpose computation. Cellular Automata approach which is inherently parallel gives the opportunity to implement high performance simulations. This paper presents how shared memory in GPU can be used to improve performance for Cellular Automata models. In our previous works, we proposed algorithms for Cellular Automata model that use only a GPU global memory. Using a profiling tool, we found bottlenecks in our approach. We introduce modifications that takes an advantage of fast shared memory. The modified algorithm is presented in details, and the results of profiling and performance test are demonstrated. Our unique achievement is comparing the efficiency of the same algorithm working with a global and shared memory.

  5. Interaction between Cognitive and Non-Cognitive Factors: The Influences of Academic Goal Orientation and Working Memory on Mathematical Performance

    Science.gov (United States)

    Lee, Kerry; Ning, Flora; Goh, Hui Chin

    2014-01-01

    Although the effects of achievement goals and working memory on academic performance are well established, it is not clear whether they jointly affect academic performance. Children from Primary 4 and 6 (N = 608) were administered (a) measures of working memory and updating from the automated working memory battery and a running span task, (b)…

  6. The "when" and the "where" of single-trial allocentric spatial memory performance in young children: Insights into the development of episodic memory.

    Science.gov (United States)

    Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela

    2017-03-01

    Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia.

  7. Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design

    Science.gov (United States)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2007-01-01

    Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  8. A Novel Lightweight Main Memory Database for Telecom Network Performance Management System

    Directory of Open Access Journals (Sweden)

    Lina Lan

    2012-04-01

    Full Text Available Today telecom network are growing complex. Although the amount of network performance data increased dramatically, telecom network operators require better performance on network performance data collection and analysis. Database is the important component in modern network management model. Since main memory database (MMDB store data in main physical memory and provide very high-speed access, MMDB can suffice the requirements on data intensive and real time response in network performance management system. This paper presents a novel lightweight design on MMDB for network performance data persistence. This design improves data access performance in following aspects.  The data persistence mechanism employs user mode memory map provided by UNIX OS. To reduce the cost of data copy and data interpretation, the data storage format is designed as consistent with binary format in application memory. The database is provided as program library and the application can access data in shared memory to avoid the cost on inter-process communication. Once data is updated in memory, query application can get updated data without disk I/O cost. The data access methods adopt multi-level RB-Tree structure. In best case, the algorithm complexity is O(N. In worst case, the algorithm complexity is O(N*lgN. In real performance data distribution scenarios, the complexity is nearly O(N. The system approach has been tested in laboratory using benchmark data. The result shows the performances of the application fully meet the requirements of the product index. The CPU and memory consumption are also lower than network management system requirements.

  9. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.

    Science.gov (United States)

    Zhang, Jialei; Gu, Changdong; Tu, Jiangping

    2017-03-29

    Biomimetic slippery liquid-infused porous surfaces (SLIPSs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and susceptibility to frosting. Herein, we fabricated a double-layered SLIPS coating on the AZ31 Mg alloy for corrosion protection and anti-icing application. The porous top layer was infused by lubricant, and the compact underlayer was utilized as a corrosion barrier. The water-repellent SLIPS coating exhibits a small sliding angle and durable corrosion resistance compared with the SHS coating. Moreover, the SLIPS coating delivers durable anti-icing performance for the Mg alloy substrate, which is obviously superior to the SHS coating. Multiple barriers in the SLIPS coating, including the infused water-repellent lubricant, the self-assembled monolayers coated porous top layer, and the compact layered double hydroxide-carbonate composite underlayer, are suggested as being responsible for the enhanced corrosion resistance and anti-icing performance. The robust double-layered SLIPS coating should be of great importance to expanding the potential applications of light metals and their alloys.

  10. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  11. The Relationship between P3 Amplitude and Working Memory Performance Differs in Young and Older Adults

    NARCIS (Netherlands)

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.

    2013-01-01

    While some elderly show deteriorations in cognitive performance, others achieve performance levels comparable to young adults. To examine whether age-related changes in brain activity varied with working memory performance efficiency, we recorded electroencephalography (EEG) from young and older hea

  12. The effect of semantic context on prospective memory performance.

    Science.gov (United States)

    Thomas, Brandon J; McBride, Dawn M

    2016-01-01

    The current study provides evidence for spontaneous processing in prospective memory (PM) or memory for intentions. Discrepancy-plus-search is the spontaneous processing of PM cues via disruptions in processing fluency of ongoing task items. We tested whether this mechanism can be demonstrated in an ongoing rating task with a dominant semantic context. Ongoing task items were manipulated such that the PM cues were members of a semantic category (i.e., Body Parts) that was congruent or discrepant with the dominant semantic category in the ongoing task. Results showed that participants correctly responded to more PM cues when there was a category discrepancy between the PM cues and ongoing task items. Moreover, participants' identification of PM cues was accompanied by faster ongoing task reaction times when PM cues were discrepant with ongoing task items than when they were congruent. These results suggest that a discrepancy-plus-search process supports PM retrieval in certain contexts, and that some discrepancy-plus-search mechanisms may result from the violation of processing expectations within a semantic context.

  13. Performance- and stimulus-dependent oscillations in monkey prefrontal cortex during short-term memory

    Directory of Open Access Journals (Sweden)

    Gordon Pipa

    2009-10-01

    Full Text Available Short-term memory requires the coordination of sub-processes like encoding, retention, retrieval and comparison of stored material to subsequent input. Neuronal oscillations have an inherent time structure, can effectively coordinate synaptic integration of large neuron populations and could therefore organize and integrate distributed sub-processes in time and space. We observed field potential oscillations (14-95Hz in ventral prefrontal cortex of monkeys performing a visual memory task. Stimulus-selective and performance-dependent oscillations occurred simultaneously at 65-95Hz and 14-50Hz, the latter being phase-locked throughout memory maintenance. We propose that prefrontal oscillatory activity may be instrumental for the dynamical integration of local and global neuronal processes underlying short-term memory.

  14. Short-term retention of relational memory in amnesia revisited: accurate performance depends on hippocampal integrity.

    Science.gov (United States)

    Yee, Lydia T S; Hannula, Deborah E; Tranel, Daniel; Cohen, Neal J

    2014-01-01

    Traditionally, it has been proposed that the hippocampus and adjacent medial temporal lobe cortical structures are selectively critical for long-term declarative memory, which entails memory for inter-item and item-context relationships. Whether the hippocampus might also contribute to short-term retention of relational memory representations has remained controversial. In two experiments, we revisit this question by testing memory for relationships among items embedded in scenes using a standard working memory trial structure in which a sample stimulus is followed by a brief delay and the corresponding test stimulus. In each experimental block, eight trials using different exemplars of the same scene were presented. The exemplars contained the same items but with different spatial relationships among them. By repeating the pictures across trials, any potential contributions of item or scene memory to performance were minimized, and relational memory could be assessed more directly than has been done previously. When test displays were presented, participants indicated whether any of the item-location relationships had changed. Then, regardless of their responses (and whether any item did change its location), participants indicated on a forced-choice test, which item might have moved, guessing if necessary. Amnesic patients were impaired on the change detection test, and were frequently unable to specify the change after having reported correctly that a change had taken place. Comparison participants, by contrast, frequently identified the change even when they failed to report the mismatch, an outcome that speaks to the sensitivity of the change specification measure. These results confirm past reports of hippocampal contributions to short-term retention of relational memory representations, and suggest that the role of the hippocampus in memory has more to do with relational memory requirements than the length of a retention interval.

  15. Short-term Retention of Relational Memory in Amnesia Revisited: Accurate Performance Depends on Hippocampal Integrity

    Directory of Open Access Journals (Sweden)

    Lydia T.S. Yee

    2014-01-01

    Full Text Available Traditionally, it has been proposed that the hippocampus and adjacent medial temporal lobe cortical structures are selectively critical for long-term declarative memory, which entails memory for inter-item and item-context relationships. Whether the hippocampus might also contribute to short-term retention of relational memory representations has remained controversial. In two experiments, we revisit this question by testing memory for relationships among items embedded in scenes using a standard working memory trial structure in which a sample stimulus is followed by a brief delay and the corresponding test stimulus. In each experimental block, eight trials using different exemplars of the same scene were presented. The exemplars contained the same items but with different spatial relationships among them. By repeating the pictures across trials, any potential contributions of item or scene memory to performance were minimized, and relational memory could be assessed more directly than has been done previously. When test displays were presented, participants indicated whether any of the item-location relationships had changed. Then, regardless of their responses (and whether any item did change its location, participants indicated on a forced-choice test, which item might have moved, guessing if necessary. Amnesic patients were impaired on the change detection test, and were frequently unable to specify the change after having reported correctly that a change had taken place. Comparison participants, by contrast, frequently identified the change even when they failed to report the mismatch, an outcome that speaks to the sensitivity of the change specification measure. These results confirm past reports of hippocampal contributions to short-term retention of relational memory representations, and suggest that the role of the hippocampus in memory has more to do with relational memory requirements than the length of a retention interval.

  16. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Cunmei Jiang; Lim, Vanessa K.; Hang Wang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  17. Superior Long-Term Synaptic Memory Induced by Combining Dual Pharmacological Activation of PKA and ERK with an Enhanced Training Protocol

    Science.gov (United States)

    Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.

    2017-01-01

    Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…

  18. Memory for Self-Performed Actions in Individuals with Asperger Syndrome

    Science.gov (United States)

    Zalla, Tiziana; Daprati, Elena; Sav, Anca-Maria; Chaste, Pauline; Nico, Daniele; Leboyer, Marion

    2010-01-01

    Memory for action is enhanced if individuals are allowed to perform the corresponding movements, compared to when they simply listen to them (enactment effect). Previous studies have shown that individuals with Autism Spectrum Disorders (ASD) have difficulties with processes involving the self, such as autobiographical memories and self performed actions. The present study aimed at assessing memory for action in Asperger Syndrome (AS). We investigated whether adults with AS would benefit from the enactment effect when recalling a list of previously performed items vs. items that were only visually and verbally experienced through three experimental tasks (Free Recall, Old/New Recognition and Source Memory). The results showed that while performance on Recognition and Source Memory tasks was preserved in individuals with AS, the enactment effect for self-performed actions was not consistently present, as revealed by the lower number of performed actions being recalled on the Free Recall test, as compared to adults with typical development. Subtle difficulties in encoding specific motor and proprioceptive signals during action execution in individuals with AS might affect retrieval of relevant personal episodic information. These disturbances might be associated to an impaired action monitoring system. PMID:20967277

  19. Memory for self-performed actions in individuals with Asperger syndrome.

    Directory of Open Access Journals (Sweden)

    Tiziana Zalla

    Full Text Available Memory for action is enhanced if individuals are allowed to perform the corresponding movements, compared to when they simply listen to them (enactment effect. Previous studies have shown that individuals with Autism Spectrum Disorders (ASD have difficulties with processes involving the self, such as autobiographical memories and self performed actions. The present study aimed at assessing memory for action in Asperger Syndrome (AS. We investigated whether adults with AS would benefit from the enactment effect when recalling a list of previously performed items vs. items that were only visually and verbally experienced through three experimental tasks (Free Recall, Old/New Recognition and Source Memory. The results showed that while performance on Recognition and Source Memory tasks was preserved in individuals with AS, the enactment effect for self-performed actions was not consistently present, as revealed by the lower number of performed actions being recalled on the Free Recall test, as compared to adults with typical development. Subtle difficulties in encoding specific motor and proprioceptive signals during action execution in individuals with AS might affect retrieval of relevant personal episodic information. These disturbances might be associated to an impaired action monitoring system.

  20. Negative Emotional Arousal Impairs Associative Memory Performance for Emotionally Neutral Content in Healthy Participants.

    Directory of Open Access Journals (Sweden)

    Jonathan Guez

    Full Text Available The effect of emotional arousal on memory presents a complex pattern with previous studies reporting conflicting results of both improved and reduced memory performance following arousal manipulations. In this study we further tested the effect of negative emotional arousal (NEA on individual-item recognition and associative recognition of neutral stimuli in healthy participants, and hypothesized that NEA will particularly impair associative memory performance. The current study consists of two experiments; in both, participants studied a list of word-pairs and were then tested for items (items recognition test, and for associations (associative recognition test. In the first experiment, the arousal manipulation was induced by flashing emotionally-negative or neutral pictures between study-pairs while in the second experiment arousal was induced by presenting emotionally-negative or neutral pictures between lists. The results of the two experiments converged and supported an associative memory deficit observed under NEA conditions. We suggest that NEA is associated with an altered ability to bind one stimulus to another as a result of impaired recollection, resulting in poorer associative memory performance. The current study findings may contribute to the understanding of the mechanism underlying memory impairments reported in disorders associated with traumatic stress.

  1. Psychomotor and spatial memory performance in aging male Fischer 344 rats.

    Science.gov (United States)

    Shukitt-Hale, B; Mouzakis, G; Joseph, J A

    1998-09-01

    Psychomotor and spatial memory performance were examined in male Fischer 344 rats that were 6, 12, 15, 18, and 22 months of age, to assess these parameters as a function of age and to determine at what age these behaviors begin to deteriorate. Complex motor behaviors, as measured by rod walk, wire suspension, plank walk, inclined screen, and accelerating rotarod performance, declined steadily with age, with most measures being adversely affected as early as 12 to 15 months of age. Spatial learning and memory performance, as measured by the working memory version of the Morris water maze (MWM), showed decrements at 18 and 22 months of age (higher latencies on the working memory trial), with some change noticeable as early as 12-15 months of age (no improvement on the second trial following a 10-min retention interval); these differences were not due to swim speed. Therefore, complex motor and spatial memory behaviors show noticeable declines early in the lifespan of the male Fisher 344 rat. This cross-sectional age analysis study using the latest behavioral techniques determines the minimal age at which psychomotor and spatial learning and memory behaviors deteriorate; this information is important when planning for longitudinal studies where interventions are tested for their efficacy in preventing or restoring age-related behavioral deficits.

  2. Negative Emotional Arousal Impairs Associative Memory Performance for Emotionally Neutral Content in Healthy Participants.

    Science.gov (United States)

    Guez, Jonathan; Saar-Ashkenazy, Rotem; Mualem, Liran; Efrati, Matan; Keha, Eldad

    2015-01-01

    The effect of emotional arousal on memory presents a complex pattern with previous studies reporting conflicting results of both improved and reduced memory performance following arousal manipulations. In this study we further tested the effect of negative emotional arousal (NEA) on individual-item recognition and associative recognition of neutral stimuli in healthy participants, and hypothesized that NEA will particularly impair associative memory performance. The current study consists of two experiments; in both, participants studied a list of word-pairs and were then tested for items (items recognition test), and for associations (associative recognition test). In the first experiment, the arousal manipulation was induced by flashing emotionally-negative or neutral pictures between study-pairs while in the second experiment arousal was induced by presenting emotionally-negative or neutral pictures between lists. The results of the two experiments converged and supported an associative memory deficit observed under NEA conditions. We suggest that NEA is associated with an altered ability to bind one stimulus to another as a result of impaired recollection, resulting in poorer associative memory performance. The current study findings may contribute to the understanding of the mechanism underlying memory impairments reported in disorders associated with traumatic stress.

  3. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy.

    Science.gov (United States)

    Wu, Fenglin; Zhang, Wenfeng; Shao, Hongwei; Bo, Huaben; Shen, Han; Li, Jiandong; Liu, Yichen; Wang, Teng; Ma, Wenli; Huang, Shulin

    2013-10-10

    Adoptive cell therapy provides an attractive treatment of cancer, and our expanding capacity to target tumor antigens is driven by genetically engineered human T lymphocytes that express genes encoding tumor-specific T cell receptors (TCRs). The intrinsic properties of cultured T cells used for therapy were reported to have tremendous influences on their persistence and antitumor efficacy in vivo. In this study, we isolated CD8(+) central memory T cells from peripheral blood lymphocytes of healthy donors, and then transferred with the gene encoding TCR specific for tumor antigen using recombinant adenovirus vector Ad5F35-TRAV-TRBV. We found effector T cells derived from central memory T cells improved cell viability, maintained certain level of CD62L expression, and reacquired the CD62L(+)CD44(high) phenotype of central memory T cells after effector T cells differentiation. We then compared the antitumor reactivity of central memory T cells and CD8(+)T cells after TCR gene transferred. The results indicated that tumor-specific TCR gene being transferred to central memory T cells effectively increased the specific killing of antigen positive tumor cells and the expression of cytolytic granule protein. Furthermore, TCR gene transferred central memory T cells were more effective than TCR gene transferred CD8(+)T cells in CTL activity and effector cytokine secretion. These results implicated that isolating central memory T cells rather than CD8(+)T cells for insertion of gene encoding tumor-specific TCR may provide a superior tumor-reactive T cell population for adoptive transfer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Context-dependent enhancement of declarative memory performance following acute psychosocial stress.

    Science.gov (United States)

    Smeets, T; Giesbrecht, T; Jelicic, M; Merckelbach, H

    2007-09-01

    Studies on how acute stress affects learning and memory have yielded inconsistent findings, with some studies reporting enhancing effects while others report impairing effects. Recently, Joëls et al. [Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J., 2006. Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158] argued that stress will enhance memory only when the memory acquisition phase and stressor share the same spatiotemporal context (i.e., context-congruency). The current study tested this hypothesis by looking at whether context-congruent stress enhances declarative memory performance. Undergraduates were assigned to a personality stress group (n=16), a memory stress group (n=18), or a no-stress control group (n=18). While being exposed to the acute stressor or a control task, participants encoded personality- and memory-related words and were tested for free recall 24h later. Relative to controls, stress significantly enhanced recall of context-congruent words, but only for personality words. This suggests that acute stress may strengthen the consolidation of memory material when the stressor matches the to-be-remembered information in place and time.

  5. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Ahmad, E-mail: ahmadrahimpour@yahoo.com [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Jahanshahi, Mohsen [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Mansourpanah, Yaghoub [Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad (Iran, Islamic Republic of); Mortazavian, Narmin [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2009-08-30

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  6. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  7. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  8. Memory performance, health literacy, and instrumental activities of daily living of community residing older adults.

    Science.gov (United States)

    McDougall, Graham J; Mackert, Michael; Becker, Heather

    2012-01-01

    Health literacy is associated with cognitive function across multiple domains in older adults, and these older adults may face special memory and cognitive challenges that can limit their health literacy and, in turn, their ability to live independently. The aim of this study was to evaluate if an association existed among health literacy, memory performance, and performance-based functional ability in community-residing older adults. Forty-five adults participated in this study. Designed to reflect everyday memory, the Rivermead Behavioral Memory Test (RBMT) bridges laboratory-based measures of memory and assessments obtained by self-report and observation. The RBMT classifies individuals into four categories of memory performance: normal, poor, mildly impaired, and severely impaired. The participants were recruited in the two categories of normal (≥22) or impaired (≤16) category on the RBMT. The sample consisted of 14 who were in the impaired category and 31 in the normal group. Their average age was 77.11 years, and their average number of years of education was 15.33 years. Health literacy scores measured with the Rapid Estimate of Adult Literacy in Medicine. Health literacy scores were high (M = 65.09, SD = 2.80). Thirty-four participants or 76% of the sample scored a 66 out of a possible score of 80. Pearson correlations were calculated for the study variables. Health literacy scores with education and cognition (.30), memory performance groups (normal vs. poor; .25), and performance-based instrumental activities (.50) were associated significantly. The development of a broader assortment of health literacy instruments would improve the ability of researchers to both compare studies and build on the knowledge and results of others.

  9. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance.

    Science.gov (United States)

    Bungenberg, Julia; Surano, Natascha; Grote, Alexander; Surges, Rainer; Pernhorst, Katharina; Hofmann, Andrea; Schoch, Susanne; Helmstaedter, Christoph; Becker, Albert J

    2016-02-01

    Temporal lobe epilepsy (TLE) is a severe brain disorder affecting particularly young adults. TLE is frequently associated with memory deterioration and neuronal damage of the hippocampal formation. It thereby reveals striking parallels to neurodegenerative disorders including Alzheimer's disease (AD). TLE patients differ with respect to their cognitive performance, but currently little is known about relevant molecular-genetic factors. Here, we correlated differential memory performance of pharmacoresistant TLE patients undergoing neurosurgery for seizure control with in-vitro findings of their hippocampal tissues. We analyzed mRNA transcripts and subsequently promoter variants specifically altered in brain tissue of individuals with 'very severe' memory impairment. TLE patients (n=79) were stratified according to preoperative memory impairment using an established four-tiered grading system ranging from 'average' to 'very severely'. Multimodal cluster analyses revealed molecules specifically associated with synaptic function and abundantly expressed in TLE patients with very impaired memory performance. In a subsequent promoter analysis, we found the single nucleotide polymorphism rs744373 C-allele to be associated with high mRNA levels of bridging integrator 1 (BIN1)/Amphiphysin 2, i.e. a major component of the endocytotic machinery and located in a crucial genetic AD risk locus. Using in vitro luciferase transfection assays, we found that BIN1 promoter activation is genotype dependent and strongly increased by reduced binding of the transcriptional repressor TGIF. Our data indicate that poor memory performance in patients with TLE strongly corresponds to distinctly altered neuronal transcript signatures, which - as demonstrated for BIN1 - can correlate with a particular allelic promoter variant. Our data suggest aberrant transcriptional signaling to significantly impact synaptic dynamics in TLE resulting in impaired memory performance and may serve as basis for

  10. Short-Term Memory Performances during Sustained Wakefulness in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome

    Science.gov (United States)

    Greneche, Jerome; Krieger, Jean; Bertrand, Frederic; Erhardt, Christine; Maumy, Myriam; Tassi, Patricia

    2011-01-01

    Both working and immediate memories were assessed every 4 h by specific short-term memory tasks over sustained wakefulness in 12 patients with obstructive sleep apnea and hypopnea syndrome (OSAHS) and 10 healthy controls. Results indicated that OSAHS patients exhibited lower working memory performances than controls on both backward digit span and…

  11. SKF 83566 attenuates the effects of ghrelin on performance in the object location memory task.

    Science.gov (United States)

    Jacoby, Sarah M; Currie, Paul J

    2011-10-31

    Increasing research implicates ghrelin, a metabolic signaling peptide, in memory processes including acquisition, consolidation, and retention. The present study investigated the effects of ghrelin on spatial memory acquisition by utilizing the object location memory task paradigm. Given the co-expression of ghrelin and dopamine D(1) receptors within hippocampal neurons, we examined a potential interaction between these two systems on memory performance. When injected into the dorsal third ventricle (D3V) of male Sprague-Dawley rats, proximal to hippocampal tissue, ghrelin (500 pmol) increased the amount of time spent with objects in novel locations. This effect was completely reversed by the D(1) antagonist SKF 83566 (100 μg/kg IP), although when administered alone, the antagonist had no effect on task performance (10-100 μg/kg). We also examined the feeding effects of D3V ghrelin and found that the peptide reliably increased food intake (500 pmol) but that this effect was not blocked by SKF 83566 (100 μg/kg). When given alone, SKF 83566 did not alter food intake (10-100 μg/kg). Our findings indicate that, in addition to an orexigenic effect, ghrelin improves acquisition of spatial location memories. Furthermore, D(1) receptor activation is necessary for ghrelin to improve the encoding of spatial memories but does not impact the increase in food intake elicited by the peptide.

  12. The structured memory access architecture: An implementation and performance-evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, J.B.

    1986-08-01

    The Structured Memory Access (SMS) architecture implementation presented in this thesis is formulated with the intention of alleviating two well-known inefficiencies that exist in current scalar computer architectures: address generation overhead and memory bandwidth utilization. Furthermore, the SMA architecture introduces an additional level of parallelism which is not present in current pipelined supercomputers, namely, overlapped execution of the access process and execute process on two distinct special-purpose, asynchronously-coupled processors. Each processor executes a separate instruction stream to perform its specific task which, together, are functionally equivalent in a conventional program. Our simulation results show that, for typical numerical programs, the access processor (MAP) is capable of achieving slip, i.e., running sufficiently ahead of the execute processor (CP) so that operand fetch requests for data items required by the CP are issued early enough and rapidly enough for the CP rarely to experience any memory access wait time. In this manner the SMA tolerates long memory access time, albeit high bandwidth, paths to memory without sacrificing performance. Speedups relative to the Cray-1 in scalar mode often exceed two, due to dual processing and reductions in memory wait time. 17 refs., 11 figs., 3 tabs.

  13. High performance shape memory effect in nitinol wire for actuators with increased operating temperature range

    Science.gov (United States)

    Casati, Riccardo; Biffi, Carlo Alberto; Vedani, Maurizio; Tuissi, Ausonio

    2014-07-01

    In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.

  14. Desempenho agronômico das videiras 'Crimson Seedless' e 'Superior Seedless' no norte de Minas Gerais Agronomic performance of 'Crimson Seedless' and 'Superior Seedless' vines in the north region of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Nelson Pires Feldberg

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência do vigor dos porta-enxertos '1103 Paulsen' e 'IAC-572 Jales', no desempenho agronômico das cultivares Crimson Seedless e Superior Seedless. O experimento foi realizado na Fazenda Experimental da Epamig, em Mocambinho, distrito de Jaíba, MG, em delineamento inteiramente casualizado com sete repetições em esquema fatorial 2x2. Foram analisadas a fertilidade de gemas, o número e a massa de cachos e a massa de ramos. O porta-enxerto '1103 Paulsen' proporcionou os melhores resultados nas cultivares Crimson Seedless e Superior Seedless quanto à massa e número de cachos por planta e fertilidade de gemas, com produtividade média de 31,9 e 22,4 t ha-1 ano-1 , respectivamente. O porta-enxerto 'IAC-572 Jales' proporcionou maior vigor, com maior massa de ramos por planta nas duas cultivares. O porta-enxerto '1103 Paulsen' induziu a maiores fertilidade de gemas e produtividades em 'Crimson Seedless' e 'Superior Seedless' e pode ser indicado para o cultivo na região de Jaíba, MG.The objective of this work was to study the influence of the '1103 Paulsen' and 'IAC-572 Jales' rootstocks vigor in the agronomic performance of the cultivars 'Crimson Seedless' and 'Superior Seedless'. The experiment was carried in the Epamig Experimental Farm located in Mocambinho, Jaíba, MG, Brazil, in completely randomized experimental design with seven replications in factorial 2x2. The following variables were studied: bud fertility, number and weight of clusters and cane weight. The '1103 Paulsen' rootstock showed better results for cultivars 'Crimson Seedless' and 'Superior Seedless' regarding the number of clusters and their weight by plant and bud fertility, with average productivity of 31.9 and 22.4 t ha-1 year-1 , respectively. The 'IAC-572 Jales' rootstock provided higher vigor, comprising greater weight of canes per plant in both cultivars. The '1103 Paulsen' rootstock induced higher bud fertility and

  15. Parallelism in a Main-Memory System: The Performance of PRISMA/DB

    NARCIS (Netherlands)

    Wilschut, A.N.; Flokstra, Jan; Apers, Peter M.G.

    1992-01-01

    his paper evaluates the performance of the parallel, main-memory DBMS, PRISMA/DB. First, an abstract architecture for parallel query execution is presented. A performance model for the execution of simple relational operations on this architecture is developed. The parameters in the model are set us

  16. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Mohammad A.

    2012-03-21

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Internalizing versus Externalizing Control: Different Ways to Perform a Time-Based Prospective Memory Task

    Science.gov (United States)

    Huang, Tracy; Loft, Shayne; Humphreys, Michael S.

    2014-01-01

    "Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…

  18. The Role of Shifting, Updating, and Inhibition in Prospective Memory Performance in Young and Older Adults

    Science.gov (United States)

    Schnitzspahn, Katharina M.; Stahl, Christoph; Zeintl, Melanie; Kaller, Christoph P.; Kliegel, Matthias

    2013-01-01

    Prospective memory performance shows a decline in late adulthood. The present article examines the role of 3 main executive function facets (i.e., shifting, updating, and inhibition) as possible developmental mechanisms associated with these age effects. One hundred seventy-five young and 110 older adults performed a battery of cognitive tests…

  19. Internalizing versus Externalizing Control: Different Ways to Perform a Time-Based Prospective Memory Task

    Science.gov (United States)

    Huang, Tracy; Loft, Shayne; Humphreys, Michael S.

    2014-01-01

    "Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…

  20. Initial feasibility and validity of a prospective memory training program in a substance use treatment population.

    Science.gov (United States)

    Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W

    2016-10-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record

  1. Information theoretical performance measure for associative memories and its application to neural networks.

    Science.gov (United States)

    Schlüter, M; Kerschhaggl, O; Wagner, F

    1999-08-01

    We present a general performance measure (information loss) for associative memories based on information theoretical concepts. This performance measure can be estimated, provided that mean values of observables have been determined for the associative memory. Then the estimation guarantees a minimal association quality. The formalism allows the application of the performance measure to complex systems where the relation between input and output of the associative memory is not explicitly known. Here we apply our formalism to the Hopfield model and estimate the storage capacity alpha(c) from the numerically determined information loss. In contrast to other numerical methods the whole overlap distribution is taken into account. Our numerical value alpha(c)=0.1379(4) for the storage capacity in the Hopfield model is below numerical values obtained previously. This indicates that the consideration of small remnant overlaps lowers the storage capacity of the Hopfield model.

  2. Shape memory polymer nanofibers and their composites: electrospinning, structure, performance and applications

    Directory of Open Access Journals (Sweden)

    Fenghua eZhang

    2015-10-01

    Full Text Available Shape memory polymers (SMPs have been defined as a kind of smart materials under great investigation from academic research to industry applications. Research on SMPs and their composites, now incorporates a growing focus on nanofibers which offers new structures in microscopic level and the potential of enhanced performance of SMPs. This paper presents a comprehensive review of the development of shape memory polymer nanofibers and their composites, including the introduction of electrospinning technology, the morphology and structures of nanofibers (non-woven fibers, oriented fibers, core/shell fibers and functional particles added in the fibers, shape memory performance (thermal and mechanical properties, stimulus responsive behavior, multiple and two-way shape changing performance, as well as their potential applications in the fields of biomedical and tissue engineering.

  3. Inverse relation between cortisol and anger and their relation to performance and explicit memory.

    Science.gov (United States)

    Kazén, Miguel; Kuenne, Thomas; Frankenberg, Heiko; Quirin, Markus

    2012-09-01

    Cortisol has been found to increase in response to social evaluative threat. However, little is known about the cortisol response to induced anger. Thus, in the present study, we investigated the cortisol response to anger induction and its effects on performance and explicit memory. A variant of the Montreal Stress Imaging Task (MIST; Dedovic et al., 2005) was used to induce anger in 17 male and 17 female students. Consistent with previous observations, a significant decrease in cortisol was found from pre to post manipulation which was inversely related to increases in subjective anger. Moreover, whereas anger increase was related to impairments in performance, cortisol reduction was inversely related to cognitive performance and explicit memory (recall and recognition of persons' features in a social memory task). The adaptive value of an increase in cortisol in response to fear or uncontrollability and of a decrease in cortisol in response to anger will be discussed.

  4. Effects of proficiency and age of language acquisition on working memory performance in bilinguals

    Directory of Open Access Journals (Sweden)

    Vejnović Dušan

    2010-01-01

    Full Text Available This study examined language proficiency and age of language acquisition influences on working memory performance in bilinguals. Bilingual subjects were administered reading span task in parallel versions for their first and second language. In Experiment 1, language proficiency effect was tested by examination of low and highly proficient second language speakers. In Experiment 2, age of language acquisition was examined by comparing the performance of proficient second language speakers who acquired second language either early or later in their lives. Both proficiency and age of language acquisition were found to affect bilingual working memory performance, and the proficiency effect was observed even at very high levels of language competence. The results support the notion of working memory as a domain that is influenced both by a general pool of resources and certain domain specific factors.

  5. Common genetic variants on 6q24 associated with exceptional episodic memory performance in the elderly

    DEFF Research Database (Denmark)

    Barral, Sandra; Cosentino, Stephanie; Christensen, Kaare;

    2014-01-01

    IMPORTANCE: There are genetic influences on memory ability as we age, but no specific genes have been identified. OBJECTIVE: To use a cognitive endophenotype, exceptional episodic memory (EEM) performance, derived from nondemented offspring from the Long Life Family Study (LLFS) to identify genetic...... variants that may be responsible for the high cognitive performance of LLFS participants and further replicate these variants using an additional 4006 nondemented individuals from 4 independent elderly cohorts. DESIGN, SETTING, AND PARTICIPANTS: A total of 467 LLFS participants from 18 families with 2...... or more offspring that exhibited exceptional memory performance were used for genome-wide linkage analysis. Adjusted multivariate linear analyses in the 40-megabase region encompassing the linkage peak were conducted using 4 independent replication data sets that included 4006 nondemented elderly...

  6. Shape memory polymer nanofibers and their composites: electrospinning, structure, performance and applications

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-10-01

    Shape memory polymers (SMPs) have been defined as a kind of smart materials under great investigation from academic research to industry applications. Research on SMPs and their composites, now incorporates a growing focus on nanofibers which offers new structures in microscopic level and the potential of enhanced performance of SMPs. This paper presents a comprehensive review of the development of shape memory polymer nanofibers and their composites, including the introduction of electrospinning technology, the morphology and structures of nanofibers (non-woven fibers, oriented fibers, core/shell fibers and functional particles added in the fibers), shape memory performance (thermal and mechanical properties, stimulus responsive behavior, multiple and two-way shape changing performance), as well as their potential applications in the fields of biomedical and tissue engineering.

  7. Verbal memory performance and completion of cardiac rehabilitation in patients with coronary artery disease.

    Science.gov (United States)

    Swardfager, Walter; Herrmann, Nathan; Marzolini, Susan; Oh, Paul I; Saleem, Mahwesh; Shammi, Prathiba; Kiss, Alexander; Cappell, Jaclyn; Lanctôt, Krista L

    2011-09-01

    To assess cognitive performance as a predictor of noncompletion of cardiac rehabilitation (CR) using a standardized verbal memory test. This was a prospective cohort study of consecutive patients with coronary artery disease (n = 131) entering 1-year outpatient CR between April 2007 and May 2009. Verbal memory performance was assessed using the California Verbal Learning Test, Second Edition. Attendance at weekly CR sessions was recorded, and completion or noncompletion was determined according to comprehensive CR criteria. Depression was diagnosed according to DSM-IV criteria as a possible confounder. Verbal memory performance at entry into CR differed significantly (F(1,130) = 7.80, p = .006) between noncompleters and completers (mean [SD] cumulative California Verbal Learning Test, Second Edition, score, -1.15 [2.59] versus 0.47 [3.12]) in analysis of covariance controlling for pertinent clinical confounders. Better verbal memory performance predicted a reduced risk of noncompletion (hazard ratio [HR] = 0.86, 95% confidence interval [CI] = 0.77-0.96, p = .009) in time-to-event analysis adjusted for depression (HR = 2.62, 95% CI = 1.33-5.17, p = .006) and smoking history (HR = 2.03, 95% CI = 0.98-4.22, p = .06). A post hoc analysis suggested that better verbal memory performance predicted a reduced risk of noncompletion for medical reasons (HR = 0.83, 95% CI = 0.70-0.99, p = .03). Poorer verbal memory performance was associated with an increased risk of noncompletion of CR among participants with coronary artery disease. Further studies exploring practical methods for screening and targeted support might improve rehabilitation outcomes.

  8. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    Science.gov (United States)

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-07

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode.

    Science.gov (United States)

    Fu, Yongsheng; Zhu, Junwu; Hu, Chong; Wu, Xiaodong; Wang, Xin

    2014-11-01

    An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles. Even at a large current density of 1000 mA g(-1), a reversible capacity of 943 mA h g(-1) can still be retained. The superior electrochemical performance of g-C3N4-rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4-rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li(+) ions.

  10. Performance evaluation of explicit finite difference algorithms with varying amounts of computational and memory intensity

    CERN Document Server

    Jammy, Satya P; Sandham, Neil D

    2016-01-01

    Future architectures designed to deliver exascale performance motivate the need for novel algorithmic changes in order to fully exploit their capabilities. In this paper, the performance of several numerical algorithms, characterised by varying degrees of memory and computational intensity, are evaluated in the context of finite difference methods for fluid dynamics problems. It is shown that, by storing some of the evaluated derivatives as single thread- or process-local variables in memory, or recomputing the derivatives on-the-fly, a speed-up of ~2 can be obtained compared to traditional algorithms that store all derivatives in global arrays.

  11. Chronic nicotine improves working and reference memory performance and reduces hippocampal NGF in aged female rats.

    Science.gov (United States)

    French, Kristen L; Granholm, Ann-Charlotte E; Moore, Alfred B; Nelson, Matthew E; Bimonte-Nelson, Heather A

    2006-05-15

    The cholinergic system is involved in cognition and several forms of dementia, including Alzheimer's disease, and nicotine administration has been shown to improve cognitive performance in both humans and rodents. While experiments with humans have shown that nicotine improves the ability to handle an increasing working memory load, little work has been done in animal models evaluating nicotine effects on performance as working memory load increases. In this report, we demonstrate that in aged rats nicotine improved the ability to handle an increasing working memory load as well as enhanced performance on the reference memory component of the water radial arm maze task. The dose required to exert these effects (0.3mg/kg/day) was much lower than doses shown to be effective in young rats and appears to be a lower maintenance dose than is seen in light to moderate smokers. In addition, our study reports a nicotine-induced reduction in nerve growth factor (NGF) protein levels in the hippocampus of the aged rat. The effects of nicotine on hippocampal NGF levels are discussed as a potential mechanism of nicotine-induced improvements in working and reference memory.

  12. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2017-10-02

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  13. Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults.

    Science.gov (United States)

    Sünram-Lea, Sandra I; Owen, Lauren; Finnegan, Yvonne; Hu, Henglong

    2011-08-01

    It has been suggested that the memory enhancing effect of glucose follows an inverted U-shaped curve, with 25 g resulting in optimal facilitation in healthy young adults. The aim of this study was to further investigate the dose dependency of the glucose facilitation effect in this population across different memory domains and to assess moderation by interindividual differences in glucose regulation and weight. Following a double-blind, repeated measures design, 30 participants were administered drinks containing five different doses of glucose (0 g, 15 g, 25 g, 50 g, and 60 g) and were tested across a range of memory tasks. Glycaemic response and changes in mood state were assessed following drink administration. Analysis of the data showed that glucose administration did not affect mood, but significant glucose facilitation of several memory tasks was observed. However, dose-response curves differed depending on the memory task with only performance on the long-term memory tasks adhering largely to the previously observed inverted U-shaped dose-response curve. Moderation of the response profiles by interindividual differences in glucose regulation and weight was observed. The current data suggest that dose-response function and optimal dose might depend on cognitive domain and are moderated by interindividual differences in glucose regulation and weight.

  14. Enhancing memory performance after organic brain disease relies on retrieval processes rather than encoding or consolidation.

    Science.gov (United States)

    Hildebrandt, Helmut; Gehrmann, Annika; Modden, Claudia; Eling, Paul

    2011-02-01

    Neuropsychological rehabilitation of memory performance is still a controversial topic, and rehabilitation studies have not analyzed to which stage of memory processing (encoding, consolidation, or retrieval) enhancement may be attributed. We first examined the efficacy of a computer training program for stroke patients, based on a previous study (Hildebrandt, Clausing, Janssen, & Modden, 2007a) for memory-impaired patients of a rehabilitation unit and compared it with the standard group treatment. In a second randomized controlled experiment, we trained two groups of 15 patients with mild to moderate memory disorders, caused by organic brain lesions, with the same two treatment approaches. We used several standard tests to analyze improvement of memory functions, focusing on separate parameters for encoding, consolidation, and retrieval. We developed for that purpose a new word-list learning test, which allowed assessment of response to novelty and a systematic comparison of free recall after learning of semantically structured and nonstructured word lists. The first treatment experiment showed significant improvement of verbal learning for patients treated with the computer software program. The second experiment showed that memory improvement was based exclusively on retrieval processes, whereas no specific change was found for encoding and consolidation. However, the two groups of the second experiment showed no significant differences for the treatment, although the absolute scores pointed in the same direction as in the first experiment.

  15. Structural equation models of memory performance across noise conditions and age groups.

    Science.gov (United States)

    Enmarker, Ingela; Boman, Eva; Hygge, Staffan

    2006-12-01

    Competing models of declarative memory were tested with structural equation models to analyze whether a second-order latent variable structure for episodic and semantic memory was invariant across age groups and across noise exposure conditions. Data were taken from three previous experimental noise studies that were performed with the same design, procedure, and dependent measures, and with participants from four age groups (13-14, 18-20, 35-45, and 55-65 years). Two noise conditions, road traffic noise and meaningful irrelevant speech, were compared to a quiet control group. The structural models put to the test were taken from Nyberg et al. (2003), which employed several memory tests that were the same as ours and studied age-groups that partly overlapped with our groups. In addition we also varied noise exposure conditions. Our analyses replicated and supported the second-order semantic-episodic memory models in Nyberg et al. (2003). The latent variable structures were invariant across age groups, with the exception of our youngest group, which by itself showed a less clear latent structure. The obtained structures were also invariant across noise exposure conditions. We also noted that our text memory items, which did not have a counterpart in the study by Nyberg et al. (2003), tend to form a separate latent variable loading on episodic memory.

  16. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk

    2015-12-01

    Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

  17. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    Science.gov (United States)

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  18. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  19. Cache and memory hierarchy design a performance directed approach

    CERN Document Server

    Przybylski, Steven A

    1991-01-01

    An authoritative book for hardware and software designers. Caches are by far the simplest and most effective mechanism for improving computer performance. This innovative book exposes the characteristics of performance-optimal single and multi-level cache hierarchies by approaching the cache design process through the novel perspective of minimizing execution times. It presents useful data on the relative performance of a wide spectrum of machines and offers empirical and analytical evaluations of the underlying phenomena. This book will help computer professionals appreciate the impact of ca

  20. Dairy consumption and working memory performance in overweight and obese adults.

    Science.gov (United States)

    Crichton, Georgina E; Murphy, Karen J; Howe, Peter R C; Buckley, Jonathan D; Bryan, Janet

    2012-08-01

    All individuals will experience some degree of cognitive impairment in their later years. Diet is one readily modifiable factor that may influence cognitive function and psychological well-being. Very little research has considered the potential role of dairy foods in modulating cognitive and psychological functions. The objective of this study was to determine the effect of a high intake of reduced fat dairy food on cognitive performance. Overweight adults with habitually low dairy intakes (memory, information processing speed, executive function, attention and abstract reasoning. In 38 participants who completed the trial (average age=52±2 years; BMI=31.5±0.8 kg/m(2)), spatial working memory performance was marginally better following 6 months of the high dairy diet compared with the low dairy diet. Increasing the dairy intake of habitually low dairy consumers may have the potential to improve working memory.

  1. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  2. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  3. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease.

    Science.gov (United States)

    Boggio, P S; Khoury, L P; Martins, D C S; Martins, O E M S; de Macedo, E C; Fregni, F

    2009-04-01

    Several studies have reported that transcranial direct current stimulation (tDCS), a non-invasive method of neuromodulation, enhances some aspects of working memory in healthy and Parkinson disease subjects. The aim of this study was to investigate the impact of anodal tDCS on recognition memory, working memory and selective attention in Alzheimer disease (AD). Ten patients with diagnosis of AD received three sessions of anodal tDCS (left dorsolateral prefrontal cortex, left temporal cortex and sham stimulation) with an intensity of 2 mA for 30 min. Sessions were performed in different days in a randomised order. The following tests were assessed during stimulation: Stroop, Digit Span and a Visual Recognition Memory task (VRM). The results showed a significant effect of stimulation condition on VRM (p = 0.0085), and post hoc analysis showed an improvement after temporal (p = 0.01) and prefrontal (p = 0.01) tDCS as compared with sham stimulation. There were no significant changes in attention as indexed by Stroop task performance. As far as is known, this is the first trial showing that tDCS can enhance a component of recognition memory. The potential mechanisms of action and the implications of these results are discussed.

  4. Procedural Memory Consolidation in the Performance of Brief Keyboard Sequences

    Science.gov (United States)

    Duke, Robert A.; Davis, Carla M.

    2006-01-01

    Using two sequential key press sequences, we tested the extent to which subjects' performance on a digital piano keyboard changed between the end of training and retest on subsequent days. We found consistent, significant improvements attributable to sleep-based consolidation effects, indicating that learning continued after the cessation of…

  5. Continuous Theta Burst Stimulation over the Left Dorsolateral Prefrontal Cortex Decreases Medium Load Working Memory Performance in Healthy Humans

    Science.gov (United States)

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load. PMID:25781012

  6. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.

    Directory of Open Access Journals (Sweden)

    Nathalie Schicktanz

    Full Text Available The dorsolateral prefrontal cortex (DLPFC plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.

  7. A Psychobiological Perspective on Working Memory Performance at 8 Months of Age

    Science.gov (United States)

    Bell, Martha Ann

    2012-01-01

    Fifty 8-month-old infants participated in a study of the interrelations among cognition, temperament, and electrophysiology. Better performance on a working memory task (assessed using a looking version of the A-not-B task) was associated with increases in frontal-parietal EEG coherence from baseline to task, as well as elevated levels of…

  8. A Psychobiological Perspective on Working Memory Performance at 8 Months of Age

    Science.gov (United States)

    Bell, Martha Ann

    2012-01-01

    Fifty 8-month-old infants participated in a study of the interrelations among cognition, temperament, and electrophysiology. Better performance on a working memory task (assessed using a looking version of the A-not-B task) was associated with increases in frontal-parietal EEG coherence from baseline to task, as well as elevated levels of…

  9. Effects of Model Performances on Music Skill Acquisition and Overnight Memory Consolidation

    Science.gov (United States)

    Cash, Carla D.; Allen, Sarah E.; Simmons, Amy L.; Duke, Robert A.

    2014-01-01

    This study was designed to investigate the extent to which the presentation of an auditory model prior to learning a novel melody affects performance during active practice and the overnight consolidation of procedural memory. During evening training sessions, 32 nonpianist musicians practiced a 13-note keyboard melody with their left…

  10. Effects of Model Performances on Music Skill Acquisition and Overnight Memory Consolidation

    Science.gov (United States)

    Cash, Carla D.; Allen, Sarah E.; Simmons, Amy L.; Duke, Robert A.

    2014-01-01

    This study was designed to investigate the extent to which the presentation of an auditory model prior to learning a novel melody affects performance during active practice and the overnight consolidation of procedural memory. During evening training sessions, 32 nonpianist musicians practiced a 13-note keyboard melody with their left…

  11. EFFECTS OF MAGNESIUM PEMOLINE UPON HUMAN LEARNING, MEMORY, AND PERFORMANCE TESTS.

    Science.gov (United States)

    SMITH, RONALD G.

    THIS STUDY WAS CONDUCTED DURING 1966 TO DETERMINE THE EFFECTS OF MAGNESIUM PEMOLINE (A COMBINATION OF 2-IMINO-5-PHENYL-4-OXAZOLIDINONE AND MAGNESIUM HYDROXIDE) ON A VARIETY OF HUMAN LEARNING, MEMORY, AND PERFORMANCE TASKS. MAGNESIUM PEMOLINE (25 OR 37.5 MG) OR A PLACEBO WAS ADMINISTERED ORALLY ON A DOUBLE-BLIND BASIS TO INTELLIGENCE-MATCHED GROUPS…

  12. Development of Working Memory and Performance in Arithmetic: A Longitudinal Study with Children

    Science.gov (United States)

    López, Magdalena

    2014-01-01

    Introduction: This study has aimed to investigate the relationship between the development of working memory and performance on arithmetic activities. Method: We conducted a 3-year longitudinal study of a sample of 90 children, that was followed during the first, second and third year of primary school. All children were tested on measures of WM…

  13. Designs of Concept Maps and Their Impacts on Readers' Performance in Memory and Reasoning while Reading

    Science.gov (United States)

    Tzeng, Jeng-Yi

    2010-01-01

    From the perspective of the Fuzzy Trace Theory, this study investigated the impacts of concept maps with two strategic orientations (comprehensive and thematic representations) on readers' performance of cognitive operations (such as perception, verbatim memory, gist reasoning and syntheses) while the readers were reading two history articles that…

  14. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    Science.gov (United States)

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  15. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    Science.gov (United States)

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  16. Effects of Crowding Combined with Mood on Working Memory Performance among College Students

    Science.gov (United States)

    Daniel, Lisa

    2012-01-01

    This study investigated the effects of crowding combined with mood on working memory performance among college students. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web…

  17. Future thinking improves prospective memory performance and plan enactment in older adults

    NARCIS (Netherlands)

    Altgassen, A.M.; Rendell, P.G.; Bernhard, A.; Henry, J.D.; Bailey, P.E.; Phillips, L.H.; Kliegel, M.

    2015-01-01

    Efficient intention formation might improve prospective memory by reducing the need for resource-demanding strategic processes during the delayed performance interval. The present study set out to test this assumption and provides the first empirical assessment of whether imagining a future action i

  18. Effects of Crowding Combined with Mood on Working Memory Performance among College Students

    Science.gov (United States)

    Daniel, Lisa

    2012-01-01

    This study investigated the effects of crowding combined with mood on working memory performance among college students. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web…

  19. Face-name Associative Memory Performance is Related To Amyloid Burden in Normal Elderly

    Science.gov (United States)

    Rentz, Dorene M.; Amariglio, Rebecca. E.; Becker, J. Alex; Frey, Meghan; Olson, Lauren E.; Frishe, Katherine; Carmasin, Jeremy; Maye, Jacqueline E.; Johnson, Keith A.; Sperling, Reisa A.

    2011-01-01

    Cerebral amyloid beta (Aβ) deposition occurs in a substantial fraction of cognitively normal (CN) older individuals. However, it has been difficult to reliably detect evidence of amyloid-related cognitive alterations in CN using standard neuropsychological measures. We sought to determine whether a highly demanding face-name associative memory exam (FNAME) could detect evidence of Aβ-related memory impairment in CN. We studied 45 CN subjects (mean age = 71.7 ± 8.8) with Clinical Dementia Rating (CDR) scores = 0 and MMSE ≥ 28, using Positron Emission Tomography with Pittsburgh Compound B (PiB PET). Memory factor scores were derived from a principal components analysis for FNAME name retrieval (FN-N), FNAME occupation retrieval (FN-O) and the 6-Trial Selective Reminding Test (SRT). Using multiple linear and logistic regression analyses, we related the memory factor scores to PiB distribution volume ratios (DVR, cerebellar reference) as either a continuous or a dichotomous variable in frontal cortex and a posterior cortical region representing the precuneus, posterior cingulate and lateral parietal cortices (PPCLP), co-varying for age and AMNART IQ (a proxy of cognitive reserve (CR)). A significant inverse relationship for FN-N was found with Aβ deposition in frontal (R2 = .29, β = −2.2, p = 0.02) and PPCLP cortices (R2 = .26, β = −2.4, p = 0.05). In contrast, neither FN-O nor the SRT were significantly related to Aβ deposition. Performance on a demanding test of face-name associative memory was related to Aβ burden in brain regions associated with memory systems. Associative memory for faces and names, a common complaint among older adults, may be a sensitive marker of early Aβ-related impairment. PMID:21689670

  20. Rapid-Eye-Movement-Sleep (REM Associated Enhancement of Working Memory Performance after a Daytime Nap.

    Directory of Open Access Journals (Sweden)

    Esther Yuet Ying Lau

    Full Text Available The main objective was to study the impact of a daytime sleep opportunity on working memory and the mechanism behind such impact. This study adopted an experimental design in a sleep research laboratory. Eighty healthy college students (Age:17-23, 36 males were randomized to either have a polysomnography-monitored daytime sleep opportunity (Nap-group, n=40 or stay awake (Wake-group, n=40 between the two assessment sessions. All participants completed a sleep diary and wore an actigraph-watch for 5 days before and one day after the assessment sessions. They completed the state-measurement of sleepiness and affect, in addition to a psychomotor vigilance test and a working memory task before and after the nap/wake sessions. The two groups did not differ in their sleep characteristics prior to and after the lab visit. The Nap-group had higher accuracy on the working memory task, fewer lapses on the psychomotor vigilance test and lower state-sleepiness than the Wake-group. Within the Nap-group, working memory accuracy was positively correlated with duration of rapid eye movement sleep (REM and total sleep time during the nap. Our findings suggested that "sleep gain" during a daytime sleep opportunity had significant positive impact on working memory performance, without affecting subsequent nighttime sleep in young adult, and such impact was associated with the duration of REM. While REM abnormality has long been noted in pathological conditions (e.g. depression, which are also presented with cognitive dysfunctions (e.g. working memory deficits, this was the first evidence showing working memory enhancement associated with REM in daytime napping in college students, who likely had habitual short sleep duration but were otherwise generally healthy.

  1. Face-name associative memory performance is related to amyloid burden in normal elderly.

    Science.gov (United States)

    Rentz, Dorene M; Amariglio, Rebecca E; Becker, J Alex; Frey, Meghan; Olson, Lauren E; Frishe, Katherine; Carmasin, Jeremy; Maye, Jacqueline E; Johnson, Keith A; Sperling, Reisa A

    2011-07-01

    Cerebral amyloid beta (Aβ) deposition occurs in a substantial fraction of cognitively normal (CN) older individuals. However, it has been difficult to reliably detect evidence of amyloid-related cognitive alterations in CN using standard neuropsychological measures. We sought to determine whether a highly demanding face-name associative memory exam (FNAME) could detect evidence of Aβ-related memory impairment in CN. We studied 45 CN subjects (mean age=71.7 ± 8.8) with Clinical Dementia Rating (CDR) scores=0 and MMSE ≥ 28, using Positron Emission Tomography with Pittsburgh Compound B (PiB PET). Memory factor scores were derived from a principal components analysis for FNAME name retrieval (FN-N), FNAME occupation retrieval (FN-O) and the 6-Trial Selective Reminding Test (SRT). Using multiple linear and logistic regression analyses, we related the memory factor scores to PiB distribution volume ratios (DVR, cerebellar reference) as either a continuous or a dichotomous variable in frontal cortex and a posterior cortical region representing the precuneus, posterior cingulate and lateral parietal cortices (PPCLP), co-varying for age and AMNART IQ (a proxy of cognitive reserve (CR)). A significant inverse relationship for FN-N was found with Aβ deposition in frontal (R(2)=0.29, β=-2.2, p=0.02) and PPCLP cortices (R(2)=0.26, β=-2.4, p=0.05). In contrast, neither FN-O nor the SRT were significantly related to Aβ deposition. Performance on a demanding test of face-name associative memory was related to Aβ burden in brain regions associated with memory systems. Associative memory for faces and names, a common complaint among older adults, may be a sensitive marker of early Aβ-related impairment.

  2. Rapid-Eye-Movement-Sleep (REM) Associated Enhancement of Working Memory Performance after a Daytime Nap.

    Science.gov (United States)

    Lau, Esther Yuet Ying; Wong, Mark Lawrence; Lau, Kristy Nga Ting; Hui, Florence Wai Ying; Tseng, Chia-huei

    2015-01-01

    The main objective was to study the impact of a daytime sleep opportunity on working memory and the mechanism behind such impact. This study adopted an experimental design in a sleep research laboratory. Eighty healthy college students (Age:17-23, 36 males) were randomized to either have a polysomnography-monitored daytime sleep opportunity (Nap-group, n=40) or stay awake (Wake-group, n=40) between the two assessment sessions. All participants completed a sleep diary and wore an actigraph-watch for 5 days before and one day after the assessment sessions. They completed the state-measurement of sleepiness and affect, in addition to a psychomotor vigilance test and a working memory task before and after the nap/wake sessions. The two groups did not differ in their sleep characteristics prior to and after the lab visit. The Nap-group had higher accuracy on the working memory task, fewer lapses on the psychomotor vigilance test and lower state-sleepiness than the Wake-group. Within the Nap-group, working memory accuracy was positively correlated with duration of rapid eye movement sleep (REM) and total sleep time during the nap. Our findings suggested that "sleep gain" during a daytime sleep opportunity had significant positive impact on working memory performance, without affecting subsequent nighttime sleep in young adult, and such impact was associated with the duration of REM. While REM abnormality has long been noted in pathological conditions (e.g. depression), which are also presented with cognitive dysfunctions (e.g. working memory deficits), this was the first evidence showing working memory enhancement associated with REM in daytime napping in college students, who likely had habitual short sleep duration but were otherwise generally healthy.

  3. SEMICONDUCTOR INTEGRATED CIRCUITS A low-voltage sense amplifier for high-performance embedded flash memory

    Science.gov (United States)

    Jiang, Liu; Xueqiang, Wang; Qin, Wang; Dong, Wu; Zhigang, Zhang; Liyang, Pan; Ming, Liu

    2010-10-01

    This paper presents a sense amplifier scheme for low-voltage embedded flash (eFlash) memory applications. The topology of the sense amplifier is based on current mode comparison. Moreover, an offset-voltage elimination technique is employed to improve the sensing performance under a small memory cell current. The proposed sense amplifier is designed based on a GSMC 130 nm eFlash process, and the sense time is 0.43 ns at 1.5 V, corresponding to a 46% improvement over the conventional technologies.

  4. Adult age differences in prospective memory performance: exploring the age prospective memory paradox

    OpenAIRE

    Ihle, Andreas

    2013-01-01

    La mémoire prospective consiste à se rappeler d'actions futures, à exécuter dans un délai plus ou moins court, tout en étant déjà engagé dans une autre activité. Trois décennies de recherche sur ce thème ont révélé un intéressant pattern de performances, qui varie en fonction de l'âge : Lorsque la mémoire prospective est étudiée en laboratoire, les jeunes adultes présentent de meilleurs résultats que les adultes âgés. Or, dans un contexte naturalistique, les adultes âgés présentent des résult...

  5. Effect of a Single Dose of Dextromethorphan on Psychomotor Performance and Working Memory Capacity

    Science.gov (United States)

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.; Ashor, Ammar Waham

    2012-01-01

    Background: Previous studies show that the prolonged use of dextromethorphan produces cognitive deterioration in humans. Aim: The aim of this study was to investigate the effect of a single dose of dextroemthrophan on psychomotor performance and working memory capacity. Materials and Methods: This is a randomized, double-blind, controlled, and prospective study. Thirty-six (17 women, 19 men) medical students enrolled in the study; half of them (7 women, 11 men) were given placebo, while the other half (10 women, 8 men) received dextromethorphan. The choice reaction time, critical flicker fusion threshold, and N-back working memory task were measured before and after 2 h of taking the drugs. Results: Dextromethorphan showed a significant deterioration in the 3-back working memory task (P0.05). On the other hand, placebo showed no significant changes as regards the choice reaction time, critical flicker fusion threshold, and N-back working memory task (P>0.05). Conclusion: A single dose of dextromethorphan has no effect on attention and arousal but may significantly impair the working memory capacity. PMID:23162189

  6. Effect of a single dose of dextromethorphan on psychomotor performance and working memory capacity

    Directory of Open Access Journals (Sweden)

    Hayder M Al-Kuraishy

    2012-01-01

    Full Text Available Background: Previous studies show that the prolonged use of dextromethorphan produces cognitive deterioration in humans. Aim: The aim of this study was to investigate the effect of a single dose of dextroemthrophan on psychomotor performance and working memory capacity. Materials and Methods: This is a randomized, double-blind, controlled, and prospective study. Thirty-six (17 women, 19 men medical students enrolled in the study; half of them (7 women, 11 men were given placebo, while the other half (10 women, 8 men received dextromethorphan. The choice reaction time, critical flicker fusion threshold, and N-back working memory task were measured before and after 2 h of taking the drugs. Results: Dextromethorphan showed a significant deterioration in the 3-back working memory task (P0.05. On the other hand, placebo showed no significant changes as regards the choice reaction time, critical flicker fusion threshold, and N-back working memory task (P>0.05. Conclusion: A single dose of dextromethorphan has no effect on attention and arousal but may significantly impair the working memory capacity.

  7. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    Science.gov (United States)

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications.

  8. Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering.

    Science.gov (United States)

    Mrazek, Michael D; Franklin, Michael S; Phillips, Dawa Tarchin; Baird, Benjamin; Schooler, Jonathan W

    2013-05-01

    Given that the ability to attend to a task without distraction underlies performance in a wide variety of contexts, training one's ability to stay on task should result in a similarly broad enhancement of performance. In a randomized controlled investigation, we examined whether a 2-week mindfulness-training course would decrease mind wandering and improve cognitive performance. Mindfulness training improved both GRE reading-comprehension scores and working memory capacity while simultaneously reducing the occurrence of distracting thoughts during completion of the GRE and the measure of working memory. Improvements in performance following mindfulness training were mediated by reduced mind wandering among participants who were prone to distraction at pretesting. Our results suggest that cultivating mindfulness is an effective and efficient technique for improving cognitive function, with wide-reaching consequences.

  9. Performance-based empathy mediates the influence of working memory on social competence in schizophrenia.

    Science.gov (United States)

    Smith, Matthew J; Horan, William P; Cobia, Derin J; Karpouzian, Tatiana M; Fox, Jaclyn M; Reilly, James L; Breiter, Hans C

    2014-07-01

    Empathic deficits have been linked to poor functioning in schizophrenia, but this work is mostly limited to self-report data. This study examined whether performance-based empathy measures account for incremental variance in social competence and social attainment above and beyond self-reported empathy, neurocognition, and clinical symptoms. Given the importance of working memory in theoretical models of empathy and in the prediction of functioning in schizophrenia, we also examined whether empathy mediates the relationship between working memory and functioning. Sixty outpatients and 45 healthy controls were compared on performance-based measures of 3 key components of empathic responding, including facial affect perception, emotional empathy (affective responsiveness), and cognitive empathy (emotional perspective-taking). Participants also completed measures of self-reported empathy, neurocognition, clinical symptoms, and social competence and attainment. Patients demonstrated lower accuracy than controls across the 3 performance-based empathy measures. Among patients, these measures showed minimal relations to self-reported empathy but significantly correlated with working memory and other neurocognitive functions as well as symptom levels. Furthermore, cognitive empathy explained significant incremental variance in social competence (∆R (2) = .07, P empathy were sensitive to functionally relevant disturbances in schizophrenia. Working memory deficits appear to have an important effect on these disruptions in empathy. Empathy is emerging as a promising new area for social cognitive research and for novel recovery-oriented treatment development.

  10. Differential neural correlates underlie judgment of learning and subsequent memory performance

    Directory of Open Access Journals (Sweden)

    Haiyan eYang

    2015-11-01

    Full Text Available Judgment of learning (JOL plays a pivotal role in self-regulated learning. Although the JOLs are in general accurate, important deviations from memory performance are often reported, especially when the JOLs are made immediately after learning. Nevertheless, existing studies have not clearly dissociated the neural processes underlying subjective JOL and objective memory. In the present study, participants were asked to study a list of words that would be tested one day later. Immediately after learning, participants predicted how likely they would remember that item. Critically, the JOL was performed on only half of the studied items to avoid its contamination on subsequent memory. We found that during encoding, compared to items later judged as will be forgotten, those judged as will be remembered showed stronger activities in the default-mode network, including the ventromedial prefrontal cortex (PFC and posterior cingulate cortex, as well as weaker functional connectivity between the left dorsolateral PFC and the visual cortex. The exact opposite pattern was found when comparing items that were actually remembered with that were later forgotten. These important neural dissociations between JOL and memory performance shed light on the neural mechanisms of human metamemory bias.

  11. Numerics of High Performance Computers and Benchmark Evaluation of Distributed Memory Computers

    Directory of Open Access Journals (Sweden)

    H. S. Krishna

    2004-07-01

    Full Text Available The internal representation of numerical data, their speed of manipulation to generate the desired result through efficient utilisation of central processing unit, memory, and communication links are essential steps of all high performance scientific computations. Machine parameters, in particular, reveal accuracy and error bounds of computation, required for performance tuning of codes. This paper reports diagnosis of machine parameters, measurement of computing power of several workstations, serial and parallel computers, and a component-wise test procedure for distributed memory computers. Hierarchical memory structure is illustrated by block copying and unrolling techniques. Locality of reference for cache reuse of data is amply demonstrated by fast Fourier transform codes. Cache and register-blocking technique results in their optimum utilisation with consequent gain in throughput during vector-matrix operations. Implementation of these memory management techniques reduces cache inefficiency loss, which is known to be proportional to the number of processors. Of the two Linux clusters-ANUP16, HPC22 and HPC64, it has been found from the measurement of intrinsic parameters and from application benchmark of multi-block Euler code test run that ANUP16 is suitable for problems that exhibit fine-grained parallelism. The delivered performance of ANUP16 is of immense utility for developing high-end PC clusters like HPC64 and customised parallel computers with added advantage of speed and high degree of parallelism.

  12. WMS-III Logical Memory performance after a two-week delay in temporal lobe epilepsy and control groups.

    Science.gov (United States)

    Bell, Brian D

    2006-11-01

    Conventional memory assessment may fail to identify memory dysfunction that is characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed immediate memory and retention after 30-minute and two-week delays in a control group (n = 25) and a group of individuals with temporal lobe epilepsy (TLE, n = 25). For raw free recall, thematic unit, and recognition memory scores from the Wechsler Memory Scale-3rd ed. (WMS-III) Logical Memory (LM) subtest, there were no group x trial interactions and the TLE group performed significantly worse than the controls on all trials. At the individual level, none of the patients (0%) demonstrated isolated free recall impairment at the two-week delay when raw scores were analyzed, and one patient (4%) but also five controls (20%) did so when percent retention scores were examined. In summary, TLE patients did not demonstrate disproportionate forgetting over two weeks on a widely used story memory test.

  13. Effects of translation and performance on memory of words of Sign Language as a second language

    OpenAIRE

    2004-01-01

    An experiment was designed to investigate the effects of translation and performance on memory of words of Sign Language as a second language. An intermediate class of Sign Language learners, whose first language was Japanese, was required to carried out four tasks : translating from Japanese word into Sign Language word, oral reading of Japanese word, translating from Sign Language word into Japanese word, and performing (expressing) of Sign Language word. The subjects were then asked unexpe...

  14. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness

    Directory of Open Access Journals (Sweden)

    Sabine Peters

    2016-06-01

    Full Text Available Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N = 208, 8–27 years, two measurements in two years, we investigated developmental trajectories in frontoparietal activity during feedback learning. Our first aim was to test for linear and nonlinear developmental trajectories in dorsolateral prefrontal cortex (DLPFC, superior parietal cortex (SPC, supplementary motor area (SMA and anterior cingulate cortex (ACC. Second, we tested which factors (task performance, working memory, cortical thickness explained additional variance in time-related changes in activity besides age. Developmental patterns for activity in DLPFC and SPC were best characterized by a quadratic age function leveling off/peaking in late adolescence. There was a linear increase in SMA and a linear decrease with age in ACC activity. In addition to age, task performance explained variance in DLPFC and SPC activity, whereas cortical thickness explained variance in SMA activity. Together, these findings provide a novel perspective of linear and nonlinear developmental changes in the frontoparietal network during feedback learning.

  15. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    Science.gov (United States)

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The dynamic effects of age-related stereotype threat on explicit and implicit memory performance in older adults

    OpenAIRE

    Eich, TS; Murayama, K; Castel, AD; Knowlton, BJ

    2014-01-01

    © 2014 Guilford Publications, Inc. While an awareness of age-related changes in memory may help older adults gain insight into their own cognitive abilities, it may also have a negative impact on memory performance through a mechanism of stereotype threat (ST). The consequence of ST is under-performance in abilities related to the stereotype. Here, we examined the degree to which explicit and implicit memory were affected by ST across a wide age-range. We found that explicit memory was affect...

  17. How Japanese adults perceive memory change with age: middle-aged adults with memory performance as high as young adults evaluate their memory abilities as low as older adults.

    Science.gov (United States)

    Kinjo, Hikari; Shimizu, Hiroyuki

    2014-01-01

    The characteristics of self-referent beliefs about memory change with age. The relationship between beliefs and memory performance of three age groups of Japanese adults was investigated. The beliefs measured by the Personal Beliefs about Memory Instrument (Lineweaver & Hertzog, 1998) differed among the age groups and between sexes. In most scales, the ratings by middle-aged adults were as low as those by older adults, which were lower than those by young adults. Women perceived their memory abilities as lower than men's, with no interaction between age and sex, suggesting the difference remains across the lifespan. For middle-aged adults, the better they performed in cued-recall, free recall, and recognition, the lower they evaluated their memory self-efficacy, while few relationships were found for other groups. Our results suggest that cognitive beliefs change with age and that investigating the beliefs of the middle-aged adults is indispensable to elucidate the transition of beliefs.

  18. Figural memory performance and functional magnetic resonance imaging activity across the adult lifespan.

    Science.gov (United States)

    Jamadar, Sharna; Assaf, Michal; Jagannathan, Kanchana; Anderson, Karen; Pearlson, Godfrey D

    2013-01-01

    We examined performance and functional magnetic resonance imaging activity in participants (n = 235) aged 17-81 years on a nonverbal recognition memory task, figural memory. Reaction time, error rate, and response bias measures indicated that the youngest and oldest participants were faster, made fewer errors, and showed a more conservative response bias than participants in the median age ranges. Encoding and Recognition phases activated a distributed bilateral network encompassing prefrontal, subcortical, lateral, and medial temporal and occipital regions. Activation during Encoding phase did not correlate with age. During Recognition, task-related activation for correctly identified targets (Hit-Targets) correlated linearly positively with age; nontask related activity correlated negative quadratically with age. During correctly identified distractors (Hit-Distractors) activity in task-related regions correlated positive linearly with age, nontask activity showed positive and negative quadratic relationships with age. Missed-Targets activity did not correlate with age. We concluded that figural memory performance and functional magnetic resonance imaging activity during Recognition but not Encoding was affected both by continued maturation of the brain in the early 20s and compensatory recruitment of additional brain regions during recognition memory in old age.

  19. The Doors and People Test: The effect of frontal lobe lesions on recall and recognition memory performance.

    Science.gov (United States)

    MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim

    2016-03-01

    Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Significant verbal and visual recall and recognition impairments were found in the frontal patients. These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. (c) 2016 APA, all rights reserved).

  20. Do baseline executive functions mediate prospective memory performance under a moderate dose of alcohol?

    Directory of Open Access Journals (Sweden)

    James Hugo Smith-Spark

    2016-08-01

    Full Text Available Prospective memory (PM is memory for delayed intentions. While deleterious effects of acute doses of alcohol on PM have been documented previously using between-subjects comparisons, the current study adopted a single blind placebo-controlled within-subjects design to explore whether the extent to which alcohol-related impairments in PM are mediated by executive functions (EFs. To this end, 52 male social drinkers with no history of substance-related treatment were tested using two parallel versions of a clinical measure of PM (the Memory for Intentions Test; Raskin, Buckheit & Sherrod, 2010, and a battery of EF measures. Testing took place on two occasions, with the order of administration of the alcohol and placebo conditions being fully counterbalanced. Overall, PM was worse under alcohol and participants showed deficits on five of the six subscales making up the clinical test. Hierarchical multiple regression analyses demonstrated that EFs did not predict PM performance decrements overall but did predict performance when time cues were presented and when verbal responses were required. Phonemic fluency was the strongest of the EF predictors; a greater capacity to gain controlled access to information in long-term memory predicted a smaller difference between placebo- and alcohol-related performance on both the time cue and verbal response scales. Prospective memory is crucial to compliance with, and response to, both therapy programmes and alcohol harm prevention campaigns. The results indicate that individual differences in cognitive function need to be taken into account when designing such interventions in order to increase their effectiveness.

  1. Dynamic Memory Model for Non-Stationary Optimization

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nørgaard; Krink, Thiemo

    2002-01-01

    Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memory-based GA...

  2. Dynamic Memory Model for Non-Stationary Optimization

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nørgaard; Krink, Thiemo

    2002-01-01

    Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memory-based GA for...

  3. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice.

    Science.gov (United States)

    Eduviere, Anthony T; Umukoro, S; Aderibigbe, Adegbuyi O; Ajayi, Abayomi M; Adewole, Folashade A

    2015-07-01

    Current research effort focuses on the development of safer natural compounds with multipronged mechanisms of action that could be used to ameliorate memory deficits in patients with Alzheimer's disease, as cure for the disease still remains elusive. In this study, we evaluated the effect of methyl jasmonate (MJ), a naturally occurring bioactive compound on memory, acetylcholinesterase activity and biomarkers of oxidative stress in mice. Male Swiss mice were treated with intraperitoneal injection of MJ (10-40 mg/kg) alone or in combination with scopolamine (3mg/kg) once daily for 7 days. Thirty minutes after the last treatment, memory functions were assessed using Y-maze and object recognition tests. Thereafter, acetylcholinesterase activity and levels of biomarkers of oxidative stress were assessed in mice brains using standard biochemical procedures. MJ significantly enhanced memory performance and reversed scopolamine-induced cognitive impairment in mice. MJ demonstrated significant inhibition of acetylcholinesterase activity suggesting increased cholinergic neurotransmission. It further decreased malondialdehyde concentrations in mouse brain indicating antioxidant activity. Moreover, MJ significantly increased glutathione levels and activity of antioxidant enzymes (catalase and superoxide dismutase) in mice brains. The increased oxidative stress; evidenced by elevated levels of malondialdehyde and decreased antioxidant defense systems in scopolamine-treated mice was attenuated by MJ. The results of this study suggest that MJ may be useful in conditions associated with memory dysfunctions or age-related cognitive decline. The positive effect of MJ on memory may be related to inhibition of oxidative stress and enhancement of cholinergic neurotransmission through inhibition of acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Chronic spatial working memory deficit associated with the superior longitudinal fasciculus: a study using voxel-based lesion-symptom mapping and intraoperative direct stimulation in right prefrontal glioma surgery.

    Science.gov (United States)

    Kinoshita, Masashi; Nakajima, Riho; Shinohara, Harumichi; Miyashita, Katsuyoshi; Tanaka, Shingo; Okita, Hirokazu; Nakada, Mitsutoshi; Hayashi, Yutaka

    2016-10-01

    OBJECTIVE Although the right prefrontal region is regarded as a silent area, chronic deficits of the executive function, including working memory (WM), could occur after resection of a right prefrontal glioma. This may be overlooked by postoperative standard examinations, and the disabilities could affect the patient's professional life. The right prefrontal region is a part of the frontoparietal network and is subserved by the superior longitudinal fasciculus (SLF); however, the role of the SLF in spatial WM is unclear. This study investigated a persistent spatial WM deficit in patients who underwent right prefrontal glioma resection, and evaluated the relationship between the spatial WM deficit and the SLF. METHODS Spatial WM was examined in 24 patients who underwent prefrontal glioma resection (right, n = 14; left, n = 10) and in 14 healthy volunteers using a spatial 2-back task during the long-term postoperative period. The neural correlates of spatial WM were evaluated using lesion mapping and voxel-based lesion-symptom mapping. In addition, the spatial 2-back task was performed during surgery under direct subcortical electrical stimulation in 2 patients with right prefrontal gliomas. RESULTS Patients with a right prefrontal lesion had a significant chronic spatial WM deficit. Voxel-based lesion-symptom mapping analysis revealed a significant correlation between spatial WM deficit and the region that overlapped the first and second segments of the SLF (SLF I and SLF II). Two patients underwent awake surgery and had difficulties providing the correct responses in the spatial 2-back task with direct subcortical electrical stimulation on the SLF I, which was preserved and confirmed by postoperative diffusion tensor imaging tractography. These patients exhibited no spatial WM deficits during the postoperative immediate and long-term periods. CONCLUSIONS Spatial WM deficits may persist in patients who undergo resection of the tumor located in the right prefrontal

  5. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  6. Do not forget Full memory in memory-based learning of word pronunciation

    CERN Document Server

    Van den Bosch, A; Bosch, Antal van den; Daelemans, Walter

    1999-01-01

    Memory-based learning, keeping full memory of learning material, appears a viable approach to learning NLP tasks, and is often superior in generalisation accuracy to eager learning approaches that abstract from learning material. Here we investigate three partial memory-based learning approaches which remove from memory specific task instance types estimated to be exceptional. The three approaches each implement one heuristic function for estimating exceptionality of instance types: (i) typicality, (ii) class prediction strength, and (iii) friendly-neighbourhood size. Experiments are performed with the memory-based learning algorithm IB1-IG trained on English word pronunciation. We find that removing instance types with low prediction strength (ii) is the only tested method which does not seriously harm generalisation accuracy. We conclude that keeping full memory of types rather than tokens, and excluding minority ambiguities appear to be the only performance-preserving optimisations of memory-based learning...

  7. Goal-setting, self-efficacy, and memory performance in older and younger adults.

    Science.gov (United States)

    West, R L; Thorn, R M

    2001-01-01

    Research in field and laboratory settings has shown that goals lead to improved self-efficacy and performance, especially when individuals also receive positive feedback. The present study extended goal-setting theory to examine self-set goals and feedback in relation to younger and older adults' memory performance and self-efficacy. Following a baseline recall trial, participants completed three shopping list recall trials. Half of the participants were instructed to set goals for the three experimental trials, and half in each goal condition received performance feedback after each trial. Young adults' self-efficacy, clustering, and recall exceeded that of older adults. Goal setting increased self-efficacy for younger but not older adults, and it did not affect performance. Younger adults and participants in the feedback condition increased their goals across trials, as did participants for whom feedback indicated success. These data provide a first look at the motivational impact of feedback and self-set recall goals in memory aging. Additional study is needed to understand the interactive effects of type of feedback, memory task difficulty, and type of goal setting at different ages.

  8. Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA Tesla GPU Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Veerendra, Benjegerdes, Troy; Bode, Brett

    2009-08-31

    Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as the workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.

  9. Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance.

    Science.gov (United States)

    Green, Matthew R; McCormick, Cheryl M

    2013-11-01

    There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Assessing the role of memory in preschoolers' performance on episodic foresight tasks.

    Science.gov (United States)

    Atance, Cristina M; Sommerville, Jessica A

    2014-01-01

    A total of 48 preschoolers (ages 3, 4, and 5) received four tasks modelled after prior work designed to assess the development of "episodic foresight". For each task, children encountered a problem in one room and, after a brief delay, were given the opportunity in a second room to select an item to solve the problem. Importantly, after selecting an item, children were queried about their memory for the problem. Age-related changes were found both in children's ability to select the correct item and their ability to remember the problem. However, when we controlled for children's memory for the problem, there were no longer significant age-related changes on the item choice measure. These findings suggest that age-related changes in children's performance on these tasks are driven by improvements in children's memory versus improvements in children's future-oriented thinking or "foresight" per se. Our results have important implications for how best to structure tasks to measure children's episodic foresight, and also for the relative role of memory in this task and in episodic foresight more broadly.

  11. Elevated levels of serum cholesterol are associated with better performance on tasks of episodic memory.

    Science.gov (United States)

    Leritz, Elizabeth C; McGlinchey, Regina E; Salat, David H; Milberg, William P

    2016-04-01

    We examined how serum cholesterol, an established risk factor for cerebrovascular disease (CVD), relates to cognitive function in healthy middle-older aged individuals with no neurologic or CVD history. A complete lipid panel was obtained from a cohort of one hundred twenty individuals, ages 43-85, who also underwent a comprehensive neuropsychological examination. In order to reduce the number of variables and empirically identify broad cognitive domains, scores from neuropsychological tests were submitted into a factor analysis. This analysis revealed three explainable factors: Memory, Executive Function and Memory/Language. Three separate hierarchical multiple regression analyses were conducted using individual cholesterol metrics (total cholesterol, low density lipoprotein; LDL, high density lipoprotein; HDL, and triglycerides), as well as age, education, medication status (lipid lowering agents), ApoE status, and additional risk factors for CVD to predict neuropsychological function. The Memory Factor was predicted by a combination of age, LDL, and triglyceride levels; both age and triglycerides were negatively associated with factor score, while LDL levels revealed a positive relationship. Both the Executive and Memory/Language factor were only explained by education, whereby more years were associated with better performance. These results provide evidence that individual cholesterol lipoproteins and triglycerides may differentially impact cognitive function, over and above other common CVD risk factors and ApoE status. Our findings demonstrate the importance of consideration of vascular risk factors, such as cholesterol, in studies of cognitive aging.

  12. Effect of the survival judgment task on memory performance in subclinically depressed people

    Directory of Open Access Journals (Sweden)

    Rui eNouchi

    2012-04-01

    Full Text Available Many reports have described that a survival judgment task that requires participants to judge words according to their relevance to a survival situation can engender better recall than that obtained in other judgment tasks such as semantic or self-judgment tasks. We investigated whether memory enhancement related to the survival judgment task is elicited or not in subclinically depressed participants. Based on the BDI Score, participants were classified as either depressed or non-depressed participants. Then 20 depressed participants and 24 non-depressed participants performed a survival judgment task and an autobiographical recall task. Results showed memory enhancement related to the survival judgment task in both depressed and non-depressed participants, but showed lower memory enhancement related to the survival judgment task in depressed participants than in non-depressed participants. These results suggest that the survival judgment task benefit is a robust phenomenon. Moreover, that benefit was reduced by depressed emotion. The combination hypothesis better explains the mechanism of memory enhancement related to the survival judgment task than the functional, emotional and arousal or congruency hypothesis does.

  13. Effects of DSP4 and methylphenidate on spatial memory performance in rats

    OpenAIRE

    Sontag, Thomas A.; Hauser, Joachim; Tucha, Oliver; Lange, Klaus W.

    2011-01-01

    In this experiment, we have investigated the spatial memory performance of rats following a central noradrenaline depletion induced by three different doses of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and following administration of three different doses of methylphenidate (MPH). The rats were required to find food pellets hidden on a holeboard. The sole administration of DSP4 induced only minor cognitive deficits. However, the treatment with MPH increased the refere...

  14. Inverse correspondence between hippocampal perfusion and verbal memory performance in older adults.

    Science.gov (United States)

    Rane, Swati; Ally, Brandon A; Hussey, Erin; Wilson, Tracy; Thornton-Wells, Tricia; Gore, John C; Donahue, Manus J

    2013-03-01

    Understanding physiological changes that precede irreversible tissue damage in age-related pathology is central to optimizing treatments that may prevent, or delay, cognitive decline. Cerebral perfusion is a tightly regulated physiological property, coupled to tissue metabolism and function, and abnormal (both elevated and reduced) hippocampal perfusion has been reported in a range of cognitive disorders. However, the size and location of the hippocampus complicates perfusion quantification, as many perfusion techniques acquire data with spatial resolution on the order of or beyond the size of the hippocampus, and are thus suboptimal in this region (especially in the presence of hippocampal atrophy and reduced flow scenarios). Here, the relationship between hippocampal perfusion and atrophy as a function of memory performance was examined in cognitively normal healthy older adults (n = 20; age=67 ± 7 yr) with varying genetic risk for dementia using a custom arterial spin labeling acquisition and analysis procedure. When controlling for hippocampal volume, it was found that hippocampal perfusion correlated inversely (P = 0.04) with memory performance despite absent hippocampal tissue atrophy or white matter disease. The hippocampal flow asymmetry (left hippocampus perfusion-right hippocampus perfusion) was significantly (P = 0.04) increased in APOE-ϵ4 carriers relative to noncarriers. These findings demonstrate that perfusion correlates more strongly than tissue volume with memory performance in cognitively normal older adults, and furthermore that an inverse trend between these two parameters suggests that elevation of neuronal activity, possibly mediated by neuroinflammation and/or excitation/inhibition imbalance, may be closely associated with minor changes in memory performance. Copyright © 2012 Wiley Periodicals, Inc.

  15. Don't words come easy? A psychophysical exploration of word superiority

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Petersen, Anders; Vangkilde, Signe Allerup

    2013-01-01

    Words are made of letters, and yet sometimes it is easier to identify a word than a single letter. This word superiority effect (WSE) has been observed when written stimuli are presented very briefly or degraded by visual noise. We compare performance with letters and words in three experiments, ...... and visual short term memory capacity. So, even if single words come easy, there is a limit to the word superiority effect....

  16. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children with SLI

    Science.gov (United States)

    Mainela-Arnold, Elina; Evans, Julia L.

    2005-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…

  17. Effects of music and white noise on working memory performance in monkeys.

    Science.gov (United States)

    Carlson, S; Rämä, P; Artchakov, D; Linnankoski, I

    1997-09-08

    It has been suggested that Mozart's music may have beneficial effects on the performance of cognitive tasks in humans. In the present study the effects of Mozart's piano music, white noise, simple rhythm and silence were studied on the performance of a delayed response (DR) task in monkeys. The acoustic treatments were given for 15 min, either before or during DR testing. The acoustic treatments did not affect DR performance when given before testing. However, Mozart's piano music played during DR testing caused a significant deterioration in the performance of the monkeys, whereas white noise improved it. It is suggested that Mozart's music serves as distractive stimulation during DR performance thus affecting working-memory-related neuronal processing and performance. White background noise, on the other hand, may improve DR performance by protecting against environmental distraction during testing.

  18. Increasing stimulus duration improves attention and memory performance in elderly with cognitive impairment

    Directory of Open Access Journals (Sweden)

    Yizhar Lavner

    2015-12-01

    Full Text Available Objectives: In this study, we investigated whether increasing stimulus duration could improve performance on a test of attention and short-term memory in cognitively impaired individuals. Methods: A computer-generated forward digit span test was administered to 65 patients with mild cognitive impairment or dementia (28 intervention and 37 controls. After point of failure, testing in the intervention group was continued at the same rate, but with an average 150% digit lengthening to 800 ms. Testing of controls was continued using the standard digit span test. Results: In the intervention group, 13/28 (46.4% improved their digit span test performance, compared to 2/37 (5.4% in the control group (p = 0.00005. Conclusion: Cognitively impaired elderly participants improved performance on a test of attention and short-term memory, when stimulus duration was increased in proportion to elongation of the finger tap touch-phase previously found in a similar cohort. A possible mechanism for the effect of increased stimulus duration on attention and short-term memory is discussed.

  19. Turn Off the Music! Music Impairs Visual Associative Memory Performance in Older Adults.

    Science.gov (United States)

    Reaves, Sarah; Graham, Brittany; Grahn, Jessica; Rabannifard, Parissa; Duarte, Audrey

    2016-06-01

    Whether we are explicitly listening to it or not, music is prevalent in our environment. Surprisingly, little is known about the effect of environmental music on concurrent cognitive functioning and whether young and older adults are differentially affected by music. Here, we investigated the impact of background music on a concurrent paired associate learning task in healthy young and older adults. Young and older adults listened to music or to silence while simultaneously studying face-name pairs. Participants' memory for the pairs was then tested while listening to either the same or different music. Participants also made subjective ratings about how distracting they found each song to be. Despite the fact that all participants rated music as more distracting to their performance than silence, only older adults' associative memory performance was impaired by music. These results are most consistent with the theory that older adults' failure to inhibit processing of distracting task-irrelevant information, in this case background music, contributes to their memory impairments. These data have important practical implications for older adults' ability to perform cognitively demanding tasks even in what many consider to be an unobtrusive environment. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Changes in whole-brain functional networks and memory performance in aging.

    Science.gov (United States)

    Sala-Llonch, Roser; Junqué, Carme; Arenaza-Urquijo, Eider M; Vidal-Piñeiro, Dídac; Valls-Pedret, Cinta; Palacios, Eva M; Domènech, Sara; Salvà, Antoni; Bargalló, Nuria; Bartrés-Faz, David

    2014-10-01

    We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze how local and global measures of functional brain connectivity are affected by age, and whether they are related to differences in memory performance. Whole-brain networks were created individually by parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied age-associations in interregional connectivity and their relationship with the length of the connections. Aging was associated with less connectivity in the long-range connections of fronto-parietal and fronto-occipital systems and with higher connectivity of the short-range connections within frontal, parietal, and occipital lobes. We also used the graph theory to measure functional integration and segregation. The pattern of the overall age-related correlations presented positive correlations of average minimum path length (r = 0.380, p = 0.008) and of global clustering coefficients (r = 0.454, p < 0.001), leading to less integrated and more segregated global networks. Main correlations in clustering coefficients were located in the frontal and parietal lobes. Higher clustering coefficients of some areas were related to lower performance in verbal and visual memory functions. In conclusion, we found that older participants showed lower connectivity of long-range connections together with higher functional segregation of these same connections, which appeared to indicate a more local clustering of information processing. Higher local clustering in older participants was negatively related to memory performance.

  1. Effects of single oral doses of clobazam, diazepam and lorazepam on performance tasks and memory.

    Science.gov (United States)

    Patat, A; Klein, M J; Hucher, M

    1987-01-01

    The effects on memory and psychomotor performance and the subjective effects of three anxiolytic benzodiazepines (lorazepam 2 mg, diazepam 10 mg and clobazam 20 mg p.o.) have been evaluated in a double-blind, placebo-controlled, cross-over study in 10 healthy volunteers. At each session, measurements were made prior to and +3.5 h after drug administration, except in the case of REY's test, which was presented at H + 1 h (learning) and was evaluated at H + 8 h and at H + 24 h (delayed recall). Single clinical doses of diazepam and lorazepam caused anterograde amnesia by disturbing acquisition, consolidation and retrieval. Clobazam did not impair memory. Lorazepam impaired performances in all the tests used to evaluate perception, immediate memory, reaction time, psychomotor skill and intellectual capacity. Diazepam caused a decrease in cortical arousal and the speed of perception of visual stimuli, whereas clobazam increased reaction time and reduced cortical arousal. Lorazepam caused a significant degradation of performance relative to the other two treatments.

  2. Metacognition of Working Memory Performance: Trial-by-Trial Subjective Effects from a New Paradigm.

    Science.gov (United States)

    Garcia, Andrew C; Bhangal, Sabrina; Velasquez, Anthony G; Geisler, Mark W; Morsella, Ezequiel

    2016-01-01

    Investigators have begun to examine the fleeting urges and inclinations that subjects experience when performing tasks involving response interference and working memory. Building on this research, we developed a paradigm in which subjects, after learning to press certain buttons when presented with certain letters, are presented with two action-related letters (the memoranda) but must withhold responding (4 s) until cued to emit the response associated with only one of the two letters. In the Congruent condition, the action corresponds to the cue (e.g., memoranda = AB, cue = B, response = B); in the Incongruent condition, the action corresponds to the other item of the memoranda (e.g., memoranda = AB, cue = B, response = A). After each trial, subjects inputted a rating regarding their subjectively experienced "urge to err" on that trial. These introspection-based data revealed that, as found in previous research, urges to err were strongest for incongruent trials. Our findings reveal, first, that subjects can successfully perform this new task, even though it is more complex than that of previous studies, and second, that, in this new paradigm, reliable subjective, metacognitive data can be obtained on a trial-by-trial basis. We hope that our novel paradigm will serve as a foundation for future experimental projects on the relationship between working memory performance and consciousness-an under-explored nexus whose investigation is likely to reveal insights about working memory, cognitive control, and metacognition.

  3. Compact Differential Evolution Light: High Performance Despite Limited Memory Requirement and Modest Computational Overhead

    Institute of Scientific and Technical Information of China (English)

    Giovanni Iacca; Fabio Caraffini; Ferrante Neri

    2012-01-01

    Compact algorithms are Estimation of Distribution Algorithms which mimic the behavior of population-based algorithms by means of a probabilistic representation of the population of candidate solutions.These algorithms have a similar behaviour with respect to population-based algorithms but require a much smaller memory.This feature is crucially important in some engineering applications,especially in robotics.A high performance compact algorithm is the compact Differential Evolution (cDE) algorithm.This paper proposes a novel implementation of cDE,namely compact Differential Evolution light (cDElight),to address not only the memory saving necessities but also real-time requirements.cDElight employs two novel algorithmic modifications for employing a smaller computational overhead without a performance loss,with respect to cDE.Numerical results,carried out on a broad set of test problems,show that cDElight,despite its minimal hardware requirements,does not deteriorate the performance of cDE and thus is competitive with other memory saving and population-based algorithms.An application in the field of mobile robotics highlights the usability and advantages of the proposed approach.

  4. Turn Off the Music! Music Impairs Visual Associative Memory Performance in Older Adults

    Science.gov (United States)

    Reaves, Sarah; Graham, Brittany; Grahn, Jessica; Rabannifard, Parissa; Duarte, Audrey

    2016-01-01

    Purpose of the Study: Whether we are explicitly listening to it or not, music is prevalent in our environment. Surprisingly, little is known about the effect of environmental music on concurrent cognitive functioning and whether young and older adults are differentially affected by music. Here, we investigated the impact of background music on a concurrent paired associate learning task in healthy young and older adults. Design and Methods: Young and older adults listened to music or to silence while simultaneously studying face–name pairs. Participants’ memory for the pairs was then tested while listening to either the same or different music. Participants also made subjective ratings about how distracting they found each song to be. Results: Despite the fact that all participants rated music as more distracting to their performance than silence, only older adults’ associative memory performance was impaired by music. These results are most consistent with the theory that older adults’ failure to inhibit processing of distracting task-irrelevant information, in this case background music, contributes to their memory impairments. Implications: These data have important practical implications for older adults’ ability to perform cognitively demanding tasks even in what many consider to be an unobtrusive environment. PMID:26035876

  5. Sex differences favoring women in verbal but not in visuospatial episodic memory.

    Science.gov (United States)

    Lewin, C; Wolgers, G; Herlitz, A

    2001-04-01

    Sex differences favoring women have been found in a number of studies of episodic memory. This study examined sex differences in verbal, nonverbal, and visuospatial episodic memory tasks. Results showed that although women performed at a higher level on a composite verbal and nonverbal episodic memory score, men performed at a higher level on a composite score of episodic memory tasks requiring visuospatial processing. Thus, men can use their superior visuospatial abilities to excel in highly visuospatial episodic memory tasks, whereas women seem to excel in episodic memory tasks in which a verbalization of the material is possible.

  6. Long-term effects of interference on short-term memory performance in the rat.

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored

  7. Long-term effects of interference on short-term memory performance in the rat

    Science.gov (United States)

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a “within-session/short-term” PI effect. However, we also observed a different “between-session/long-term” PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and

  8. When does anxiety help or hinder cognitive test performance? The role of working memory capacity.

    Science.gov (United States)

    Owens, Matthew; Stevenson, Jim; Hadwin, Julie A; Norgate, Roger

    2014-02-01

    Cognitive interference theories (e.g. attentional control theory, processing efficiency theory) suggest that high levels of trait anxiety predict adverse effects on the performance of cognitive tasks, particularly those that make high demands on cognitive resources. We tested an interaction hypothesis to determine whether a combination of high anxiety and low working memory capacity (WMC) would predict variance in demanding cognitive test scores. Ninety six adolescents (12- to 14-years-old) participated in the study, which measured self-report levels of trait anxiety, working memory, and cognitive test performance. As hypothesized, we found that the anxiety-WMC interaction explained a significant amount of variance in cognitive test performance (ΔR(2) .07, p anxiety was unrelated to cognitive test performance for those adolescents with average WMC scores (β = .13, p > .10). In contrast, trait anxiety was negatively related to test performance in adolescents with low WMC (β = -.35, p test performance in those with high WMC (β = .49, p anxiety and cognitive test performance and may be a determinant factor in explaining some discrepancies found in the literature. Further research is needed to fully understand the mechanisms involved.

  9. Working memory in ALS patients: preserved performance but marked changes in underlying neuronal networks.

    Science.gov (United States)

    Zaehle, Tino; Becke, Andreas; Naue, Nicole; Machts, Judith; Abdulla, Susanne; Petri, Susanne; Kollewe, Katja; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Müller, Notger G

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease which affects the motor system but also other frontal brain regions. In this study we investigated changes in functional neuronal networks including posterior brain regions that are not directly affected by the neurodegenerative process. To this end, we analyzed the contralateral delay activity (CDA), an ERP component considered an online marker of memory storage in posterior cortex, while 23 ALS patients and their controls performed a delayed-matching-to-sample working memory (WM) task. The task required encoding of stimuli in the cued hemifield whilst ignoring stimuli in the other hemifield. Despite their unimpaired behavioral performance patients displayed several changes in the neuronal markers of the memory processes. Their CDA amplitude was smaller; it showed less load-dependent modulation and lacked the reduction observed when controls performed the same task three months later. The smaller CDA in the patients could be attributed to more ipsilateral cortical activity which may indicate that ALS patients unnecessarily processed the irrelevant stimuli as well. The latter is presumably related to deterioration of the frontal cortex in the patient group which was indicated by slight deficits in tests of their executive functions that increased over time. The frontal pathology presumably affected their top-down control of memory storage in remote regions in the posterior brain. In sum, the present results demonstrate functional changes in neuronal networks, i.e. neuroplasticity, in ALS that go well beyond the known structural changes. They also show that at least in WM tasks, in which strategic top-down control demands are relatively low, the frontal deficit can be compensated for by intact low level processes in posterior brain regions.

  10. The effects of age, memory performance, and callosal integrity on the neural correlates of successful associative encoding.

    Science.gov (United States)

    de Chastelaine, Marianne; Wang, Tracy H; Minton, Brian; Muftuler, L Tugan; Rugg, Michael D

    2011-09-01

    This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation.

  11. The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells

    Science.gov (United States)

    Feng, Zhaobin; Yang, Zhanhong; Huang, Jianhang; Xie, Xiaoe; Zhang, Zheng

    2015-02-01

    Carbon-coated ZnO is synthesized by the hydrothermal method. The X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) tests indicate that carbon is uniformly coated on the surface of the ZnO particle. And the crystal form of ZnO isn't changed. The effects of carbon layer on the electrochemical performances of ZnO have also been investigated by the charge/discharge cycling test, cyclic voltammetry (CV), Tafel polarization curves and electrochemical impedance spectroscope (EIS) tests. The CV curves at different scan rates exhibit that carbon-coated ZnO has the superior reversibility at high scan rate. The charge/discharge cycling tests under different charge/discharge rates show, even if at high-rate, the cycling performance and specific discharge capacity of carbon-coated ZnO are also superior to that of bare ZnO. The Tafel polarization curves and electrochemical impedance spectroscope (EIS) verify that the carbon layer can improve the anti-corrosion and charge-transfer performances of ZnO. The different rate experiments indicate that, compared with the increase of the conductivity, the effect of carbon layer on improving the anti-corrosion performance of ZnO plays a more dominating role in improving the electrochemical performances of ZnO at low charge/discharge rate.

  12. Improving prospective memory performance with future event simulation in traumatic brain injury patients.

    Science.gov (United States)

    Mioni, Giovanna; Bertucci, Erica; Rosato, Antonella; Terrett, Gill; Rendell, Peter G; Zamuner, Massimo; Stablum, Franca

    2017-06-01

    Previous studies have shown that traumatic brain injury (TBI) patients have difficulties with prospective memory (PM). Considering that PM is closely linked to independent living it is of primary interest to develop strategies that can improve PM performance in TBI patients. This study employed Virtual Week task as a measure of PM, and we included future event simulation to boost PM performance. Study 1 evaluated the efficacy of the strategy and investigated possible practice effects. Twenty-four healthy participants performed Virtual Week in a no strategy condition, and 24 healthy participants performed it in a mixed condition (no strategy - future event simulation). In Study 2, 18 TBI patients completed the mixed condition of Virtual Week and were compared with the 24 healthy controls who undertook the mixed condition of Virtual Week in Study 1. All participants also completed a neuropsychological evaluation to characterize the groups on level of cognitive functioning. Study 1 showed that participants in the future event simulation condition outperformed participants in the no strategy condition, and these results were not attributable to practice effects. Results of Study 2 showed that TBI patients performed PM tasks less accurately than controls, but that future event simulation can substantially reduce TBI-related deficits in PM performance. The future event simulation strategy also improved the controls' PM performance. These studies showed the value of future event simulation strategy in improving PM performance in healthy participants as well as in TBI patients. TBI patients performed PM tasks less accurately than controls, confirming prospective memory impairment in these patients. Participants in the future event simulation condition out-performed participants in the no strategy condition. Future event simulation can substantially reduce TBI-related deficits in PM performance. Future event simulation strategy also improved the controls' PM performance.

  13. MicroRNA-138 is a potential regulator of memory performance in humans

    Directory of Open Access Journals (Sweden)

    Julia eSchröder

    2014-07-01

    Full Text Available Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate memory genes, these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1,318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA hsa-mir-138-5p (rs9882688, P-value = 7.8x10-9. Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5x10-4. In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3' untranslated region (3'UTR of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3'UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866. Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory

  14. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory

    Science.gov (United States)

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H. L. W.; Dai, Jiyan; Yan, Qingfeng

    2015-10-01

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems.We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 103. More importantly, we demonstrate the

  15. MicroRNA-138 is a potential regulator of memory performance in humans

    Science.gov (United States)

    Schröder, Julia; Ansaloni, Sara; Schilling, Marcel; Liu, Tian; Radke, Josefine; Jaedicke, Marian; Schjeide, Brit-Maren M.; Mashychev, Andriy; Tegeler, Christina; Radbruch, Helena; Papenberg, Goran; Düzel, Sandra; Demuth, Ilja; Bucholtz, Nina; Lindenberger, Ulman; Li, Shu-Chen; Steinhagen-Thiessen, Elisabeth; Lill, Christina M.; Bertram, Lars

    2014-01-01

    Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate “memory genes,” these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 × 10−9). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 × 10−4). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3′ untranslated region (3′ UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3′ UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of

  16. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  17. Disruptive effect of Dzyaloshinskii-Moriya interaction on the magnetic memory cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, J.; Cubukcu, M.; Cros, V.; Reyren, N., E-mail: nicolas.reyren@thalesgroup.com [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau (France); Khvalkovskiy, A. V. [Samsung Electronics, Semiconductor R& D Center (Grandis), San Jose, California 95134 (United States); Moscow Institute of Physics and Technology, State University, Moscow 141700 (Russian Federation); Kuteifan, M.; Lomakin, V. [Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407 (United States); Apalkov, D. [Samsung Electronics, Semiconductor R& D Center (Grandis), San Jose, California 95134 (United States)

    2016-03-14

    In order to increase the thermal stability of a magnetic random access memory cell, materials with high spin-orbit interaction are often introduced in the storage layer. As a side effect, a strong Dzyaloshinskii-Moriya interaction (DMI) may arise in such systems. Here, we investigate the impact of DMI on the magnetic cell performance, using micromagnetic simulations. We find that DMI strongly promotes non-uniform magnetization states and non-uniform switching modes of the magnetic layer. It appears to be detrimental for both the thermal stability of the cell and its switching current, leading to considerable deterioration of the cell performance even for a moderate DMI amplitude.

  18. Clustering predicts memory performance in networks of spiking and non-spiking neurons

    Directory of Open Access Journals (Sweden)

    Weiliang eChen

    2011-03-01

    Full Text Available The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so that results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks. We also show that the clustering of the network, measured by Clustering Coefficient, has a strong linear correlation to the performance of associative memory. This result is important since a purely static measure of network connectivity appears to determine an important dynamic property of the network.

  19. Relationship between relaxation by guided imagery and performance of working memory.

    Science.gov (United States)

    Hudetz, J A; Hudetz, A G; Klayman, J

    2000-02-01

    This study tested the hypothesis that relaxation by guided imagery improves working-memory performance of healthy participants. 30 volunteers (both sexes, ages 17-56 years) were randomly assigned to one of three groups and administered the WAIS-III Letter-Number Sequencing Test before and after 10-min. treatment with guided imagery or popular music. The control group received no treatment. Groups' test scores were not different before treatment. The mean increased after relaxation by guided imagery but not after music or no treatment. This result supports the hypothesis that working-memory scores on the test are enhanced by guided imagery and implies that human information processing may be enhanced by prior relaxation.

  20. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure

    Directory of Open Access Journals (Sweden)

    M. Fejos

    2013-06-01

    Full Text Available In this study asymmetrically reinforced epoxy (EP/carbon fibre (CF fabric composites were prepared and their shape memory properties were quantified in both unconstrained and fully constrained flexural tests performed in a dynamic mechanical analyser (DMA. Asymmetric layering was achieved by incorporating two and four CF fabric layers whereby setting a resin- and reinforcement-rich layer ratio of 1/4 and 1/2, respectively. The recovery stress was markedly increased with increasing CF content. The related stress was always higher when the CF-rich layer experienced tension load locally. Specimens with CF-rich layers on the tension side yielded better shape fixity ratio, than those with reinforcement layering on the compression side. Cyclic unconstrained shape memory tests were also run up to five cycles on specimens having the CF-rich layer under local tension. This resulted in marginal changes in the shape fixity and recovery ratios.

  1. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    Directory of Open Access Journals (Sweden)

    Christof eKuhbandner

    2016-02-01

    Full Text Available Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one third of the words were tested and one third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After one week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  2. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition.

    Science.gov (United States)

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  3. The relationship of topographical memory performance to regional neurodegeneration in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    George ePengas

    2012-07-01

    Full Text Available The network activated during normal route learning shares considerable homology with the network of degeneration in the earliest symptomatic stages of Alzheimer’s disease (AD. This inspired the Virtual Route Learning Test (VRLT in which patients learn routes in a virtual reality environment. This study investigated the neural basis of VRLT performance in AD to test whether impairment was underpinned by a network or by the widely held explanation of hippocampal degeneration. VRLT score in a mild AD cohort was regressed against grey matter (GM density and diffusion tensor metrics of white matter (WM (n=30, and, cerebral glucose metabolism (n=26, using a mass univariate approach. GM density and cerebral metabolism were then submitted to a multivariate analysis (support vector regression to examine whether there was a network associated with task performance. Univariate analyses of GM density, metabolism and WM axial diffusion converged on the vicinity of the retrosplenial/posterior cingulate cortex, isthmus and, possibly, hippocampal tail. The multivariate analysis revealed a significant, right hemisphere-predominant, network level correlation with cerebral metabolism; this comprised areas common to both activation in normal route learning and early degeneration in AD (retrosplenial and lateral parietal cortices. It also identified right medio-dorsal thalamus (part of the limbic-diencephalic hypometabolic network of early AD and right caudate nucleus (activated during normal route learning. These results offer strong evidence that topographical memory impairment in AD relates to damage across a network, in turn offering complimentary lesion evidence to previous studies in healthy volunteers for the neural basis of topographical memory. The results also emphasize that structures beyond the mesial temporal lobe contribute to memory impairment in AD—it is too simplistic to view memory impairment in AD as a synonym for hippocampal degeneration.

  4. The relationship of topographical memory performance to regional neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Pengas, George; Williams, Guy B; Acosta-Cabronero, Julio; Ash, Tom W J; Hong, Young T; Izquierdo-Garcia, David; Fryer, Tim D; Hodges, John R; Nestor, Peter J

    2012-01-01

    The network activated during normal route learning shares considerable homology with the network of degeneration in the earliest symptomatic stages of Alzheimer's disease (AD). This inspired the virtual route learning test (VRLT) in which patients learn routes in a virtual reality environment. This study investigated the neural basis of VRLT performance in AD to test whether impairment was underpinned by a network or by the widely held explanation of hippocampal degeneration. VRLT score in a mild AD cohort was regressed against gray matter (GM) density and diffusion tensor metrics of white matter (WM) (n = 30), and, cerebral glucose metabolism (n = 26), using a mass univariate approach. GM density and cerebral metabolism were then submitted to a multivariate analysis [support vector regression (SVR)] to examine whether there was a network associated with task performance. Univariate analyses of GM density, metabolism and WM axial diffusion converged on the vicinity of the retrosplenial/posterior cingulate cortex, isthmus and, possibly, hippocampal tail. The multivariate analysis revealed a significant, right hemisphere-predominant, network level correlation with cerebral metabolism; this comprised areas common to both activation in normal route learning and early degeneration in AD (retrosplenial and lateral parietal cortices). It also identified right medio-dorsal thalamus (part of the limbic-diencephalic hypometabolic network of early AD) and right caudate nucleus (activated during normal route learning). These results offer strong evidence that topographical memory impairment in AD relates to damage across a network, in turn offering complimentary lesion evidence to previous studies in healthy volunteers for the neural basis of topographical memory. The results also emphasize that structures beyond the mesial temporal lobe (MTL) contribute to memory impairment in AD-it is too simplistic to view memory impairment in AD as a synonym for hippocampal degeneration.

  5. A Green Synthesis of Nanosheet-Constructed Pd Particles in an Ionic Liquid and Their Superior Electrocatalytic Performance.

    Science.gov (United States)

    Zhang, Baohua; Xue, Yiguo; Xue, Zhimin; Li, Zhonghao; Hao, Jingcheng

    2015-12-21

    The ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) is investigated as a solvent for the synthesis of Pd particles. Interestingly, nanosheet-constructed Pd particles could be successfully synthesized in [EMIM]Ac without any additional reducing agent and template under ionothermal conditions. [EMIM]Ac itself works as the solvent, the reducing agent, and the template for the formation of these interesting Pd particles, making this method complementary to the well-known ionic-liquid-precursor approach. Furthermore, [EMIM]Ac can be recycled with no loss of activity for the formation of nanosheet-constructed Pd particles within our studied cycles. Specifically, the nanosheet-constructed Pd particles exhibit superior electrocatalytic activity and stability towards ethanol oxidation and formic acid oxidation compared with commercially available Pd black catalyst, thus demonstrating their promising applications in fuel-cell area. The current approach, thus, presents a green approach towards the synthesis of Pd particles, using only a simple palladium salt and an ionic liquid. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation

    Science.gov (United States)

    Zhang, Wen-Li; Yin, Jian; Lin, Zhe-Qi; Shi, Jun; Wang, Can; Liu, De-Bo; Wang, Yue; Bao, Jin-Peng; Lin, Hai-Bo

    2017-02-01

    Renewable energy storage is a key issue in our modern electricity-powered society. Lead acid batteries (LABs) are operated at partial state of charge in renewable energy storage system, which causes the sulfation and capacity fading of Pb electrode. Lead-carbon composite electrode is a good solution to the sulfation problem of LAB. In this paper, a rice-husk-derived hierarchically porous carbon with micrometer-sized large pores (denoted as RHC) has been used as the component of lead-carbon composite electrode. Scanning electron microscopy was used to characterize the morphology of lead-carbon composite electrode. Electrochemical impedance spectroscopy was used to determine the charge transfer capability of lead-carbon composite electrode. Both full charge-discharge method and charge-discharge method operating at harsh partial state of charge condition have been used to prove the superior energy storage capability of lead-carbon composite electrode. Experiment results prove that the micrometer-sized pores of RHC are beneficial to the construction and stability of lead-carbon composite electrode. Microporous carbon material with high surface area is not suitable for the construction of lead-carbon electrode due to the ruin of lead-carbon structure caused by severe electrochemical hydrogen evolution.

  7. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    Science.gov (United States)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  8. Hippocampal testosterone relates to reference memory performance and synaptic plasticity in male rats

    Directory of Open Access Journals (Sweden)

    Kristina eSchulz

    2010-12-01

    Full Text Available Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the natural endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behaviour, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to reference memory performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP of the field excitatory postsynaptic potential (fEPSP was prolonged in untrained rats, both the fEPSP- and the population spike amplitude-LTP was impaired in trained rats. Behavioural performance was unaffected, but correlations of hippocampal field potentials with behaviour were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance.

  9. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  10. Creativity and working memory capacity in sports: working memory capacity is not a limiting factor in creative decision making amongst skilled performers

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel

    2015-01-01

    The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete’s domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account. PMID:25713552

  11. Creativity and Working Memory Capacity in Sports: Working Memory Capacity Is not a Limiting Factor in Creative Decision Making amongst Skilled Performers

    Directory of Open Access Journals (Sweden)

    Philip eFurley

    2015-02-01

    Full Text Available The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete’s domain-specific creativity is restricted by their domain-general cognitive abilities (i.e. working memory capacity. Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.

  12. The BclI polymorphism of the glucocorticoid receptor gene is associated with emotional memory performance in healthy individuals.

    Science.gov (United States)

    Ackermann, Sandra; Heck, Angela; Rasch, Björn; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2013-07-01

    Glucocorticoids, stress hormones released from the adrenal cortex, are important players in the regulation of emotional memory. Specifically, in animals and in humans, glucocorticoids enhance memory consolidation of emotionally arousing experiences, but impair memory retrieval. These glucocorticoid actions are partly mediated by glucocorticoid receptors in the hippocampus, amygdala and prefrontal cortex, key brain regions for emotional memory. In a recent study in patients who underwent cardiac surgery, the BclI polymorphism of the glucocorticoid receptor gene (NR3C1) was associated with traumatic memories and posttraumatic stress disorder symptoms after intensive care therapy. Based on this finding, we investigated if the BclI polymorphism is also associated with emotional memory in healthy young subjects (N=841). We used a picture-learning task consisting of learning and recalling neutral and emotional photographs on two consecutive days. The BclI variant was associated with short-delay recall of emotional pictures on both days, with GG carriers showing increased emotional memory performance as compared to GC and CC carriers. We did not detect a genotype-dependent difference in recall performance for neutral pictures. These findings suggest that the Bcll polymorphism contributes to inter-individual differences in emotional memory also in healthy humans.

  13. NK cells require antigen-specific memory CD4+ T cells to mediate superior effector functions during HSV-2 recall responses in vitro.

    Science.gov (United States)

    Chen, Branson; Lee, Amanda J; Chew, Marianne V; Ashkar, Ali A

    2016-12-14

    Natural killer (NK) cells have an important role in mounting protective innate responses against genital herpes simplex virus type 2 (HSV-2) infections. However their role as effectors in adaptive immune responses against HSV-2 is unclear. Here, we demonstrate that NK cells from C57BL/6 mice in an ex vivo splenocyte culture produce significantly more interferon γ (IFN-γ) upon re-exposure to HSV-2 antigens in a mouse model of genital HSV-2 immunization. We find that naïve NK cells do not require any prior stimulation or priming to be activated to produce IFN-γ. Our results demonstrate that HSV-2-experienced CD4(+) T cells have a crucial role in coordinating NK cell activation and that their presence during HSV-2 antigen presentation is required to activate NK cells in this model of secondary immune response. We also examined the requirement of cell-to-cell contacts for both CD4(+) T cells and NK cells. NK cells are dependent on direct interactions with other HSV-2-experienced splenocytes, and CD4(+) T cells need to be in close proximity to NK cells to activate them. This study revealed that NK cells do not exhibit any memory toward HSV-2 antigens and, in fact, require specific interactions with HSV-2-experienced CD4(+) T cells to produce IFN-γ.

  14. Sex differences in episodic memory: the impact of verbal and visuospatial ability.

    Science.gov (United States)

    Herlitz, A; Airaksinen, E; Nordström, E

    1999-10-01

    The impact of verbal and visuospatial ability on sex differences in episodic memory was investigated. One hundred men and 100 women, 2040 years old, participated in a series of verbal and visuospatial tasks. Episodic memory was assessed in tasks that, to a greater or lesser extent, were verbal or visuospatial in nature. Results showed that women excelled in verbal production tasks and that men performed at a superior level on a mental rotation task. In addition, women tended to perform at a higher level than men on most episodic memory tasks. Taken together, the results demonstrated that (a) women perform at a higher level than men on most verbal episodic memory tasks and on some episodic memory tasks with a visuospatial component, and (b) women's higher performance on episodic memory tasks cannot fully be explained by their superior performance on verbal production tasks.

  15. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task

    OpenAIRE

    Kuschpel, Maxim S.; Shuyan eLiu; Daniel J Schad; Stephan eHeinzel; Andreas eHeinz; Rapp, Michael A.

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game Angry Birds before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the Ang...

  16. Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task

    OpenAIRE

    Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Michael A Rapp

    2015-01-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “...

  17. Resting-state coupling between core regions within the central-executive and salience networks contributes to working memory performance

    Directory of Open Access Journals (Sweden)

    Xiaojing eFang

    2016-02-01

    Full Text Available Previous studies investigated the distinct roles played by different cognitive regions and suggested that the patterns of connectivity of these regions are associated with working memory. However, the specific causal mechanism through which the neuronal circuits that involve these brain regions contribute to working memory is still unclear. Here, in a large sample of healthy young adults, we first identified the core working memory regions by linking working memory accuracy to resting-state functional connectivity with the bilateral dorsolateral prefrontal cortex (a principal region in the central-executive network. Then a spectral dynamic causal modeling analysis was performed to quantify the effective connectivity between these regions. Finally, the effective connectivity was correlated with working memory accuracy to characterize the relationship between these connections and working memory performance. We found that the functional connections between the bilateral dorsolateral prefrontal cortex and the dorsal anterior cingulate cortex and between the right dorsolateral prefrontal cortex and the left orbital fronto-insular cortex were correlated with working memory accuracy. Furthermore, the effective connectivity from the dorsal anterior cingulate cortex to the bilateral dorsolateral prefrontal cortex and from the right dorsolateral prefrontal cortex to the left orbital fronto-insular cortex could predict individual differences in working memory. Because the dorsal anterior cingulate cortex and orbital fronto-insular cortex are core regions of the salience network, we inferred that the inter- and causal-connectivity between core regions within the central-executive and salience networks is functionally relevant for working memory performance. In summary, the current study identified the dorsolateral prefrontal cortex-related resting-state effective connectivity underlying working memory and suggests that individual differences in cognitive

  18. Mathematics Anxiety, Working Memory and Mathematics Performance in Secondary-School Children

    Directory of Open Access Journals (Sweden)

    Maria Chiara ePassolunghi

    2016-02-01

    Full Text Available Mathematics anxiety (MA has been defined as a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations. Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM also plays an important part in such anxious feelings.The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA and low math anxiety (LMA. Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  19. Eye movement during recall reduces objective memory performance: An extended replication.

    Science.gov (United States)

    Leer, Arne; Engelhard, Iris M; Lenaert, Bert; Struyf, Dieter; Vervliet, Bram; Hermans, Dirk

    2017-05-01

    Eye Movement Desensitization and Reprocessing (EMDR) therapy for posttraumatic stress disorder involves making eye movements (EMs) during recall of a traumatic image. Experimental studies have shown that the dual task decreases self-reported memory vividness and emotionality. However valuable, these data are prone to demand effects and little can be inferred about the mechanism(s) underlying the observed effects. The current research aimed to fill this lacuna by providing two objective tests of memory performance. Experiment I involved a stimulus discrimination task. Findings were that EM during stimulus recall not only reduces self-reported memory vividness, but also slows down reaction time in a task that requires participants to discriminate the stimulus from perceptually similar stimuli. Experiment II involved a fear conditioning paradigm. It was shown that EM during recall of a threatening stimulus intensifies fearful responding to a perceptually similar yet non-threat-related stimulus, as evidenced by increases in danger expectancies and skin conductance responses. The latter result was not corroborated by startle EMG data. Together, the findings suggest that the EM manipulation renders stimulus attributes less accessible for future recall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    Science.gov (United States)

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  1. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children

    Science.gov (United States)

    Passolunghi, Maria C.; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C.

    2016-01-01

    Mathematics anxiety (MA) has been defined as “a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations.” Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA. PMID:26869951

  2. No significant effect of prefrontal tDCS on working memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Jonna eNilsson

    2015-12-01

    Full Text Available Transcranial direct current stimulation (tDCS has been put forward as a non-pharmacological alternative for alleviating cognitive decline in old age. Although results have shown some promise, little is known about the optimal stimulation parameters for modulation in the cognitive domain. In this study, the effects of tDCS over the dorsolateral prefrontal cortex (dlPFC on working memory performance were investigated in thirty older adults. An N-back task assessed working memory before, during and after anodal tDCS at a current strength of 1mA and 2mA, in addition to sham stimulation. The study used a single-blind, cross-over design. The results revealed no significant effect of tDCS on accuracy or response times during or after stimulation, for any of the current strengths. These results suggest that a single session of tDCS over the dlPFC is unlikely to improve working memory, as assessed by an N-back task, in old age.

  3. Functional connectivity during light sleep is correlated with memory performance for face-location associations.

    Science.gov (United States)

    van Dongen, Eelco V; Takashima, Atsuko; Barth, Markus; Fernández, Guillén

    2011-07-01

    The consolidation of declarative memories benefits from sleep. The neural mechanisms involved in sleep-dependent consolidation, however, are largely unknown. Here, we used a combination of functional magnetic resonance imaging, polysomnography and a face-location associative memory task to target neural connectivity of a face sensitive area during an afternoon nap. Fusiform connectivity was substantially greater during sleep stage 1 than in wake in a network extending from early visual areas bilaterally to the fusiform gyrus, ventrally and into the posterior parietal cortices, dorsally. In sleep stage 2, fusiform connectivity was found to be larger in the precuneus, bilateral middle temporal gyrus and medial prefrontal cortex. Specific functional connectivity increases observed during light sleep were positively correlated with memory performance for face-location associations. A distinction could be made between fusiform-medial prefrontal connectivity during sleep stage 1 and 2 that was positively correlated with retention of associations learned prior to sleep and fusiform-hippocampal connectivity during sleep stage 1 that was correlated with better acquisition of new associations learned after sleep. Our results suggest that fusiform-medial prefrontal connectivity during sleep has a stabilizing effect on recently learned associative memories, possibly due to the existence of a task-related schema that allows rapid consolidation of related information. Our data further indicate that sleep-dependent connectivity between the fusiform gyrus and hippocampus correlated with new learning after sleep. Thus, our study provides correlational evidence for the behavioral relevance of specific medial prefrontal and hippocampal interactions with the fusiform gyrus during light sleep.

  4. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    Science.gov (United States)

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance–contingent reward in a test can undermine long-term knowledge acquisition. PMID:26869978

  5. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes.

    Science.gov (United States)

    Richmond, Lauren L; Wolk, David; Chein, Jason; Olson, Ingrid R

    2014-11-01

    Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813-822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193-199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.

  6. Health Conditions and Memory Performance: a study with older adult women.

    Science.gov (United States)

    Nespollo, Alice Milani; Marcon, Samira Reschetti; Lima, Nathalie Vilma Pollo de; Dias, Tatiane Lebre; Espinosa, Mariano Martínez

    2017-01-01

    to verify the correlation between health condition and memory performance of older adult women in the community. Analytical cross-sectional study developed with 28 older adult women living in Cuiabá-MT. They answered the Mini-Mental State Examination (MMSE), and a shortened Geriatric Depression Scale (GDS-15) to screen for dementia and depression symptoms. Memory skills were assessed through Rey Auditory Verbal Learning Test (RAVLT). The mean age was 66.36 years and 75% of the participants had educational level higher than 7 years. The MMSE mean score was 28.45. The correlations found were: educational level and immediate memory (r = 0.49; p = 0.008); delayed recall and immediate memory (r = 0.71; p habilidades de memória ocorreu por meio do Teste de Aprendizagem Auditivo-Verbal de Rey (RAVLT). A idade média foi de 66,36 anos e 75% possuíam escolaridade maior que sete anos. A média do MEEM foi 28,45. As correlações encontradas foram: escolaridade e memória imediata (r = 0,49; p = 0,008); evocação tardia e memória de reconhecimento com memória imediata (r = 0,71; p < 0,001 e r = 0,43; p = 0,021) e memória de reconhecimento com evocação tardia (r = 0,47; p = 0,012). Evidenciou-se escore elevado no MEEM e percepção de saúde satisfatória entre os participantes. Não houve correlação entre desempenho da memória e percepção de saúde.

  7. Real-time fMRI training-induced changes in regional connectivity mediating verbal working memory behavioral performance.

    Science.gov (United States)

    Shen, J; Zhang, G; Yao, L; Zhao, X

    2015-03-19

    Working memory refers to the ability to temporarily store and manipulate information that is necessary for complex cognition activities. Previous studies have demonstrated that working memory capacity can be improved by behavioral training, and brain activities in the frontal and parietal cortices and the connections between these regions are also altered by training. Our recent neurofeedback training has proven that the regulation of the left dorsal lateral prefrontal cortex (DLPFC) activity using real-time functional magnetic resonance imaging (rtfMRI) can improve working memory performance. However, how working memory training promotes interaction between brain regions and whether this promotion correlates with performance improvement remain unclear. In this study, we employed structural equation modeling (SEM) to calculate the interactions between the regions within the working memory network during neurofeedback training. The results revealed that the direct effect of the frontoparietal connection in the left hemisphere was enhanced by the rtfMRI training. Specifically, the increase in the path from the left DLPFC to the left inferior parietal lobule (IPL) was positively correlated with improved performance in verbal working memory. These findings demonstrate the important role of the frontoparietal connection in working memory training and suggest that increases in frontoparietal connectivity might be a key factor associated with behavioral improvement.

  8. Design Example of Useful Memory Latency for Developing a Hazard Preventive Pipeline High-Performance Embedded-Microprocessor

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Cheng

    2013-01-01

    Full Text Available The existence of structural, control, and data hazards presents a major challenge in designing an advanced pipeline/superscalar microprocessor. An efficient memory hierarchy cache-RAM-Disk design greatly enhances the microprocessor's performance. However, there are complex relationships among the memory hierarchy and the functional units in the microprocessor. Most past architectural design simulations focus on the instruction hazard detection/prevention scheme from the viewpoint of function units. This paper emphasizes that additional inboard memory can be well utilized to handle the hazardous conditions. When the instruction meets hazardous issues, the memory latency can be utilized to prevent performance degradation due to the hazard prevention mechanism. By using the proposed technique, a better architectural design can be rapidly validated by an FPGA at the start of the design stage. In this paper, the simulation results prove that our proposed methodology has a better performance and less power consumption compared to the conventional hazard prevention technique.

  9. The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice.

    Science.gov (United States)

    Mesripour, Azadeh; Moghimi, Fatemeh; Rafieian-Kopaie, Mahmoud

    2016-07-01

    Cinnamomum zeylanicum (cinnamon) has a wide range of beneficial effects including mild glucose lowering activity. The aim of the present study was to investigate whether cinnamon bark extract has the potential to improve memory performance and glucose profiles in diabetic mice. Memory was assessed by the novel object recognition task in male Balb/c mice. In this method, the difference between exploration time of a familiar object and a novel object was considered as an index of memory performance (recognition index, RI). The water extract was prepared by boiling cinnamon bark for 15 min. Alloxan induced diabetes in animals (serum glucose levels were 322 ± 7.5 mg/dL), and also impaired memory performance (RI= -3.3% ± 3.3) which differed significantly from control animals (RI = 32% ± 6.5). Although treatment with cinnamon only reduced fasting blood glucose level moderately but it improved memory performance remarkably (RI = 25.5% ± 5.6). Oxidative stress following administration of cinnamon extract was lower in diabetic mice. It was concluded that cinnamon water extract could be a useful alternative medicine in diabetic patients' daily regimen which not only reduces blood glucose levels but also improves memory performance and lipid peroxidation level.

  10. Collective Memory and Performative Discourse: Barra do garças as stated

    Directory of Open Access Journals (Sweden)

    RODRIGO TAVARES GODOI

    2012-01-01

    Full Text Available Barra do Garças is a city established in a historical consciousness dependent on the narrative of Valdon Varjão. The performative discourse prepared a city seized myths. The narrator and the city become confused in the own narrative. The power and the symbolic strength belong to the consolidation and recognition of the local narrative praxis. The time constituted as historical is manifested in synchrony between past, present and future. The teleological posture is outstanding in the writing of the history of Barra do Garças. History of the city is possible if memory is respected and worshipped.

  11. Individual recognition of social rank and social memory performance depends on a functional circadian system.

    Science.gov (United States)

    Müller, L; Weinert, D

    2016-11-01

    In a natural environment, social abilities of an animal are important for its survival. Particularly, it must recognize its own social rank and the social rank of a conspecific and have a good social memory. While the role of the circadian system for object and spatial recognition and memory is well known, the impact of the social rank and circadian disruptions on social recognition and memory were not investigated so far. In the present study, individual recognition of social rank and social memory performance of Djungarian hamsters revealing different circadian phenotypes were investigated. Wild type (WT) animals show a clear and well-synchronized daily activity rhythm, whereas in arrhythmic (AR) hamsters, the suprachiasmatic nuclei (SCN) do not generate a circadian signal. The aim of the study was to investigate putative consequences of these deteriorations in the circadian system for animalś cognitive abilities. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14l/10 D lighting regimen. Experimental animals were assigned to different groups (WT and AR) according to their activity pattern obtained by means of infrared motion sensors. Before the experiments, the animals were given to develop a dominant-subordinate relationship in a dyadic encounter. Experiment 1 dealt with individual recognition of social rank. Subordinate and dominant hamsters were tested in an open arena for their behavioral responses towards a familiar (known from the agonistic encounters) or an unfamiliar hamster (from another agonistic encounter) which had the same or an opposite social rank. The investigation time depended on the social rank of the WT subject hamster and its familiarity with the stimulus animal. Both subordinate and dominant WT hamsters preferred an unfamiliar subordinate stimulus animal. In contrast, neither subordinate nor dominant AR hamsters preferred any of the stimulus animals. Thus, disruptions in circadian

  12. Effect of nicotine on brain activation during performance of a working memory task.

    Science.gov (United States)

    Ernst, M; Matochik, J A; Heishman, S J; Van Horn, J D; Jons, P H; Henningfield, J E; London, E D

    2001-04-10

    Nicotine influences cognition and behavior, but the mechanisms by which these effects occur are unclear. By using positron emission tomography, we measured cognitive activation (increases in relative regional cerebral blood flow) during a working memory task [2-back task (2BT)] in 11 abstinent smokers and 11 ex-smokers. Assays were performed both after administration of placebo gum and 4-mg nicotine gum. Performance on the 2BT did not differ between groups in either condition, and the pattern of brain activation by the 2BT was consistent with reports in the literature. However, in the placebo condition, activation in ex-smokers predominated in the left hemisphere, whereas in smokers, it occurred in the right hemisphere. When nicotine was administered, activation was reduced in smokers but enhanced in ex-smokers. The lateralization of activation as a function of nicotine dependence suggests that chronic exposure to nicotine or withdrawal from nicotine affects cognitive strategies used to perform the memory task. Furthermore, the lack of enhancement of activation after nicotine administration in smokers likely reflects tolerance.

  13. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    Science.gov (United States)

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  14. Increased stress responsivity in schizotypy leads to diminished spatial working memory performance.

    Science.gov (United States)

    Smith, Nathan T; Lenzenweger, Mark F

    2013-10-01

    Past research has emphasized the association between stress and the manifestation of psychotic symptoms in schizophrenia, yet relatively little is known about how environmental stressors affect cognitive processes in the illness. The present study sought to determine the effects of a loud noise stressor on a range of cognitive tasks, including spatial working memory (SWM), short-term visual memory, and sustained visual attention. Twenty-nine (29) schizotypic subjects and 45 controls performed the cognitive tasks across four waves of data collection: baseline, a noisy stress condition, and two follow-up conditions. Heart rate (BPM) was measured at each wave and subjective ratings of stress were collected in response to the loud noise stressor. Schizotypic subjects exhibited significantly greater increases in BPM during the loud, noisy stressor in comparison to controls. Additionally, schizotypic subjects' subjective ratings of stress in response to the loud noise were significantly greater than the controls' ratings. As hypothesized a priori, schizotypic subjects experienced significant decreases in SWM from baseline to the noisy stress condition in comparison to controls. Performance on non-SWM cognitive tasks did not significantly differ during the noisy stress condition and SWM performance did not significantly differ during noise-free conditions. Results from the present study highlight SWM as being particularly susceptible to loud noise stressors in a schizotypic population. Although the source of the induced impairment is not clear, one possibility is that the encoding stage of SWM was negatively affected by the loud noise.

  15. Predicting episodic memory performance using different biomarkers: results from Argentina-Alzheimer’s Disease Neuroimaging Initiative

    Science.gov (United States)

    Russo, María Julieta; Cohen, Gabriela; Chrem Mendez, Patricio; Campos, Jorge; Nahas, Federico E; Surace, Ezequiel I; Vazquez, Silvia; Gustafson, Deborah; Guinjoan, Salvador; Allegri, Ricardo F; Sevlever, Gustavo

    2016-01-01

    Purpose Argentina-Alzheimer’s Disease Neuroimaging Initiative (Arg-ADNI) is the first ADNI study to be performed in Latin America at a medical center with the appropriate infrastructure. Our objective was to describe baseline characteristics and to examine whether biomarkers related to Alzheimer’s disease (AD) physiopathology were associated with worse memory performance. Patients and methods Fifteen controls and 28 mild cognitive impairment and 13 AD dementia subjects were included. For Arg-ADNI, all biomarker parameters and neuropsychological tests of ADNI-II were adopted. Results of positron emission tomography (PET) with fluorodeoxyglucose and 11C-Pittsburgh compound-B (PIB-PET) were available from all participants. Cerebrospinal fluid biomarker results were available from 39 subjects. Results A total of 56 participants were included and underwent baseline evaluation. The three groups were similar with respect to years of education and sex, and they differed in age (F=5.10, P=0.01). Mean scores for the baseline measurements of the neuropsychological evaluation differed significantly among the three groups at P0.1). Baseline amyloid deposition and left hippocampal volume separated the three diagnostic groups and correlated with the memory performance (P<0.001). Conclusion Cross-sectional analysis of baseline data revealed links between cognition, structural changes, and biomarkers. Follow-up of a larger and more representative cohort, particularly analyzing cerebrospinal fluid and brain biomarkers, will allow better characterization of AD in our country. PMID:27695331

  16. Peyton’s four-step approach: differential effects of single instructional steps on procedural and memory performance – a clarification study

    Directory of Open Access Journals (Sweden)

    Krautter M

    2015-05-01

    Full Text Available Markus Krautter,1 Ronja Dittrich,2 Annette Safi,2 Justine Krautter,1 Imad Maatouk,2 Andreas Moeltner,2 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, 2Department of General Internal and Psychosomatic Medicine, University of Heidelberg Medical Hospital, Heidelberg, Germany Background: Although Peyton’s four-step approach is a widely used method for skills-lab training in undergraduate medical education and has been shown to be more effective than standard instruction, it is unclear whether its superiority can be attributed to a specific single step. Purpose: We conducted a randomized controlled trial to investigate the differential learning outcomes of the separate steps of Peyton’s four-step approach. Methods: Volunteer medical students were randomly assigned to four different groups. Step-1 group received Peyton’s Step 1, Step-2 group received Peyton’s Steps 1 and 2, Step-3 group received Peyton’s Steps 1, 2, and 3, and Step-3mod group received Peyton’s Steps 1 and 2, followed by a repetition of Step 2. Following the training, the first independent performance of a central venous catheter (CVC insertion using a manikin was video-recorded and scored by independent video assessors using binary checklists. The day after the training, memory performance during delayed recall was assessed with an incidental free recall test. Results: A total of 97 participants agreed to participate in the trial. There were no statistically significant group differences with regard to age, sex, completed education in a medical profession, completed medical clerkships, preliminary memory tests, or self-efficacy ratings. Regarding checklist ratings, Step-2 group showed a superior first independent performance of CVC placement compared to Step-1 group (P<0.001, and Step-3 group showed a superior performance to Step-2 group (P<0.009, while Step-2 group and Step-3mod group did not differ (P=0.055. The findings were similar in the incidental

  17. What doesn't kill me…: Adversity-related experiences are vital in the development of superior Olympic performance.

    Science.gov (United States)

    Sarkar, Mustafa; Fletcher, David; Brown, Daniel J

    2015-07-01

    Recent research suggests that experiencing some adversity can have beneficial outcomes for human growth and development. The purpose of this paper was to explore the adversities that the world's best athletes encounter and the perceived role that these experiences play in their psychological and performance development. A qualitative design was employed because detailed information of rich quality was required to better understand adversity-related experiences in the world's best athletes. Semi-structured interviews were conducted with 10 Olympic gold medalists from a variety of sports. Inductive thematic analysis was used to analyze the data. The findings indicate that the participants encountered a range of sport- and non-sport adversities that they considered were essential for winning their gold medals, including repeated non-selection, significant sporting failure, serious injury, political unrest, and the death of a family member. The participants described the role that these experiences played in their psychological and performance development, specifically focusing on their resultant trauma, motivation, and learning. Adversity-related experiences were deemed to be vital in the psychological and performance development of Olympic champions. In the future, researchers should conduct more in-depth comparative studies of Olympic athletes' adversity- and growth-related experiences, and draw on existing and alternative theoretical explanations of the growth-performance relationship. For professional practitioners, adversity-related experiences offer potential developmental opportunities if they are carefully and purposely harnessed. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Yuan; Fan, Yan-Ling; Ni, Jing-Jing; Xu, Ting-Ting; Song, Ji-Ming, E-mail: songjm@ahu.edu.cn, E-mail: jiming@ahu.edu.cn [Anhui University, The Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, School of Chemistry & Chemical Engineering (China)

    2016-01-15

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co{sub 1.29}Ni{sub 1.71}O{sub 4}–Co{sub 3}S{sub 4}–Co{sub 3}O{sub 4} Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH{sub 4}. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g{sup −1}. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH{sub 4} at room temperature.

  19. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery.

    Science.gov (United States)

    Qi, Hui; Cao, Liyun; Li, Jiayin; Huang, Jianfeng; Xu, Zhanwei; Cheng, Yayi; Kong, Xingang; Yanagisawa, Kazumichi

    2016-12-28

    Capacitive storage has been considered as one type of Li-ion storage with fast faradaic surface redox reactions to offer high power density for electrochemical applications. However, it is often limited by low extent of energy contribution during the charge/discharge process, providing insufficient influences to total capacity of Li-ion storage in electrodes. In this work, we demonstrate a pseudocapacitance predominated storage (contributes 82% of the total capacity) from an in-situ pulverization process of FeOOH rods on rGO (reduced graphene oxide) sheets for the first time. Such high extent of pseudocapacitive storage in the FeOOH/rGO electrode achieves high energy density with superior cycling performance over 200 cycles at different current densities (1135 mAh/g at 1 A/g and 783 mAh/g at 5 A/g). It is further revealed that the in-situ pulverization process is essential for the high pseudocapacitance in this electrode, because it not only produces a porous structure for high exposure of tiny FeOOH crystallites to electrolyte but also maintains stable electrochemical contact during ultrahigh rate charge transfer with high energy density in the battery. The utilization of in-situ pulverization in an Fe-based anode to realize high surface pseudocapacitance with superior performance may inspire future design of electrode structures in Li-ion batteries.

  20. Recall Performance for Content-addressable Memory Using Adiabatic Quantum Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Imam, Neena [ORNL; Humble, Travis S. [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Hamilton, Kathleen E. [ORNL

    2017-09-01

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recall accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.

  1. Differences in Attainment and Performance in a Foreign Language: The Role of Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Roger Gilabert

    2010-06-01

    Full Text Available The goal of this study is to investigate the role of working memory capacity in L2 attainment and performance. The study uses an L1 reading span task to measure working memory of a group of 59 high- intermediate/advanced learners of English, and a film retelling task to measure their oral production. The analysis first showed a moderate to high correlation between proficiency measured by a general proficiency test and learners’ fluency, lexical complexity, and accuracy but not structural complexity on the retelling task. Secondly, no correlation was found between overall proficiency and working memory. Thirdly, a weak correlation was found between fluency and lexical complexity, and working memory. When the group was split into top and bottom levels of proficiency, moderate correlations were found between lexical complexity and working memory only for the high-proficiency group. The results are discussed in the light of previous research.El objetivo de este estudio es investigar el rol de la capacidad de memoria operativa en la proficiencia y la producción en una L2. El estudio utiliza una tarea de reading span en la L1 para medir la memoria operativa de un grupo de 59 estudiantes de inglés de nivel intermedio alto/avanzado, y una tarea narrativa para medir su producción oral. Los análisis muestran correlaciones significativas entre la proficiencia medida por un test de proficiencia general y la fluidez, complejidad léxica, y corrección, aunque no con la complejidad estructural. Las correlaciones también son positivas y significativas entre la memoria operativa y la fluidez y complejidad léxica, pero no se observa una correlación significativa entre la proficiencia general y la memoria operativa. Cuando se divide el grupo entre los niveles más altos y más bajos se encuentran correlaciones moderadas entre la complejidad léxica y la memoria operativa sólo para el grupo de proficiencia alta. Los resultados se analizan en base a los

  2. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    Science.gov (United States)

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  3. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    Science.gov (United States)

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  4. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Li, Kefei; Su, Dawei; Ahn, Hyojun; Wang, Guoxiu

    2012-06-01

    Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field-emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super-high lithium-storage capacity of 1580 mA h g(-1) and a satisfactory cycling performance in lithium-sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene-based nanocomposites can significantly improve the electrochemical performance of lithium-sulfur batteries.

  5. Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-12-28

    The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe0.85Ti0.1Ni0.05O3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.

  6. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    Science.gov (United States)

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  7. Dynamic functional reorganizations and relationship with working memory performance in healthy aging.

    Directory of Open Access Journals (Sweden)

    Roser eSala-Llonch

    2012-06-01

    Full Text Available In recent years, several theories have been proposed in attempts to identify the neural mechanisms underlying successful cognitive aging. Old subjects show increased neural activity during the performance of tasks, mainly in prefrontal areas, which is interpreted as a compensatory mechanism linked to functional brain efficiency. Moreover, resting-state studies have concluded that elders show disconnection or disruption of large-scale functional networks. We used functional MRI during resting-state and a verbal n-back task with different levels of memory load in a cohort of young and old healthy adults to identify patterns of networks associated with working memory and brain default mode. We found that the disruption of resting-state networks in the elderly coexists with task-related overactivations of certain brain areas and with reorganizations within these functional networks. Moreover, elders who were able to activate additional areas and to recruit a more bilateral frontal pattern within the task-related network achieved successful performance on the task. We concluded that the balanced and plastic reorganization of brain networks underlies successful cognitive aging. This observation allows the integration of several theories that have been proposed to date regarding the aging brain.

  8. Memory modulation in the classroom: selective enhancement of college examination performance by arousal induced after lecture.

    Science.gov (United States)

    Nielson, Kristy A; Arentsen, Timothy J

    2012-07-01

    Laboratory studies examining moderate physiological or emotional arousal induced after learning indicate that it enhances memory consolidation. Yet, no studies have yet examined this effect in an applied context. As such, arousal was induced after a college lecture and its selective effects were examined on later exam performance. Participants were divided into two groups who either watched a neutral video clip (n=66) or an arousing video clip (n=70) after lecture in a psychology course. The final examination occurred two weeks after the experimental manipulation. Only performance on the group of final exam items that covered material from the manipulated lecture were significantly different between groups. Other metrics, such as the midterm examination and the total final examination score, did not differ between groups. The results indicate that post-lecture arousal selectively increased the later retrieval of lecture material, despite the availability of the material for study before and after the manipulation. The results reinforce the role of post-learning arousal on memory consolidation processes, expanding the literature to include a real-world learning context. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Memory for actions: self-performed tasks and the reenactment effect.

    Science.gov (United States)

    Mulligan, Neil W; Hornstein, Susan L

    2003-04-01

    Encoding action phrases by enactment (self-performed tasks, or SPTs) leads to better memory than does observing actions (experimenter-performed tasks, or EPTs) or hearing action phrases (Engelkamp, 1998). In addition, recognition memory for SPTs is enhanced when test items are reenacted. Experiment 1 demonstrated a reenactment effect for EPTs, as well as for SPTs, indicating that the effect can be based on visual, as well as motoric, feedback. However, the reenactment effect in SPTs was found even when the participants were blindfolded at test (Experiment 2), indicating that the basis for the reenactment effect differs across SPTs and EPTs. Experiments 3 and 4 provided additional evidence that visual feedback is not critical for reenactment recognition in the case of SPTs. In addition, these experiments failed to show a hand congruency effect (enhanced recognition when the same hand enacts at study and at test), indicating that this effect is not as generalizable as the reenactment effect. These results have important implications for the motor-encoding hypothesis of the enactment effect.

  10. High-Quality Fe-doped TiO2 films with Superior Visible-Light Performance

    DEFF Research Database (Denmark)

    Su, Ren; Bechstein, Ralf; Kibsgaard, Jakob

    2012-01-01

    We report on high-quality polycrystalline Fe-doped TiO2 (Fe–TiO2) porous films synthesized via one-step electrochemical oxidation. We demonstrate that delicate properties such as the impurity concentration and the microstructure that strongly influence the performance of the material...... for photovoltaic and photocatalysis applications can be controlled by adjusting the electrolyte composition. Compared to Fe-doped TiO2 films prepared with traditional phosphate- or silicate-based electrolytes, our newly synthesised Fe–TiO2 films contain solely Fe dopants, which results in excellent photocatalytic...

  11. Modelo de avaliação de desempenho global para instituição de ensino superior Evaluation Model of Global Performance for Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Henrique Martins Galvão

    2011-12-01

    Full Text Available This study proposes a model to evaluate overall performance for Higher Education Institutions. It is unquestionable the importance of organizations from the education sector for knowledge development and dissemination of information, necessary for the progress of a city, region or country. However, it is necessary to develop tools for planning and management control to monitor organizational performance. In this case, one of the most important tasks is related to the types of information that managers need to monitor and tune the performance of the organization. The proposed evaluation model helps to improve the organizational performance of education institutions, creating higher value in the services offered.Este estudo propõe um modelo de avaliação de desempenho global para instituições de ensino superior. É indiscutível a importância das organizações do setor da educação, decisivas para o progresso de uma cidade, região ou país, por serem indutoras do desenvolvimento do conhecimento e da disseminação da informação. Por isso, torna-se necessário desenvolver, para essas instituições educacionais, instrumentos gerenciais de planejamento e de controle que monitorem o desempenho organizacional. Neste caso, uma das tarefas mais relevantes relaciona-se aos tipos de informações que os gerentes necessitam para monitorar e ajustar o desempenho da organização. O modelo de avaliação proposto contribui para melhorar o desempenho organizacional das instituições de ensino, criando valor superior nos serviços oferecidos.

  12. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  13. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g‑1 is realized for the optimised case of binary doping over the entire range of 1 A g‑1 to 40 A g‑1 with stability of 500 cycles at 40 A g‑1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  14. Are performance-based functional assessments superior to semistructured interviews for enhancing return-to-work outcomes?

    Science.gov (United States)

    Gross, Douglas P; Asante, Alexander K; Miciak, Maxi; Battié, Michele C; Carroll, Linda J; Sun, Ambrose; Mikalsky, Marti; Huellstrung, Rene; Niemeläinen, Riikka

    2014-05-01

    To examine whether use of functional capacity evaluation (FCE) leads to better outcomes for injured workers. Cluster randomized controlled trial conducted with analysis at level of claimant. Rehabilitation facility. Participants included claimants (N=203); of these, 103 were tested with FCE. Data were collected on all claimants undergoing RTW assessment at the facility for musculoskeletal conditions. Participants were predominantly employed (59%) men (73%) with chronic musculoskeletal conditions (median duration, 496d). FCEs are commonly used to identify work abilities and inform return-to-work (RTW) decisions. Therefore, FCE results have important consequences. Clinicians who were trained and experienced in performing FCEs were randomized into 2 groups. One group included 14 clinicians who were trained to conduct a semistructured functional interview; the other group (control group) continued to use standard FCE procedures. Outcomes included RTW recommendations after assessment, functional work level at time of assessment and 1, 3, and 6 months after assessment, and compensation outcomes. Analysis included Mann-Whitney U, chi-square, and t tests. All outcomes were similar between groups, and no statistically or clinically significant differences were observed. Mean differences between groups on functional work levels at assessment and follow-up ranged from 0.1 to 0.3 out of 4 (3%-8% difference, P>.05). Performance-based FCEs did not appear to enhance RTW outcomes beyond information gained from semistructured functional interviewing. Use of functional interviewing has the potential to improve efficiency of RTW assessment without compromising clinical, RTW, or compensation outcomes. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  16. Effects of context expectation on prospective memory performance among older and younger adults.

    Science.gov (United States)

    Kominsky, Terrence K; Reese-Melancon, Celinda

    2017-01-01

    This experiment examined the impact of context expectation on prospective memory (PM) performance among older and younger adults. Participants responded to PM target words embedded in an ongoing lexical decision task (LDT). Older and younger adults performed similarly on the PM task. Regardless of age, PM was significantly better for participants in the correct context expectation condition and significantly worse in the incorrect context expectation condition relative to participants who held no expectations about the context in which targets would appear. Participants' LDT response latencies were used to assess cost of the PM task to the ongoing task. Latencies were discernibly longer in the LDT block where the PM targets were expected compared to the block where they were not expected. The findings provide new information about how context can be used to support PM aging and suggest that contextual information can be equally beneficial for older and younger adults.

  17. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Mohammad A.

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Time's up! Involvement of metamemory knowledge, executive functions, and time monitoring in children's prospective memory performance.

    Science.gov (United States)

    Geurten, Marie; Lejeune, Caroline; Meulemans, Thierry

    2016-01-01

    This study examined time-based prospective memory (PM) in children and explored the possible involvement of metamemory knowledge and executive functions in the use of an appropriate time-monitoring strategy depending on the ongoing task's difficulty. Specifically, a sample of 72 typically developing children aged 4, 6, and 9 years old were given an original PM paradigm composed of both an ongoing procedural activity and a PM task. Half of the participants (expert group) were trained in the ongoing activity before the prospective test. As expected, results show that time monitoring had a positive effect on children's PM performance. Furthermore, mediation analyses reveal that strategic time monitoring was predicted by metamemory knowledge in the expert group but only by executive functions in the novice group. Overall, these findings provide interesting avenues to explain how metamemory knowledge, strategy use, and executive functions interact to improve PM performance during childhood.

  19. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    Science.gov (United States)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  20. Flavonoid Hesperidin Induces Synapse Formation and Improves Memory Performance through the Astrocytic TGF-β1

    Directory of Open Access Journals (Sweden)

    Isadora Matias

    2017-06-01

    Full Text Available Synapse formation and function are critical events for the brain function and cognition. Astrocytes are active participants in the control of synapses during development and adulthood, but the mechanisms underlying astrocyte synaptogenic potential only began to be better understood recently. Currently, new drugs and molecules, including the flavonoids, have been studied as therapeutic alternatives for modulation of cognitive processes in physiological and pathological conditions. However, the cellular targets and mechanisms of actions of flavonoids remain poorly elucidated. In the present study, we investigated the effects of hesperidin on memory and its cellular and molecular targets in vivo and in vitro, by using a short-term protocol of treatment. The novel object recognition test (NOR was used to evaluate memory performance of mice intraperitoneally treated with hesperidin 30 min before the training and again before the test phase. The direct effects of hesperidin on synapses and astrocytes were also investigated using in vitro approaches. Here, we described hesperidin as a new drug able to improve memory in healthy adult mice by two main mechanisms: directly, by inducing synapse formation and function between hippocampal and cortical neurons; and indirectly, by enhancing the synaptogenic ability of cortical astrocytes mainly due to increased secretion of transforming growth factor beta-1 (TGF-β1 by these cells. Our data reinforces the known neuroprotective effect of hesperidin and, by the first time, characterizes its synaptogenic action on the central nervous system (CNS, pointing astrocytes and TGF-β1 signaling as new cellular and molecular targets of hesperidin. Our work provides not only new data regarding flavonoid’s actions on the CNS but also shed light on possible new therapeutic alternative based on astrocyte biology.

  1. The brain-derived neurotrophic factor (BDNF gene Val66Met polymorphism affects memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Lucas A. de Azeredo

    Full Text Available Objective: Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Methods: Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR, delayed verbal recall (DVR, and memory retention rate. Results: BDNF Met allele carriers had lower DVR scores (p = 0.004 and a decline in memory retention (p = 0.017 when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088. Conclusion: These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  2. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults.

    Science.gov (United States)

    Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo

    2017-01-01

    Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  3. Altered small-world brain networks in schizophrenia patients during working memory performance.

    Science.gov (United States)

    He, Hao; Sui, Jing; Yu, Qingbao; Turner, Jessica A; Ho, Beng-Choon; Sponheim, Scott R; Manoach, Dara S; Clark, Vincent P; Calhoun, Vince D

    2012-01-01

    Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

  4. Altered small-world brain networks in schizophrenia patients during working memory performance.

    Directory of Open Access Journals (Sweden)

    Hao He

    Full Text Available Impairment of working memory (WM performance in schizophrenia patients (SZ is well-established. Compared to healthy controls (HC, SZ patients show aberrant blood oxygen level dependent (BOLD activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs defined by group independent component analysis (ICA. The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1 at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2 in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3 the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

  5. Spatial-sequential working memory in younger and older adults: age predicts backward recall performance within both age groups

    Directory of Open Access Journals (Sweden)

    Louise A. Brown

    2016-10-01

    Full Text Available Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years and older (64-85 years adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998. Across both age groups, the effects of interference (control, visual, or spatial, and recall type (forward and backward, were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping reliably reducing performance relative to both the control and visual interference (dynamic visual noise conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward. Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age

  6. Spatial-Sequential Working Memory in Younger and Older Adults: Age Predicts Backward Recall Performance within Both Age Groups

    Science.gov (United States)

    Brown, Louise A.

    2016-01-01

    Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts

  7. 基于Node.JS内存缓存的Web服务性能研究%Web Service Performance Study Based on Node.JS In-memory Cache

    Institute of Scientific and Technical Information of China (English)

    高飞; 何利力; 高金标

    2015-01-01

    当前Node.JS在Web服务方面得到了广泛的关注和应用,Node.JS采用了一个称为“事件循环(event loop)”的架构,可以快捷地编写出可扩展性高的服务器,也显著提高了服务器的性能。Node.JS选择了一种既能提高性能,又能减低开发复杂度的架构,这是一个非常重要的特性。主要研究了Node.JS的内存机制和缓存策略及其工作的原理,并对内存缓存的进行测试和提出了几种性能优化策略,进而说明其在Web服务上的优越性。%This paper mainly studies the Node.JS memory mechanism and caching strategy and its working principle,and tests of the in-memory cache and puts forward several performance optimization strategy,and shows its superiority in a Web service.

  8. Prospective memory performance in traumatic brain injury patients: a study of implementation intentions.

    Science.gov (United States)

    Mioni, Giovanna; Rendell, Peter G; Terrett, Gill; Stablum, Franca

    2015-04-01

    Traumatic brain injury (TBI) patients often present with prospective memory (PM) dysfunction. Forgetting to complete tasks may result in a loss of independence, limited employment prospects and anxiety, therefore, it is important to develop programs to improve PM performance in TBI patients. A strategy which may improve PM performance is implementation intentions. It involves making explicit plans specifying when, where and how one will perform a task in the future. In the present study, a group of 36 TBI patients and a group of 34 controls performed Virtual Week using either implementation intentions or no strategy. The results showed that the PM performance of TBI patients was less accurate than controls, in particular when the PM cue was time-based. No effect of implementation intentions was observed for TBI patients, however, controls improved their PM performance when the task was time-based. The findings suggest that strategies to improve PM in this clinical group are likely to be more complex than those that benefit healthy adults and may involve targeting phases of the PM process other than, or in addition to, the intention formation phase.

  9. Characterizing "fibrofog": Subjective appraisal, objective performance, and task-related brain activity during a working memory task.

    Science.gov (United States)

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H

    2016-01-01

    The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.

  10. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

    Science.gov (United States)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L.; Rutledge, Gregory C.; Kim, Il-Doo

    2016-04-01

    Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing.Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition

  11. Memory protection

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  12. Brain activation regions in schizophrenia patients performing the game piece memory task

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Huifang Yin; Lirong Yan; Changlian Tan; Dewen Hu; Shuqiao Yao

    2009-01-01

    BACKGROUND: Go, a traditional Chinese chess-like game, requires many unknown functions of the brain including attention, imaging, problem solving and processing of spatial working memory. To date, it remains uncertain whether the intellectual activities required to play Go are related to the frontal lobe.OBJECTIVE: To investigate various patterns of brain region activity while schizophrenic patients and normal subjects engaged in memorizing piece placement in the Chinese game of Go. Spatial working memory was measured in order to validate whether the prefrontal lobe participates in this memory process.DESIGN, TIME AND SETTING: Non-randomized, concurrent control trial was performed at Second Xiangya Hospital of Central South University, between May and December 2004.PARTICIPANTS: A total of nine Chinese schizophrenic patients with no brain or bodily diseases and not undergoing electroshock treatment, who were in accordance with the DSM-IV criteria for schizophrenia, as well as thirteen healthy staffs and students with matched age, sex, and education were included. Patients and control subjects had no neurological disorders or mental retardation. In addition, all participants were right-handed.METHODS: The cognitive task for functional magnetic resonance imaging was a block design experiment. Both groups were asked to remember the placement of pieces in the Chinese game of Go on a computer screen. A brain activation map was analyzed in SPM99.MAIN OUTCOME MEASURES: Brain responses were compared with regard to activation region size, volume, and asymmetry indices.RESULTS: Compared with the control group, the reaction time was significantly delayed in schizophrenics performing the working memory task (P < 0.05). When performing the tasks, normal subjects showed significant activation of the bilateral dorsolateral prefrontal lobe with left dominance; the asymmetry indices were: frontal lobe, +0.32; temporal lobe, -0.58; parietal lobe, 0.41 ; and occipital lobe, -0.34. On

  13. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    DEFF Research Database (Denmark)

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus Kähler

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes ...

  14. Absolute and relative temporal order memory for performed activities following stroke

    NARCIS (Netherlands)

    Schoo, Linda A.; Van Zandvoort, Martine J E; Reijmer, Yael D.; Biessels, Geert Jan; Kappelle, L. Jaap; Postma, Albert

    2014-01-01

    Reconstructing the temporal order of events is a crucial part of episodic memory. The temporal dimension, however, is often discarded in clinical settings, and measurements of true temporal aspects of episodic memory are scarce. The present study assessed temporal memory in stroke patients and in

  15. Working Memory Performance of Italian Students with Foreign Language Learning Difficulties

    Science.gov (United States)

    Palladino, Paola; Cornoldi, Cesare

    2004-01-01

    It has been suggested that the ability to learn a foreign language is related to working memory. However, there is no clear evidence about which component of working memory may be involved. Two experiments investigated working memory problems in groups of seventh and eighth grade Italian children with difficulties in learning English as a second…

  16. Effects of Post-Encoding Stress on Performance in the DRM False Memory Paradigm

    Science.gov (United States)

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian; Payne, Jessica D.

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false…

  17. Effects of Post-Encoding Stress on Performance in the DRM False Memory Paradigm

    Science.gov (United States)

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian; Payne, Jessica D.

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false…

  18. Effects of DSP4 and methylphenidate on spatial memory performance in rats.

    Science.gov (United States)

    Sontag, Thomas A; Hauser, Joachim; Tucha, Oliver; Lange, Klaus W

    2011-12-01

    In this experiment, we have investigated the spatial memory performance of rats following a central noradrenaline depletion induced by three different doses of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and following administration of three different doses of methylphenidate (MPH). The rats were required to find food pellets hidden on a holeboard. The sole administration of DSP4 induced only minor cognitive deficits. However, the treatment with MPH increased the reference memory error, the impulsivity and the motor activity of the DSP4-treated rats. Since the noradrenergic terminals in a DSP4-treated rat are significantly reduced, the administration of MPH has little effect on the noradrenergic system and increases dopaminergic rather than noradrenergic activity, resulting in an imbalance with relatively high dopaminergic and low noradrenergic activities. It is suggested that a reduction of noradrenaline and an increase of dopamine induce ADHD-related deficits and that the depletion of noradrenaline is not sufficient for an appropriate rat model of ADHD.

  19. Manipulating motor performance and memory through real-time fMRI neurofeedback

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  20. Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone.

    Science.gov (United States)

    Zheng, Yu; Dong, Renqiong; Shen, Jiabin; Guo, Shaoyun

    2016-01-20

    Shape memory materials containing alternating layers of thermoplastic polyurethane (TPU) and polycaprolactone (PCL) were fabricated through layer-multiplying extrusion. As a type of special co-continuous morphology, the multilayer structure had stable and well-defined continuous layer spaces and could be controlled by changing the number of layers. Compared with conventional polymer blends, the multilayer-assembled system with the same compositions had higher shape-fixing and -recovery ratios that could be further improved by increasing the number of layers. By analyzing from a viscoelastic model, the deformation energy preserved in elastic TPU layers would be balanced by adjacent PCL layers through interfacial shearing effect so that each component in the multilayer structure was capable of endowing the maximum contribution to both of the shape-fixing and -recovery stages. Besides, the influence of the hardness of TPU layers and the morphology of PCL layers were respectively concerned as well. Results revealed that choosing low-hardness TPU or replacing neat PCL layers by TPU/PCL blend with co-continuous morphology were beneficial to achieving outstanding shape memory performances.

  1. tACS phase locking of frontal midline theta oscillations disrupts working memory performance

    Directory of Open Access Journals (Sweden)

    Bankim Subhash Chander

    2016-05-01

    Full Text Available Frontal midline theta (FMT oscillations (4-8Hz are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS can block WM demand-related FMT power increase and disrupt normal WM performance. Methods: 20 healthy volunteers were assigned to one of two groups (group A, group B and performed a 2-back task across a baseline block (block 1 and an intervention block (block 2 while 275-sensor magnetoencephalography (MEG was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMT power increase (FMTpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMT power increase. This finding may have

  2. Self-perceived memory impairment and cognitive performance in an elderly independent population with age-related white matter changes

    DEFF Research Database (Denmark)

    Miranda, B.; Madureira, S.; Verdelho, A.

    2008-01-01

    on global functioning. WMC severity was rated using the Fazekas scale. Medial temporal lobe atrophy (MTA) was scored visually and mean values were calculated. The neuropsychological battery consisted of the Mini-Mental State Examination, a modified version of the VADAS-Cog, Trail making and Stroop tests...... and on the three cognitive domains. Multiple linear regression showed that the worse performance on the memory domain was associated with memory complaints independently of depressive symptoms, WMC severity and MTA (R(2) = 0.183; F = 17.09, beta = -0.126; p... subjects with WMC, self-perceived memory impairment is significantly associated with objective memory impairment independently of the WMC severity, depressive symptoms and MTA Udgivelsesdato: 2008/8...

  3. Anxiety and Depression in Academic Performance: An Exploration of the Mediating Factors of Worry and Working Memory

    Science.gov (United States)

    Owens, Matthew; Stevenson, Jim; Hadwin, Julie A.; Norgate, Roger

    2012-01-01

    Anxiety and depression are linked to lower academic performance. It is proposed that academic performance is reduced in young people with high levels of anxiety or depression as a function of increased test-specific worry that impinges on working memory central executive processes. Participants were typically developing children (12 to…

  4. Examining the Roles of Reasoning and Working Memory in Predicting Casual Game Performance across Extended Gameplay.

    Science.gov (United States)

    Kranz, Michael B; Baniqued, Pauline L; Voss, Michelle W; Lee, Hyunkyu; Kramer, Arthur F

    2017-01-01

    The variety and availability of casual video games presents an exciting opportunity for applications such as cognitive training. Casual games have been associated with fluid abilities such as working memory (WM) and reasoning, but the importance of these cognitive constructs in predicting performance may change across extended gameplay and vary with game structure. The current investigation examined the relationship between cognitive abilities and casual game performance over time by analyzing first and final session performance over 4-5 weeks of game play. We focused on two groups of subjects who played different types of casual games previously shown to relate to WM and reasoning when played for a single session: (1) puzzle-based games played adaptively across sessions and (2) speeded switching games played non-adaptively across sessions. Reasoning uniquely predicted first session casual game scores for both groups and accounted for much of the relationship with WM. Furthermore, over time, WM became uniquely important for predicting casual game performance for the puzzle-based adaptive games but not for the speeded switching non-adaptive games. These results extend the burgeoning literature on cognitive abilities involved in video games by showing differential relationships of fluid abilities across different game types and extended play. More broadly, the current study illustrates the usefulness of using multiple cognitive measures in predicting performance, and provides potential directions for game-based cognitive training research.

  5. Examining the Roles of Reasoning and Working Memory in Predicting Casual Game Performance across Extended Gameplay

    Science.gov (United States)

    Kranz, Michael B.; Baniqued, Pauline L.; Voss, Michelle W.; Lee, Hyunkyu; Kramer, Arthur F.

    2017-01-01

    The variety and availability of casual video games presents an exciting opportunity for applications such as cognitive training. Casual games have been associated with fluid abilities such as working memory (WM) and reasoning, but the importance of these cognitive constructs in predicting performance may change across extended gameplay and vary with game structure. The current investigation examined the relationship between cognitive abilities and casual game performance over time by analyzing first and final session performance over 4–5 weeks of game play. We focused on two groups of subjects who played different types of casual games previously shown to relate to WM and reasoning when played for a single session: (1) puzzle-based games played adaptively across sessions and (2) speeded switching games played non-adaptively across sessions. Reasoning uniquely predicted first session casual game scores for both groups and accounted for much of the relationship with WM. Furthermore, over time, WM became uniquely important for predicting casual game performance for the puzzle-based adaptive games but not for the speeded switching non-adaptive games. These results extend the burgeoning literature on cognitive abilities involved in video games by showing differential relationships of fluid abilities across different game types and extended play. More broadly, the current study illustrates the usefulness of using multiple cognitive measures in predicting performance, and provides potential directions for game-based cognitive training research. PMID:28326042

  6. How Is Working Memory Training Likely to Influence Academic Performance? Current Evidence and Methodological Considerations.

    Science.gov (United States)

    Bergman Nutley, Sissela; Söderqvist, Stina

    2017-01-01

    Working memory (WM) is one of our core cognitive functions, allowing us to keep information in mind for shorter periods of time and then work with this information. It is the gateway that information has to pass in order to be processed consciously. A well-functioning WM is therefore crucial for a number of everyday activities including learning and academic performance (Gathercole et al., 2003; Bull et al., 2008), which is the focus of this review. Specifically, we will review the research investigating whether improving WM capacity using Cogmed WM training can lead to improvements on academic performance. Emphasis is given to reviewing the theoretical principles upon which such investigations rely, in particular the complex relation between WM and mathematical and reading abilities during development and how these are likely to be influenced by training. We suggest two possible routes in which training can influence academic performance, one through an effect on learning capacity which would thus be evident with time and education, and one through an immediate effect on performance on reading and mathematical tasks. Based on the theoretical complexity described we highlight some methodological issues that are important to take into consideration when designing and interpreting research on WM training and academic performance, but that are nonetheless often overlooked in the current research literature. Finally, we will provide some suggestions for future research for advancing the understanding of WM training and its potential role in supporting academic attainment.

  7. Development of visual working memory and distractor resistance in relation to academic performance.

    Science.gov (United States)

    Tsubomi, Hiroyuki; Watanabe, Katsumi

    2017-02-01

    Visual working memory (VWM) enables active maintenance of goal-relevant visual information in a readily accessible state. The storage capacity of VWM is severely limited, often as few as 3 simple items. Thus, it is crucial to restrict distractor information from consuming VWM capacity. The current study investigated how VWM storage and distractor resistance develop during childhood in relation to academic performance in the classroom. Elementary school children (7- to 12-year-olds) and adults (total N=140) completed a VWM task with and without visual/verbal distractors during the retention period. The results showed that VWM performance with and without distractors developed at similar rates until reaching adult levels at 10years of age. In addition, higher VWM performance without distractors was associated with higher academic scores in literacy (reading and writing), mathematics, and science for the younger children (7- to 9-year-olds), whereas these academic scores for the older children (10- to 12-year-olds) were associated with VWM performance with visual distractors. Taken together, these results suggest that VWM storage and distractor resistance develop at a similar rate, whereas their contributions to academic performance differ with age.

  8. Hippocampal Testosterone Relates to Reference Memory Performance and Synaptic Plasticity in Male Rats

    Science.gov (United States)

    Schulz, Kristina; Korz, Volker

    2010-01-01

    Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the “natural” endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex) testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behavior, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory (RM) performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to RM performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP) of the field excitatory postsynaptic potential (fEPSP) was prolonged in untrained rats, both the fEPSP- and the population spike amplitude (PSA)-LTP was impaired in trained rats. Behavioral performance was unaffected, but correlations of hippocampal field potentials with behavior were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance. PMID:21188275

  9. How Is Working Memory Training Likely to Influence Academic Performance? Current Evidence and Methodological Considerations

    Science.gov (United States)

    Bergman Nutley, Sissela; Söderqvist, Stina

    2017-01-01

    Working memory (WM) is one of our core cognitive functions, allowing us to keep information in mind for shorter periods of time and then work with this information. It is the gateway that information has to pass in order to be processed consciously. A well-functioning WM is therefore crucial for a number of everyday activities including learning and academic performance (Gathercole et al., 2003; Bull et al., 2008), which is the focus of this review. Specifically, we will review the research investigating whether improving WM capacity using Cogmed WM training can lead to improvements on academic performance. Emphasis is given to reviewing the theoretical principles upon which such investigations rely, in particular the complex relation between WM and mathematical and reading abilities during development and how these are likely to be influenced by training. We suggest two possible routes in which training can influence academic performance, one through an effect on learning capacity which would thus be evident with time and education, and one through an immediate effect on performance on reading and mathematical tasks. Based on the theoretical complexity described we highlight some methodological issues that are important to take into consideration when designing and interpreting research on WM training and academic performance, but that are nonetheless often overlooked in the current research literature. Finally, we will provide some suggestions for future research for advancing the understanding of WM training and its potential role in supporting academic attainment.

  10. The effects of background white noise on memory performance in inattentive school children

    Directory of Open Access Journals (Sweden)

    Sikström Sverker

    2010-09-01

    Full Text Available Abstract Background Noise is typically conceived of as being detrimental for cognitive performance; however, a recent computational model based on the concepts of stochastic resonance and dopamine related internal noise postulates that a moderate amount of auditive noise benefit individuals in hypodopaminergic states. On the basis of this model we predicted that inattentive children would be enhanced by adding background white noise while attentive children's performance would deteriorate. Methods Fifty-one secondary school pupils carried out an episodic verbal free recall test in two noise conditions. In the high noise condition, verb-noun sentences were presented during auditory background noise (white noise, 78 dB, and in the low noise condition sentences were presented without noise. Results Exposure to background noise improved performance for inattentive children and worsened performance for attentive children and eliminated episodic memory differences between attentive and inattentive school children. Conclusions Consistent with the model, our data show that cognitive performance can be moderated by external background white noise stimulation in a non-clinical group of inattentive participants. This finding needs replicating in a larger sample using more noise levels but if replicated has great practical applications by offering a non-invasive way to improve school results in children with attentional problems.

  11. Fabrication and magnetic-induced aggregation of Fe{sub 3}O{sub 4}–noble metal composites for superior SERS performances

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Zibao; Zhao, Aiwu, E-mail: awzhao@iim.ac.cn; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu [Chinese Academy of Sciences, Institute of Intelligent Machines (China)

    2013-11-15

    Fe{sub 3}O{sub 4}–noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe{sub 3}O{sub 4} NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe{sub 3}O{sub 4}–noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe{sub 3}O{sub 4}–noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe{sub 3}O{sub 4}–noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe{sub 3}O{sub 4}–Ag aggregates for R6G is as low as 10{sup −14} M, and the calculated EF reaches up to 1.2 × 10{sup 6}, which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances.

  12. Memory of psychodiagnostic information: biases and effects of expertise.

    Science.gov (United States)

    Brailey, K; Vasterling, J J; Franks, J J

    2001-01-01

    Problem-solving expertise has been associated with enhanced memory of domain-specific information. This enhanced memory is thought to play an important role in expert decisions. Meanwhile, research on psychodiagnostic decision making has found consistent limitations in experienced clinicians' ability to make optimal decisions. To what extent are these limitations associated with suboptimal memory processes? We compared memories of expert clinicians and novice graduate students for information learned while viewing a videotaped psychodiagnostic interview. Results of 3 tests suggest that expert clinicians exhibit enhanced memory that is flexible, selective, and accurate but with limitations that might contribute to poor decisions. Experts exhibited superior memory of personal criteria and disconfirmatory information. However, a framing manipulation induced performance in experts consistent with suboptimal decision making, and both groups needed exhaustive prompts for optimal memory search. Implications of these findings for expertise models are discussed.

  13. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine

    Directory of Open Access Journals (Sweden)

    Carolin Franziska Reichert

    2016-02-01

    Full Text Available The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system.

  14. Boosting Geographic Information System’s Performance Using In-Memory Data Grid

    Directory of Open Access Journals (Sweden)

    Navin Rajpal

    2012-07-01

    Full Text Available A typical Geographic Information System(GIS is informationsystem that integrates, stores, edits, analyzes, shares anddisplays geographic information for effective decision making.The focus here is to refine the storing and retrievingcapabilities of any GIS. GIS application have a very highperformance and scalability requirement, such as queryresponse time of less than 3 seconds, 120000 customer sessionsper hour and 100000 data addition/updates per day. Also anideal GIS application always deal with high concurrent load,frequent database access for mostly read only data, and nonlineargrowth of mostly read only data over period of time.These all are the factors which lead to performance impact inthe application. This research proceeds to understand how theIn-Memory Data-Grid solution is better than other solutionsand how can it be leveraged to implement a very highperforming and highly scalable GIS applications.

  15. Dimensional heterostructures of 1D CdS/2D ZnIn2S4 composited with 2D graphene: designed synthesis and superior photocatalytic performance.

    Science.gov (United States)

    Tian, Qingyong; Wu, Wei; Liu, Jun; Wu, Zhaohui; Yao, Weijing; Ding, Jin; Jiang, Changzhong

    2017-02-28

    The development of photocatalysts with superior photoactivity and stability for the degradation of organic dyes is very important for environmental remediation. In this study, we have presented a multidimensional (1D and 2D) structured CdS/ZnIn2S4/RGO photocatalyst with superior photocatalytic performance. The CdS/ZnIn2S4 helical dimensional heterostructures (DHS) were prepared via a facile solvothermal synthesis method to facilitate the epitaxial growth of 2D ZnIn2S4 nanosheets on 1D CdS nanowires. Ultrathin 2D ZnIn2S4 nanosheets have grown uniformly and perpendicular to the surface of 1D CdS nanowires. The as-obtained 1D/2D CdS/ZnIn2S4 helical DHS show good photocatalytic properties for malachite green (MG). Subsequently, 2D reduced graphene oxide (RGO) was introduced into the 1D/2D CdS/ZnIn2S4 helical DHS as a co-catalyst. The photoactivity and stability of the CdS/ZnIn2S4/RGO composites are significantly improved after 6 cycles. The enhanced photoactivity can be attributed to the high surface area of RGO, the improved adsorption of organic dyes and the efficient spatial separation of photo-induced charge carriers. The transfer of photo-generated electrons from the interface of CdS and ZnIn2S4 to RGO also restricted the photocorrosion of metal sulfide, suggesting an improved stability of the reused CdS/ZnIn2S4/RGO composited photocatalyst.

  16. A slice of pi : an exploratory neuroimaging study of digit encoding and retrieval in a superior memorist.

    Science.gov (United States)

    Raz, Amir; Packard, Mark G; Alexander, Gerianne M; Buhle, Jason T; Zhu, Hongtu; Yu, Shan; Peterson, Bradley S

    2009-10-01

    Subject PI demonstrated superior memory using a variant of a Method of Loci (MOL) technique to recite the first digits of the mathematical constant pi to more than 2(16) decimal places. We report preliminary behavioral, functional magnetic resonance imaging (fMRI), and brain volumetric data from PI. fMRI data collected while PI recited the first 540 digits of pi (i.e., during retrieval) revealed increased activity in medial frontal gyrus and dorsolateral prefrontal cortex. Encoding of a novel string of 100 random digits activated motor association areas, midline frontal regions, and visual association areas. Volumetric analyses indicated an increased volume of the right subgenual cingulate, a brain region implicated in emotion, mentalizing, and autonomic arousal. Wechsler Abbreviated Scale of Intelligence (WASI) testing indicated that PI is of average intelligence, and performance on mirror tracing, rotor pursuit, and the Silverman and Eals Location Memory Task revealed normal procedural and implicit memory. PI's performance on the Wechsler Memory Scale (WMS-III) revealed average general memory abilities (50th percentile), but superior working memory abilities (99th percentile). Surprisingly, PI's visual memory (WMS-III) for neutral faces and common events was remarkably poor (3rd percentile). PI's self-report indicates that imagining affective situations and high emotional content is critical for successful recall. We speculate that PI's reduced memory for neutral/non-emotional faces and common events, and the observed increase in volume of the right subgenual cingulate, may be related to extensive practice with memorizing highly emotional material.

  17. Performance of Point and Range Queries for In-memory Databases using Radix Trees on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Maksudul [ORNL; Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2016-01-01

    In in-memory database systems augmented by hardware accelerators, accelerating the index searching operations can greatly increase the runtime performance of database queries. Recently, adaptive radix trees (ART) have been shown to provide very fast index search implementation on the CPU. Here, we focus on an accelerator-based implementation of ART. We present a detailed performance study of our GPU-based adaptive radix tree (GRT) implementation over a variety of key distributions, synthetic benchmarks, and actual keys from music and book data sets. The performance is also compared with other index-searching schemes on the GPU. GRT on modern GPUs achieves some of the highest rates of index searches reported in the literature. For point queries, a throughput of up to 106 million and 130 million lookups per second is achieved for sparse and dense keys, respectively. For range queries, GRT yields 600 million and 1000 million lookups per second for sparse and dense keys, respectively, on a large dataset of 64 million 32-bit keys.

  18. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    Geisa B. Gallardo-Moreno

    2015-01-01

    Full Text Available In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects.

  19. Prospective memory performance of patients with Parkinson's disease depends on shifting aptitude: evidence from cognitive rehabilitation.

    Science.gov (United States)

    Costa, Alberto; Peppe, Antonella; Serafini, Francesca; Zabberoni, Silvia; Barban, Francesco; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-08-01

    This study investigated the effect of cognitive training aimed at improving shifting ability on Parkinson's disease (PD) patients' performance of prospective memory (PM) tasks. Using a double-blind protocol, 17 PD patients were randomly assigned to two experimental arms. In the first arm (n=9) shifting training was administered, and in the second (placebo) arm (n=8), language and respiratory exercises. Both treatments consisted of 12 sessions executed over 4 weeks. PM and shifting measures (i.e., Trail Making Test and Alternate Fluency Test) were administered at T0 (before treatment) and T1 (immediately after treatment). A mixed analysis of variance was applied to the data. To evaluate the effects of treatment, the key effect was the interaction between Group (experimental vs. placebo) and Time of Assessment (T0 vs. T1). This interaction was significant for the accuracy indices of the PM procedure (p.10). The performance change passing from T0 to T1 on the Alternate Fluency test and the PM procedure was significantly correlated (p<.05). Results show that the cognitive training significantly improved PD patients' event-based PM performance and suggest that their poor PM functioning might be related to reduced shifting abilities.

  20. Word memory test performance in Canadian adolescents with learning disabilities: a preliminary study.

    Science.gov (United States)

    Larochette, Anne-Claire; Harrison, Allyson G

    2012-01-01

    The purpose of this study was to evaluate Word Memory Test (WMT) performances in students with identified learning disabilities (LDs) providing good effort to examine the influence of severe reading or learning problems on WMT performance. Participants were 63 students with LDs aged 11 to 14 years old (M = 12.19 years), who completed psychoeducational assessments as part of a transition program to secondary school. Participants were administered a battery of psychodiagnostic tests including the WMT. Results indicated that 9.5% of students with LD met Criterion A on the WMT (i.e., perform below cut-offs on any of the first three subtests of the WMT), but less than 1% met both criteria necessary for identification of low effort. Failure on the first three subtests of the WMT was associated with word reading at or below the 1st percentile and severely impaired phonetic decoding and phonological awareness skills. These results indicate that the majority of students with a history of LD are capable of passing the WMT, and use of profile analysis reduces the false-positive rate to below 1%.

  1. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    Science.gov (United States)

    Gallardo-Moreno, Geisa B.; González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan

    2015-01-01

    In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268

  2. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-01-01

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700

  3. Sex differences in verbal working memory performance emerge at very high loads of common neuroimaging tasks.

    Science.gov (United States)

    Reed, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2017-04-01

    Working memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research. These tasks are typically used at loads that allow most healthy participants to perform well, which facilitates neuroimaging data collection. Critically, however, high performance at lower loads may obscure differences that emerge at higher loads. A key question not yet addressed at high loads concerns the effect of sex. Thoroughgoing investigation of high-load verbal WM is thus timely to test for potential hidden effects, and to provide behavioral context for effects of sex observed in WM-related brain structure and function. We tested 111 young adults, matched on genotype for the WM-associated COMT-Val(108/158)Met polymorphism, on three classic WM tasks using verbal information. Each task was tested at four WM loads, including higher loads than those used in previous studies of sex differences. All tasks loaded on a single factor, enabling comparison of verbal WM ability at a construct level. Results indicated sex effects at high loads across tasks and within each task, such that males had higher accuracy, even among groups that were matched for performance at lower loads.

  4. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Pei-Cheng Shih

    Full Text Available Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed, low-intensity exercise (Low-Ex, or high-intensity exercise (High-Ex group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF, synapsin-I, postsynaptic density protein 95 (PSD-95, and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be

  5. Divergent effects of age on performance in spatial associative learning and real idiothetic memory in humans.

    Science.gov (United States)

    Skolimowska, Justyna; Wesierska, Malgorzata; Lewandowska, Monika; Szymaszek, Aneta; Szelag, Elzbieta

    2011-03-17

    This study focuses on age-related differences concerning two kinds of spatial memory assessed by: (1) Paired Associates Learning (PAL) test from the CANTAB and (2) a test of Real Idiothetic Memory (RIM) using real-life settings. Despite a clear age-related drop in PAL that is reported in existing studies, age-related differences in idiothetic navigation still remain unclear. In our study we tested 80 healthy volunteers classified according to their age into two groups, i.e. young (aged from 20 to 29 years of life; n=40; 20M/20F) and elderly (from 64 to 77 years; n=40; 20M/20F) healthy volunteers. They were asked in the PAL test to remember the spatial location of visual patterns presented on a computer screen, and in the RIM test to walk on the arena in darkness in order to find a cue place and then to return to the start/exit point. A white noise was switched on at entering the cue place and switched off at leaving this place. Elderly subjects indicated poorer performance than their younger counterparts on the PAL test, as evidenced by all tested outcome measures. In contrast, for the RIM test no clear age effect was evidenced. In both tests no gender effect was observed. A dissociation in age-related changes for these two tests indicates that visuo-spatial associative learning and idiothetic navigation may have different cognitive control which is probably rooted in an interplay of different brain structures.

  6. Relationship between spatial working memory performance and diet specialization in two sympatric nectar bats.

    Directory of Open Access Journals (Sweden)

    Mickaël Henry

    Full Text Available Behavioural ecologists increasingly recognise spatial memory as one the most influential cognitive traits involved in evolutionary processes. In particular, spatial working memory (SWM, i.e. the ability of animals to store temporarily useful information for current foraging tasks, determines the foraging efficiency of individuals. As a consequence, SWM also has the potential to influence competitive abilities and to affect patterns of sympatric occurrence among closely related species. The present study aims at comparing the efficiency of SWM between generalist (Glossophaga soricina and specialist (Leptonycteris yerbabuenae nectarivorous bats at flowering patches. The two species differ in diet--the generalist diet including seasonally fruits and insects with nectar and pollen while the specialist diet is dominated by nectar and pollen yearlong--and in some morphological traits--the specialist being heavier and with proportionally longer rostrum than the generalist. These bats are found sympatrically within part of their range in the Neotropics. We habituated captive individuals to feed on artificial flower patches and we used infrared video recordings to monitor their ability to remember and avoid the spatial location of flowers they emptied in previous visits in the course of 15-min foraging sequences. Experiments revealed that both species rely on SWM as their foraging success attained significantly greater values than random expectations. However, the nectar specialist L. yerbabuenae was significantly more efficient at extracting nectar (+28% in foraging success, and sustained longer foraging bouts (+27% in length of efficient foraging sequences than the generalist G. soricina. These contrasting SWM performances are discussed in relation to diet specialization and other life history traits.

  7. Relationship between Spatial Working Memory Performance and Diet Specialization in Two Sympatric Nectar Bats

    Science.gov (United States)

    Henry, Mickaël; Stoner, Kathryn E.

    2011-01-01

    Behavioural ecologists increasingly recognise spatial memory as one the most influential cognitive traits involved in evolutionary processes. In particular, spatial working memory (SWM), i.e. the ability of animals to store temporarily useful information for current foraging tasks, determines the foraging efficiency of individuals. As a consequence, SWM also has the potential to influence competitive abilities and to affect patterns of sympatric occurrence among closely related species. The present study aims at comparing the efficiency of SWM between generalist (Glossophaga soricina) and specialist (Leptonycteris yerbabuenae) nectarivorous bats at flowering patches. The two species differ in diet – the generalist diet including seasonally fruits and insects with nectar and pollen while the specialist diet is dominated by nectar and pollen yearlong – and in some morphological traits – the specialist being heavier and with proportionally longer rostrum than the generalist. These bats are found sympatrically within part of their range in the Neotropics. We habituated captive individuals to feed on artificial flower patches and we used infrared video recordings to monitor their ability to remember and avoid the spatial location of flowers they emptied in previous visits in the course of 15-min foraging sequences. Experiments revealed that both species rely on SWM as their foraging success attained significantly greater values than random expectations. However, the nectar specialist L. yerbabuenae was significantly more efficient at extracting nectar (+28% in foraging success), and sustained longer foraging bouts (+27% in length of efficient foraging sequences) than the generalist G. soricina. These contrasting SWM performances are discussed in relation to diet specialization and other life history traits. PMID:21931612

  8. Is external memory memory? Biological memory and extended mind.

    Science.gov (United States)

    Michaelian, Kourken

    2012-09-01

    Clark and Chalmers (1998) claim that an external resource satisfying the following criteria counts as a memory: (1) the agent has constant access to the resource; (2) the information in the resource is directly available; (3) retrieved information is automatically endorsed; (4) information is stored as a consequence of past endorsement. Research on forgetting and metamemory shows that most of these criteria are not satisfied by biological memory, so they are inadequate. More psychologically realistic criteria generate a similar classification of standard putative external memories, but the criteria still do not capture the function of memory. An adequate account of memory function, compatible with its evolution and its roles in prospection and imagination, suggests that external memory performs a function not performed by biological memory systems. External memory is thus not memory. This has implications for: extended mind theorizing, ecological validity of memory research, the causal theory of memory.

  9. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-03

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

  10. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance

    Science.gov (United States)

    Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong

    2016-01-01

    In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance. PMID:27775091

  11. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance

    Science.gov (United States)

    Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong

    2016-10-01

    In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance.

  12. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    Science.gov (United States)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  13. Higher Cortisol Predicts Less Improvement in Verbal Memory Performance after Cardiac Rehabilitation in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Mahwesh Saleem

    2013-01-01

    Full Text Available Objective. While physical activity can improve verbal memory performance in subjects with coronary artery disease (CAD, there is large variability in response. Elevated cortisol production has been suggested to negatively affect verbal memory performance, yet cortisol concentrations have not been assessed as a predictor of response to exercise intervention in those with CAD. Methods. CAD patients participating in a one-year cardiac rehabilitation program were recruited. Memory was assessed with the California Verbal Learning Test second edition at baseline and one year. Cortisol was measured from a 20 mg, 3.0 cm hair sample collected at baseline. Results. In patients with CAD (n=56, mean ± SD age = 66±11, 86% male, higher cortisol (hair cortisol concentrations ≥ 153.2 ng/g significantly predicted less memory improvement (F1,50=5.50, P=0.02 when controlling for age (F1,50=0.17, P=0.68, gender (F1,50=2.51, P=0.12, maximal oxygen uptake (F1,50=1.88, P=0.18, and body mass index (F1,50=3.25, P=0.08. Conclusion. Prolonged hypothalamic pituitary adrenal axis activation may interfere with exercise-related improvements in memory in CAD.

  14. Performance on selected visual and auditory subtests of the Wechsler Memory Scale-Fourth Edition during laboratory-induced pain.

    Science.gov (United States)

    Etherton, Joseph L; Tapscott, Brian E

    2015-01-01

    Although chronic pain patients commonly report problems with concentration and memory, recent research indicates that induced pain alone causes little or no impairment on several Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests, suggesting that cognitive complaints in chronic pain may be attributable to factors other than pain. The current studies examined potential effects of induced pain on Wechsler Memory Scale-Fourth Edition (WMS-IV) visual working memory index (VWM) subtests (Experiment 1, n = 32) and on the immediate portions of WMS-IV auditory memory (IAM) subtests (Experiment 2, n = 55). In both studies, participants were administered one of two subtests (Symbol Span or Spatial Addition for Experiment 1; Logical Memory or Verbal Paired Associates for Experiment 2) normally and were then administered the alternate subtest while experiencing either cold pressor pain induction or a nonpainful control condition. Results indicate that induced pain in nonclinical volunteers did not impair performance on either VWM or IAM performance, suggesting that pain alone does not account for complaints or deficits in these domains in chronic pain patients. Nonpainful variables such as sleep deprivation or emotional disturbance may be responsible for reported cognitive complaints in chronic pain patients.

  15. Working memory performance is related to intrinsic resting state functional connectivity changes in community-dwelling elderly cohort.

    Science.gov (United States)

    Charroud, Céline; Le Bars, Emmanuelle; Deverdun, Jérémy; Steffener, Jason; Molino, François; Abdennour, Meriem; Portet, Florence; Bonafe, Alain; Stern, Yaakov; Ritchie, Karen; Akbaraly, Tasnime N; Menjot de Champfleur, Nicolas

    2016-07-01

    Characterization of normal age-related changes in resting state brain networks associated with working memory performance is a major prerequisite for studying neurodegenerative diseases. The aim of this study was to investigate the relationship between performing a working memory task (under MRI) and resting-state brain networks in a large cohort of healthy elderly subjects (n=337). Functional connectivity and interactions between networks were assessed within the default mode (DMN), salience (SN), and right and left central executive (CEN) networks in two groups of subjects classed by their performance (low and high). The low performance group showed lower functional connectivity in both the DMN and SN, and higher functional connectivity in the right and left CEN compared to the high performance group. Overall the functional connectivity within the DMN and the CEN were correlated. The lower functional connectivity within the DMN and SN in the low performance group is suggestive of altered attentional and memory processes and/or altered motivation. The higher functional connectivity within the CEN could be related to compensatory mechanisms, without which the subjects would have even lower performances. The correlation between the DMN and CEN suggests a modulation between the lower functional connectivity within the DMN and the higher functional connectivity within the CEN when performance is reduced. Finally, this study suggests that performance modifications in healthy elderly subjects are associated with reorganization of functional connectivity within the DMN, SN, and CEN.

  16. Working memory and acquisition of implicit knowledge by imagery training, without actual task performance.

    Science.gov (United States)

    Helene, A F; Xavier, G F

    2006-04-28

    This study investigated acquisition of a mirror-reading skill via imagery training, without the actual performance of a mirror-reading task. In experiment I, healthy volunteers simulated writing on an imaginary, transparent screen placed at eye level, which could be read by an experimenter facing the subject. Performance of this irrelevant motor task required the subject to imagine the letters inverted, as if seen in a mirror from their own point of view (imagery training). A second group performed the same imagery training interspersed with a complex, secondary spelling and counting task. A third, control, group simply wrote the words as they would normally appear from their own point of view. After training with 300 words, all subjects were tested in a mirror-reading task using 60 non-words, constructed according to acceptable letter combinations of the Portuguese language. Compared with control subjects, those exposed to imagery training, including those who switched between imagery and the complex task, exhibited shorter reading times in the mirror-reading task. Experiment II employed a 2 x 3 design, including two training conditions (imagery and actual mirror-reading) and three competing task conditions (a spelling and counting switching task, a visual working memory concurrent task, and no concurrent task). Training sessions were interspersed with mirror-reading testing sessions for non-words, allowing evaluation of the mirror-reading acquisition process during training. The subjects exposed to imagery training acquired the mirror-reading skill as quickly as those exposed to the actual mirror-reading task. Further, performance of concurrent tasks together with actual mirror-reading training severely disrupted mirror-reading skill acquisition; this interference effect was not seen in subjects exposed to imagery training and performance of the switching and the concurrent tasks. These results unequivocally show that acquisition of implicit skills by top

  17. Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer.

    Science.gov (United States)

    Trumbo, Michael C; Matzen, Laura E; Coffman, Brian A; Hunter, Michael A; Jones, Aaron P; Robinson, Charles S H; Clark, Vincent P

    2016-12-01

    Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0mA) or sham (0.1mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.

  18. Sequence specific motor performance gains after memory consolidation in children and adolescents.

    Directory of Open Access Journals (Sweden)

    Shoshi Dorfberger

    Full Text Available Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.

  19. Carboplatin plus pemetrexed offers superior cost-effectiveness compared to pemetrexed in patients with advanced non-small cell lung cancer and performance status 2.

    Science.gov (United States)

    Schluckebier, Luciene; Garay, Osvaldo U; Zukin, Mauro; Ferreira, Carlos G

    2015-09-01

    Pemetrexed plus carboplatin offers survival advantage in first line treatment of advanced lung cancer patients with performance status of 2. We estimated the cost-effectiveness of this combined regimen compared to pemetrexed alone in a Brazilian population. A cost-effectiveness analysis was conducted based on a randomized phase III trial in patients with advanced non-small cell lung cancer (NSCLC) and ECOG performance status of 2 (PS2), comparing doublet regimen pemetrexed plus carboplatin with pemetrexed alone. The perspective adopted was the public health care sector over a three-year period. Direct medical costs and survival time were calculated from patient-level data and utility values were extracted from the literature. Sensitivity analyses were performed to evaluate uncertainties in the results. The combined regimen pemetrexed plus carboplatin yielded a gain of 0.16 life year (LY) and 0.12 quality-adjusted life year (QALY) compared to pemetrexed alone. The total cost was 17,674.31 USD for the combined regimen and 15,722.39 USD for pemetrexed alone. The incremental cost-effectiveness ratio (ICER) was $12,016.09 per LY gained and $15,732.05 per QALY gained. The factors with the greatest impact on the ICER are pemetrexed price and the time to progression utility value. The cost-effectiveness acceptability curve showed an upper 90% probability of pemetrexed plus carboplatin being cost-effective with a threshold between two and three GDP per capita. Our study suggests superiority of the combined pemetrexed plus carboplatin regimen in terms of efficacy as well as cost-effectiveness in advanced NSCLC patients with a poor performance status of 2. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Sustainability Performance of Scandinavian Corporations and their Value Chains assessed by UN Global Compact and Global Reporting Initiative standards - a way to identify superior performers?

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    2014-01-01

    Strategies & Policies, Management Systems, Monitoring and Evaluation Mechanisms and Key Outcomes on sustainability defined broadly as the Human Rights, Labour, Environment and Anti-Corruption issues by the UN Global Compact. The study firmly concludes that Scandinavian corporations on average......The purpose of this study was to introduce a combination of the two most adopted multi- stakeholder standards for sustainability reporting as an alternate framework for assessing sustainability performance in Scandinavian corporations. This novel approach leverages numeric measures on the criteria...... are not performing on higher levels concerning their implementation of these issues. The generalization of the results is moderated by the study's limitations concerning the framework and data sources used, sample size and the indirect use of GRI indicators. The uniqueness of the sustainability practice by two...

  1. 78 FR 21116 - Superior Supplier Incentive Program

    Science.gov (United States)

    2013-04-09

    ... Department of the Navy Superior Supplier Incentive Program AGENCY: Department of the Navy, DoD. ACTION... policy that will establish a Superior Supplier Incentive Program (SSIP). Under the SSIP, contractors that..., performance, quality, and business relations would be granted Superior Supplier Status (SSS). Contractors...

  2. Repeated acquisition and performance chamber for mice: a paradigm for assessment of spatial learning and memory.

    Science.gov (United States)

    Brooks, A I; Cory-Slechta, D A; Murg, S L; Federoff, H J

    2000-11-01

    Molecular genetic manipulation of the mouse offers the possibility of elucidating the function of individual gene products in neural systems underlying learning and memory. Many extant learning paradigms for mice rely on negative reinforcement, involve simple problems that are relatively rapidly acquired and thus preclude time-course assessment, and may impose the need to undertake additional experiments to determine the extent to which noncognitive behaviors influence the measures of learning. To overcome such limitations, a multiple schedule of repeated acquisition and performance was behaviorally engineered to assess learning vs rote performance within-behavioral test session and within-subject utilizing an apparatus modified from the rat (the repeated acquisition and performance chamber; RAPC). The multiple schedule required mice to learn a new sequence of door openings leading to saccharin availability in the learning component during each session, while the sequence of door openings for the performance component remained constant across sessions. The learning and performance components alternated over the course of each test session, with different auditory stimuli signaling which component was currently in effect. To validate this paradigm, learning vs performance was evaluated in two inbred strains of mice: C57BL/6J and 129/SvJ. The hippocampal dependence of this measure was examined in lesioned C57BL/6J mice. Both strains exhibited longer latencies and higher errors in the learning compared to the performance component and evidenced declines in both measures across the trials of each session, consistent with an acquisition phenomenon. These same measures showed little or no evidence of change in the performance component. Whereas three trials per session were utilized with C57BL/65 mice in each component, behavior of 129/SvJ mice could only be sustained for two trials per component per session, demonstrating differences in testing capabilities between

  3. Determinants of Learning and Performance in an Associative Memory/Substitution Task: Task Constraints, Individual Differences, Volition, and Motivation.

    Science.gov (United States)

    Ackerman, Philip L.; Woltz, Dan J.

    1994-01-01

    Five experiments with 586 college students investigated how ability differences, learning task characteristics, and motivational and volitional processes combine to explain performance differences in an associative memory or substitution task. Results are discussed in terms of developing a more comprehensive understanding of learner differences.…

  4. The 1988 Jansson memorial lecture. The performance of the 'idiot-savant': implicit and explicit.

    Science.gov (United States)

    O'Connor, N

    1989-04-01

    'Idiots-savants' are people of low intelligence who have one or two outstanding talents such as calendrical calculation, drawing or musical performance. Such people are mostly male and occur with high frequency among the autistic population. Do they perform their amazing feats because of an outstanding memory or do they draw on some faculty of reasoning to help them? Although they cannot easily make clear how they carry out their tasks by using speech, experiments reveal that they follow simple rules which they use to aid them in recalling correct dates and sequences in classical music. It has been said that they cannot abstract but this turns out not to be true: all can abstract to some degree and some are more at home with abstract than with concrete material. Whatever else is true of these handicapped but gifted people their gift becomes apparent at an early age and is apparently not improved by practice. Perhaps the most important conclusion from work with these groups is that their gifts force us to think again about the concept of general intelligence. How far is it possible to have low intelligence and yet be an outstanding musician or artist? Speculation on this idea may force us to revise our concepts of intelligence, neuropsychology and handicap.

  5. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    Science.gov (United States)

    Asua, E.; García-Arribas, A.; Etxebarria, V.; Feuchtwanger, J.

    2014-02-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional-integral-derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm.

  6. Intraindividual variability in performance on associative memory tasks is elevated in amnestic mild cognitive impairment.

    Science.gov (United States)

    Troyer, Angela K; Vandermorris, Susan; Murphy, Kelly J

    2016-09-01

    Elevations in intraindividual variability (IIV) are an indicator of neurocognitive compromise and are seen on reaction time tasks in individuals with mild cognitive impairment (MCI). We examined IIV on memory tasks known to be sensitive to early cognitive change in a group of 24 individuals with amnestic MCI and 21 matched controls. Traditional measures of accuracy and speed, as well as indices of IIV statistically purified for systematic between-group and trial effects, were derived from performance on two computer-based associative recognition tests of word-word and face-name pairs. Accuracy and speed were reduced and IIV was elevated in the MCI group compared to controls on both tasks. Logistic regression analyses demonstrated that IIV, but not speed, was a unique predictor of group membership, over and above performance accuracy. Observed elevations in IIV in MCI are congruent with the notion that IIV may reflect disturbance in distributed neural networks, including medial temporal regions, in addition to frontal systems dysfunction. Present findings have diagnostic implications for accurate identification of individuals with MCI and add to the growing literature on IIV as an early indicator of cognitive decline in older adults.

  7. Performance-Centric Optimization for Racetrack Memory Based Register File on GPUs

    Institute of Scientific and Technical Information of China (English)

    Yun Liang; Shuo Wang

    2016-01-01

    The key to high performance for GPU architecture lies in its massive threading capability to drive a large number of cores and enable execution overlapping among threads. However, in reality, the number of threads that can simultaneously execute is often limited by the size of the register file on GPUs. The traditional SRAM-based register file takes up so large amount of chip area that it cannot scale to meet the increasing demand of GPU applications. Racetrack memory (RM) is a promising technology for designing large capacity register file on GPUs due to its high data storage density. However, without careful deployment of RM-based register file, the lengthy shift operations of RM may hurt the performance. In this paper, we explore RM for designing high-performance register file for GPU architecture. High storage density RM helps to improve the thread level parallelism (TLP), but if the bits of the registers are not aligned to the ports, shift operations are required to move the bits to the access ports before they are accessed, and thus the read/write operations are delayed. We develop an optimization framework for RM-based register file on GPUs, which employs three different optimization techniques at the application, compilation, and architecture level, respectively. More clearly, we optimize the TLP at the application level, design a register mapping algorithm at the compilation level, and design a preshifting mechanism at the architecture level. Collectively, these optimizations help to determine the TLP without causing cache and register file resource contention and reduce the shift operation overhead. Experimental results using a variety of representative workloads demonstrate that our optimization framework achieves up to 29%(21%on average) performance improvement.

  8. DRD2/ANKK1 polymorphism modulates the effect of ventral striatal activation on working memory performance.

    Science.gov (United States)

    Nymberg, Charlotte; Banaschewski, Tobias; Bokde, Arun L W; Büchel, Christian; Conrod, Patricia; Flor, Herta; Frouin, Vincent; Garavan, Hugh; Gowland, P; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Klingberg, Torkel

    2014-09-01

    Motivation is important for learning and cognition. Although dopaminergic (D2) transmission in the ventral striatum (VS) is associated with motivation, learning, and cognition are more strongly associated with function of the dorsal striatum, including activation in the caudate nucleus. A recent study found an interaction between intrinsic motivation and the DRD2/ANKK1 polymorphism (rs1800497), suggesting that A-carriers of rs1800497 are significantly more sensitive to motivation in order to improve during working memory (WM) training. Using data from the two large-scale imaging genetic data sets, IMAGEN (n=1080, age 13-15 years) and BrainChild (n∼300, age 6-27), we investigated whether rs1800497 is associated with WM. In the IMAGEN data set, we tested whether VS/caudate activation during reward anticipation was associated with WM performance and whether rs1800497 and VS/caudate activation interact to affect WM performance. We found that rs1800497 was associated with WM performance in IMAGEN and BrainChild. Higher VS and caudate activation during reward processing were significantly associated with higher WM performance (p<0.0001). An interaction was found between the DRD2/ANKK1 polymorphism rs1800497 and VS activation during reward anticipation on WM (p<0.01), such that carriers of the minor allele (A) showed a significant correlation between VS activation and WM, whereas the GG-homozygotes did not, suggesting that the effect of VS BOLD on WM is modified by inter-individual genetic differences related to D2 dopaminergic transmission.

  9. Intelligence moderates the benefits of strategy instructions on memory performance: An adult-lifespan examination

    NARCIS (Netherlands)

    Frankenmolen, N.L.; Altgassen, A.M.; Kessels, R.M.H.; Waal, M.M. de; Hindriksen, J.A.; Verhoeven, B.W.H.; Fasotti, L.; Scheres, A.P.J.; Kessels, R.P.C.; Oosterman, J.M.

    2017-01-01

    Whether older adults can compensate for their associative memory deficit by using memory strategies efficiently might depend on their general cognitive abilities. This study examined the moderating role of an IQ estimate on the beneficial effects of strategy instructions. A total of 142 participants

  10. Functional connectivity during light sleep is correlated with memory performance for face-location associations.

    NARCIS (Netherlands)

    Dongen, E.V. van; Takashima, A.; Barth, M.; Fernandez, G.S.E.

    2011-01-01

    The consolidation of declarative memories benefits from sleep. The neural mechanisms involved in sleep-dependent consolidation, however, are largely unknown. Here, we used a combination of functional magnetic resonance imaging, polysomnography and a face-location associative memory task to target ne

  11. Functional connectivity during light sleep is correlated with memory performance for face-location associations

    NARCIS (Netherlands)

    Dongen, E.V. van; Takashima, A.; Barth, M.; Fernandez, G.S.E.

    2011-01-01

    The consolidation of declarative memories benefits from sleep. The neural mechanisms involved in sleep-dependent consolidation, however, are largely unknown. Here, we used a combination of functional magnetic resonance imaging, polysomnography and a face–location associative memory task to target ne

  12. MulticoreBSP for C : A high-performance library for shared-memory parallel programming

    NARCIS (Netherlands)

    Yzelman, A. N.; Bisseling, R. H.; Roose, D.; Meerbergen, K.

    2014-01-01

    The bulk synchronous parallel (BSP) model, as well as parallel programming interfaces based on BSP, classically target distributed-memory parallel architectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java library specifically for shared-memory architectures. In the prese

  13. Verbal Working Memory Performance Correlates with Regional White Matter Structures in the Frontoparietal Regions

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-01-01

    Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…

  14. Memory Complaint Questionnaire performed poorly as screening tool : validation against psychometric tests and affective measures

    NARCIS (Netherlands)

    Reid, Meagan; Parkinson, Lynne; Gibson, Richard; Schofield, Peter; D'Este, Catherine; Attia, John; Tavener, Meredith; Byles, Julie

    2012-01-01

    Objective: This study examined the internal and external validity of the Memory Complaint Questionnaire (MAC-Q), a brief measure of subjective memory complaint in people with normal cognitive function. Study Design and Setting: The Study of Health Outcomes in Aircraft Maintenance Personnel was a ret

  15. Involuntary conscious me