WorldWideScience

Sample records for superior field emission

  1. Secondary nanotube growth on aligned carbon nanofibre arrays for superior field emission.

    Science.gov (United States)

    Watts, Paul C P; Lyth, Stephen M; Henley, Simon J; Silva, S Ravi P

    2008-04-01

    We report substantial improvement of the field emission properties from aligned carbon nanotubes grown on aligned carbon nanofibres by a two-stage plasma enhanced chemical vapour deposition (PECVD) process. The threshold field decreased from 15.0 to 3.6 V/microm after the secondary growth. The field enhancement factor increased from 240 to 1480. This technique allows for superior emission of electrons for carbon nanotube/nanofibre arrays grown directly on highly doped silicon for direct integration in large area displays.

  2. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  3. Field emission electron source

    Science.gov (United States)

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  4. Field emission electronics

    CERN Document Server

    Egorov, Nikolay

    2017-01-01

    This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.

  5. Field Emission Measurements from Niobium Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  6. Enhanced field emission of WS₂ nanotubes.

    Science.gov (United States)

    Viskadouros, G; Zak, A; Stylianakis, M; Kymakis, E; Tenne, R; Stratakis, E

    2014-06-25

    Results on electron field emission from free standing tungsten disulfide (WS2) nanotubes (NTs) are presented. Experiments show that the NTs protruding on top of microstructures are efficient cold emitters with turn-on fields as low as 1 V/μm and field enhancement of few thousands. Furthermore, the emission current shows remarkable stability over more than eighteen hours of continuous operation. Such performance and long-term stability of the WS2 cathodes is comparable to that reported for optimized carbon nanotube (CNTs) based emitters. Besides this, it is found that the WS2 cathodes prepared are less sensitive than CNTs in chemical reactive ambients. The high field enhancement and superior reliability achieved indicates a potential for vacuum nanoelectronics and flat panel display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spatiotemporal structure of visual receptive fields in macaque superior colliculus.

    Science.gov (United States)

    Churan, Jan; Guitton, Daniel; Pack, Christopher C

    2012-11-01

    Saccades are useful for directing the high-acuity fovea to visual targets that are of behavioral relevance. The selection of visual targets for eye movements involves the superior colliculus (SC), where many neurons respond to visual stimuli. Many of these neurons are also activated before and during saccades of specific directions and amplitudes. Although the role of the SC in controlling eye movements has been thoroughly examined, far less is known about the nature of the visual responses in this area. We have, therefore, recorded from neurons in the intermediate layers of the macaque SC, while using a sparse-noise mapping procedure to obtain a detailed characterization of the spatiotemporal structure of visual receptive fields. We find that SC responses to flashed visual stimuli start roughly 50 ms after the onset of the stimulus and last for on average ~70 ms. About 50% of these neurons are strongly suppressed by visual stimuli flashed at certain locations flanking the excitatory center, and the spatiotemporal pattern of suppression exerts a predictable influence on the timing of saccades. This suppression may, therefore, contribute to the filtering of distractor stimuli during target selection. We also find that saccades affect the processing of visual stimuli by SC neurons in a manner that is quite similar to the saccadic suppression and postsaccadic enhancement that has been observed in the cortex and in perception. However, in contrast to what has been observed in the cortex, decreased visual sensitivity was generally associated with increased firing rates, while increased sensitivity was associated with decreased firing rates. Overall, these results suggest that the processing of visual stimuli by SC receptive fields can influence oculomotor behavior and that oculomotor signals originating in the SC can shape perisaccadic visual perception.

  8. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Beittel, R. [DB Riley, Inc., Worcester, MA (United States); Ruth, L.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (copper oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.

  9. Gunn effect in field-emission phenomena

    Science.gov (United States)

    Litovchenko, V.; Evtukh, A.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2005-02-01

    The peculiarities of electron field emission from nanostructured GaN surface have been investigated. The current-voltage characteristics of emission current in Fowler-Nordheim plot show two parts with different slopes. There are emission current oscillations in the changing slope region. As an explanation for the experimental results a model based on the electron-emission analysis from lower (Γ) valley, upper (U) valley, and electron transition between valleys due to heating in electric field has been proposed. The electron affinities for the emission from Γ and U valleys have been determined. The decreased affinities from there valleys have been estimated for quantization in nanostructured GaN.

  10. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  11. Posterior Cortical Atrophy Presenting with Superior Arcuate Field Defect

    Directory of Open Access Journals (Sweden)

    Sue Ling Wan

    2015-01-01

    Full Text Available An 80-year-old female with reading difficulty presented with progressive arcuate field defect despite low intraocular pressure. Over a 5-year period, the field defect evolved into an incongruous homonymous hemianopia and the repeated neuroimaging revealed progressive posterior cortical atrophy. Further neuropsychiatric assessment demonstrated symptoms and signs consistent with Benson’s syndrome.

  12. Field-emission from quantum-dot-in-perovskite solids

    Science.gov (United States)

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  13. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  14. Methane emission from wetland rice fields.

    OpenAIRE

    H.A.C. Denier van der Gon

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes from wetland rice fields in the Philippines were monitored with a closed chamber technique in close cooperation with the International Rice Research Institute (IRRI). The field studies were complemented by laboratory and greenhouse ex...

  15. Field emission from zinc oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    陈亮; 张耿民; 王鸣生; 张琦锋

    2005-01-01

    An array of random-oriented zinc oxide nanowires (ZnO NWs) was fabricated on silicon substrate by thermal evaporation. After a thermal evaporation process, the silicon substrate was covered with a large number of uniformly distributed ZnO islands, from which non-aligned NWs with a diameter of several ten nanometres were grown. During this process, the temperature around the substrate was intentionally kept below 500℃ for practical consideration.From these ZnO NWs field emission was achieved. The turn-on field, under which a 10μA/cm2 current density was extracted, was measured to be 3.0V/μm. Also, the emission site distribution was investigated using the transparent anode technique. The field emission was observed to have occurred from the whole sample surface. These results suggest that ZnO NWs have great potential application in flat panel displays.

  16. The 29th International Field Emission Symposium

    Science.gov (United States)

    Feuchtwang, T. E.

    1983-04-01

    The symposium consisted of 14 sessions and two workshops. The topics indicated the maturing of field emission, the shifting emphasis from the physics of the emission process to the study of specific devices, and the use of the process for applications such as probing of surfaces, corrosion, and alloys. Relatively large blocks of time were devoted to discussing two topics currently exciting great interest in the field: liquid metal ion sources (three sessions and one workshop), and the pulsed laser atom probe (one session and one workshop). An annotated list of the papers presented at the symposium is given.

  17. Field emission from laterally aligned carbon nanotube flower arrays for low turn-on field emission

    Directory of Open Access Journals (Sweden)

    Hiroe Kimura

    2013-09-01

    Full Text Available Laterally aligned carbon nanotube (CNT arrays “blossomed” homogeneously in honeycomb holes of a metal grid substrate were explored as rational architecture for field emission. A low turn-on field (TOF of 1.09 V/μm for 10 μA/cm2 emission was achieved, which approaches or exceeds the lowest reported TOF values for field emitter arrays. We interpret that these lateral CNT arrays act as source of CNT “loop” arrays enabling a structure suited toward low TOF field emission.

  18. Methane emission from wetland rice fields.

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes fro

  19. Field scale measurements of NH3 emissions

    Science.gov (United States)

    Neftel, Albrecht; Ammann, Christof; Kuhn, Uwe; Sintermann, Jörg; Lehuger, Simon; Gärtner, Andrea; Hirschberger, Rainer

    2010-05-01

    The uncertainty in the ammonia emissions after application of organic manure contributes to a large extent to the overall uncertainties of the nitrogen budget of managed grassland systems (Ammann et al., 2009). Due to the sticky nature of the ammonia molecule and the variability of the emission fluxes the experimental determination is still a major challenge and a wide spread range of emission factors can be found in the literature. We report on two field experiments performed in August 2009 at the NitroEurope site in Oensingen, Switzerland. The ammonia emission flux after liquid manure application was investigated simultaneously by various micrometeorological methods: (1) a mass balance approach measuring the horizontal advection flux with open-path FTIR sensors (Gärtner et al., 2008), (2) aerodynamic gradient methods, and (3) eddy covariance measurements based on a novel fast ammonia analyser. Due to the sequential application of the manure and the fast decrease of the ammonia volatilisation, detailed footprint calculations (Neftel et al., 2008) and corrections with a high temporal resolution were crucial for obtaining representative emission fluxes. The plausibility of flux measurements has been evaluated with back trajectories simulations (WindTrax, Flesch et al., 2009). The results of all applied flux measurement methods confirmed the low emission levels found earlier by Spirig et al. (2009). A comparison of the field observations with results of process oriented models showed considerable differences in the temporal course of the ammonia emission indicating the need for improvements of the models. References: Ammann, C., Spirig, C., Leifeld, J. and Neftel, A.: Assessment of the nitrogen and carbon budget of two managed temperate grassland fields, Agric. Ecosyst. Environ., 133, 150-162, 2009. Flesch, T.K., Harper, L.A., Desjardins, R.L., Gao, Z., and Crenna, B.: Multi-Source Emission Determination Using an Inverse-Dispersion Technique. Boundary-Layer Meteorol

  20. Pulsed laser deposition of graphite in air and in vacuum for field emission studies

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Harshada; Singh, A.K.; Sinha, Sucharita, E-mail: ssinha@barc.gov.in

    2015-07-15

    A comparative study of pulsed laser deposition (PLD) based carbon films when deposited either, in atmospheric air, or under vacuum, has been performed. Micro-structural characterization of deposited films was carried out employing X-ray diffraction and Raman spectroscopic techniques. While, nanocrystalline graphite phase was observed in carbon films deposited in air, PLD films deposited under vacuum were largely amorphous in nature. Field emission (FE) properties of films deposited in air and under vacuum were investigated. Superior FE behavior characterized by a lower turn-on field (2.72 V/μm) and high field enhancement factor (∼2580) was observed for PLD films deposited in air. This improved field emission demonstrated by carbon films deposited via PLD in air can be attributed to presence of nanocrystalline graphite aggregates in such carbon films and local field enhancement near the sp{sup 2} sites. Our results therefore, establish PLD in air as a simple technique for deposition of carbon films having good field emission capability. - Highlights: • Pulsed laser deposition of graphite films, deposited in air and in vacuum. • Micro-structural, X-ray diffraction and micro-Raman spectroscopic characterization of deposited films. • Field emission properties of deposited films investigated. • Superior field emission behavior observed for films deposited in air than in vacuum. • Pulsed laser deposition in air leads to carbon films with excellent field emission capability.

  1. Preliminary Results of Field Emission Cathode Tests

    Science.gov (United States)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  2. Stable field emission from nanoporous silicon carbide.

    Science.gov (United States)

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  3. Core-Shell Structure of a Silicon Nanorod/Carbon Nanotube Field Emission Cathode

    Directory of Open Access Journals (Sweden)

    Bohr-Ran Huang

    2012-01-01

    Full Text Available A novel core-shell structure of silicon nanorods/carbon nanotubes (SiNRs/CNTs is developed for use in field emission cathodes. The CNTs were synthesized on SiNRs, using the Ag-assisted electroless etching technique to form the SiNRs/CNT core-shell structure. This resulting SiNRs/CNT field emission cathode demonstrated improved field emission properties including a lower turn-on electric field on (1.3 V/μm, 1 μA/cm2, a lower threshold electric field th (1.8 V/μm, 1 mA/cm2, and a higher enhancement factor (2347. These superior properties indicate that this core-shell structure of SiNRs/CNTs has good potential in field emission cathode applications.

  4. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  5. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  6. Integrated field emission array for ion desorption

    Science.gov (United States)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  7. Electron Field Emission from Nanostructured Carbon Materials

    Science.gov (United States)

    Gupta, Sanju

    2005-03-01

    Fabricating small structures has almost become fashionable and the rationale is that reducing one or more dimensions below some critical length changes the systems' physical properties drastically, where nanocrystalline diamond (n-D) and carbon nanotubes (CNTs) in the class of advanced carbon materials serve model examples. Emission of electrons at room temperature - cold electron emitters - are of vital importance for a variety of vacuum microelectronic devices - electron microscopes, photo multipliers, X-ray generators, lamps, and flat panel displays and microwave cathodes. Electron emitters may lead to otherwise difficult to obtain advantages in performance and/or design. This is the driving force to investigate the carbon-related materials as cold cathodes. In this talk, the performance of various forms of carbon in thin film form including diamond, n-D, and vertically aligned CNTs as cold cathodes for their potential use in field emission displays (FEDs) in terms of I-V characteristics and corresponding spatial imaging will be presented. Physics based models such as, NEA, surface modification, geometric enhancement, and microstructure alteration due to particle bombardment, and doping, will be described to support the experimental observations of electron field enhancement (low turn-on voltage, high current and emission site density) and its reliability from the abovementioned carbon-related materials. Other vacuum device applications such as thermionic power generators will be mentioned briefly.

  8. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  9. Mechanism of field electron emission from carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bing; DENG Shao-zhi; XU Ning-sheng

    2006-01-01

    .Although MWCNTs are more common in present FE applications,the single-walled carbon nanotubes (SWCNTs) are more interesting in the theoretical point of view since the SWCNTs have unique atomic structures and electronic properties.It would be very interesting if people can predict the behavior of the well-defined SWCNTs quantitatively (for MWCNTs,this is currently impossible).The FE as a tunneling process is sensitive to the apex-vacuum potential barrier of CNTs.On the other hand,the barrier could be significantly altered by the redistribution of excessive charges in the micrometer long SWCNTs,which have only one layer of carbon atoms.Therefore,the conventional theories based upon the hypothesis of fixed potential (work function)would not be valid in this quasi-one-dimensional system.In this review,we shall focus on the mechanism that would be responsible for the superior field emission characteristics of CNTs.We shall introduce a multi-scale simulation algorithm that deals with the entire carbon nanotube as well as the substrate as a whole.The simulation for (5,5) capped SWCNTs with lengths in the order of micrometers is given as an example.The results show that the field dependence of the apex-vacuum electron potential barrier of a long carbon nanotube is a more pronounced effect,besides the local field enhancement phenomenon.

  10. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays

    Science.gov (United States)

    Li, Yunhan; Sun, Yonghai; Jaffray, David A.; Yeow, John T. W.

    2017-04-01

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  11. Field Emission from Carbon Nanotube/Tin Composite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bo; ZHANG Ya-fei

    2009-01-01

    Powder metallurgy was used to fabricate carbon nanotube (CNT) field emission cathodes. CNTs and tin (Sn) powder were blended, compacted and sintered. After polishing and etching, CNTs were exposed and protruded from the metal surface. CNTs were embedded into the Sn matrix, which acted as stable field emitters. The J-E curves show excellent field emission properties, such as low turn-on field of 2.8 V/μm, high emission current density and good current stability.

  12. Geothermal emissions data base, Wairakei geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A database subset on the gaseous emissions from the Wairakei geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1965 to 1971, and new additions will be appended periodically to the file. The data is accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film or magnetic tape.

  13. Scanning Anode Field Emission Characterisation of Carbon Nanotube emitter arrays

    NARCIS (Netherlands)

    Berhanu, S.; Gröning, O.; Chen, Z.; Merikhi, J.; Bachmann, P.K.

    2011-01-01

    Scanning anode field emission microscopy (SAFEM) was used to characterise carbon nanotube (CNT) emitter arrays produced within Philips CediX-Technotubes' activities. Four different samples were investigated and compared. The field enhancement distributions were determined and the local field

  14. Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

    Directory of Open Access Journals (Sweden)

    Guohai Chen

    2016-10-01

    Full Text Available A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/um at an emission current of 1 uA, high emission current of 0.2 mA at an applied voltage of 700 V, and long-time emission stability for over 20 h without any significant current decay under an initial emission current of about 0.10 mA. The lateral emitter also demonstrated a uniform line emission pattern. It is suggested that the field emission occurs from the outmost MWCNTs which are protruding out from the yarn surface.

  15. Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

    Science.gov (United States)

    Chen, Guohai; Song, Yenan

    2016-10-01

    A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/um at an emission current of 1 uA, high emission current of 0.2 mA at an applied voltage of 700 V, and long-time emission stability for over 20 h without any significant current decay under an initial emission current of about 0.10 mA. The lateral emitter also demonstrated a uniform line emission pattern. It is suggested that the field emission occurs from the outmost MWCNTs which are protruding out from the yarn surface.

  16. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Science.gov (United States)

    Xu, Jinzhuo; Xu, Peng; Ou-Yang, Wei; Chen, Xiaohong; Guo, Pingsheng; Li, Jun; Piao, Xianqing; Wang, Miao; Sun, Zhuo

    2015-02-01

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm-1 and threshold field of 0.657 V μm-1 corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  17. Improved field emission from indium decorated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, M.; Ghosh, S., E-mail: santanu1@physics.iitd.ernet.in; Biswas, P.; Kumar, S.; Srivastava, P.

    2016-10-15

    Graphical abstract: Improved field emission properties have been achieved for Indium (In) decorated MWCNTs and are shown using the schematic of field emission set up with In/CNT cathode, and a plot of J-E characteristics for pristine and In decorated CNTs. - Highlights: • Field emission (FE) properties have been studied for the first time from Indium (In) decorated MWCNT films. • Observed increased density of states near the Fermi level for In decorated films. • Superior field emission properties have been achieved for In decorated CNT films. - Abstract: Multi-walled carbon nanotube (MWCNT) films were grown using thermal chemical vapor deposition (T-CVD) process and were decorated with indium metal particles by thermal evaporation technique. The In metal particles are found to get oxidized. The In decorated films show 250% enhancement in the FE current density, lower turn-on and threshold fields, and better temporal stability as compared to their undecorated counterpart. This improvement in field emission properties is primarily attributed to increased density of states near the Fermi level. The presence of O 2p states along with a small contribution from In 5s states results in the enhancement of density of states in the vicinity of the Fermi level.

  18. Preparation of Nano-Graphite Films and Field Emission Properties

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-Mei; ZHANG Bing-Lin; YAO Ning; LU Zhan-Ling; ZHANG Xin-Yue

    2004-01-01

    @@ Nano-graphite films have been deposited on n-Si substrates by microwave plasma chemical vapour deposition. The surface morphology and microstructure of the films were tested by scanning electron microscopy, x-ray diffraction and Raman spectroscopy. In the field emission measurement, a turn-on field of 0. 5 V/μm and a high emission-site density of 105/cm2 on a tested emission area of (34 × 35 mm2) have been obtained.

  19. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  20. Analytical optimization for field emission of carbon nanotube array

    Institute of Scientific and Technical Information of China (English)

    WANG XinQing; LI Liang; CHEN Min; JIN HongXiao; JIN DingFeng; PENG Min; GE HongLiang

    2009-01-01

    To optimize field emission (FE) property of carbon nanotube (CNT) array on a planar cathode surface,the Fowler-Nordheim formula has been used to discuss the maximum of the emission current density with the floating sphere model in this paper. The emission current density is dominating as the ane-lytical Fowler-Nordheim function of the intertube distance, and the maximum of the emission current density is deduced and discussed. The results indicate that the intertube distance in CNT array criti-cally affects the field enhancement factor and the emission current density, whose maximum occurs at the intertube distance approximating a tenth of the tube height. Considering the emission current den-sity and the field enhancement factor, the FE can be optimized analytically when the intertube distance is about a tenth of the tube height.

  1. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    Science.gov (United States)

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties.

  2. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts.

    Science.gov (United States)

    Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas

    2015-12-01

    We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure.

  3. Enhanced field emission of plasma treated multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Ruchita T.; More, Mahendra A. [Department of Physics, Center for Advanced Studies in Material Science and Condensed Matter Physics, S P Pune University, Pune 411007 (India); Gelamo, Rogerio V. [Instituto de Ciências Tecnológicas e Exatas, UFTM, Uberaba, Minas Gerais 38025-180 (Brazil); Late, Dattatray J., E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra (India); Rout, Chandra Sekhar, E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, Odisha (India)

    2015-09-21

    Electron emission properties of multilayer graphene (MLG) prepared by a facile exfoliation technique have been studied. Effect of CO{sub 2} Ar, N{sub 2}, plasma treatment was studied using Raman spectroscopy and investigated for field emission based application. The CO{sub 2} plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm{sup 2} at an applied field of 0.35 V/μm. Further the plasma treated MLG exhibits excellent current stability at a lower and higher emission current value.

  4. Computer simulation of the emission process of some field emission alloy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, S.; Vichev, R.; Drandarov, N. [Bulgarian Academy of Sciences, Sofia (Bulgaria)

    1996-10-01

    The ion emission process from InGa, AuBe and AuSi field emission alloy ion sources (LAIS) is simulated. Field strength is calculated using the SOC model. Paraxial source size, beam spot size, energy and angular distributions are estimated. The effects on the emission characteristics of Coulomb interaction between ions are investigated, and the strong influences of ion mass and charge are also shown. (Author).

  5. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  6. Characterizing ammonia emissions from swine farms in eastern North Carolina: part 2--potential environmentally superior technologies for waste treatment.

    Science.gov (United States)

    Aneja, Viney P; Arya, S Pal; Rumsey, Ian C; Kim, D-S; Bajwa, K; Arkinson, H L; Semunegus, H; Dickey, D A; Stefanski, L A; Todd, L; Mottus, K; Robarge, W P; Williams, C M

    2008-09-01

    The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore

  7. Field emission from a selected multiwall carbon nanotube.

    Science.gov (United States)

    Passacantando, M; Bussolotti, F; Santucci, S; Di Bartolomeo, A; Giubileo, F; Iemmo, L; Cucolo, A M

    2008-10-01

    The electron field emission characteristics of individual multiwalled carbon nanotubes were investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental set-up ensures a precise evaluation of the geometric parameters (multiwalled carbon nanotube length and diameter and anode-cathode separation) of the field emission system. For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour was obtained, with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of ∼30 V µm(-1) and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 µm were evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities was extensively investigated.

  8. Improvement of carbon nanotube field emission properties by ultrasonic nanowelding

    Science.gov (United States)

    Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei

    2008-12-01

    Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.

  9. Performance of field emission cathodes prepared from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: cxzhai@nwu.edu.cn; Zhang, Z.Y.; Zhao, L.L.; Wang, X.W.; Zhao, W.

    2015-01-01

    Nano-diamond field emission cathodes were fabricated using a two-step technique. A mixture of nano-diamond and nano-Ti powders was coated onto a Ti substrate using a spin-coating process, followed by the application of an annealing treatment to form a TiC phase. The effects of the annealing temperature and the number of coating layers on the electron field emission properties of the as-fabricated field emission cathodes were investigated. The samples fabricated under different conditions were analyzed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. The differences in terms of the electron field emission properties were explained by a TiC network model. A higher temperature is necessary to form a continuous TiC network when a thicker coating is used on the field emission cathode. In contrast, for the thinner coating, a relatively low temperature is sufficient to form such a TiC network. Only a continuous TiC network coating can facilitate the passage of electrons through the coating and lead to emission. - Highlights: • The field emission properties of nano-diamond powder were investigated. • Nano-diamond powder was deposited by spin coating on titanium substrate. • Nano-titanium powder was mixed into the coating. • A titanium carbide network model was proposed to explain the samples' properties.

  10. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  11. Field emission properties of the graphenated carbon nanotube electrode

    Science.gov (United States)

    Zanin, H.; Ceragioli, H. J.; Peterlevitz, A. C.; Baranauskas, Vitor; Marciano, F. R.; Lobo, A. O.

    2015-01-01

    Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  12. On Super-Planckian thermal emission in far field regime

    CERN Document Server

    Biehs, Svend-Age

    2016-01-01

    We study, in the framework of the Landauer theory, the thermal emission in far-field regime, of arbitrary indefinite planar media and finite size systems. We prove that the flux radiated by the former is bounded by the blackbody emission while, for the second, there is in principle, no upper limit demonstrating so the possibility for a super-Planckian thermal emission with finite size systems.

  13. Adult plasticity of spatiotemporal receptive fields of multisensory superior colliculus neurons following early visual deprivation

    Science.gov (United States)

    Royal, David W.; Krueger, Juliane; Fister, Matthew C.; Wallace, Mark T.

    2013-01-01

    Purpose Previous work has established that the integrative capacity of multisensory neurons in the superior colliculus (SC) matures over a protracted period of postnatal life (Wallace and Stein, 1997), and that the development of normal patterns of multisensory integration depends critically on early sensory experience (Wallace et al., 2004). Although these studies demonstrated the importance of early sensory experience in the creation of mature multisensory circuits, it remains unknown whether the reestablishment of sensory experience in adulthood can reverse these effects and restore integrative capacity. Methods The current study tested this hypothesis in cats that were reared in absolute darkness until adulthood and then returned to a normal housing environment for an equivalent period of time. Single unit extracellular recordings targeted multisensory neurons in the deep layers of the SC, and analyses were focused on both conventional measures of multisensory integration and on more recently developed methods designed to characterize spatiotemporal receptive fields (STRF). Results Analysis of the STRF structure and integrative capacity of multisensory SC neurons revealed significant modifications in the temporal response dynamics of multisensory responses (e.g., discharge durations, peak firing rates, and mean firing rates), as well as significant changes in rates of spontaneous activation and degrees of multisensory integration. Conclusions These results emphasize the importance of early sensory experience in the establishment of normal multisensory processing architecture and highlight the limited plastic potential of adult multisensory circuits. PMID:20404413

  14. A model of the medial superior olive explains spatiotemporal features of local field potentials.

    Science.gov (United States)

    Goldwyn, Joshua H; Mc Laughlin, Myles; Verschooten, Eric; Joris, Philip X; Rinzel, John

    2014-08-27

    Local field potentials are important indicators of in vivo neural activity. Sustained, phase-locked, sound-evoked extracellular fields in the mammalian auditory brainstem, known as the auditory neurophonic, reflect the activity of neurons in the medial superior olive (MSO). We develop a biophysically based model of the neurophonic that accounts for features of in vivo extracellular recordings in the cat auditory brainstem. By making plausible idealizations regarding the spatial symmetry of MSO neurons and the temporal synchrony of their afferent inputs, we reduce the challenging problem of computing extracellular potentials in a 3D volume conductor to a one-dimensional problem. We find that postsynaptic currents in bipolar MSO neuron models generate extracellular voltage responses that strikingly resemble in vivo recordings. Simulations reproduce distinctive spatiotemporal features of the in vivo neurophonic response to monaural pure tones: large oscillations (hundreds of microvolts to millivolts), broad spatial reach (millimeter scale), and a dipole-like spatial profile. We also explain how somatic inhibition and the relative timing of bilateral excitation may shape the spatial profile of the neurophonic. We observe in simulations, and find supporting evidence in in vivo data, that coincident excitatory inputs on both dendrites lead to a drastically reduced spatial reach of the neurophonic. This outcome surprises because coincident inputs are thought to evoke maximal firing rates in MSO neurons, and it reconciles previously puzzling evoked potential results in humans and animals. The success of our model, which has no axon or spike-generating sodium currents, suggests that MSO spikes do not contribute appreciably to the neurophonic.

  15. Can dust emission mechanisms be determined from field measurements?

    Science.gov (United States)

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  16. Positional control of plasmonic fields and electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R., E-mail: rkoe@pdx.edu [Department of Physics, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201 (United States)

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  17. Field emission study of CNTs on metal tips

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The field emission characteristics of multiwalled carbon nanotubes grown on metal tips are studied at various temperatures.It is found that emission current at a given applied electric field increased with the temperature,and the stability of the current did not change.The dependence upon temperature varies quite differently with the metal substrates.This may result from the asymmetry of the CNTs and the interface effect between CNT and underlay.

  18. Field emission studies of novel ZnO nanostructures in high and low field regions

    Energy Technology Data Exchange (ETDEWEB)

    Ramgir, Niranjan S [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Late, Dattatray J [Center for Advanced Studies in Material Science and Solid State Physics, Department of Physics, University of Pune, Pune-411007 (India); Bhise, Ashok B [Center for Advanced Studies in Material Science and Solid State Physics, Department of Physics, University of Pune, Pune-411007 (India); Mulla, Imtiaz S [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); More, Mahendra A [Center for Advanced Studies in Material Science and Solid State Physics, Department of Physics, University of Pune, Pune-411007 (India); Joag, Dilip S [Center for Advanced Studies in Material Science and Solid State Physics, Department of Physics, University of Pune, Pune-411007 (India); Pillai, Vijayamohanan K [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008 (India)

    2006-06-14

    A study of the field emission characteristics of novel structures of ZnO, namely marigolds, multipods and microbelts, has been carried out in both the close proximity configuration and the conventional field emission microscope. The use of a conventional field emission microscope overcomes the drawback of arc formation at high field values. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of semiconductors has been observed and explained on the basis of electron emission from both the conduction and the valence bands. The current stability exhibited by these structures is also promising for future device applications.

  19. Field emission studies of novel ZnO nanostructures in high and low field regions

    Science.gov (United States)

    Ramgir, Niranjan S.; Late, Dattatray J.; Bhise, Ashok B.; Mulla, Imtiaz S.; More, Mahendra A.; Joag, Dilip S.; Pillai, Vijayamohanan K.

    2006-06-01

    A study of the field emission characteristics of novel structures of ZnO, namely marigolds, multipods and microbelts, has been carried out in both the close proximity configuration and the conventional field emission microscope. The use of a conventional field emission microscope overcomes the drawback of arc formation at high field values. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of semiconductors has been observed and explained on the basis of electron emission from both the conduction and the valence bands. The current stability exhibited by these structures is also promising for future device applications.

  20. Light emission from carbon nanofilaments/nanotubes at field electron emission

    Science.gov (United States)

    Ormont, A. B.; Izrael'yants, K. R.; Musatov, A. L.

    2016-01-01

    The spatial distribution of light emission has been studied in planar field electron emitters with long and sparse carbon nanofilaments/nanotubes. The photographic recording of light emission of the emitting nanofilaments/nanotubes is shown to be efficient to determine the position of individual nanofilaments/ nanotubes in different emitter surface areas, as well as to highlight the nanofilaments/nanotube agglomerate distribution over the emitter surface, which mainly contributes to its emission.

  1. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  2. Locally Resolved Electron Emission Area and Unified View of Field Emission in Nanodiamond Films

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, Oksana; Baturin, Stanislav S.; Kovi, Kiran Kumar; Sumant, Anirudha V.; Baryshev, Sergey V.

    2017-09-01

    One of the common problems in case of field emission from polycrystalline diamond films, which typically have uniform surface morphology, is uncertainty in determining exact location of electron emission sites across the surface. Although several studies have suggested that grain boundaries are the main electron emission source, it is not particularly clear what makes some sites emit more than the others. It is also practically unclear how one could quantify the actual electron emission area and therefore field emission current per unit area. In this paper we study the effect of actual, locally resolved, field emission (FE) area on electron emission characteristics of uniform planar highly conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. It was routinely found that field emission from as-grown planar (N)UNCD films is always confined to a counted number of discrete emitting centers across the surface which varied in size and electron emissivity. It was established that the actual FE area critically depends on the applied electric field, as well as that the actual FE area and the overall electron emissivity improve with sp2 fraction present in the film irrespectively of the original substrate roughness and morphology. To quantify the actual FE area and its dependence on the applied electric field, imaging experiments were carried out in a vacuum system in a parallel-plate configuration with a specialty anode phosphor screen. Electron emission micrographs were taken concurrently with I-V characteristics measurements. In addition, a novel automated image processing algorithm was developed to process extensive imaging datasets and calculate emission area per image. By doing so, it was determined that the emitting area was always significantly smaller than the FE cathode surface area. Namely, the actual FE area would change from 5×10-3 % to 1.5 % of the total cathode area with the applied electric field increased. Finally and most

  3. Ab initio dynamics of field emission from diamond surfaces

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2013-09-01

    We propose a new interpretation of the efficiency of field emission, which is understood based on the concept of electron affinity. We use time-dependent density functional theory to simulate field emission from clean and chemically modified diamond (001) surfaces under applied electric fields. We find that the emission efficiency is governed by the self-consistent electrostatic potential (VSCF) at the surface rather than by the sign of the electron affinity, which is determined by VSCF in the vacuum region far from the surface. We resolve the paradox that the emission efficiency of a clean (001) surface with positive electron affinity is even higher than that of a H/OH-co-terminated (001) surface with negative electron affinity.

  4. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  5. Theoretical Study on Field Emission Patterns of the Nanotube

    Institute of Scientific and Technical Information of China (English)

    HU Chen-guo; WANG Wan-lu; LIAO Ke-jun; WANG Hao; XIAO Jin-long

    2003-01-01

    The distributions of the electrical potential and field have been given from Maxwell's field equations.The results show that there exists very strong electric field intensity on the tip of the nanotube,and the intensity decays rapidly as the distance increases away from the tip. The strong electric field intensity on the tip is consistent with the low threshold voltage under the electric field emission from a nanotube. The calculation also revealed that the higher the aspect ratio is,the stronger the electric field intensity on the tip of the nanotube will be,if the distance and voltage between the cathode and the anode do not change, which predicts the lower threshold voltage under the field emission.

  6. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  7. Miniature field emission light sources for bio-chips

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Bartlomiej; Gorecka-Drzazga, Anna; Dziuban, Jan A [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)], E-mail: bartlomiej.cichy@pwr.wroc.pl

    2009-01-01

    A concept based on preparation of miniature field emission light sources (FELS) for integration with bio-chips is presented. Glass and silicon-glass micro-fluidic systems (biochips) with spectrofluorometric detection are designated for this solution. Planar, miniature silicon-glass field emission light sources were designed and fabricated for this conception. Carbon nanotubes (CNTs) have been used as a low-voltage electron emissive layer. Nanocrystalline yttria matrices doped with rare earth (Re) ions (Re: Eu{sup 3+}, Tb{sup 3+}) have been synthesized and utilized as phosphor layers. Light emission spectral characteristics of fabricated sources allow to couple them with typical fluorescent markers as e.g. Alexa, Fluorescein or TO-PRO, used on the wide scale in biochemical researches. Fabricated FELSs are characterized by the intensive and homogenous light emission with well defined sharp emission lines. The efficient and stable field emission from carbon nanotubes has also been noticed. Fabricated FELS are technologically compatible with highly developing micromachined fluidic systems and are able to direct on-chip integration with these microsystems.

  8. Synthesis, characterization and field emission properties of nanotubes and nanowires

    Science.gov (United States)

    Dong, Lifeng

    2005-11-01

    In this study, we investigated several novel methods to synthesize carbon nanotubes and nanowires of various compositions with controlled properties, utilized electron microscopy and microanalysis techniques to study their growth mechanisms and effects of growth parameters on their internal structures and morphologies, and set up a field emission microscope and a field emission probe system to study field emission properties of single nanotube/nanowires and thin films of nanostructures. The introduction of H2 during catalyst activation and nanotube growth periods thermodynamically and kinetically facilitates the formation of high quality nanotubes. With the inclusion of H2, the nanotube diameter decreased from 300 nm to 15 nm and growth rate increased from 78 nm/s to 145 nm/s. The growth location and orientation of carbon nanotubes to substrates can be controlled by the position and density of catalysts, respectively. Focused Ion Beam (FIB) techniques were utilized to confine catalyst locations and to directly deposit patterned catalyst precursors. Nanotube internal structures including graphitization and number of graphite layers can be tailored using different hydrocarbon gases (CH4 or C2H2) as carbon sources or by varying catalyst elements (Fe, Ni, or Co). Besides effects of nanoscale radius and high aspect ratio, the internal structures of carbon nanotubes greatly affects their field mission properties including turn-on field, threshold field and enhancement factor. Carbon nanotubes from Fe or Co demonstrate better field emission properties than those from Ni. At high electric fields, nanotube emission deviates from the Fowler-Nordheim (F-N) theory due to space charge and field emission-induced temperature effects. Also, an abnormal noise power spectral density (PSD) peak was observed at the space charge regime and PSD decreases with the increase of emission current due to Joule self-heating. In order to investigate field emission properties of nanostructures

  9. Field emission from Si tips coated with nanocrystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    WANG Wanlu; LIAO Kejun; LIU Gaobin; MA Yong

    2003-01-01

    The electron field emission from Si tips coated with nanocrystalline diamond films was investigated. The Si tips were formed by plasma etching, and nano-diamond films were deposited on the Si tips by hot filament chemical vapor deposition. The radius of curvature for the Si tips was averagely about 50 nm. The microstructure of the diamond films was examined by scanning electron microscopy and Raman spectroscopy. The field emission properties of the samples were measured in an ionpumped vacuum chamber at a pressure of 10-6 Pa. The experimental results showed that the nanostructured films on Si tips exhibited a lower value of the turn-on electric field than those on flat Si substrates. It was found that the tip shape and nondiamond phase in the films had a significant effect on the field emission properties of the films.

  10. A knife-edge array field emission cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo [Texas A & M Univ., College Station, TX (United States)

    1994-08-01

    many cathode applications require a new type of cathode that is able to produce short pulsed electron beams at high emission current. Gated field emitter arrays of micrometer size are recognized as candidates to meet this need and have become the research focus of vacuum microelectronics. Existing fabrication methods produce emitters that are limited either in frequency response or in current emission. One reason is that the structure of these emitters are not sufficiently optimized. In this study, the author investigated the factors that affect the performance of field emitters. An optimum emitter structure, the knife-edge field emitter array, was developed from the analysis. Large field enhancement factor, large effective emission area, and small emitter capacitance are the advantages of the structure. The author next explored various options of fabricating the knife-edge emitter structure. He proposed a unique thin film process procedure and developed the fabrication techniques to build the emitters on (110) silicon wafers. Data from the initial cathode tests showed very low onset voltages and Fowler-Nordheim type emission. Emission simulation based on the fabricated emitter structure indicated that the knife-edge emitter arrays have the potential to produce high performance in modulation frequency and current emission. Several fabrication issues that await further development are discussed and possible solutions are suggested.

  11. Emittance of a Field Emission Electron Source

    Science.gov (United States)

    2010-01-05

    approximately correct. The gate and switching time A thermionic source is run space-charge limited for which the current varies as a power 3 /2 of the grid...and millimeter-wave power amplifiers that use thermionic cathodes, requiring the sources to produce a current density characteristic of that in the...Rb radius, magnetic field strength B, accelerating voltage Vb, frequency f inversely related to Rb, harmonic number n, and emit- tance via 1− J

  12. Pulsed photoelectric field emission from needle cathodes

    CERN Document Server

    Hernandez-Garcia, C

    2002-01-01

    Experiments have been carried out to measure the current emitted by tungsten needles with 1-mu m tip radius operated up to 50 kV. This corresponds to electric fields in the order of 10 sup 9 to 10 sup 1 sup 0 V/m. The needles were illuminated with 10-ns laser pulses at 532, 355 and 266 nm. The laser intensity was varied from 10 sup 1 sup 0 to 10 sup 1 sup 2 W/m sup 2 , limited by damage to the needle tip. The observed quantum efficiency depends on the wavelength and the electric field, approaching unity at the highest electric fields when illuminated at 266 nm. Peak currents up to 100 mA were observed in nanosecond pulses, corresponding to an estimated brightness of 10 sup 1 sup 6 A/m sup 2 sr. Since the current is controlled by the laser intensity, with only a weak voltage dependence, these cathodes can be used for infrared and ultraviolet tabletop free-electron lasers and other applications that demand short electron-beam pulses with high brightness.

  13. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    Science.gov (United States)

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  14. Influence of local field on spontaneous light emission by nanoparticles

    DEFF Research Database (Denmark)

    Keller, Ole; Lozovski, V.; Iezhokin, I.

    2009-01-01

    moment of transition that takes local-field effects into account. The effective dipole moment depends on the particle shape and size. Therefore, dipole radiation depends on those parameters too. The direction patterns of light emission by cubic particles have been calculated. The particles have been......A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point...... of the system. The solution of the equations brings about relationships between the local field at an arbitrary point in the system and the external long-wave field via the local-field factor. The latter connects the initial moment of optical dipole transition per system volume unit and the effective dipole...

  15. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  16. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  17. Spontaneous radiation emission from short, high field strength magnetic devices

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2006-01-01

    Full Text Available Since the earliest papers on undulators were published, it has been known how to calculate the spontaneous emission spectrum from short undulators when the magnetic field strength parameter is small compared to unity, or in “single” frequency sinusoidal undulators where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulator. Fewer general results have been obtained in the case where the magnetic device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field magnetic devices. It is used to calculate the emission from some designs of recent interest.

  18. Fabrication of carbon nanotubes field emission cathode by composite plating.

    Science.gov (United States)

    Wang, Fang-Hsing; Lin, Tzu-Ching; Tzeng, Shien-Der

    2010-07-01

    Carbon nanotubes (CNTs) have high aspect ratio and have great potential to be applied as the field emission cathode because of its large field enhancement factor. In this work, a high performance carbon nanotube field emission cathode (CNTFC) was fabricated by using a composite plating method. The CNTs were purified by acid solutions and then dispersed in electrobath with nickel ions at temperatures of 60, 70, or 80 degrees C for the electroless plating process on glass substrate. The resulting CNT-Ni composite film has strong adhesion on the glass substrate. The degree of graphitization and the microstructure of the CNTFCs were studied by Raman spectroscopy and scanning electron microscopy. The field emission properties of the CNTFCs show a low turn-on electric field E(on) of about 1.2 V/microm, and a low threshold electric field E(th) of about 1.9 V/microm. Such a composite plating method could be applied to the fabrication of large area CNT field-emission displays.

  19. Re-grown aligned carbon nanotubes with improved field emission.

    Science.gov (United States)

    Lim, Xiaodai; Zhu, Yanwu; Varghese, Binni; Gao, Xingyu; Wee, Andrew Thye Shen; Sow, Chorng-Haur

    2012-01-01

    In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.

  20. Field-emission stability of hydrothermally synthesized aluminum-doped zinc oxide nanostructures.

    Science.gov (United States)

    Hsieh, Tsang-Yen; Wang, Jyh-Liang; Yang, Po-Yu; Hwang, Chuan-Chou; Shye, Der-Chi

    2012-07-01

    The Al-doped ZnO (AZO) nanostructures field-emission arrays (FEAs) were hydrothermally synthesized on AZO/glass substrate. The samples with Al-dosage of 3 at.% show the morphology as nanowires vertically grown on the substrates and a structure of c-axis elongated single-crystalline wurtzite. The good field-emission (i.e., the large anode current and low fluctuation of 15.9%) can be found by AZO nanostructure FEAs with well-designed Al-dosage (i.e., 3 at.%) because of the vertical nanowires with the less structural defects and superior crystallinity. Moreover, the Full width at half maximum (FWHM) of near band-edge emission (NBE) decreased as the increase of annealing temperature, representing the compensated structural defects during oxygen ambient annealing. After the oxygen annealing at 500 degrees C, the hydrothermal AZO nanostructure FEAs revealed the excellent electrical characteristics (i.e., the larger anode current and uniform distribution of induced fluorescence) and enhanced field-emission stability (i.e., the lowest current fluctuation of 5.97%).

  1. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    Science.gov (United States)

    2012-03-22

    thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT...In this thesis, silicon carbide samples are patterned to create elevated emission sites in an attempt to minimize the field emission screening effect...Patterning is accomplished by using standard photolithography methods to implement a masking nickel layer on the silicon carbide . Pillars are created

  2. Field emission from non-uniform carbon nanotube arrays.

    Science.gov (United States)

    Dall'agnol, Fernando F; den Engelsen, Daniel

    2013-07-10

    Regular arrays of carbon nanotubes (CNTs) are frequently used in studies on field emission. However, non-uniformities are always present like dispersions in height, radius, and position. In this report, we describe the effect of these non-uniformities in the overall emission current by simulation. We show that non-uniform arrays can be modeled as a perfect array multiplied by a factor that is a function of the CNTs spacing.

  3. Emissions of tar-containing binders: field studies.

    Science.gov (United States)

    Hugener, Martin; Emmenegger, Lukas; Mattrel, Peter

    2009-01-01

    This study describes the measurement of emissions during field construction of asphalt pavements using tar-containing recycled asphalt pavement (RAP), which is known to release harmful substances, such as polycyclic aromatic hydrocarbons (PAH). At three different test sites, the main emission sources were identified and the total emission rates of fumes and PAHs of the paving process were determined. For this purpose, the paver was temporarily enclosed. While the screed area was the main emission source, the hopper area and freshly compacted pavement were also significant. In comparison with previous laboratory tests, the binder composition and the resulting emissions were comparable, except for Naphthalene. Benzo(a)pyrene (BaP) as a representative for carcinogenic PAHs was identified as a good leading compound, correlating well with the toxicity weighted sum of PAHs. In contrast, the unweighted, mass related sum of all EPA PAHs does not seem to be a good parameter to assess workplace concentrations because emissions by mass are dominated by the less hazardous 2-, 3- and 4-ring PAHs. Workplace concentrations for bitumen fumes and PAHs were below limit values in all three field studies. However, the margin was not large and the field tests were done under favourable meteorological conditions. Therefore, we suggest maintaining the current Swiss limit of 5000 mg EPA-PAH per kg binder in the RAP-containing hot mix.

  4. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    Science.gov (United States)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  5. Field emission study of MWCNT/conducting polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: maalvee@yahoo.co.in [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Al-Ghamdi, A.A. [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Husain, M. [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2014-12-01

    MWCNTs/Polypyrrole nanocomposites were synthesized by solution mixing method. These synthesized nanocomposites were studied carefully by Raman Spectroscopy and Scanning Electron Microscopy measurements. The field emission study of MWCNTs/Polypyrrole nanocomposites were performed in diode arrangement under vacuum of the order of 10{sup −5} Torr. The emission current under exploration depends on applied voltage. The prepared nanocomposites depict low turn-on field at 1.4 V/μm that reaches to a maximum emission current density 0.020 mA/cm{sup 2} at 2.4 V/µm, which is calculated from the graph of current density (J) against the applied electric field (E) and from Fowler–Nordheim (F–N) plot.

  6. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    Directory of Open Access Journals (Sweden)

    Yuning Sun

    2014-07-01

    Full Text Available The carbon nanotube (CNT field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm2. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  7. Field emission from quantum size GaN structures

    Science.gov (United States)

    Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu. M.; Hubbard, S.; Tiginyanu, I. M.; Mutamba, K.; Hartnagel, H. L.; Litovchenko, V. G.; Evtukh, A.

    2003-12-01

    Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2×10 17 or 3×10 18 cm -3) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/μm and the appearance of quantum-size effect in the I- V curves.

  8. Field emission from quantum size GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu.M.; Hubbard, S.; Tiginyanu, I.M.; Mutamba, K.; Hartnagel, H.L.; Litovchenko, V.G.; Evtukh, A

    2003-12-30

    Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2x10{sup 17} or 3x10{sup 18} cm{sup -3}) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/{mu}m and the appearance of quantum-size effect in the I-V curves.

  9. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  10. Electron field emission in nanostructures: A first-principles study

    Science.gov (United States)

    Driscoll, Joseph Andrew

    The objective of this work was to study electron field emission from several nanostructures using a first-principles framework. The systems studied were carbon nanowires, graphene nanoribbons, and nanotubes of varying composition. These particular structures were chosen because they have recently been identified as showing novel physical phenomena, as well as having tremendous industrial applications. We examined the field emission under a variety of conditions, including laser illumination and the presence of adsorbates. The goal was to explore how these conditions affect the field emission performance. In addition to the calculations, this dissertation has presented computational developments by the author that allowed these demanding calculations to be performed. There are many possible choices for basis when performing an electronic structure calculation. Examples are plane waves, atomic orbitals, and real-space grids. The best choice of basis depends on the structure of the system being analyzed and the physical processes involved (e.g., laser illumination). For this reason, it was important to conduct rigorous tests of basis set performance, in terms of accuracy and computational efficiency. There are no existing benchmark calculations for field emission, but transport calculations for nanostructures are similar, and so provide a useful reference for evaluating the performance of various basis sets. Based on the results, for the purposes of studying a non-periodic nanostructure under field emission conditions, we decided to use a real-space grid basis which incorporates the Lagrange function approach. Once a basis was chosen, in this case a real-space grid, the issue of boundary conditions arose. The problem is that with a non-periodic system, field emitted electron density can experience non-physical reflections from the boundaries of the calculation volume, leading to inaccuracies. To prevent this issue, we used complex absorbing potentials (CAPs) to absorb

  11. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    Science.gov (United States)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  12. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  13. Field emission characteristics of regular arrays of carbon nanotubes.

    Science.gov (United States)

    Al-Ghamdi, A A; Al-Heniti, S; Al-Hazmi, F S; Faidah, Adel S; Shalaan, E; Husain, M

    2014-06-01

    The developments of electronic devices based on micron-sized vacuum electron sources during the last decades have triggered intense research on highly efficient carbon based thin film electron emitters. The synthesis of massive arrays of carbon nanotubes that are oriented on patterned Fe catalyst deposited on quartz substrates is reported. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotubes devices integrated into future technology. The emission from carbon nanotubes array is explained by Fowler-Nordheim tunneling of electrons from tip-like structures in the nanometer range, which locally amplify the applied field by the field enhancement factor beta. We found that the low pressure chemical vapour deposition (LPCVD) system can produce nanotubes capable of excellent emission currents at lower voltages. The carbon nanotubes array shows good field emission with turn on field E(alpha) = 1.30 V/microm at the current density of 3.50 mA/cm2 with enhancement factor beta = 1.22 x 10(2).

  14. Stabilization of carbon-fiber cold field-emission cathodes with a dielectric coating.

    Science.gov (United States)

    Mousa, M S; Kelly, T F

    2003-01-01

    A comprehensive investigation has been carried out to determine the source of an inherent temporal instability in the spatial distribution and the electron emission current obtained from field-emitting carbon fiber tips. These instability effects were successfully overcome by coating the tip with a sub-micron layer of dielectric epoxy resin coating. The influence of the coating thickness was studied and an optimum thickness of 0.2-0.3 microm that produced high emission stability was found. A large reduction in the intensity fluctuations of the emission image, at this coating thickness is demonstrated by using chart recorder traces in addition to slow scans of an optically monitored screen signal. The current-voltage (I-V) characteristics were obtained at a threshold field that is a few times lower than that of the uncoated tip. At low emission current levels linear F-N plots were obtained with a slope value lower than that of the uncoated emitter. The spatial distribution consisted of a very bright spot without any internal structure. The total energy distribution of the emitted electrons demonstrated a non-metallic behavior. The spectra obtained consisted of a single peak for low currents and a double peak for higher currents. The electron energy was measured relative to the Fermi level of tungsten and a spectral shift was shown to be a function of the current. Experiments have shown that the coated tips are not affected by the variations of pressure conditions down to 10(-6) mbar. These results suggest that a resin coated fiber tip offers superior performance to tungsten as a cold field emission electron source. Numerous improvements in the performance are underway. This includes a variety of polymeric coatings and more emissive carbon fibers.

  15. Memristive model of hysteretic field emission from carbon nanotube arrays

    Science.gov (United States)

    Gorodetskiy, Dmitriy V.; Gusel'nikov, Artem V.; Shevchenko, Sergey N.; Kanygin, Mikhail A.; Okotrub, Alexander V.; Pershin, Yuriy V.

    2016-01-01

    Some instances of electron field emitters are characterized by frequency-dependent hysteresis in their current-voltage characteristics. We argue that such emitters can be classified as memristive systems and introduce a general framework to describe their response. As a specific example of our approach, we consider field emission from a carbon nanotube array. Our experimental results demonstrate a low-field hysteresis, which is likely caused by an electrostatic alignment of some of the nanotubes in the applied field. We formulate a memristive model of such phenomena, whose results are in agreement with the experimental results.

  16. Comparison of field emissivities with laboratory measurements and ASTER data

    Science.gov (United States)

    Mira, M.; Schmugge, T.; Valor, E.; Caselles, V.; Coll, C.

    2008-10-01

    Surface emissivity in the thermal infrared (TIR) region is an important parameter for determining the land surface temperature from remote sensing measurements. This work compares the emissivities measured by different field methods (the Box method and the Temperature and Emissivity Separation, TES, algorithm) as well as emissivity data from ASTER scenes and the spectra obtained from the ASTER Spectral Library. The study was performed with a field radiometer having TIR bands with central wavelengths at 11.3 μm, 10.6 μm, 9.1 μm, 8.7 μm and 8.4 μm, similar to the ASTER TIR bands. The measurements were made at two sites in southern New Mexico. The first was in the White Sands National Monument, and the second was an open shrub land in the Jornada Experimental Range, in the northern Chihuahuan Desert, New Mexico, USA. The measurements show that, in general, emissivities derived with the Box method agree within 3% with those derived with the TES method for the spectral bands centered at 10.6 μm and 11.3 μm. However, the emissivities for the shorter wavelength bands are higher when derived with the Box method than those with the TES algorithm (differences range from 2% to 7%). The field emissivities agree within 2% with the laboratory spectrum for the 8-13 μm, 11.3 μm and 10.6 μm bands. However, the field and laboratory measurements in general differ from 3% to 16% for the shorter wavelength bands, i.e., 9.1 μm, 8.6 μm and 8.4 μm. A good agreement between the experimental measurements and the ASTER TIR emissivity data is observed for White Sands, especially over the 9 - 12 μm range (agreement within 4%). The study showed an emissivity increase up to 17% in the 8 to 9 μm range and an increase of 8% in emissivity ratio of average channels (8.4 μm, 8.6 μm, 9.1 μm):(10.6 μm, 11.3 μm) for two gypsum samples with different water content.

  17. Electron Field Emission from Patterned Porous Silicon Film

    Institute of Scientific and Technical Information of China (English)

    SHU Yun-xing; GE Bo; ZHANG Yong-sheng; YU Ke

    2005-01-01

    Patterned porous silicon (PS) films were synthesised by using hydrogen ion implantation technique and typical electrochemical anodic etching method. The surface morphology and characteristics of the PS films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The efficient electron field emission with low turn-on field of about 3.5 V/μm was obtained at current density of 0.1 μA/cm2. The electron field emission current density from the patterned PS films reached 1 mA/cm2 under an applied field of about 12.5 V/μm. The experimental results show that the patterned PS films are of certain practical significance and are valuable for flat panel displays.

  18. Field emission of GaN-filled carbon nanotubes: high and stable emission current.

    Science.gov (United States)

    Liao, L; Li, J C; Liu, C; Xu, Z; Wang, W L; Liu, S; Bai, X D; Wang, E G

    2007-03-01

    Field electron emission of GaN-filled carbon nanotubes, grown by microwave plasma enhanced chemical vapor deposition, was investigated. The detailed structural characterization shows that the filled nanotube has a GaN-core/C-shell structure, in which the GaN wire corresponds to a wurtzite structure. The field emission properties of the GaN-filled carbon nanotubes have been achieved with high and stable emission current. It is attributed to the unique cable-like structure, which makes the GaN-core/C-shell composite mechanically solid and chemically stable. This study suggests the GaN-filled carbon nanotube as an ideal candidate for future high-current and high-power field emitter applications.

  19. Hydrogen sensing characteristics from carbon nanotube field emissions

    Science.gov (United States)

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-01

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10-9 Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing.

  20. Neutrino-pair emission in a strong magnetic field

    NARCIS (Netherlands)

    van Dalen, ENE; Dieperink, AEL; Sedrakian, A; Timmermans, RGE

    2000-01-01

    We study the neutrino emissivity of strongly magnetized neutron stars due to the charged and neutral current couplings of neutrinos to baryons in strong magnetic fields. The leading order neutral current process is the one-body neutrino-pair bremsstrahlung, which does not have an analogue in the zer

  1. Stable field emission from W tips in poor vacuum conditions

    NARCIS (Netherlands)

    Tondare, V.N.; van Druten, N.J.; Hagen, C.W.; Kruit, P.

    2003-01-01

    We report a stable field emission (FE) current from sharp tungsten (W) tips in relatively poor vacuum (up to 10-2 mbar) conditions. We use small tip-anode spacing to keep the extraction voltage low. A simple current regulator circuit, with a bandwidth of ~1.6 kHz, was designed, which controls the vo

  2. Development of Field-Emission Electron Gun from Carbon Nanotubes

    CERN Document Server

    Hozumi, Y

    2004-01-01

    Aiming to use a narrow energy-spread electron beam easily and low costly on injector electron guns, we have been tested field emission cathodes of carbon nanotubes (CNTs). Experiments for these three years brought us important suggestions and a few rules of thumb. Now at last, anode current of 3.0 [A/cm2

  3. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  4. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  5. Field emission properties of ZnO nanosheet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kusha Kumar; Rout, Chandra Sekhar, E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: dj.late@ncl.res.in, E-mail: datta099@gmail.com, E-mail: csrout@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, Odisha (India); Khare, Ruchita; More, Mahendra A. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune - 411007 (India); Chakravarty, Disha; Late, Dattatray J., E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: dj.late@ncl.res.in, E-mail: datta099@gmail.com, E-mail: csrout@iitbbs.ac.in [Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra (India); Thapa, Ranjit, E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: dj.late@ncl.res.in, E-mail: datta099@gmail.com, E-mail: csrout@iitbbs.ac.in [SRM Research Institute, SRM University, Kattankulathur, Chennai 603 203, Tamil Nadu (India)

    2014-12-08

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm{sup 2} and current density of 50.1 μA/cm{sup 2} at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications.

  6. Nanotube field electron emission: principles, development, and applications.

    Science.gov (United States)

    Li, Yunhan; Sun, Yonghai; Yeow, J T W

    2015-06-19

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field's development potential.

  7. Field emission from open ended aluminum nitride nanotubes

    Science.gov (United States)

    Tondare, V. N.; Balasubramanian, C.; Shende, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskar, S. V.; Bhadbhade, M.

    2002-06-01

    This letter reports the field emission measurements from the nanotubes of aluminum nitride which were synthesized by gas phase condensation using the solid-vapor equilibria. A dc arc plasma reactor was used for producing the vapors of aluminum in a reactive nitrogen atmosphere. Nanoparticles and nanotubes of aluminum nitride were first characterized by transmission electron microscope and tube dimensions were found to be varying from 30 to 200 nm in diameter and 500 to 700 nm in length. These tubes were mixed with nanoparticles of size range between 5 and 200 nm in diameter. Tungsten tips coated with these nanoparticles and tubes were used as a field emitter. The field emission patterns display very interesting features consisting of sharp rings which were often found to change their shapes. The patterns are attributed to the open ended nanotubes of aluminum nitride. A few dot patterns corresponding to the nanoparticles were also seen to occur. The Fowler-Nordheim plots were seen to be nonlinear in nature, which reflects the semi-insulating behavior of the emitter. The field enhancement factor is estimated to be 34 500 indicating that the field enhancement due to the nanometric size of the emitter is an important cause for the observed emission.

  8. Nitrous oxide emissions in nonflooding period from fallow paddy fields

    Institute of Scientific and Technical Information of China (English)

    HUANG Shuhui; Hari K Pant; LU Jun

    2008-01-01

    The study was conducted to investigate the N2O emissions and dissolved N2O in the leachate during the nonflooding period in nongrowing paddy fields. Three kinds of paddy soils were repacked to soil columns and were supersaturated with water initially and dried gradually in a greenhouse to attain the N2O emissions flux during the incubation. Soils with the texture of silty clay-loam (Q and H) produced cracks during the drying of soil, but soil with the texture of silty loam (X) did not form the cracks. Cracked soils had similar amount of N2O emissions, and the mean N2O flux was 1,280.9 and 1,133.3 μg/(m2·h) from Q and H soil, respectively, during the incubation; whereas the mean N2O flux from noncracked X soil was 426.3 μg/(m2·h), i.e., significantly different from cracked soils. From cracked soils, the diurnal N2O emissions reached two peaks at 14:00 and 2:00, but such emissions peaked only at 2:00 from noncracked soil. The dissolved N2O concentrations in leachates from noncracked soil columns were greater than those from the cracked soil columns, and it indicated that the preferential flow might not affect the amounts of dissolved N2O in leachates during soil cracking. Supersaturated dissolved N2O in the leachate was potential source of N2O emissions. Fallow paddy fields have big risks of N2O emissions during nonflooding periods.

  9. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  10. Enhancement of field emission characteristics of carbon nanotubes on oxidation.

    Science.gov (United States)

    Mathur, Ashish; Roy, Susanta Sinha; Ray, Sekhar Chandra; Hazra, Kiran Shankar; Hamilton, Jeremy; Dickinson, Calum; McLaughlin, James; Misra, Devi Shankar

    2011-08-01

    Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.

  11. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    Chen Min-gan; Chen Ming-an; Li Jin-chai; Li Jin-chai; Liu Chuan-sheng; Liu Chuan-sheng; Ma You-peng; Ma You-peng; Lu Xian-feng; Lu Xian-feng; Ye Ming-sheng; Ye Ming-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  12. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    ChertMing-an; LiJin-chai; LiuChuan-sheng; MaYou-peng; LuXlan-feng; YeMing-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12. 6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3. 2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  13. Tuning field emission properties of boron nanocones with catalyst concentration

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Tian Yuan; Wang Deng-Ke; Shi Xue-Zhao; Hui Chao; Shen Cheng-Min; Gao Hong-Jun

    2011-01-01

    Single crystalline boron nanocones are prepared by using a simple spin spread method in which Fe3O4 nanoparticles are pre-manipulated on Si(111) to form catalyst patterns of different densities. The density of boron nanocones can be tuned by changing the concentration of catalyst nanoparticles. High-resolution transmission electron microscopy analysis shows that the boron nanocone has a β-tetragonal structure with good crystallization. The field emission behaviour is optimal when the spacing distance is close to the nanocone length, which indicates that this simple spin spread method has great potential applications in electron emission nanodevices.

  14. Molecular Dynamics Simulations of Field Emission From a Planar Nanodiode

    CERN Document Server

    Torfason, Kristinn; Manolescu, Andrei

    2014-01-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  15. Enhanced Field Emission from Printed Carbon Nanotubes by Hard Hairbrush

    Institute of Scientific and Technical Information of China (English)

    ZOU Ru-jia; ZHAN Ya-ge; LIU Yang; XUE Shao-lin

    2008-01-01

    A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented.In this way, the organic matrix material is preferentially removed.Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2 V/um to 1.6 V/um, while the total emission current of the treated increases from 0.6 mA/cm2 to 3 mA/cm2, and uniform emission site density image has also been observed.

  16. Nanotube field electron emission: principles, development, and applications

    Science.gov (United States)

    Li, Yunhan; Sun, Yonghai; Yeow, J. T. W.

    2015-06-01

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field’s development potential.

  17. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  18. Measuring interstellar magnetic fields by radio synchrotron emission

    CERN Document Server

    Beck, Rainer

    2009-01-01

    Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of interstellar magnetic fields. The total intensity traces the strength and distribution of total magnetic fields. Total fields in gas-rich spiral arms and bars of nearby galaxies have strengths of 20-30 $\\mu$Gauss, due to the amplification of turbulent fields, and are dynamically important. In the Milky Way, the total field strength is about 6 $\\mu$G near the Sun and several 100 $\\mu$G in filaments near the Galactic Center. -- The polarized intensity measures ordered fields with a preferred orientation, which can be regular or anisotropic fields. Ordered fields with spiral structure exist in grand-design, barred, flocculent and even in irregular galaxies. The strongest ordered fields are found in interarm regions, sometimes forming "magnetic spiral arms" between the optical arms. Halo fields are X-shaped, probably due to outflows. -- The Faraday rotation of the polarization vectors tr...

  19. Research on Field Emission and Dark Current in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  20. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  1. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  2. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

    2013-01-22

    Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

  3. Impact of superior and inferior visual field loss on hazard detection in a computer-based driving test.

    Science.gov (United States)

    Glen, Fiona C; Smith, Nicholas D; Crabb, David P

    2015-05-01

    Binocular visual field (VF) loss is linked to driving impairment, guiding authorities to implement fitness to drive requirements for VFs. Yet, evidence is limited regarding the specific types of VF defect that impede driving. This study used a novel gaze-contingent display to test the hypothesis that superior VF loss impacts detection of driving hazards more than inferior loss. The Hazard Perception Test (HPT) is a computer-based component of the UK examination for learner drivers. It measures the response rate for detecting hazards in a series of real-life driving films, yielding a score out of 75, calculated based on the efficiency of detecting 15 hazards. Thirty UK drivers with healthy vision completed three versions of the HPT in a random order. In two versions, a computer set-up incorporating an eye-tracker modified a simulated VF defect in the superior and inferior VFs, respectively, according to the users' real-time gaze as they completed the HPT. The other version was unmodified to measure the baseline performance. Participants' mean score at baseline was 49/75 (SD=9). Mean (SD) performance fell by 18% (40(11)) when viewing films with a superior defect and 12% with an inferior defect (43(10)). These average differences were statistically significant (p<0.001; 95% CI for mean difference=1-7) CONCLUSIONS: In this study, simulated VF defects impaired the ability to detect driving hazards relative to participants' normal performances, with superior defects having more impact than inferior defects. These results could help inform the design of fairer tests of the VF component for fitness to drive. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets

    Science.gov (United States)

    Ishihara, A.; Akasaka, T.; Tomita, M.; Kishio, K.

    2017-03-01

    Homogeneity of trapped magnetic field in radial and circumferential directions of high temperature superconducting bulk magnets, MgB2 (T c ˜38.3 K) and YBa2Cu3O y (T c ˜91.5 K), have been measured. In polycrystalline MgB2 bulks, the circularity of trapped magnetic field in a cylindrical disk is over 97% at 20-32.5 K, while that of YBa2Cu3O y was ˜87% at 77 K. Magnetic field distribution of MgB2 bulk was satisfactorily homogeneous and these measurements suggest MgB2 bulks with highly efficient cryocoolers should be very useful for novel high field permanent magnet applications.

  5. Field emission properties of chemical vapor deposited individual graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  6. Strong-field photoelectron emission from metal nanotips

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Reiner; Gulde, Max; Yalunin, Sergey; Weismann, Alexander; Ropers, Claus [University of Goettingen (Germany). Courant Research Center Nano-Spectroscopy and X-Ray Imaging

    2010-07-01

    The generation of ultrashort, localized electron pulses is of fundamental interest for future applications in time-resolved electron imaging and diffraction. Femtosecond electron sources of great spatial coherence make use of a combination of local field enhancement at metal nanotips and nonlinear photoelectric effects. Previous studies have resulted in a controversial debate about the underlying physical processes. Here, we present our most recent theoretical and experimental results regarding ultrafast photoelectron emission from nanometric gold tips. For the first time, we conclusively show the transition between the multiphoton and the optical field emission (i.e. tunneling) regimes. Direct evidence for this transition is found from both the power dependence of the total current and the spatial characteristics of the resulting electron beam. The results are supported by theoretical modeling.

  7. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  8. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  9. Morphological, structural and field emission characterization of hydrothermally synthesized MoS2-RGO nanocomposite

    Science.gov (United States)

    Bansode, Sanjeewani R.; Harpale, Kashmira; Khare, Ruchita T.; Walke, Pravin S.; More, Mahendra A.

    2016-11-01

    A few layered MoS2-RGO nanocomposite has been synthesized employing a facile hydrothermal synthesis route. The morphological and structural analysis performed using SEM, TEM, HRTEM and Raman spectroscopy clearly reveal formation of vertically aligned a few layer thick MoS2 sheets on RGO surface. Attempts have been made to reveal the influence of graphite oxide (GO) percentage on morphology of the nanocomposite. Furthermore, field emission (FE) investigations of as-synthesied MoS2-RGO nanocomposite are observed to be superior to the pristine MoS2 emitter. The values of turn-on field, defined at emission current density of 10 μA cm-2, are found to be 2.6 and 4.7 V μm-1 for the MoS2-RGO (5%) nanocomposite and pristine MoS2 emitters, respectively. The value of threshold field, defined at emission current density of 100 μA cm-2, is found to be 3.1 V μm-1 for MoS2-RGO nanocomposite. The emission current stability at the pre-set value of 1 μA over 3 h duration is found to be fairly good, characterized by current fluctuation within ±18% of the average value. The enhanced FE behavior for MoS2-RGO nanocomposite is attributed to a high enhancement factor (β) of 4128 and modulation of the electronic properties. The facile approach adopted herein can be extended to enhance various functionalities of other nanocomposites.

  10. Estimating urban roadside emissions with an atmospheric dispersion model based on in-field measurements.

    Science.gov (United States)

    Pu, Yichao; Yang, Chao

    2014-09-01

    Urban vehicle emission models have been utilized to calculate pollutant concentrations at both microscopic and macroscopic levels based on vehicle emission rates which few researches have been able to validate. The objective of our research is to estimate urban roadside emissions and calibrate it with in-field measurement data. We calculated the vehicle emissions based on localized emission rates, and used an atmospheric dispersion model to estimate roadside emissions. A non-linear regression model was applied to calibrate the localized emission rates using in-field measurement data. With the calibrated emission rates, emissions on urban roadside can be estimated with a high accuracy.

  11. A thin film triode type carbon nanotube field emission cathode

    Science.gov (United States)

    Sanborn, Graham; Turano, Stephan; Collins, Peter; Ready, W. Jud

    2013-01-01

    The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 μA cm-2 and a gate current density of 1.68 mA cm-2 at 250 V.

  12. Fowler-Nordheim field emission. Effects in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sitangshu [Indian Institute of Science, Bangalore (India). Nano Scale Device Research Laboratory; Ghatak, Kamakhya Prasad [Calcutta Univ. (India). Dept. of Electronics Science

    2012-07-01

    This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb{sub 2}, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi{sub 2}Te{sub 3}, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The book can also serve as a basis for a graduate course on field emission from solids. (orig.)

  13. Field emission properties of a graphene/polymer composite.

    Science.gov (United States)

    Patole, Shashikant P; Lee, Jong Hak; Park, Jae Hong; Yu, Seong Man; Makotchenko, V G; Nazarov, A S; Fedorov, V E; Shin, Dong Wook; Alegaonkar, Prashant S; More, Mahendra A; Yoo, Ji-Beom

    2013-11-01

    Thin graphene/polymer sheet composites were fabricated using easily soluble expanded graphite (ESEG), and their field emission (FE) parameters were examined. Due to the high dispersability of ESEG, a stable graphene suspension was prepared by ultrasonication in toluene without the need for a surfactant. The suspension consisted of exfoliated graphene sheets with a thickness of 1 - 2 nm. Using a calendering process, the solution was further shear mixed with ethyl cellulose to obtain a well-dispersed graphene/polymer composite. The composite was screen printed onto a conducing substrate to fabricate the FE cathode layers. The FE measurements were taken in a diode configuration at an applied electrostatic field and inter-electrode distance of 1.7 to 6 V/microm and approximately 200 microm, respectively. The threshold turn-on-field was approximately 3.5 V/microm at a current density of approximately 10 microA/cm2 with a corresponding mean field enhancement factor of 1350 +/- 50. Emission occurred mainly from the edges and bends of the graphene layers. The luminescence uniformity of the composite cathode layers was examined using a phosphor-coated anode.

  14. Relationship between CH4 and N2O emissions from rice field and its impacting factors

    Institute of Scientific and Technical Information of China (English)

    HOUAixin; CHENGuanxiong; WUJie; WANGZhengping

    1998-01-01

    To find out the relationship between CH4 and N2O emissions from rice field and determine the key factors affecting the emissions, and give a scientifie basis for working out mitigation options of their emissions from flooded rice field, we measured the emissions and their impacting environmental factors systematically and simultaneously from Mar to Dee in 1995-1996 in northern China.

  15. Field emission from Mo2C coated carbon nanosheets

    Science.gov (United States)

    Bagge-Hansen, M.; Outlaw, R. A.; Miraldo, P.; Zhu, M. Y.; Hou, K.; Theodore, N. D.; Zhao, X.; Manos, D. M.

    2008-01-01

    Carbon nanosheets have recently evolved into useful edge emitters with high emission current densities, low threshold electric fields, and long lifetimes. In addition to further improvement in these characteristics, good stability and repeatability are also essential for these materials to be suitable for high vacuum applications such as microwave tubes and flat panel displays. Since the work function of graphite, carbon nanotubes, and amorphous carbon is relatively high, 4.6-4.8eV, selective thin film coatings may offer significant advantages. Carbides are a good film choice for their corrosive resistance, chemical stability, and substantially lower work function. Approximately 3 ML (monolayer) (˜1nm) of molybdenum were deposited on carbon nanosheets by physical vapor deposition and the carbide (Mo2C) formed by heating to >200°C at 1×10-8Torr. The carbide stoichiometry was confirmed in situ by the characteristic Auger triple peak at 272eV. A stoichiometric Mo2C calibration sample was used to acquire the Auger electron spectroscopy asymmetric ratio of 0.7 and this was used to determine the carbide growth as a function of temperature (from room temperature to 1000°C). Field emission currents of up to 400μA were compared with uncoated CNS at a given electric field. The Mo2C/CNS cathodes were shown to have greater than a factor of 100 increase in current and greater than 2V/μm decrease in threshold. The Fowler-Nordheim plots were exceptionally linear and quite repeatable (correlation coefficient R2=0.999+). Using the slope and vertical intercept, an emission area for the 0.07cm2 Mo2C/CNS dot sample was determined to be ˜3×10-9cm2 and the field enhancement factor was found to be β ˜530.

  16. Photo-enhanced field emission study of TiO{sub 2} nanotubes array

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Padmakar G.; Shende, Sugat V.; Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India)

    2011-05-15

    Aligned TiO{sub 2} nanotubes were synthesized by simple anodization of the Ti foil surface. The as-anodized product is further characterized by SEM, XRD, and PL. The tube inner diameter is found to be {approx}60-80 nm with the average wall thickness {approx}30 nm and areal density {approx}15x10{sup 6}/ cm{sup 2}. FE studies of the aligned TiO{sub 2} nanotubes are carried out at base pressure of {approx}1x10{sup -8} mbar. The turn-on field observed for an emission current density of {approx}10 {mu}A/cm{sup 2} is found to be {approx}1.7 V/{mu}m and current density of {approx}44 {mu}A/cm{sup 2} is obtained at an applied field of {approx}2.3 V/{mu}m. Photo-enhanced FE study is carried out by shining visible and UV light on the cathode. The aligned TiO{sub 2} nanotubes show sensitivity to both the light sources. The FE current shows fast switching response to the visible light. The increment in the preset current upon UV illumination can be attributed to the band edge excitation of the electrons. The free excitons associated with band gap of the TiO{sub 2} nanotubes array may be responsible for the visible light sensitivity. TiO{sub 2} nanotubes are also grown on the Ti wire and exhibit similar photo-enhanced behavior. The FE and photo-enhanced FE properties demonstrate the applicability of the aligned TiO{sub 2} nanotubes in the FE based micro/nanoelectronic devices. -- Research Highlights: {yields} TiO{sub 2} nanotubes array is easily synthesized by simple anodization method. {yields} Field emission results are found to be superior. {yields} Good correlation is found between photoluminescence, photo-enhanced field emission, and photoconductivity of the TiO{sub 2}.

  17. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.

    Science.gov (United States)

    Connolly, Thomas; Smith, Richard C; Hernandez, Yenny; Gun'ko, Yurii; Coleman, Jonathan N; Carey, J David

    2009-04-01

    The electron field-emission (FE) characteristics of functionalized single-walled carbon-nanotube (CNT)-polymer composites produced by solution processing are reported. It is shown that excellent electron emission can be obtained by using as little as 0.7% volume fraction of nanotubes in the composite. Furthermore by tailoring the nanotube concentration and type of polymer, improvements in the charge transfer through the composite can be obtained. The synthesis of well-dispersed randomly oriented nanotube-polymer composites by solution processing allows the development of CNT-based large area cathodes produced using a scalable technology. The relative insensitivity of the cathode's FE characteristics to the electrical conductivity of the composite is also discussed.

  18. Emission characteristics of AuSiBe field ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Drandarov, N.; Georgieva, St.; Nikolov, B.; Donchev, T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Elektronika)

    A ribbon type AuSiBe alloy field ion source, which combines the advantages of both hairpin type sources and reservoir type sources, has been constructed. The current-voltage characteristics of this source have been investigated. Hysteresis and four differentiated emission regions have been observed for them. By means of scanning electronic microscopy, it has been established that this complicated behaviour of the I-V curves and the angular distribution of the extracted ions are associated with the shape of the emitting surface. The mass spectrum of the emitted ions has been determined by means of an E x B mass filter. Considerable emission of Au[sup +], AuBe[sub 3][sup 2+], Si[sup 2+], Be[sup 2+], AuBe[sub 3][sup +], Be[sup +], Si[sup +], and Au[sup 2+] has been observed. (author).

  19. Molecular dynamics simulations of field emission from a planar nanodiode

    Energy Technology Data Exchange (ETDEWEB)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2015-03-15

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  20. Experimental investigations of hard photon emission from strong crystalline fields

    Science.gov (United States)

    Medenwaldt, R.; Møller, S. P.; Jensen, B. N.; Strakhovenko, V. M.; Uggerhøj, E.; Worm, T.; Elsener, K.; Sona, P.; Connell, S. H.; Sellschop, J. P. F.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.

    1992-05-01

    For the first time very pronounced high-energy photon peaks have been measured in the radiation emission from 70, 150 and 240 GeV electrons incident at 0.1-1.0 mrad to the axis in diamond and Si crystals. The energy of the photons in the peaks is 0.7-0.8 times the particle energy with yields of 50 times the Bethe-Heitler one (in diamond). The peaks consist of single photons and are caused by the influence of strong crystalline fields on emission of coherent bremsstrahlung, emitted when the ultrarelativistic electrons cross the rows of atoms in a crystal plane. The effect should be envisaged as a source for nearly monoenergetic photons in the multihundred GeV-region.

  1. Experimental investigations of hard photon emission from strong crystalline fields

    Energy Technology Data Exchange (ETDEWEB)

    Medenwaldt, R.; Moeller, S.P.; Jensen, B.N.; Strakhovenko, V.M.; Uggerhoej, E.; Worm, T. (ISA, Aarhus Univ. (Denmark)); Elsener, K. (CERN, Geneva (Switzerland)); Sona, P. (Dipt. di Fisica, Univ. Florence (Italy) Ist. Nazionale di Fisica Nucleare, Florence (Italy)); Connell, S.H.; Sellschop, J.P.F. (Schonland Research Centre for Nuclear Sciences, Univ. of Witwatersrand, Johannesburg (South Africa)); Avakian, R.O.; Avetisian, A.E.; Taroian, S.P. (Yerevan Physics Inst. (Armenia))

    1992-05-07

    For the first time very pronounced high-energy photon peaks have been measured in the radiation emission from 70, 150 and 240 GeV electrons incident at 0.1-1.0 mrad to the axis in diamond and Si crystals. The energy of the photons in the peaks is 0.7-0.8 times the particle energy with yields of 50 times the Bethe-Heitler one (in diamond). The peaks consist of single photons and are caused by the influence of strong crystalline fields on emission of coherent bremsstrahlung, emitted when the ultrarelativistic electrons cross the rows of atoms in a crystal plane. The effect should be envisaged as a source for nearly monoenergetic photons in the multihundred GeV-region. (orig.).

  2. Diamond Field Emission Source using Transfer Mold Technique Prepared by Diamond Powder Seeding

    Science.gov (United States)

    Tezuka, Sachiaki; Matsuba, Yohei; Takahashi, Kohro

    Diamond thin films fabricated by MPCVD (microwave plasma chemical vapor deposition) are available for use as a field emitter material, because of its high mechanical quality, thermal conductivity, chemical stability, environmental tolerance, and NEA (negative electron affinity). Diode and triode emitter arrays using P-doped polycrystalline diamond were manufactured on a SiO2/Si(100) substrate with reverse pyramids formed by the transfer mold technique. As the diamond nucleation process, spin-coat seeding with pure diamond powder dispersed in isoamyl acetate has been introduced in place of the bias method. SEM (scanning electron microscopy) images and Raman spectroscopy indicate that the crystal quality of the diamond thin film fabricated by spin-coat seeding is superior to that fabricated by the bias method. The diamond crystal completely grew on top of the diode emitter by the US (ultrasonic) treatment in a diamond powder solution before spin-coat seeding. The tip radius was smaller than 50 nm. The beginning voltage of the emission of the diode emitter is 3 V after the DC glow discharge treatment in H2, which is lower than that of an emitter array fabricated by the bias method, 40 V. On the other hand, the emission of the diamond triode emitter starts at a gate voltage of only 0.5 V, and the emission current of 50∼60 mA is obtained at a gate voltage of 2 V.

  3. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  4. Field emission energy distributions from individual multiwalled carbon nanotubes

    Science.gov (United States)

    Fransen, M. J.; van Rooy, Th. L.; Kruit, P.

    1999-05-01

    We measured field emission energy distributions of electrons emitted from individual multiwalled carbon nanotubes mounted on tungsten tips. The shape of the energy distribution is strongly sample dependent. Some nanotube emitters exhibit an almost metallic behaviour, while others show sharply peaked energy distributions. The smallest half-width we measured was only 0.11 eV, without correction for the broadening of the energy analyzer. A common feature of both types of carbon nanotube energy spectra is that the position of the peaks in the spectrum depends linearly on the extraction voltage, unlike metallic emitters, where the position stays in the vicinity of the Fermi level. With a small modification to the field emission theory for metals we extract the distance between the highest filled energy level of the nanotube and the vacuum potential, the field on the emitter surface, the emitter radius and the emitting area, from the energy distribution and the Fowler-Nordheim plot. The last two parameters are in good agreement with transmission electron micrographs of such samples. The sharply-peaked energy distributions from other samples indicate that resonant states can exist at the top of the nanotube.

  5. Field electron emission of diamond films on nanocrystalline diamond coating by CVD method

    Institute of Scientific and Technical Information of China (English)

    CAI Rangqi; CHEN Guanghua; SONG Xuemei; XING Guangjian; FENG Zhenjian; HE Deyan

    2003-01-01

    The preparation process, structure feature and field electron emission characteristic of diamond films on nanocyrstalline diamond coating by the CVD method were studied. The field electron emission measurements on the samples showed that the diamond films have lower turn-on voltage and higher field emission current density. A further detailed theory explanation to the results was given.

  6. Quantum-size resonance tunneling in the field emission phenomenon

    Science.gov (United States)

    Litovchenko, V.; Evtukh, A.; Kryuchenko, Yu.; Goncharuk, N.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2004-07-01

    Theoretical analyses have been performed of the quantum-size (QS) resonance tunneling in the field-emission (FE) phenomenon for different models of the emitting structures. Such experimentally observed peculiarities have been considered as the enhancement of the FE current, the deviation from the Fowler-Nordheim law, the appearance of sharp current peaks, and a negative resistance. Different types of FE cathodes with QS structures (quantized layers, wires, or dots) have been studied experimentally. Resonance current peaks have been observed, from which the values of the energy-level splitting can be estimated.

  7. Synthesis of Silica Decorated MWCNTs for Field Emission Property

    Institute of Scientific and Technical Information of China (English)

    陈正瀚; 彭毓航; 林鸿明; 罗吉宗

    2006-01-01

    A novel route to nanocomposites containing surface modified multiwalled carbon nanotubes (MWCNTs) by silica thin film is reported. The effect of chemical oxidation on the surface of MWCNTs by using different acid-treatments is studied.The acidic processes are characterized by Raman spectroscopy, thermogravimetry analysis, scanning electron microscopy, and transmission electron microscopy. MWCNTs can be coated homogeneously with silica film by using tetraethoxysilane (TEOS)as a precursor in a sol-gel process. Varying the shell thickness of amorphous silica coating layers on MWCNTs exhibits excellent thermal stability, reliability, and lifetime of field emission properties, especially down to less than 10 nm.

  8. Performance of a carbon nanotube field emission electron gun

    Science.gov (United States)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  9. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Science.gov (United States)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  10. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  11. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    Science.gov (United States)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  12. The influence of magnetic fields on absorption and emission spectroscopy

    CERN Document Server

    Zhang, Heshou; Richter, Philipp

    2016-01-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H\\,{\\sc ii} Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show...

  13. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  14. Nano-crystalline CNx Films and Field Electron Emission Properties

    Institute of Scientific and Technical Information of China (English)

    张兰; 马会中; 李会军; 杨仕娥; 姚宁; 胡欢陵; 张兵临

    2003-01-01

    CNx films with x ≈ 0.5 were prepared on to a titanium coated ceramic substrate by using microwave plasma enhanced chemical vapour deposition. As-deposited films were studied by x-ray photoelectron spectroscopy (XPS), x-ray diffraction, and scanning electron microscopy. The films consist of nano-crystalline grains with sites in a range of 20-40nm approximately. The interplanar distance (d-value) of the nano-crystalline structure determined from the peak position of x-ray diffraction was found to be 0.336nm. This value is consistent with the d-value of graphite. XPS measurements of the N1 s and C1 s core levels for the same sample demonstrate two types of bonding structures between carbon and nitrogen atoms, corresponding to sp2 C-N and sp3 C-N. It is suggested that the N atoms mainly exist in aromatic rings of the nano-graphite layers by substituting carbon positions with nitrogen. Field electron emission characteristics of the film were tested. The turn-on field of the emission was as Iow as 1.1 V/μm.

  15. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substitution for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the

  16. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus `Giganteus` (M. `Giganteus`) and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substituion for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO{sub 2} reduction

  17. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration

    Science.gov (United States)

    Ghose, Dipanwita; Wallace, Mark T.

    2013-01-01

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location – highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping

  18. Density functional theory for field emission from carbon nano-structures.

    Science.gov (United States)

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission.

  19. Enhanced Field Emission from Well-Patterned Silicon Nanoporous Pillar Arrays

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Nan; LI Xin-Jian

    2006-01-01

    @@ The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.

  20. Two-photon cooperative emission in the presence of athermal electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Enaki, N.A.; Mihalache, D

    1997-05-15

    The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized.

  1. Probing magnetic fields with multi-frequency polarized synchrotron emission

    CERN Document Server

    Thiebaut, Jerome; Pichon, Christophe; Thiébaut, Eric

    2009-01-01

    We investigate the problem of probing the local spatial structure of the magnetic field of the interstellar medium using multi-frequency polarized maps of the synchrotron emission at radio wavelengths. We focus in this paper on the three-dimensional reconstruction of the largest scales of the magnetic field, relying on the internal depolarization (due to differential Faraday rotation) of the emitting medium as a function of electromagnetic frequency. We argue that multi-band spectroscopy in the radio wavelengths, developed in the context of high-redshift extragalactic HI lines, can be a very useful probe of the 3D magnetic field structure of our Galaxy when combined with a Maximum A Posteriori reconstruction technique. When starting from a fair approximation of the magnetic field, we are able to recover the true one by using a linearized version of the corresponding inverse problem. The spectral analysis of this problem allows us to specify the best sampling strategy in electromagnetic frequency and predicts ...

  2. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com; Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); Müller, Heiko; Haider, Maximilian [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany); Tonomura, Akira [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  3. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    Science.gov (United States)

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  4. Fowler-Nordheim field emission effects in semiconductor nanostructures

    CERN Document Server

    Bhattacharya, Sitangshu

    2012-01-01

    This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb2, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi2Te3, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The boo...

  5. The influence of magnetic fields on absorption and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heshou; Yan, Huirong [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Richter, Philipp [Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Leibniz-Institut fuer Astrophysik Potsdam (AIP) (Germany)

    2016-10-15

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H II Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show that due to GSA, magnetic fields will affect the spectra of diffuse gas with high signal-to-noise(S/N) ratio under the condition that photon-excitation is much more efficient than thermal collision.

  6. Field emission from optimized structure of carbon nanotube field emitter array

    Science.gov (United States)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-04-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  7. Thermionic field emission transport in carbon nanotube transistors.

    Science.gov (United States)

    Perello, David J; Lim, Seong Chu; Chae, Seung Jin; Lee, Innam; Kim, Moon J; Lee, Young Hee; Yun, Minhee

    2011-03-22

    With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (σsd=∂Isd/∂Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and σsd with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined.

  8. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))

    1981-01-01

    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width, ..delta../d, of FEED peaks changed significantly due to beryllium adsorption; and the curve, ..delta../d vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  9. Geothermal emissions data base: Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A new database subset on the gaseous emissions from the Cerro Prieto geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1967 to 1969, and new additions will be appended periodically to the file. The data are accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film, or magnetic tape.

  10. Continuous field investigation assessing nitrogen and phosphorus emission from irrigated paddy field

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2016-04-01

    In order to maintain good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Other than urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Rice is one of the staple products of Asia and paddy field occupies large areas in Asian countries. Rice is also widely cultivated in Japan. Paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by discharging fertilizer, it is also suggested that paddy field has water purification function. Regarding to nutrient emission from paddy field, existing monitored data are insufficient so as to discuss quantitatively seasonal change of material behavior including flooding season and dry season and to evaluate year round comprehensive impact from paddy field to the river system. These are not sufficient data for discussion of material flow and emission impact quantitatively as well as qualitatively. We have carried out field investigation in paddy fields in middle reach of the Tone River Basin. The aim of the survey is understanding of water and nutrient balance in paddy field. In order to understand emission impact from paddy field to river system, all input and output flow are measured to calculate nutrient balance in paddy field. Therefore we observed quantity of water flow into/from paddy field, water quality change of inflow and outflow during flooding season. We set focus on a monitoring paddy field IM, and monitored continuously water and nutrient behavior. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and depth of flooding water, we tried to quantitatively understand N and P cycle around paddy field including seasonal tendency, change accompanying with rainy events and occurred according to agricultural events like fertilization. At the beginning of flooding season, we

  11. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  12. High Field Emission Current Density from Patterned Carbon Nanotube Field Emitter Arrays with Random Growth.

    Science.gov (United States)

    Khaneja, Mamta; Ghosh, Santanu; Gautam, Seema; Kumar, Prashant; Rawat, J S; Chaudhury, P K; Vankar, V D; Kumar, Vikram

    2015-05-01

    High field emission (FE) current density from carbon nanotube (CNT) arrays grown on lithographically patterned silicon substrates is reported. A typical patterned field emitter array consists of bundles of nanotubes separated by a fixed gap and spread over the entire emission area. Emission performance from such an array having randomly oriented nanotube growth within each bundle is reported for different bundle sizes and separations. One typical sample with aligned CNTs within the bundle is also examined for comparison. It is seen that the current density from an array having random nanotube growth within the bundles is appreciably higher as compared to its aligned counterpart. The influence of structure on FE current densities as revealed by Raman spectroscopy is also seen. It is also observed that current density depends on edge length and increases with the same for all samples under study. Highest current density of -100 mA cm(-2) at an applied field of 5 V/μm is achieved from the random growth patterned sample with a bundle size of 2 μm and spacing of 4 μm between the bundles.

  13. A model study of the role of workfunction variations in cold field emission from microstructures with inclusion of field enhancements

    Science.gov (United States)

    Qiu, H.; Joshi, R. P.; Neuber, A.; Dickens, J.

    2015-10-01

    An analytical study of field emission from microstructures is presented that includes position-dependent electric field enhancements, quantum corrections due to electron confinement and fluctuations of the workfunction. Our calculations, applied to a ridge microstructure, predict strong field enhancements. Though quantization lowers current densities as compared to the traditional Fowler-Nordheim process, strong field emission currents can nonetheless be expected for large emitter aspect ratios. Workfunction variations arising from changes in electric field penetration at the surface, or due to interface defects or localized screening, are shown to be important in enhancing the emission currents.

  14. Study of thermal-field emission properties and investigation of temperature dependent noise in the field emission current from vertical carbon nanotube emitters

    Science.gov (United States)

    Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.

    2017-10-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.

  15. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  16. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon.

    Science.gov (United States)

    Shearer, Cameron J; Fahy, Adam; Barr, Matthew; Dastoor, Paul C; Shapter, Joseph G

    2012-08-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm-1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm-2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported.

  17. Experimental Development of Low-emittance Field-emission Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaranwong, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Buzzard, C. [Northern Illinois Univ., DeKalb, IL (United States); Divan, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Korampally, V. [Northern Illinois Univ., DeKalb, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  18. Field Emission Electron Microprobe Analysis of Halogens in Apatite

    Science.gov (United States)

    Tacker, R. C.

    2011-12-01

    Field emission electron microprobe is capable of higher resolution and lower voltage than other microprobes, making it an ideal instrument for analysis of small accessory minerals in thin section such as apatite. In this study, the field emission electron microprobe was evaluated for analysis of fluorine and chlorine in apatite. Analysis was conducted on (001), (100) and an intermediate section of natural apatite crystals, using the JEOL JXA-8530F Hyperprobe, located at Fayetteville State University in Fayetteville, North Carolina. Conditions were beam current of 10 nanoamps, accelerating voltages from 5-20 kV, and spot sizes from 1-10 micrometers. Very short counting times were used, some as little as 2 seconds. Analytical strategies exploited the fact that excitation energies for fluorine Kα are much lower than for chlorine. Earlier studies (e.g. Stormer et al. 1993; Fialin and Chopin, 2006) documented the complex behavior of beam-driven migration, subsurface accumulation and desorption during fluorine analysis. The cumulative effect is increase and then fall of count rates with time and repeated analysis. The details of earlier studies were reproduced: (1) Apatite analysis by electron microprobe has two additional unknown variables, which are the crystallographic orientation of the unknown and of the standard. (2) The most reliable measure of fluorine cps is derived from a regression to zero time, accounting for crystal orientation; (3) Changing the analytical conditions (accelerating voltage, spot size, duration of analysis) changes only the time scale over which migration and desorption take place. New results from the JEOL Hyperprobe show that, for all crystal orientations, initial fluorine cps increase from 5 and 7 kV to 10 kV, but decrease systematically with further increases in kV, interpreted as loss of fluorine without concomitant excitation of X-rays. To date, fluorine analysis is routinely conducted at 15 and 20 kV. In contrast, chlorine initial

  19. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  20. New superior-inferior visual field asymmetry indices for detecting POAG and their agreement with the glaucoma hemifield test.

    Science.gov (United States)

    Ghazali, N; Aslam, T; Henson, D B

    2015-10-01

    To describe and measure the discriminatory performance of three new superior-inferior asymmetry indices for detecting primary open angle glaucoma (POAG) and to compare these with the glaucoma hemifield test (GHT). In all, 412 control and 247 POAG eyes were selected from a visual field database of patients attending the Manchester Royal Eye Hospital. Age-adjusted defect asymmetries were calculated for each of the 22 vertically mirrored test point pairs used in the GHT. The three new indices, hemifield mean difference (HMD) and hemifield standard deviation (HSD) of the asymmetry values along with the number of test pairs (NP) falling outside the 85% probability limits of the control population, were calculated. ROC curves of the indices and GHT were constructed. Agreement between the indices was explored with a proportional Venn diagram and 3 × 3 contingency tables. Cases of disagreement between the indices were reviewed. The area under the ROC curves were HMD=0.745 (95% confidence interval (CI) 0.705-0.786), HSD=0.864 (95% CI 0.833-0.894), NP=0.863 (95% CI 0.832-0.893) and GHT=0.792 (95% CI 0.754-0.829). The Venn diagram and contingency tables highlighted the good agreement between HSD, NP and GHT. Agreement was 78% (HSD vs. GHT) and 82% (NP vs. GHT) in the control sample and 70% (HSD vs. GHT) and 71% (NP vs. GHT) in the POAG sample. Five cases are presented where disagreement existed between the indices. The new HSD and NP asymmetry indices perform better than GHT in differentiating between normal and POAG eyes in this data set. GHT can fail to detect significant asymmetry, detected by HSD and NP, when an early defect crosses sector boundaries.

  1. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  2. Fe K emission from active galaxies in the COSMOS field

    CERN Document Server

    Iwasawa, K; Brusa, M; Comastri, A; Gilli, R; Vignali, C; Hasinger, G; Sanders, D B; Cappelluti, N; Impey, C D; Koekemoer, A; Lanzuisi, G; Lusso, E; Merloni, A; Salvato, M; Taniguchi, Y; Trump, J R

    2011-01-01

    We present a rest-frame spectral stacking analysis of ~1000 X-ray sources detected in the XMM-COSMOS field in order to investigate the iron K line properties of active galaxies beyond redshift z~1. In Type I AGN that have a typical X-ray luminosity of Lx~1.5e44 erg/s and z~1.6, the cold Fe K at 6.4 keV is weak (EW~0.05keV), in agreement with the known trend. In contrast, high-ionization lines of Fe XXV and Fe XXVI are pronounced. These high-ionization Fe K lines appear to have a connection with high accretion rates. While no broad Fe emission is detected in the total spectrum, it might be present, albeit at low significance, when the X-ray luminosity is restricted to the range below 3e44 erg/s, or when an intermediate range of Eddington ratio around 0.1 is selected. In Type II AGN, both cold and high-ionzation lines become weak with increasing X-ray luminosity. However, strong high-ionization Fe K (EW~0.3 keV) is detected in the spectrum of objects at z>2, while no 6.4 keV line is found. It is then found that...

  3. Synthesis of bismuth tungstate (Bi{sub 2}WO{sub 6}) nanoflakes and their field emission investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kolhe, P. S.; Sonawane, K. M. [Department of Physics, Fergusson College, Pune 411 004 (India); Bankar, P. K.; Gavhane, D. S.; More, M. A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in materials Science and Condensed Matter Physics, Department of Physics, Savitribai Phule Pune University, Pune-411 00.7 (India); Maiti, N. [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-05-23

    The nanoflakes of Bismuth Tungstate (Bi{sub 2}WO{sub 6}) were successfully synthesized by a one-step facile hydrothermal route without using any templates or surfactants and field emission investigations of the Bi{sub 2}WO{sub 6} nanoflakes emitter are reported. Structural and morphological analysis of as-synthesized Bi{sub 2}WO{sub 6} nanoflakes has been carried out using X-ray diffraction (XRD) and scanning electron microscope (SEM). Moreover, the field emission characteristics of the Bi{sub 2}WO{sub 6} nanoflakes are found to be superior to the other semiconductor emitters. The synthesized Bi{sub 2}WO{sub 6} nanoflakes emitter delivers current density of ~222.35 μA/cm{sup 2} at an applied electric field of ~7.2 V/μm. The emission current stability investigated at pre-set value of ~2 μA is observed to be fairly good. These observed results demonstrate potential candidate of the Bi{sub 2}WO{sub 6} cathode as an electron source for practical applications in vacuum microelectronic device.

  4. Earthworms can increase nitrous oxide emissions from managed grassland: a field study

    NARCIS (Netherlands)

    Lubbers, I.M.; López González, E.; Hummelink, E.W.J.; Groenigen, van J.W.

    2013-01-01

    Earthworms are important in determining the greenhouse gas (GHG) balance of soils. In laboratory studies they have been shown to increase emissions of the potent GHG nitrous oxide (N2O). Here we test whether these earthworm-induced N2O emissions also occur in the field. We quantified N2O emissions

  5. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...... Danish elementary school. The emission test cell was capable of measuring widely varying specific emission rates of PCBtotal (8-3357 ng/(m2·h)). Remediated measures were found to reduce the emission rates by more than 96% compared with similar untreated surfaces. Emission rates may be affected...... by the conditions in the test cell (such as clean air and increased air velocity) and thereby potentially be different without the test cell attached to the surface. Still the measured emission rates obtained by using the test cell are valuable for determination of mitigation strategies. Additionally the test cell...

  6. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Joo, Sang W

    2011-09-07

    Field emission properties of CuAlO(2) nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm(-1) and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

  7. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T

    1998-01-01

    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  8. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leifeng, E-mail: chlf@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); He, Hong; Yu, Hua; Cao, Yiqi [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Lei, Da, E-mail: leida126@126.com [Ordos College of Inner Mongolia University, Inner Mongolia University, Ordos 017000 (China); Menggen, QiQiGe [Ordos College of Inner Mongolia University, Inner Mongolia University, Ordos 017000 (China); Wu, Chaoxing; Hu, Liqin [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002 (China)

    2014-10-15

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties.

  9. Field Thermal Infrared Emissivity Dependence on Soil Moisture

    Science.gov (United States)

    Accurate estimate of land surface temperature, a key parameter in surface energy balance models, requires knowledge of the surface emissivity. Emissivity dependence on soil water content has been already reported and modeled under controlled conditions at the laboratory. This study completes and ext...

  10. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    FINAL REPORT Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions ESTCP Project WP-200212...PROGRAM ELEMENT NUMBER Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions 6. AUTHOR(S) 5d. PROJECT

  11. Analysis of a copper sample for the CLIC ACS study in a field emission scanning microscope

    CERN Document Server

    Muranaka, Tomoko; Leifer, Klaus; Ziemann, Volker; Navitski, Aliaksandr; Müller, Günter

    2011-01-01

    We report measurements on a diamond turned Copper sample of material intended for the CLIC accelerating structures. The first part of the measurements was performed at Bergische Universität Wuppertal using a field emission scanning microscope to localize and characterize strong emission sites. In a second part the sample was investigated in an optical microscope, a white-light profilometer and scanning electron microscope in the microstructure laboratory in Uppsala to attempt to identify the features responsible for the field emission.

  12. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films

    Science.gov (United States)

    Saravanan, A.; Huang, B. R.; Sankaran, K. J.; Dong, C. L.; Tai, N. H.; Lin, I. N.

    2015-03-01

    The electron field emission (EFE) properties of ultrananocrystalline diamond films were markedly improved via the bias-enhanced plasma post-treatment (bep) process. The bep-process induced the formation of hybrid-granular structure of the diamond (bep-HiD) films with abundant nano-graphitic phase along the grain boundaries that increased the conductivity of the films. Moreover, the utilization of Au-interlayer can effectively suppress the formation of resistive amorphous-carbon (a-C) layer, thereby enhancing the transport of electrons crossing the diamond-to-Si interface. Therefore, bep-HiD/Au/Si films exhibit superior EFE properties with low turn-on field of E0 = 2.6 V/μm and large EFE current density of Je = 3.2 mA/cm2 (at 5.3 V/μm).

  13. Analysis of the Extremely Low Frequency Magnetic Field Emission from Laptop Computers

    Directory of Open Access Journals (Sweden)

    Brodić Darko

    2016-03-01

    Full Text Available This study addresses the problem of magnetic field emission produced by the laptop computers. Although, the magnetic field is spread over the entire frequency spectrum, the most dangerous part of it to the laptop users is the frequency range from 50 to 500 Hz, commonly called the extremely low frequency magnetic field. In this frequency region the magnetic field is characterized by high peak values. To examine the influence of laptop’s magnetic field emission in the office, a specific experiment is proposed. It includes the measurement of the magnetic field at six laptop’s positions, which are in close contact to its user. The results obtained from ten different laptop computers show the extremely high emission at some positions, which are dependent on the power dissipation or bad ergonomics. Eventually, the experiment extracts these dangerous positions of magnetic field emission and suggests possible solutions.

  14. The field emission properties from the pristine/B-doped graphene–C{sub 70} composite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoju; Wang, Yan; Yang, Ping, E-mail: yangpingdm@ujs.edu.cn

    2017-06-28

    The aim of this paper is to implement a theoretical prediction and evaluation on the quality of graphene–C{sub 70} composite as cathode material. The pristine graphene–C{sub 70} composite and the B-doped graphene–C{sub 70} composites were constructed to investigate their field emission properties. The results suggest that the work function (WF) and ionization potential (IP) of the composites decrease with the increasing electric field. It implies that the electron emission becomes more and more easy. Under the field, the molecular orbital energy levels close to the vacuum level and their energy gap also has a declining trend. It means a good trend for improving the field emission properties of the composites. The above mentioned results show that the composites have the advanced capacity for electron emission and the potential for cathode material. It makes us believe that the composites will be the good field emission electron sources in the electronic device fabrication and the investigation can give a theoretical guidance for the corresponding experiments and may develop the application of fullerene for field emission. - Highlights: • We implement a theoretical prediction on graphene–C{sub 70} composite as cathode materials. • We detect the work function of the composite decrease with increasing electric field. • The ionization potential of the composites decrease with increasing electric field. • We find the molecular orbital energy level close to the vacuum level under the field. • The composites have the advanced capacity for electron emission as cathode material.

  15. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Ren, Wei; Tao, Bo; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Pan, Shufen

    2016-09-01

    Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901-2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 ± 0.1 Tg CH4/yr (Avg. ±1 SD) under intermittent irrigation to 38.8 ± 1.0 Tg CH4/yr under continuous flooding in the 2000s, indicating that the magnitude of CH4 emissions from global rice fields is largely dependent on different water schemes. Over the past 110 years, our simulated results showed that global CH4 emissions from rice cultivation increased by 85%. The expansion of rice fields was the dominant factor for the increasing trends of CH4 emissions, followed by elevated CO2 concentration, and nitrogen fertilizer use. On the contrary, climate variability had reduced the cumulative CH4 emissions for most of the years over the study period. Our results imply that CH4 emissions from global rice fields could be reduced through optimizing irrigation practices. Therefore, the future magnitude of CH4 emissions from rice fields will be determined by the human demand for rice production as well as the implementation of optimized water management practices.

  16. Field emission of metal nanowires studied by first-principles methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Ki [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Bora [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Ihm, Jisoon [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Seungwu [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2007-11-28

    We study the field-emission properties of an ultrathin silver nanowire using first-principles methods. The simulation and analysis of the field emission are carried out based on density-functional theory using a localized basis scheme. Through the explicit time evolution of wavefunctions, we obtain the emission currents and spatial distributions of emitted electrons from a silver nanowire. In contrast to carbon nanotubes, the localized states are not found. Instead, pronounced emission currents are observed for s-like extended states that are free of nodes in a plane normal to the field direction, and the total emission currents of a silver nanowire are found to be significantly larger than those of carbon nanotubes. A quantum-mechanical analysis is presented to explain the observed current enhancement. On the other hand, an ultrathin gold nanowire gives much smaller emission currents than the silver nanowire due to a larger work function.

  17. Strong Electron Field Emission from Nano-CdS Modified Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    XU Ling; HAN Guan-Qi; WENG Jian; TAM Hoi-Lam; Li King-Fai; ZHANG Yu; XU Jun; HUANG Xin-Fan; CHEAH Kok-Wai

    2004-01-01

    A nano-CdS modified porous silicon (nano-CdS/PS) field emitter is fabricated by chemical method at room temperature. The electron field emission characteristics show that the turn-on field for nano-CdS/PS is about 4.0 V/m and the emission current reaches about 20μA/cm2 at 5.0 V/μm. This emission current is 20 times larger than that of the PS substrate without nano-CdS modification. The strong field emission properties make the nano-CdS/PS field emitter a good candidate for applications in the field of electronic and optoelectronic devices.

  18. Densification effects of the carbon nanotube pillar array on field-emission properties

    Science.gov (United States)

    Wang, Kuang-Yu; Chou, Chia-Hsin; Liao, Chan-Yu; Li, Yu-Ren; Cheng, Huang-Chung

    2016-06-01

    In this study, a simple densification method for carbon nanotube (CNT) pillars is proposed to achieve high-performance field emission characteristics and stable emission. Through capillary force during solution evaporation, the CNT density in each pillar can be increased by about six times without causing damage to the crystallinity of CNTs. The densified CNT pillars exhibit lower series resistance, sharper pillars, better contacts, higher thermal conductivity, and better mechanical stiffness than as-grown ones. Therefore, the threshold field of the field emitter with such CNT pillars of 50 µm height can be reduced to 1.98 V/µm, as compared with 2.2 V/µm for the undensified ones. Moreover, the fluctuation of field-emission current decreases from 15.5 to 9.4% after the stress tests at a field of 2 V/µm for 1800 s. These findings imply that the densified CNT pillars are promising for the field-emission applications.

  19. Field Emission from an Array of Free-standing Metallic Nanowires

    Institute of Scientific and Technical Information of China (English)

    张耿民; Emmanuel ROY; 刘虹雯; 刘惟敏; 侯士敏; Kui YU-ZHANG; 薛增泉

    2002-01-01

    Arrays of single crystalline gold nanowires were synthesized electrochemically in porous polycarbonate mem-branes. The polycarbonate membrane was then removed to obtain free-standing nanowires for field emissionmeasurements. The turn-on electric field strength for field emission is found to be lower than 2V/μm. The actualelectric field that extracted electrons out of the gold nanowires is estimated to be about 1 03 times higher than thefield directly expected in the model of a parallel plate condenser. The availability of the field emission is thereforeattributed to the strong electric field at the tips resulting from smallcurvature radius of the gold nanowires.

  20. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  1. Growth of Aligned Multiwall Carbon Nanotubes and the Effect of Adsorbates on the Field Emission Properties

    Science.gov (United States)

    Milne, W. I.; Teo, K. B. K.; Lansley, S. B.; Chhowalla, M.; Amaratunga, G. A. J.; Semet, V.; Binh, Vu Thien; Pirio, G.; Legagneux, P.

    2003-10-01

    In attempt to decipher the field emission characteristics of multiwall carbon nanotubes (MWCNTs), we have developed a fabrication method based on plasma enhanced chemical vapour deposition (PECVD) to provide utmost control of the nanotube structure such as their alignment, individual position, diameter, length and morphology. We investigated the field emission properties of these nanotubes to elucidate the effect of adsorbates on the nanotubes. Our results show that although the adsorbates cause an apparent lowering of the required turn on voltage/field of the nanotubes, the adsorbates undesirably cause a saturation of the current, large temporal fluctuations in the current, and also a deviation of the emission characteristics from Fowler-Nordheim like emission. The adsorbates are easily removed by extracting an emission current of 1 uA per nanotube or using a high applied electric field (˜25V/um).

  2. Field emission of carbon quantum dots synthesized from a single organic solvent

    Science.gov (United States)

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-01

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm-2 at 7.0 V μm-1 and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  3. Hysteresis phenomenon of the field emission from carbon nanotube/polymer nanocomposite

    Science.gov (United States)

    Filippov, S. V.; Popov, E. O.; Kolosko, A. G.; Romanov, P. A.

    2015-11-01

    Using the high voltage scanning method and the technique of multichannel recording and processing of field emission (FE) characteristics in real time mode we found out some subtle effects on current voltage characteristics (IVC) of the multi-tip field emitters. We observed the direct and reverse hysteresis simultaneously in the same field emission experiment. Dependence of the form of IVC hysteresis on time of high voltage scanning was observed.

  4. Effect of outgassing on the field emission property of tetrapod ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [School of Electronic Science and Engineering, Southeast University, Nanjing (China); Department of Basic Courses, Nanjing Institute of Technology, Nanjing (China); Jiangsu Information Display Engineering Research Center, Nanjing (China); Zhang, Xiaobing; Lei, Wei [School of Electronic Science and Engineering, Southeast University, Nanjing (China); Jiangsu Information Display Engineering Research Center, Nanjing (China); Wang, Jinchan [School of Electronic and Information Engineering, Henan University of Science and Technology, Luoyang (China); Di, Yunsong [Jiangsu Information Display Engineering Research Center, Nanjing (China); Yang, Xiaxi; Chen, Jing [School of Electronic Science and Engineering, Southeast University, Nanjing (China)

    2012-01-15

    To study the mechanism of current degradation of a cold cathode, the outgassing measurement of a field emission diode with tetrapod zinc oxide (ZnO) cathode has been taken with a quadrupole mass spectrometer (QMS) in an ultra-high vacuum (UHV) system. It was found that the H{sub 2}, CO{sub 2}, CO, and CH{sub 4} were outgassed from the diode during the working process. The partial pressure of outgassing increases with the increased emission current density. The field emission properties of the cold cathode, such as turn-on field, threshold field and the emission current density, were largely related to the pressure of the outgases. From the outgassing experimental results, the relation between the emission current degradation and the outgassing of field emission devices has been found. Due to the outgassing, the work function of ZnO cold cathode increases, while the field enhancement factor decreases. Therefore, the outgassing plays very important role in the current degradation for the field emission devices. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    Science.gov (United States)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  6. Measurement of Ammonia Emission Following Surface Application of Urea Fertilizer from Irrigated Paddy Rice Fields

    Institute of Scientific and Technical Information of China (English)

    Md.Toufiq Iqbal; TIAN Guang-ming; LIANG Xin-qiang; Fatima Rukshana

    2005-01-01

    Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.

  7. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration

    OpenAIRE

    Ghose, Dipanwita; Wallace, Mark T.

    2013-01-01

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although...

  8. Field emission from one-dimensional single-crystalline NdB6 nanowires

    Institute of Scientific and Technical Information of China (English)

    FAN Qinghua; ZHANG Qinyuan; ZHAO Yanming; DING Qiwei

    2013-01-01

    A facile catalysis-free method was utilized to synthesize functional neodymium hexaboride (NdB6) nanowires of single crystal using Nd powders and BCl3 as starting materials.The XRD pattern confirmed that a single phase NdB6 could be obtained.Raman-spectra elucidated the active vibrational modes of the hexaborides.The TEM images clearly showed that the hexaborides were submicron in size with a cubic morphology.The field emission of these one-dimensional NdB6 nanowires showed a low field emission turn-on (5.55 V/μm at a current density of 10 μA/cm2),and high current density with a field enhancement factor of 1037.The emission current density and the electric field followed the Fowler-Nordheim (F-N) relationship.The good performance for field emission was attributed to the single-crystalline structure and the nanowire geometry.

  9. Field Emission from Self-Assembled Arrays of Lanthanum Monosulfide Nanoprotrusions

    Directory of Open Access Journals (Sweden)

    V. Semet

    2008-01-01

    Full Text Available The field emission properties of LaS nanoprotrusions called nanodomes, formed by pulsed laser deposition on porous anodic alumina films, have been analyzed with scanning anode field emission microscopy. The voltage necessary to produce a given field emission current is ∼3.5 times less for nanodomes than for thin films. Assuming the same work function for LaS thin films and nanoprotrusions, that is, ∼1 eV, a field enhancement factor of ∼5.8 is extracted for the nanodome emitters from Fowler-Nordheim plots of the field emission data. This correlates well with the aspect ratio of the tallest nanodomes observed in atomic force micrograph measurements.

  10. On the Morphology, Structure and Field Emission Properties of Silver-Tetracyanoquinodimethane Nanostructures

    Directory of Open Access Journals (Sweden)

    Zheng Kaibo

    2010-01-01

    Full Text Available Abstract Silver-tetracyanoquinodimethane(Ag-TCNQ nanostructured arrays with different morphologies were grown by an organic vapor-transport reaction under different conditions. The field emission properties of nanostructured arrays were studied systematically. Their morphology and crystal structure were characterized by SEM and XRD, respectively. It was found that the field emission properties were strongly dependent on the reaction temperature and the initial Ag film thickness. The lowest turn-on field with 10-nm-thick silver film is about 2.0 V/μm, comparable to that of carbon nanotubes. The film crystal structure and the morphology are contributed to the final emission performance.

  11. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Science.gov (United States)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  12. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    Science.gov (United States)

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  13. Novel planar field emission of ultra-thin individual carbon nanotubes.

    Science.gov (United States)

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  14. Field emission from carbon films deposited by VHF CVD on difference substrates

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, A A; Andronov, A N; Felter, T E; Ioffe, A F; Kosarev, A I; Shotov, M V; Vinogradov, A J

    1999-04-01

    As previously demonstrated, non-diamond carbon (NDC) films deposited at low temperatures 200-300 C on silicon tips reduced the threshold of field emission. In this paper we will present the results of the study of field emission from flat NDC films prepared by VHF CVD. Emission measurements were performed in a diode configuration at approximately 10{sup {minus}10} Torr. NDC films were deposited on ceramic and on c-Si substrates sputter coated with layers of Ti, Cu, Ni and Pt. The back contact material influences the emission characteristics but not as a direct correlation to work function. A model of field emission from metal-NDC film structures will be discussed.

  15. Field emission property of ZnO nanowires prepared by ultrasonic spray pyrolysis

    OpenAIRE

    2015-01-01

    The field emission property of cold cathode emitters utilizing the ZnO nanowires with various conditions prepared by ultrasonic spray pyrolysis technique was discussed. It is found that the emission current was enhanced in the emitters having higher aspect ratio as well as smaller sheet resistance. Applying of post-annealing process, utilization of additional Mo back electrode in the cathode, and coating of Moon the ZnO nanowires resulted in the improvement of the emission current and lowerin...

  16. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew;

    2015-01-01

    Electron microscopy and electron diffraction techniques rely on electron sources. Those sources require strong electric fields to extract electrons from metals, either by the photoelectric effect, driven by multiphoton absorption of strong laser fields, or in the static field emission regime...

  17. Modelling of the surface emission of the low magnetic field magnetar SGR 0418+5729

    NARCIS (Netherlands)

    Guillot, S.; Perna, R.; Rea, N.; Viganò, D.; Pons, J.A.

    2015-01-01

    We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further

  18. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew;

    2015-01-01

    Electron microscopy and electron diffraction techniques rely on electron sources. Those sources require strong electric fields to extract electrons from metals, either by the photoelectric effect, driven by multiphoton absorption of strong laser fields, or in the static field emission regime. Ter...

  19. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, A.; Huang, B. R. [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Yeh, C. J.; Leou, K. C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2015-06-08

    A diamond-based nano-carbon composite (d/NCC) material, which contains needle-like diamond grains encased with the nano-graphite layers, was synthesized at low substrate temperature via a bias enhanced growth process using CH{sub 4}/N{sub 2} plasma. Such a unique granular structure renders the d/NCC material very conductive (σ = 714.8 S/cm), along with superior electron field emission (EFE) properties (E{sub 0} = 4.06 V/μm and J{sub e} = 3.18 mA/cm{sup 2}) and long lifetime (τ = 842 min at 2.41 mA/cm{sup 2}). Moreover, the electrical conductivity and EFE behavior of d/NCC material can be tuned in a wide range that is especially useful for different kind of applications.

  20. Estimation of emissions from field burning of crop straw in China

    Institute of Scientific and Technical Information of China (English)

    CAO GuoLiang; ZHANG XiaoYe; WANG YaQiang; Zheng FangCheng

    2008-01-01

    Emissions resulting from crop straw field burning in China, which have caused serious environmental problems in China, are estimated in this paper. From the county-level data of crop production in 2000-2003 from the government statistics, taking into account the ratio of residue and grain, the total amount of crop straw production is estimated to be about 600 Tg per year, 76% of which are rice, wheat and corn straw. With reference to the data of living standards, the percentage of crop straw burnt in fields for counties are obtained and consequently the total amount of burnt straws is approximately 140 Tg/year. With the emission factors from literature and experiments, appropriate emission factors have been obtained. The total amounts of PM, SO2, NOx, NH3, CH4, BC, OC, VOC, CO, CO2 emissions from field burning of crop straw in China are estimated. All emissions are presented at county level. Some pollutants, such as BC, VOC, OC, CO and CO2, are contributing a major portion to the total emissions of China. This paper uses a map with resolution of 0.2°×0.2° to present the PM emissions distribution from crop straw burnt in 2003. The results show a significant regional unevenness of emissions, with larger amounts of pollutions coming from the provinces in eastern and northeast China. The regions with higher emissions per unit area are located as a belt stretching from northeast China to eastern China.

  1. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    Science.gov (United States)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  2. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  3. Improved field emission performance of carbon nanotube by introducing copper metallic particles.

    Science.gov (United States)

    Chen, Yiren; Jiang, Hong; Li, Dabing; Song, Hang; Li, Zhiming; Sun, Xiaojuan; Miao, Guoqing; Zhao, Haifeng

    2011-10-03

    To improve the field emission performance of carbon nanotubes (CNTs), a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO) electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  4. Sensitivity of detection of fugitive methane emissions from coal seam gas fields

    Science.gov (United States)

    Feitz, A. J.; Berko, H.; Wilson, P.; Jenkins, C.; Loh, Z. M.; Etheridge, D.

    2013-12-01

    There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of δ13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and

  5. Peculiarities of the electron field emission from quantum-size structures

    Science.gov (United States)

    Litovchenko, V. G.; Evtukh, A. A.; Litvin, Yu. M.; Goncharuk, N. M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D.

    2003-06-01

    The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO 2-Si ∗-SiO 2 with delta-doped Si ∗ layer, nanocomposite layers SiO xN y(Si) with Si nanocrystals embedded in SiO xN y matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.

  6. Peculiarities of the electron field emission from quantum-size structures

    Energy Technology Data Exchange (ETDEWEB)

    Litovchenko, V.G.; Evtukh, A.A.; Litvin, Yu.M.; Goncharuk, N.M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D

    2003-06-15

    The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO{sub 2}-Si*-SiO{sub 2} with delta-doped Si* layer, nanocomposite layers SiO{sub x}N{sub y}(Si) with Si nanocrystals embedded in SiO{sub x}N{sub y} matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.

  7. Rehybridization of atomic orbitals and field electron emission from nanostructured carbon

    CERN Document Server

    Obraztsov, A N; Boronin, A I; Koshcheev, S V

    2001-01-01

    The results of the experimental study on the electron field emission, structural peculiarities and electron properties of carbon films, obtained through the gas-phase chemical deposition, are presented. It is shown that the field emission for the films, consisting of the spatially oriented carbon nanotubes and graphite laminar nanocrystallites, is observed by the electric field intensity by one-two orders lower than the values, representative for the metal emitters. The experimental data, testifying to the local decrease in the yield performance in such carbon materials in comparison with the graphite are obtained for the first time. The model of the emission center and the field emission mechanism for the nanostructured carbon are proposed

  8. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    Science.gov (United States)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  9. Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jing; Wu Yue; Bai Xin; Zhang Wei; Yu Ligang [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)], E-mail: Xiao@pku.edu.cn, E-mail: Nanoele@gmail.com

    2008-07-07

    Two kinds of novel ZnO pyramid arrays with nanorods were synthesized by a simple pressure controlled thermal evaporation method without any catalyst. The field emission properties of the ZnO pyramid arrays with nanorods have been investigated: the turn-on electric field (at the current density of 10 {mu}A cm{sup -2}) was about 3.7 and 4.5 V {mu}m{sup -1} and the threshold electric field (at the current density of 1 mA cm{sup -2}) was 6.0 and 6.6 V {mu}m{sup -1}. The good field emission properties were believed to benefit from good arrangement and low emitter density. This work provided a simple and catalyst-free method to control the density of the emitters, which could efficiently suppress the field-screening effect and improve the field emission properties.

  10. Charge transport effects in field emission from carbon nanotube-polymer composites

    OpenAIRE

    Smith, RC; Carey, JD; Murphy, RJ; Blau, WJ; Coleman, JN; Silva, SRP

    2006-01-01

    Electron field emission measurements have been made on multiwall arc discharge carbon nanotubes embedded in a conjugated polymer host. Electron emission at low nanotube content is observed and attributed to an enhancement of the applied electric field at the polymer/nanotube/vacuum interface where the electron supply through the film is attributed to fluctuation induced tunneling in a disordered percolation network. A high network resistance is attributed to a polymer coating surrounding each...

  11. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves

    Science.gov (United States)

    Roden, Christoph A.; Bond, Tami C.; Conway, Stuart; Osorto Pinel, Anibal Benjamin; MacCarty, Nordica; Still, Dean

    We implemented a program in which emission characterization is enabled through collaborations between academic, US and international non-governmental entities that focus on evaluation, dissemination, and in-use testing, of improved cookstoves. This effort resulted in a study of field and laboratory emissions from traditional and improved biofuel cookstoves. We found that field measured particulate emissions of actual cooking average three times those measured during simulated cooking in the laboratory. Emission factors are highly dependent on the care and skill of the operator and the resulting combustion; these do not appear to be accurately reproduced in laboratory settings. The single scattering albedo (SSA) of the emissions was very low in both lab and field measurements, averaging about 0.3 for lab tests and around 0.5 for field tests, indicating that the primary particles are climate warming. Over the course of three summers in Honduras, we measured field emissions from traditional cookstoves, relatively new improved cookstoves, and "broken-in" improved cookstoves. We found that well-designed improved cookstoves can significantly reduce PM and CO emission factors below traditional cookstoves. For improved stoves, the presence of a chimney generally resulted in lower emission factors but left the SSA unaffected. Traditional cookstoves had an average PM emission factor of 8.2 g kg -1 - significantly larger than previous studies. Particulate emission factors for improved cookstoves without and with chimneys averaged about 6.6 g kg -1 and 4.5 g kg -1, respectively. The elemental carbon (EC) fraction of PM varied significantly between individual tests, but averaged about 25% for each of the categories.

  12. Enhanced field emission of graphene–ZnO quantum dots hybrid structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Zhicheng College, Fuzhou University, Fuzhou 350002 (China); National & Local United Engineer Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002 (China); Zhou, Xiongtu [National & Local United Engineer Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Yongai, E-mail: yongaizhang@fzu.edu.cn [National & Local United Engineer Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002 (China); Guo, Tailiang, E-mail: gtl_fzu@hotmail.com [National & Local United Engineer Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002 (China)

    2015-05-25

    Highlights: • ZnO quantum dots decorated graphene by solution process. • The hybrid emitters exhibited efficient field emission properties. • The enhancement is attributed to ZnO quantum dots. - Abstract: The cathode of graphene was prepared by the electrophoretic deposition (EPD) and ZnO quantum dots (QDs) were grown on the surface of graphene sheets by solution method to improve the field emission (FE) properties. The graphene/ZnO QDs hybrid emitters exhibited efficient field emission with lower turn-on field of 0.9 V/μm, lower threshold field of 2.6 V/μm, higher field enhancement factor of 3923 and more stable emission current stability than pristine graphene. The improved field emission performance was attributed to ZnO QDs, which introduce more defects, increase the number of emitting sites and decrease the work function. This investigation proposed that graphene/ZnO QDs composites are promising field cathodes in FE applications.

  13. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  14. Emission Laws and Influence Factors of Greenhouse Gases in Saline-Alkali Paddy Fields

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2016-02-01

    Full Text Available The study of greenhouse gas emissions has become a global focus, but few studies have considered saline-alkali paddy fields. Gas samples and saline-alkali soil samples were collected during the green, tillering, booting, heading and grain filling stages. The emission fluxes of CO2, CH4, and N2O as well as the pH, soil soluble salt, available nitrogen, and soil organic carbon contents were detected to reveal the greenhouse gas (GHG emission laws and influence factors in saline-alkali paddy fields. Overall, GHG emissions of paddy soil during the growing season increased, then decreased, and then increased again and peaked at booting stage. The emission fluxes of CO2 and CH4 were observed as having two peaks and a single peak, respectively. Both the total amount of GHG emission and its different components of CO2, CH4, and N2O increased with the increasing reclamation period of paddy fields. A positive correlation was found between the respective emission fluxes of CO2, CH4, and N2O and the available nitrogen and SOC, whereas a negative correlation was revealed between the fluxes of CO2, CH4, and N2O and soil pH and soil conductivity. The study is beneficial to assessing the impact of paddy reclamation on regional greenhouse gas emissions and is relevant to illustrating the mechanisms concerning the carbon cycle in paddy soils.

  15. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  16. Designing variable height carbon nanotube bundle for enhanced electron field emission

    Science.gov (United States)

    Khaneja, Mamta; Ghosh, Santanu; Chaudhury, P. K.; Vankar, V. D.; Kumar, Vikram

    2015-05-01

    A variable height model has been implemented in order to improve the emission performance from a nanotube bundle. A Gaussian distribution of nanotube heights has been considered. This resulted in a nearly uniform electric field distribution across all the nanotubes and consequently an enhanced emission current in comparison to a nanotube bundle with all the nanotubes having the same height. Simulation results from linear as well as area nanotube bundles are reported. The analysis helped in providing a better understanding of the previously reported experimental results on enhanced field emission from plasma treated nanotube bundles having CNTs of variable heights.

  17. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property.

    Science.gov (United States)

    Qian, Cheng; Qi, Hang; Gao, Bo; Cheng, Yuan; Qiu, Qi; Qin, Lu-Chang; Zhou, Otto; Liu, Jie

    2006-05-01

    A unique type of carbon nanotubes with 2 to 5 layers of sidewalls and diameters less than 10 nm was synthesized by the thermal chemical vapor deposition (CVD) method with MgO supported Fe/Mo catalyst. Unlike the typical CVD grown multi-walled carbon nanotubes, these few-walled carbon nanotubes (FWNTs) have a high degree of structural perfection. They have enhanced electron field emission characteristics compared to the current commercial nanotubes, with a low threshold field for emission and improved emission stability.

  18. The Influence of Helical Magnetic Fields in the Dynamics and Emission of Relativistic Jets

    CERN Document Server

    Roca-Sogorb, M; Gómez, J L; Martí, J M; Antón, L; Aloy, M A; Agudo, I

    2008-01-01

    We present numerical relativistic magnetohydrodynamic and emission simulations aimed to study the role played by the magnetic field in the dynamics and emission of relativistic jets in Active Galactic Nuclei. We focus our analysis on the study of the emission from recollimation shocks since they may provide an interpretation for the stationary components seen at parsec-scales in multiple sources. We show that the relative brightness of the knots associated with the recollimation shocks decreases with increasing jet magnetization, suggesting that jets presenting stationary components may have a relatively weak magnetization, with magnetic fields of the order of equipartition or below.

  19. Effects of cracks and some key factors on emissions of nitrous oxide in paddy fields

    Institute of Scientific and Technical Information of China (English)

    HUANG Shu-hui; LU Jun; TIAN Guang-ming

    2005-01-01

    Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field practices, such as fertilization, flooding/draining management were investigated to study on agricultural activities on paddy field affect the dynamic process of the emission. Under no addition of fertilizers the average emission flux of nitrous oxide was 8.55 μg/(m2· h) during the rice( Oryza Sativa L. ) growth season. The results indicated that most of nitrous oxide emissions occurred during the crack forming-and-expansion period when paddy field was being drained. The diurnal emissions peak of nitrous oxide appeared at 20:30 at night in cracked rice fields. The statistical analysis suggested that the correlation of nitrous oxide emissions flux (Y) with soil water content ( X1 ), soil temperature ( X2 ), and Eh ( X3 ), could be described in a regression equation: Y= - 1498.95 + 2895.48 X1 + 50.63 X2 -96.99X1 · X2 + 0.006X2· X3. There were the different power equations to simulate the correlations between the everyday dynamic N2O emissions and the mean surface area of cracks, mean volume and depth of cracks respectively during paddy soil drying by soil columns incubation experiments. Taken all together, the current study presented a dynamic analysis of nitrous oxide emission of paddy field under various conditions, therefore provided a basis for the management to balance between environmental effect and paddy field activities.

  20. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    Science.gov (United States)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  1. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    Science.gov (United States)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  2. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.

    Science.gov (United States)

    He, Chunshan; Wang, Weiliang; Deng, Shaozhi; Xu, Ningsheng; Li, Zhibing; Chen, Guihua; Peng, Jie

    2009-06-25

    Field electron emission from single-walled (5,5) carbon nanotubes was simulated with a quantum chemistry method, emphasizing the effect of distance between the anode and apex. The emission probability and the field enhancement factor were obtained for different anode-apex separations with two representative applied macroscopic fields. The quantum chemistry simulation was compared to the classical finite element calculation. It was found that the field enhancement factor was overestimated by about a factor 2 in the classical calculation (for the capped carbon nanotube). The effective work function lowering due to the field penetration into the apex has important contribution to the emission probability. A peculiar decrease of the effective work function with the anode-apex separation was found for the capped carbon nanotube, and its quantum mechanical origin is discussed.

  3. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.

    Science.gov (United States)

    Lee, Duck Hyun; Lee, Jin Ah; Lee, Won Jong; Kim, Sang Ouk

    2011-01-03

    The outstanding flexible field emission properties of carbon hybrid films made of vertically aligned N-doped carbon nanotubes grown on mechanically compliant reduced graphene films are demonstrated. The bottom-reduced graphene film substrate enables the conformal coating of the hybrid film on flexible device geometry and ensures robust mechanical and electrical contact even in a highly deformed state. The field emission properties are precisely examined in terms of the control of the bending radius, the N-doping level, and the length or wall-number of the carbon nanotubes and analyzed with electric field simulations. This high-performance flexible carbon field emitter is potentially useful for diverse, flexible field emission devices.

  4. Net summertime emission of ammonia from corn and triticale fields

    Science.gov (United States)

    Richter, Undine; Smith, Jeremy; Brümmer, Christian

    2016-04-01

    Recent advancements in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we used a quantum cascade laser (QCL) absorption spectrometer to continuously measure high-frequency concentrations of ammonia and the net exchange between an agricultural site and the atmosphere based on the eddy-covariance approach. The footprint was split into two main sectors, one planted with corn (Zea mays) and the other one with triticale. Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 8.1 ppb during the observation period from April to September 2015. While both deposition and emission of ammonia was observed, the total campaign exchange resulted in a loss of 3.3 kg NH3-N ha-1. Highest average emission fluxes of 65 ng N m-2 s-1 were recorded after fertilization at the beginning of the campaign in April and May. Afterwards the exchange of ammonia with the atmosphere decreased considerably, but the site remained on average a consistent source with sporadic lower peaks and an average flux of 13 ng N m-2 s-1. While management in the form of fertilization was the main driver for ammonia concentration and exchange at the site, biophysical controls from temperature, wind regime, and surface wetness are also presented.

  5. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    Science.gov (United States)

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  6. Evidence of satellite valley position in GaN by photoexcited field emission spectroscopy

    Science.gov (United States)

    Yilmazoglu, O.; Pavlidis, D.; Hartnagel, H. L.; Evtukh, A.; Litovchenko, V.; Semenenko, N.

    2008-06-01

    GaN field emitter rods with nanometer diameter were fabricated by photoelectrochemical etching on a n+-GaN substrate. Their electron field emission properties were investigated under ultraviolet (UV) illumination. The Fowler-Nordheim plots of the emission current show different slopes for nonilluminated and UV illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination, the GaN rods are almost fully depleted and emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band. The energy difference between the lower and upper valleys was determined to be 1.15eV and is in good agreement with formerly published theoretical and measured values.

  7. Field electron emission enhancement of amorphous carbon through a niobium carbide buffer layer

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-01-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer with different structures and find that the niobium carbide buffer layer can substantially improve the electron field emission properties of a-C films, which can be attributed to an increase in the enhancement factor β on the surface of a-C films after the insertion of the niobium carbide layer in between a-C film and substrate. Moreover, a phase transition for niobium carbide layer from hexagonal (Nb2C) to cubic (NbC) structure, revealed by x-ray diffraction, further enhances the electron field emission. The first-principles calculated results show that the work function of NbC is lower than that of Nb2C, which is the reason why the electron emission of a-C is further enhanced.

  8. Dark-to-arc transition in field emission dominated atmospheric microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Tholeti, Siva Sashank [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Semnani, Abbas; Peroulis, Dimitrios [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Alexeenko, Alina A., E-mail: alexeenk@purdue.edu [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-08-15

    We study the voltage-current characteristics of gas discharges driven by field emission of electrons at the microscale. Particle-in-cell with Monte Carlo collision calculations are first verified by comparison with breakdown voltage measurements and then used to investigate atmospheric discharges in nitrogen at gaps from 1 to 10 μm. The results indicate the absence of the classical glow discharge regime because field electron emission replaces secondary electron emission as the discharge sustaining mechanism. Additionally, the onset of arcing is significantly delayed due to rarefied effects in electron transport. While field emission reduces the breakdown voltage, the power required to sustain an arc of the same density in microgaps is as much as 30% higher than at macroscale.

  9. Facile synthesis of ZnPc nanocubes: An electron emitting material for field emission display devices

    Science.gov (United States)

    Samanta, M.; Ghorai, U. K.; Mukherjee, M.; Howli, P.; Chattopadhyay, K. K.

    2017-05-01

    A simple low temperature water chemical route for synthesizing Zinc Phthalocyanine (ZnPc) nanostructures were reported here. The as-prepared samples were well analysed by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) technique. The plausible formation mechanism of cube like nanostructures was also explained here. Cold cathode emission properties of ZnPc nanocubes were studied by using an indigenously designed high vacuum system at anode to cathode distance 130 µm. The turn on field and enhancement factor is found to be 5.0 V/μm @ 1µA/cm2 and 1757 respectively. Cold cathode emission properties were further investigated theoretically by finite element method using ANSYS Maxwell simulation package. The obtained results strongly professed that ZnPc nanocubes can act as potential candidate for electron emitter for field emission display devices and many more.

  10. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bankar, Prashant K.; More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune-411007 (India); Patil, Sandip S. [Department of Physics, Modern College of Arts, Science and Commerce, Shivajinagar, Pune-411005. India (India)

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  11. Post-treatment method for improving field emission from carbon nanotubes/nanofibers

    Institute of Scientific and Technical Information of China (English)

    GUO Ping-sheng; SUN Zhuo; ZHENG Zhi-hao

    2006-01-01

    A novel post-treatment method is reported for improving the field emission characteristics of screen-printed carbon nanotubes/nanofibers (CNTs/CNFs) cathodes.After the treatment at the temperature of 500℃ in H2 and C2H2 gas for 20 minutes,the CNTs/CNFs cathodes exhibit much better field emission properties than those untreated.The emission current increases from 0.02 mA/cm2 to 0.5 mA/cm2 at 3.9 V/μm with a decrease in the turn-on field from 2.4 V to 1.8 V ,and the emission site density is increased by almost four orders in magnitude.The enhanced field emission of treated CNTs/CNFs cathodes is attributed to the appearance of a large number of exposed CNTs/CNFs caused by heat treatment.This surface morphology is very favorable for the electron field emission.

  12. Enhanced Field-Emission Performance from Carbon Nanotube Emitters on Nickel Foam Cathodes

    Science.gov (United States)

    Song, Meng; Xu, Peng; Han, Lijing; Yi, Lan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wang, Xiumin; Wu, Huizhen; Zhao, Pei; Song, Yenan; Wang, Miao

    2016-04-01

    We present a three-dimensionally configured cathode with enhanced field-emission performance formed by combining carbon nanotube (CNT) emitters with a nickel foam (NiF) substrate via a conventional screen-printing technique. The CNT/NiF cathode has low turn-on electric field of 0.53 V μm-1 (with current density of 10 μA cm-2) and threshold electric field of 0.87 V μm-1 (with current density of 0.1 mA cm-2), and a very high field enhancement factor of 1.4 × 104. The porous structure of the NiF substrate can greatly improve the field-emission properties due to its large specific surface area that can accommodate more CNTs and increase the emitter density, as well as its high electrical and thermal conductivities that facilitate current transition and heat dissipation in the cathode. Most importantly, the local electric field was also enhanced by the multistage effect resulting from the rough metal surface, which furthermore leads to a high field enhancement factor. We believe that this improved field-emission performance makes such cathodes promising candidates for use in various field-emission applications.

  13. MAGNETIC FIELDS AND POLARIZED EMISSION FROM SELECTED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    R. H. Hildebrand

    2009-01-01

    Full Text Available Measurements of polarized emission from molecular clouds have provided maps of magnetic elds as projected on the sky. The polarization spectrum has given evidence for multiple cloud components in which dust grains at di erent temperatures have di erent polarizing effciencies. With improvements in angular resolution and with additional choices of wavelength, it is becoming possible to make observations in selected environments such as dense clumps, clusters of embedded stars, and regions of high column densities. These observations provide improved cloud models and also provide tests of grain alignment mechanisms such as alignment by radiative torques. Measurements of eld dispersion, as applied to studies of eld strengths or turbulence, require high angular resolution, and accurate position angle measurements at very many points. The possibilities for such measurements, especially in the range ~ 50 -200 um, will be greatly enhanced when SOFIA is equipped with a high-performance far-infrared polarimeter.

  14. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  15. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    Science.gov (United States)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  16. Comparative study of resonant and sequential features in electron field emission from composite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Filip, Valeriu, E-mail: vfilip@gmail.com [Faculty of Physics, University of Bucharest, 405 Atomistilor Str., Magurele 077125, P.O. Box MG-11 (Romania); Institute of Microelectronics and Photonics, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Wong, Hei, E-mail: xiwang@zju.edu.cn [Institute of Microelectronics and Photonics, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China)

    2016-06-01

    A simple model of a layered hetero-structure was developed and used to simultaneously compute and compare resonant and sequential electron field emission currents. It was found that, while various slope changes appear in both current-field characteristics, for the sequential tunneling type of emission, such features are merely interference effects. They occur in parts of the structure, prior to the electrons' lingering in the quasi-bound states from which field emission proceeds. These purely quantum effects further combine with the flow effects resulting from the steady current requirement and give corresponding field variations of the electron population of the quasi-bound states, which further react on the resonant part of the current. A spectral approach of the two types of field emission is also considered by computing the total energy distribution of electrons in each case. The differences between these possible spectra are pointed out and discussed. - Highlights: • The relationship between resonant and sequential field emission is studied. • Sequential current–voltage characteristics show barrier-controlled undulations. • Resonant characteristics depend mainly on the width/shape of the topmost well. • The resonant and sequential total energy distributions differ widely.

  17. High performance field emission and Nottingham effect observed from carbon nanotube yarn

    Science.gov (United States)

    Choi, Young Chul; Kang, Jun-Tae; Park, Sora; Go, Eunsol; Jeon, Hyojin; Kim, Jae-Woo; Jeong, Jin-Woo; Park, Kyung-Ho; Song, Yoon-Ho

    2017-02-01

    Vertically aligned CNTs were synthesized on a four inch wafer, followed by the preparation of a CNT yarn. The yarn emitter was found to have an extremely high field enhancement factor, which was confirmed to have originated from multi-stage effect. In addition to superb field emission characteristics, the energy exchange during field emission, called Nottingham effect, was observed from the CNT yarn emitter. A CNT yarn was attached to the thermistor whose resistance depends on temperature. Then, the change of resistance was monitored during the field emission, which enabled us to calculate the energy exchange. It was found that the observed heating originated from both Nottingham and Joule heating. Nottingham heating was dominant at low current region while Joule heating became larger contribution at high current region. Very large Nottingham region of up to 33.35 mA was obtained, which is due presumably to the high performance field emission characteristics of a CNT yarn. This is believed to be an important observation for developing reliable field emission devices with suppressed Joule heating effect.

  18. Field emission driven direct current argon discharges and electrical breakdown mechanism across micron scale gaps

    Science.gov (United States)

    Matejčik, Štefan; Radjenović, Branislav; Klas, Matej; Radmilović-Radjenović, Marija

    2015-11-01

    In this paper results of the experimental and theoretical studies of the field emission driven direct current argon microdischarges for the gaps between 1 μm and 100 μm are presented and discussed. The breakdown voltage curves and Volt-Ampere characteristics proved to be a fertile basis providing better understanding of the breakdown phenomena in microgaps. Based on the measured breakdown voltage curves, the effective yields have been estimated confirming that the secondary electron emission due to high electric field generated in microgaps depends primarily on the electric field leading directly to the violation of the Paschen's law. Experimental data are supported by the theoretical predictions that suggest departure from the scaling law and a flattening of the Paschen curves at higher pressures confirming that Townsend phenomenology breaks down when field emission becomes the key mechanism leading to the breakdown. Field emission of electrons from the cathode, the space charge effects in the breakdown and distinction between the Fowler-Nordheim field emission and the space charge limited current density are also analyzed. Images and Volt-Ampere characteristics recorded at the electrode gap size of 20 μm indicate the existence of a discharge region similar to arc at the pressure of around 200 Torr has been observed. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  19. Abrupt Longitudinal Magnetic Field Changes and Ultraviolet Emissions Accompanying Solar Flares

    CERN Document Server

    Johnstone, Brittany; Sudol, Jeffrey; 10.1088/0004-637X/760/1/29

    2012-01-01

    We have used Transition Region and Coronal Explorer (TRACE) 1600 \\AA images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than ten pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares, and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes, however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. ...

  20. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    Science.gov (United States)

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  2. First results on laser-induced field emission from a CNT-based nanotip

    Energy Technology Data Exchange (ETDEWEB)

    Bionta, M.R. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Chalopin, B., E-mail: benoit.chalopin@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Masseboeuf, A. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse, Cedex 4 (France); Chatel, B. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France)

    2015-12-15

    We present the first demonstration of ultrafast laser-induced field emission and measurement of the energy distribution of electrons from a nanotip based on a carbon nanotube (CNT). Our experimental setup extends the studies performed on conventional tungsten or gold tips by using this new innovative tip. The carbon tip consists of concentric carbon layers in the shape of a cone, and has been previously studied as a very good candidate for cold field emission. The first laser-induced field emission from a CNT-based nanotip has been observed and we measured the energy spectrum as well as the polarization dependance of the emission. We also characterize the damage threshold of the tip, when illuminated by a high repetition rate femtosecond laser. These first results are encouraging further studies of electron emission from CNT-based carbon nanotips. - Highlights: • First demonstration of ultrafast-laser induced emission from a CNT based nanotip. • Nanotip consists of concentric carbon layers in the shape of a cone. • Measurements of the energy spectrum and polarization dependence of emission. • Characterization of tip damage threshold.

  3. Greenhouse Gas Emissions from Northeast China Rice Fields in Fallow Season

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CH4, N2O and CO2 emissions from northeast Chinese rice fields were measured in the fallow season (November to March) to investigate the effects of freezing-thawing on the emissions. Both CH4 emission from and atmospheric CH4oxidation by the soil occurred, but the flux was small. During the fallow season, rice fields acted as a minor source of atmospheric CH4, which accounted for about 1% of the CH4 emission during the rice growing period. The field was also a substantial source of atmospheric N2O, which ranged between 40 to 77 mg m-2 and accounted for 40%-50% of the annual N2O emission. The largest N2O flux was observed in the thawing period during the fallow season. Laboratory incubation tests showed that the largest N2O flux came from the release of N2O trapped in frozen soil. Tillage and rice straw application (either mulched on the soil surface or incorporated in the soil) stimulated the CH4 and CO2 emissions during the fallow season, but only straw application stimulated N2O emission substantially.

  4. [Effects of controlled release fertilizers on N2O emission from paddy field].

    Science.gov (United States)

    Li, Fangmin; Fan, Xiaolin; Liu, Fang; Wang, Qiang

    2004-11-01

    With close chamber method, this paper studied the effects of controlled release fertilizer (CRF), non-coated compound fertilizer (Com) and conventional urea (CK) on N2O emission from paddy field. The results showed that within 10 days after transplanting, the ammonium and nitrate concentrations in the surface water of the plot treated with CRF were significantly different from those treated with Com. The partial coefficient between N2O emission rates and corresponding nitrate concentrations in the water was significantly high (r = 0.6834). Compared with Com, CRF was able to reduce N2O emission from the paddy field. Within 100 days after basal application, the N2O emission rate of treatment CRF was only 13.45%-21.26% of Corn and 71.17%-112.47% of CK. The N2O emission of Com was mainly concentrated in 1-25 d after basal fertilization and mid-aeration period, but that of CRF was remarkably lower during same period, while the peak of N2O emission of CK was postponed and reduced. It was concluded that both one-time fertilization of CRF and several-time fertilizations of conventional urea were able to reduce N2O emission from the paddy field.

  5. Experts' memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis.

    Science.gov (United States)

    Sala, Giovanni; Gobet, Fernand

    2017-02-01

    Experts' remarkable ability to recall meaningful domain-specific material is a classic result in cognitive psychology. Influential explanations for this ability have focused on the acquisition of high-level structures (e.g., schemata) or experts' capability to process information holistically. However, research on chess players suggests that experts maintain some reliable memory advantage over novices when random stimuli (e.g., shuffled chess positions) are presented. This skill effect cannot be explained by theories emphasizing high-level memory structures or holistic processing of stimuli, because random material does not contain large structures nor wholes. By contrast, theories hypothesizing the presence of small memory structures-such as chunks-predict this outcome, because some chunks still occur by chance in the stimuli, even after randomization. The current meta-analysis assessed the correlation between level of expertise and recall of random material in diverse domains. The overall correlation was moderate but statistically significant ([Formula: see text]), and the effect was observed in nearly every study. This outcome suggests that experts partly base their superiority on a vaster amount of small memory structures, in addition to high-level structures or holistic processing.

  6. Field emission from ZnO whiskers under intervalley electron redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazoglu, O., E-mail: yilmazoglu@hfe.tu-darmstadt.de [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, 64283 Darmstadt (Germany); Biethan, J.-P. [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, 64283 Darmstadt (Germany); Evtukh, A.; Semenenko, M. [Institute of Semiconductor Physics, NASU, 03028 Kiev (Ukraine); Pavlidis, D.; Hartnagel, H.L. [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstrasse 25, 64283 Darmstadt (Germany); Litovchenko, V. [Institute of Semiconductor Physics, NASU, 03028 Kiev (Ukraine)

    2012-03-15

    ZnO field-emitter whiskers with nanometer diameter were fabricated by metal-organic chemical vapor deposition (MOCVD) growth on Si substrates. Their electron field emission properties and electron transfer effect between the valleys were investigated in a high vacuum chamber. The Fowler-Nordheim (F-N) plots of the emission current show different slopes for the small and high electric field regions. A model based on the electron-emission from valleys having different specific electron affinities is proposed to explain the experimental results. The paper presents a study of the conduction band of nano-structured ZnO with the help of field emission experiments. The energy difference between the lower and upper valleys was determined to be between 3.02 eV and 3.3 eV. The effective work function from the satellite valley is much lower than from the {Gamma}-valley. These results can explain the usually obtained large discrepancies between extremely high field enhancement factors by fitting using F-N equation with known work function {Phi} from the {Gamma}-valley and the geometrical estimated field enhancement factors for ZnO emitter. These functional field emitters based on ZnO materials and their ternaries can also be used as ultraviolet photodetector and find new applications for miniaturized photo-field assisted vacuum devices.

  7. Field emission from ZnO whiskers under intervalley electron redistribution

    Science.gov (United States)

    Yilmazoglu, O.; Biethan, J.-P.; Evtukh, A.; Semenenko, M.; Pavlidis, D.; Hartnagel, H. L.; Litovchenko, V.

    2012-03-01

    ZnO field-emitter whiskers with nanometer diameter were fabricated by metal-organic chemical vapor deposition (MOCVD) growth on Si substrates. Their electron field emission properties and electron transfer effect between the valleys were investigated in a high vacuum chamber. The Fowler-Nordheim (F-N) plots of the emission current show different slopes for the small and high electric field regions. A model based on the electron-emission from valleys having different specific electron affinities is proposed to explain the experimental results. The paper presents a study of the conduction band of nano-structured ZnO with the help of field emission experiments. The energy difference between the lower and upper valleys was determined to be between 3.02 eV and 3.3 eV. The effective work function from the satellite valley is much lower than from the Γ-valley. These results can explain the usually obtained large discrepancies between extremely high field enhancement factors by fitting using F-N equation with known work function Φ from the Γ-valley and the geometrical estimated field enhancement factors for ZnO emitter. These functional field emitters based on ZnO materials and their ternaries can also be used as ultraviolet photodetector and find new applications for miniaturized photo-field assisted vacuum devices.

  8. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    . For geometries without ferrite, these zones can be defined only on basis of distance from coils. The simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite based geometries and the three zones tend to overlap. This overlapping is studied via Comsol simulations...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  9. Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope

    NARCIS (Netherlands)

    de Jonge, N.; van Druten, N.J.

    2003-01-01

    Individual multiwalled carbon nanotube field emitters were prepared in a scanning electron microscope. The angular current density, energy spectra, and the emission stability of the field-emitted electrons were measured. An estimate of the electron source brightness was extracted from the

  10. Enhanced electron field emission from carbon nanotubes irradiated by energetic C ions.

    Science.gov (United States)

    Sun, Peng-Cheng; Deng, Jian-Hua; Cheng, Guo-An; Zheng, Rui-Ting; Ping, Zhao-Xia

    2012-08-01

    The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function.

  11. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Science.gov (United States)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-02-01

    In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  12. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  13. Ultrafast electron field emission from gold resonant antennas studied by two terahertz pulse experiments

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew C.;

    2015-01-01

    Summary form only given. Ultrafast electron field emission from gold resonant antennas induced by strong terahertz (THz) transient is investigated using two THz pulse experiments. It is shown that UV emission from nitrogen plasma generated by liberated electrons is a good indication of the local...... electric field at the antenna tip. Using this method resonant properties of antennas fabricated on high resistivity silicon are investigated in the strong field regime. Decrease of antenna Q-factor due to ultrafast carrier multiplication in the substrate is observed....

  14. The screening effects of carbon nanotube arrays and its field emission optimum density

    Directory of Open Access Journals (Sweden)

    Dan Cai

    2013-12-01

    Full Text Available In order to investigate the field emission optimum density of carbon nanotube (CNT array, the screening effects of CNT array have been studied. It has been shown that the electric field in the vicinity of an individual nanotube of array can be notable distorted due to the screening action of the surrounding neighbors. The optimum normalized spacing s/l(as referred to the length for the maximum emission current is inversely proportional to aspect ratio l/r and electric field strength for CNT arrays with a fixed dimension.

  15. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  16. Electrophoretic Carb on Nanotub e Field Emission Layer for Plasma Display Panels

    Institute of Scientific and Technical Information of China (English)

    Qifa Liu; Zhuoqing Yang; Yan Wang; Guifu Ding∗

    2012-01-01

    A carbon-nanotube (CNT) electrophoretic deposition (EPD) process has been developed to pre-pare a field emission layer in plasma display panels (PDP) for discharge voltage reduction. The CNT layer as a source of discharge priming electrons has been fabricated on the PDP front panel. The balling grinding, mix-acid treatment and EPD parameters have been investigated in order to obtain good uniformity and ex-cellent field emission capability of CNT layer, in order to meet the specifications of CNTs in PDP cell. The measured turn-on field was around 1.1 V/µm in the field emission testing while the minimum sustaining voltage was decreased by 30∼40 V with the use of CNT layer in the discharge testing.

  17. X-Ray Emission from Star-Forming Galaxies - Signatures of Cosmic Rays and Magnetic Fields

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2014-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons traveling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the evolution of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional cont...

  18. Methane emission from rice fields in relation to management of irrigation water.

    Science.gov (United States)

    Khosa, Maninder Kaur; Sidhu, B S; Benbi, D K

    2011-03-01

    A field experiment was conducted for two years to find out best water management practice to mitigate methane emission from the rice-fields. Continuously flooded conditions yielded two major flushes of methane emission and on an average resulted in relatively higher rate of methane emission (2.20 and 1.30 mg m(-2) hr(-1), respectively in 2005 and 2006) during the kharif season. The methane flux was reduced to half (1.02 and 0.47 mg m(-2) hr(-1), respectively in 2005 and 2006) when rice fields were irrigated 2-3 days after infiltration of flood water into the soil. Irrigating the field at 0.15 bar matric potential reduced seasonal methane flux by 60% (0.99 and 0.41 mg m(-2) hr(-1), respectively in 2005 and 2006) as compared to completely flooded conditions, without any decline in grain yield (60 q ha(-1)).

  19. Field emissions of graphene films deposited on different substrates by CVD system

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Ping; Liu Xiao-Fei; Liu Xin-Xin; Wang Li-Jun; Yang Can; Jing Long-Wei; Li Song-Kun; Pan Xiu-Fang

    2012-01-01

    Graphene films are deposited on copper (Cu) and aluminum (A1) substrates,respectively,by using a microwave plasma chemical vapour deposition technique.Furthermore,these graphene films are characterized by a field emission type scanning electron microscope (FE-SEM),Raman spectra,and field emission (FE) I-V measurements.It is found that the surface morphologies of the films deposited on Cu and Al substrates are different:the field emission property of graphene film deposited on the Cu substrate is better than that on the Al substrate,and the lowest turn-on field of 2.4 V/μm is obtained for graphene film deposited on the Cu substrate.The macroscopic areas of the graphene samples are all above 400 mm2.

  20. Nitrous Oxide Emissions from Fields with Different Wheat and Rice Varieties

    Institute of Scientific and Technical Information of China (English)

    B. GOGOI; K.K. BARUAH

    2012-01-01

    Plant species of cropping systems may affect nitrous oxide (N2O) emissions.A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationships of soil and plant parameters with N2O emissions.The results indicated that N2O emissions from different wheat varieties ranged from 12 to 291 μg N2O-N m-2 h-1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m-2.In the rice season,it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190-216 mg N2O-N m-2.The seasonal integrated flux of N2O differed significantly among wheat and rice varieties.The wheat variety HUW 234 and rice variety Joymoti showed higher seasonal N2O emissions.In the wheat season,N2O emissions correlated with soil organic carbon (SOC),soil NO-3-N,soil temperature,shoot dry weight,and root dry weight.Among the variables assessed,soil temperature followed by SOC and soil NO-3-N were considered as the important variables influencing N2O emission.N2O emission in the rice season was significantly correlated with SOC,soil NO-3-N,soil temperature,leaf area,shoot dry weight,and root dry weight.The main driving forces influencing N2O emission in the rice season were soil NO-3-N,leaf area,and SOC.

  1. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw

    Science.gov (United States)

    Sass, R. L.; Fisher, F. M.; Harcombe, P. A.; Turner, F. T.

    1991-09-01

    Increased world demand for rice production may lead to an increase in methane emission to the atmosphere and future global warming. One suggested way to reduce methane emission is to discourage the practice of incorporating previous crop residue prior to planting rice, since the residue may enhance methane emission from flooded rice fields. This concept is supported by data from a 2-year study of flooded rice fields on two different soil types in Texas. In 1990, rice stubble from 1989 was incorporated into both soils. Seasonal methane emission from a Lake Charles clay field increased from 15.9 g m-2 in 1989 to 31.0 g m-2 in 1990. In the Beaumont clay field, seasonal methane emission increased from 4.5 to 11.4 g m-2. While methane emission increased between 1989 and 1990, grain yield dropped by 2100 and 840 kg ha-1 in the Lake Charles and Beaumont fields, respectively. Visual inspection at harvest indicated that the 1990 rice yield decrease resulted from grain abortion, presumably caused by the rice cultivar's sensitivity to soil anaerobiosis. The calculated amount of organic carbon not translocated to grain was comparable to the estimated amount of organic carbon required for the increased methane emission. We hypothesize that labile carbon in straighthead susceptible rice cultivars can "leak" from roots damaged by excessively anaerobic soil and be metabolized to its equivalent in methane. These data suggest that minimizing incorporation of crop residue prior to planting can decrease methane emission from flooded rice and reduce the potential for yield loss, particularly with some cultivars and in soils with low rates of seepage and percolation.

  2. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2012-05-01

    Full Text Available The EMEP/EEA guidebook 2009 for agricultural emission inventories reports an average ammonia (NH3 emission factor (EF by volatilisation of 55% of the applied total ammoniacal nitrogen (TAN content for cattle slurry, and 35% losses for pig slurry, irrespective of the type of surface or slurry characteristics such as dry matter content and pH. In this review article, we compiled over 350 measurements of EFs published between 1991 and 2011. The standard slurry application technique during the early years of this period, when a large number of measurements were made, was spreading by splash plate, and as a result reference EFs given in many European inventories are predominantly based on this technique. However, slurry application practices have evolved since then, while there has also been a shift in measurement techniques and investigated plot sizes. We therefore classified the available measurements according to the flux measurement technique or measurement plot size and year of measurement. Medium size plots (usually circles between 20 to 50 m radius generally yielded the highest EFs. The most commonly used measurement setups at this scale were based on the Integrated Horizontal Flux method (IHF or the ZINST method (a simplified IHF method. Several empirical models were published in the years 1993 to 2003 predicting NH3 EFs as a function of meteorology and slurry characteristics (Menzi et al., 1998; Søgaard et al., 2002. More recent measurements show substantially lower EFs which calls for new measurement series in order to validate the various measurement approaches against each other and to derive revised inputs for inclusion into emission inventories.

  3. Work function measurements by the field emission retarding potential method.

    Science.gov (United States)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  4. [Effects of winter cover crop on methane and nitrous oxide emission from paddy field].

    Science.gov (United States)

    Tang, Hai-ming; Tang, Wen-guang; Shuai, Xi-qiang; Yang, Guang-li; Tang, Hai-tao; Xiao, Xiao-Ping

    2010-12-01

    Static chamber-GC technique was employed to study the effects of different treatment winter cover crops, including no-tillage and directly sowing ryegrass (T1), no-tillage and directly sowing Chinese milk vetch (T2), tillage and transplanting rape (T3), no-tillage and directly sowing rape (T4), and fallowing (CK), on the CH4 and N2O emission from double cropping rice paddy field. During the growth period of test winter cover crops, the CH4 and N2O emission in treatments T1-T4 was significantly higher than that in CK (P winter cover crops returned to field, the CH4 emission from early and late rice fields in treatments T1, T2, T3, and T4 was larger than that in CK. In early rice field, treatments T1 and T2 had the largest CH4 emission (21.70 and 20.75 g x m(-2)); while in late rice field, treatments T3 and T4 had the largest one (58.90 and 54.51 g x m(-2) respectively). Treatments T1-T4 also had larger N2O emission from early and late rice fields than the CK did. The N2O emission from early rice field in treatments T1, T2, T3, and T4 was increased by 53.7%, 12.2%, 46.3%, and 29.3%, and that from late rice field in corresponding treatments was increased by 28.6%, 3.8%, 34.3%, and 27.6%, respectively, compared with CK.

  5. Radio Emission from Galaxies In The Hubble Deep Field

    CERN Document Server

    Richards, E A; Fomalont, E B; Windhorst, R A; Partridge, R B

    1998-01-01

    We report on sensitive radio observations made with the VLA at 8.5 GHz, centered on the Hubble Deep Field (HDF). We collected data in the A, CnB, C, DnC, and D configurations, corresponding to angular resolutions ranging from 0.3" to 10". We detected 29 radio sources in a complete sample within 4.6' of the HDF center and above a flux density limit of 9.0 microjy (5 sigma). Seven of these sources are located within the HDF itself, while the remaining 22 sources are covered by the Hubble Flanking Fields (HFFs) or ground based optical images. All of the sources in the HDF are identified with galaxies with a mean magnitude R = 21.7, while the mean magnitude of the identifications outside the HDF is R = 22.1. Three radio sources have no optical counterparts to R = 27. Based on a radio and optical positional coincidence, we detected an additional 19 radio sources in this field (seven of which are contained in the HDF) with 6.3 microjy < S < 9.0 (3.5 sigma < S < 5 sigma) and and R < 25, but which are ...

  6. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers.

    Science.gov (United States)

    Chen, YiWen; Miao, Hsin-Yuan; Lin, Ryan Jiyao; Zhang, Mei; Liang, Richard; Zhang, Chuck; Wang, Ben

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm(-2), which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  7. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media.

    Science.gov (United States)

    Suess, D; Fuger, M; Abert, C; Bruckner, F; Vogler, C

    2016-06-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media.

  8. Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film

    KAUST Repository

    Mahmood, Khalid

    2014-01-01

    A novel electrosprayed bilayer film composed of an over-layer (L 2) of aluminium-doped ZnO (AZO) nanoflakes (NF-AZO) and a under-layer (L1) of AZO nanocrystallites structure (NC-AZO) named BL:NF/NC-AZO is studied as an excellent field-emitter. The XRD pattern demonstrated that the doped bilayer film has preferential growth along the c-axis with hexagonal wurtzite structure and the (0 0 2) peak shifted toward the larger angle side after doping. The lowest turn-on field of ∼2.8 V μm-1, highest emission current density of 1.95 mA cm-2 is obtained for BL:NF/NC-AZO under the field of 6.8 V μm-1 and as well as the highest field enhancement factor (β) is estimated to be 4370 ± 3, compared to pure ZnO bilayer film (BL:NF/NC-ZnO) and also better than NC-AZO film and possesses the excellent long term stability of emission current. The PL intensity of doped ZnO bilayer film is very much stronger than pure ZnO bilayer structure. The superior field emission properties are attributed to the better morphologies, Al-doping and better crystallinity of bilayer AZO films. © 2014 The Royal Society of Chemistry.

  9. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  10. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Directory of Open Access Journals (Sweden)

    Meng Song

    2015-09-01

    Full Text Available Integrating carbon nanotubes (CNTs and graphene into hybrid structures provides a novel approach to three dimensional (3D materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ∼1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  11. Synthesis and efficient field emission characteristics of patterned ZnO nanowires

    Institute of Scientific and Technical Information of China (English)

    张永爱; 吴朝兴; 郑泳; 郭太良

    2012-01-01

    Patterned ZnO nanowires were successfully synthesized on ITO electrodes deposited on the glass substrate by using a simple thermal evaporation approach.The morphology,crystallinity and optical properties of ZnO nanowires were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive X-ray and photoluminescence spectroscopy.Their field emission characteristics were also investigated.SEM images showed that the ZnO nanowires,with a diameter of 100-200 nm and length up to 5μm,were highly uniform and well distributed on the linear ITO electrodes.The field emission measurement indicated that patterned ZnO nanowire arrays have a turn-on field of 1.6 V/μm at current density of 1 μA/cm2 and a threshold field of 4.92 V/μm at current density of 1 mA/cm2 at an emitter-anode gap of 700 μm.The current density rapidly reached 2.26 mA/cm2 at an applied field of 5.38 V/μm.The fluctuation of emission current was lower than 5% for 4.5 h.The low turn-on field,high current density and good stability of patterned ZnO nanowire arrays indicate that it is a promising candidate for field emission application.

  12. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Science.gov (United States)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  13. Sub-nanosecond Electron Emission from Electrically Gated Field Emitting Arrays

    CERN Document Server

    Paraliev, M; Gough, C; Kirk, E; Ivkovic, S

    2011-01-01

    Field Emitting Arrays (FEAs) are a promising alternative to the conventional cathodes in different vacuum electronic devices such as traveling wave tubes, electron accelerators and etc. Electrical gating and modulation capabilities, together with the ability to produce stable and homogeneous electron beam in high electric field environment are the key requirements for their practical application. Due to relatively high gate capacitance, fast controlling of FEA emission is difficult. In order to achieve sub-nanosecond, electrically controlled, FEA based electron emission a special pulsed gate driver was developed. Bipolar high voltage (HV)pulses are used to rapidly inject and remove charge form FEA gate electrode controlling quickly electron extraction gate voltage. Short electron emission pulses (<600 ps FWHM) were observed in low and high gradient (up to 12 MV/m) environment. First attempts were made to combine FEA based electron emission with radio frequency acceleration structures (1.5 GHz) using pulsed...

  14. GHG emissions from slurry and digestates during storage and after field application

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Nguyen, Quan Van; Petersen, Søren O.;

    , but environmental impacts, such as greenhouse gas (GHG) emissions, during storage and after field application should take into account. Mainly, methane (CH4) is produced during storage and nitrous oxide (N2O) after field application. Currently, direct (CH4, N2O) and indirect (NH3) GHG emissions during storage...... are determined in a pilot-scale study with digested materials from Maabjerg Bioenergy and Fredericia Wastewater Treatment Facility, using untreated cattle and pig slurry as reference. These and other results will be used to model the effect of temperature and pre-treatment on CH4 emissions. The composition...... slurry/digestates when incubated in soil under aerobic conditions. The experimental treatments included untreated pig slurry, sugarbeet root pulp, or pig slurry co-digested with 0%, 12.5%, 25% or 90% sugarbeet pulp. Proportions of VSd ranged from 25 to 67%. Methane emissions during storage...

  15. Residual gas properties in a field emission device with ZnO emitters

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Chan

    2013-01-01

    In this paper,a vacuum system is employed to compare the emission stabilities of the same ZnO cathode in a sealed field emission (FE) device and under ultrahigh vacuum (UHV) conditions.It is observed that the emission current is more stable under the UHV level than in the device.When all conditions except the ambient gases are kept unchanged,the emission current degradation is mainly caused by the residual gases in the sealed device.The quadrupole mass spectrometer (QMS) equipped on the vacuum system is used to investigate the residual gas components.Based on the obtained QMS data,the following conclusions can be drawn:the residual gases in ZnO-FE devices are H2,CH4,CO,Ar,and CO2.These residual gases can change the work function at the surface through adsorption or ion bombardment,thereby degrading the emission current of the cathode.

  16. Residual gas properties in a field emission device with ZnO emitters

    Science.gov (United States)

    Wang, Jin-Chan

    2013-06-01

    In this paper, a vacuum system is employed to compare the emission stabilities of the same ZnO cathode in a sealed field emission (FE) device and under ultrahigh vacuum (UHV) conditions. It is observed that the emission current is more stable under the UHV level than in the device. When all conditions except the ambient gases are kept unchanged, the emission current degradation is mainly caused by the residual gases in the sealed device. The quadrupole mass spectrometer (QMS) equipped on the vacuum system is used to investigate the residual gas components. Based on the obtained QMS data, the following conclusions can be drawn: the residual gases in ZnO-FE devices are H2, CH4, CO, Ar, and CO2. These residual gases can change the work function at the surface through adsorption or ion bombardment, thereby degrading the emission current of the cathode.

  17. Field Emission From Ordered Nano-array Structures Based on Porous Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ This thesis reports my research work of fabricating nanostructures by using nanoporous anodic aluminum oxide (AAO) templates and their field emission properties in the past few years. Some important results obtained are as follows: 1. We first proposed a new concept of fabricating field emitters with ordered nanostructures based on porous aluminum oxide templates such as AAO/Al, metal/AAO, PANI/AAO, CNTs/AAO, Si/AAO and did a lot of research in this field.

  18. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    Science.gov (United States)

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime.

  19. Low Emittance Gun Project based on Field Emission

    CERN Document Server

    Ganter, Romain; Dehler, M; Gobrecht, Jens; Gough, Chris; Ingold, Gerhard; Leemann, Simon C; Shing-Bruce-Li, Kevin; Paraliev, Martin; Pedrozzi, Marco; Raguin, Jean Yves; Rivkin, Leonid; Schlott, Volker; Sehr, Harald; Streun, Andreas; Wrulich, Albin F; Zelenika, Sasa

    2004-01-01

    The design of an electron gun capable of producing beam emittance one order of magnitude lower than current technology would reduce considerably the cost and size of a free electron laser emitting at 0.1nm. Field emitter arrays (FEAs) including a gate and a focusing layer are an attractive technology for such high brightness sources. Electrons are extracted from micrometric tips thanks to voltage pulses between gate and tips. The focusing layer should then reduce the initial divergence of each emitted beamlets. This FEA will be inserted in a high gradient diode configuration coupled with a radiofrequency structure. In the diode part very high electric field pulses (several hundreds of MV/m) will limit the degradation of emittance due to space charge effect. This first acceleration will be obtained with high voltage pulses (typically a megavolt in a few hundred of nanoseconds) synchronized with the low voltage pulses applied to the FEA (typically one hundred of volts in one nanosecond at frequency below kilohe...

  20. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    DEFF Research Database (Denmark)

    Xavier, S.; Mátéfi-Tempfli, Stefan; Ferain, E.

    2008-01-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabricat......We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost...... and a density of ∼10 cm. The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering...... the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ∼1 m...

  1. Characteristics of Greenhouse Gas Emissions from the Wheat Fields with Different Returning Methods of Maize Straws

    Directory of Open Access Journals (Sweden)

    LI Xin-hua

    2016-03-01

    Full Text Available In order to investigate the effect of different returning methods of maize straw on the greenhouse gas emissions from the wheat fields, we explored the greenhouse gas CO2, N2O and CH4 emissions from the wheat fields using static chamber-gas chromatograph technique from December 2013 to May 2014. The experiments set four treatments including no maize straw returning(CK, direct maize straw returning directly(CS, maize straw-rumen-cattle dung returning(CGS and maize straw-mushroom residue returning(CMS, and the four treatments were investigated under the same watering and fertilizing conditions. The results showed that the greenhouse gas emissions from the wheat fields all had distinct seasonal variations and the cumulative emissions of greenhouse gas emissions were different. During the maize growing season, the cumulative emissions of both CO2 and N2O were emitted and in the order of CK >CGS >CS >CMS while the cumulative absorptions of CH4 were in the order of CS >CGS >CK >CMS with the significant difference between different treatments(PCGS >CK >CMS under the different returning methods of maize straw, which indicated that direct straw returning could significantly increase the global warming potential of greenhouse gases from the wheat field, followed by CGS while the straw-mushroom residue returning(CMS could decrease the global warming potential of greenhouse gases from the wheat field. The method of straw-mushroom residue returning should be recommended from the viewpoint of reducing GWP of the greenhouse gas. In all, our study could provide the scientific foundation for the efficiency straw recycle and reducing greenhouse gas emission.

  2. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  3. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.

    Science.gov (United States)

    Hwang, Jae Won; Mo, Chan Bin; Jung, Hyun Kyu; Ryu, Seongwoo; Hong, Soon Hyung

    2013-11-01

    Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed.

  4. Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Sethupathi K

    2007-01-01

    Full Text Available AbstractMulti-walled carbon nanotubes (MWNT have been synthesized by chemical vapour decomposition (CVD of acetylene over Rare Earth (RE based AB2(DyNi2 alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN theory reveals current saturation effects at high applied fields for all the samples.

  5. Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes.

    Science.gov (United States)

    Rakhi, Rb; Sethupathi, K; Ramaprabhu, S

    2007-06-21

    Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT-DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler-Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples.

  6. Field emission arrays fabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Wu Chaoxing [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Li Fushan, E-mail: fushanli@hotmail.com [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Zhang Yongai [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Guo Tailiang, E-mail: gtl@fzu.edu.cn [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Qu Bo; Chen Zhijian [State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2011-02-15

    In situ growth of ZnO quantum dots (QDs) on the surface of multiwalled carbon nanotube (MWCNTs) was realized via a mild solution-process method, and their application in field emission device was demonstrated. High resolution transmission electron microscopy observation revealed the conjugation between ZnO QDs and MWCNTs. Field emission arrays based on ZnO QD/MWCNT hybrid nanocomposite exhibited significantly improved luminance intensity and emitting dot density when compared with the MWCNT-only arrays. It is proposed that the introduction of the ZnO QDs on the sidewall of MWCNTs can enhance the tunnelling probability, and result in the improved field emission property for the hybrid emitters.

  7. Manipulation of Spontaneous Emission via Quantum Interference in an Elliptically Polarized Laser Field

    Institute of Scientific and Technical Information of China (English)

    DING Chun-Ling; LI Jia-Hua; YU Rong; ZHANG Duo; YANG Xiao-Xue

    2013-01-01

    Manipulation of spontaneous emission from an atom confined in three kinds of modified reservoirs has been investigated by means of an elliptically polarized laser field.Some interesting phenomena such as the multi-peak structure,extreme spectral narrowing,and cancellation of spontaneous emission can be observed by adjusting controllable system parameters.Moreover,these phenomena depend on the constructive or destructive quantum interference between multiple decay channels and which can be changed appreciably by varying the phase difference between the two circularly polarized components of the probe field.These results demonstrate the importance of an elliptically polarized laser field in controlling the spontaneous emission and its potential applications in high-precision spectroscopy.

  8. Effect of Electrochemical Treatment in a Lithium Chloride Solution on Field Emission from Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; LI Chun; YUAN Guang; GU Chang-Zhi

    2009-01-01

    Carbon nanotubes (CNTs) are electrochemically treated in a lithium chloride solution at a concentration 0.1 mol/L.The field emission properties of the CNTs are investigated at different temperatures before and after the electrochemical treatment.After treatment,the turn-on voltage to produce field emission current of 10 μA decreases from 4.2kV to 2.7kV and the field emission current increases distinctly,but the stability falls off.Based on the Fowler-Nordheim plot,the values of the work function for the CNTs are calculated,which reveals that work function decreases after the electrochemical treatment.These results are attributed to the decrease of the work function of the carbon nanotubes.

  9. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    Science.gov (United States)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  10. Modeling multiband emissions from two young SNRs with a time-dependent magnetic field

    Institute of Scientific and Technical Information of China (English)

    Yun-Yong Tang; Zu-Cheng Dai; Li Zhang

    2013-01-01

    The nonthermal components in hard X-rays have been detected in two young supernova remnants (SNRs):SN 1006 and Kepler's SNR.Various theoretical models showed that the amplification of the magnetic field was crucial to explain their multiband emission properties.We investigate the evolution of the magnetic field and model the multiband emissions from these two young SNRs with a time-dependent injection model.The results indicate that (1) the radio and X-ray emissions are reproduced by synchrotron radiation of the injected electrons,while the γ-rays can be explained as inverse Compton scattering of the relativistic electrons and proton-proton interaction of the high-energy protons; and (2) the amplification of the magnetic field spontaneously happens with reasonable parameters.

  11. STATISTICS OF OCCURRENCE OF PRE-SEISMIC ANOMALIES IN GEOACOUSTIC EMISSION AND IN ATMOSPHERIC FIELD

    Directory of Open Access Journals (Sweden)

    M. A. Mishchenko

    2016-11-01

    Full Text Available Statistics of occurrence of anomalous disturbances in high-frequency geoacoutic emis-sion of the near surface sedimentary rocks and in atmospheric electric field by the ground surface before earthquakes is presented. Long-term continuous series of measure-ments of geoacoustic emission for the period of 2003-2012 at «Mikizha» site and the data of measurements of atmospheric electric field obtained for the summer-autumn periods of 2006-2008 at «Mikizha» site and for 2009-2012 at «Karymshina» site were used in the analysis. Anomalous disturbances of the emission and of the field were compared with the earthquake catalogue of Kamchatka Branch of Geophysical Service RAS.

  12. Field emission studies of CNTs/ZnO nanostructured thin films for display devices

    Science.gov (United States)

    Alvi, M. A.; Al-Ghamdi, A. A.; Husain, M.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were coated on the surface of multi walled carbon nanotubes (MWCNTs) to improve the field emission characteristic of MWCNTs. The synthesis of MWCNTs was made by chemical vapor deposition (CVD). RF sputtering was used to prepare MWCNTs/ZnO nanocomposite. The as-prepared nanocomposites were identified by electron microscopes (transmission and scanning), Raman spectroscopy and X-Ray diffractometer (HRXRD) to establish the linking of ZnO nanoparticles on MWCNTs. The field emission studies of MWCNTs/ZnO nanocomposites show that the current density is increased remarkably. After attachment of ZnO nanoparticles, it is observed that the turn-on field of MWCNTs decreases. These results have been shown in terms of enhanced current density and field enhancement factor after surface modification of MWCNTs field emitters.

  13. Pulsed, High Power Microwave Processing of Field Emission in Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    I.E. Campisi

    1992-08-03

    The phenomenon of field emission is very well known: electrons are extracted from within the solid state potential well of a metal and are emitted from the metal's surface under the presence of an accelerating potential. In many accelerators, electromagnetic energy is delivered to charged particles by means of microwave cavities excited in modes with electric field components aligned along the particles trajectory. If the mode used is of the TM type (most accelerators operate in the TM{sub 010} mode), then a surface electric field inside the cavities exists which can produce field emitted electrons when allowed by the phase of the fields. These field emitted currents can cause considerable current loading and bremsstrahlung radiation in normal conducting cavities (mostly copper), but in superconducting cavities they have the additional effect of locally heating the superconducting material above its transition temperature and causing performance degradation of the cavities and eventually quenches (transition to the normal conducting state). At present this phenomenon constitutes the limiting factor in superconducting cavity performance, and is receiving a great deal of attention. Several diagnostic methods have been developed to detect, locate and characterize the sources of field-emitted electrons. Methods have also been proposed and tested which decrease the incidence of field emission sites on metal surfaces, but the most effective method to date requires high temperature firing of the superconducting structures in an ultra high vacuum. This can be done only if the cavities are completely removed from their cryostat, a lengthy and costly process. In this paper the properties and advantages are examined of a different method for field emission processing, which does not require a cavity disassembly and which can be performed in situ. The method described makes use of short, high peak power RF pulses to reach high electric fields for a short time. At the same

  14. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia.

    Science.gov (United States)

    Vibol, S; Towprayoon, S

    2010-02-01

    To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005-2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005-2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005-2006, Battambang province emitted the highest amount of CH(4) (38,764.48 ton) and, in the second crop season during the years 2005-2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg

  15. Field-emission microscopy of the surface of an Ir-C-Cs point emitter

    Science.gov (United States)

    Bernatskii, D. P.; Pavlov, V. G.

    2013-12-01

    The emissive properties of an iridium-based point emitter with various forms of carbon (chemisorbed species, two-dimensional graphite structures) and cesium atoms adsorbed on the surface has been studied by the field-electron emission microscopy (FEM) and field-desorption microscopy (FDM) techniques. The FEE and FDM images of the emitter surface corresponding to various phase states of carbon have been obtained. It is established that two-dimensional graphite structures grow predominantly in the regions of (100) and (111) faces of iridium.

  16. Field Emission Characteristics of Conducting Polymer Films Conditioned by Electric Discharge

    Institute of Scientific and Technical Information of China (English)

    Guohong LAI; Zhenglin LI; Lan CHENG; Junbiao PENG

    2006-01-01

    A pure conducting polymer(PANI-CSA)film conditioned by an electric discharge was tentatively utilized as an cathode for emitting electrons under electric fields. The emission of electrons was observed using a phosphor(ZnO:Zn)screen excited by electrons from the conditioned film. The film morphology was investigated using a scanning electron microscope and it was found that undulate whisker-like sites formed on the surface. The emission was presumably due to the undulate whisker-like sites. The field enhancement factor was estimated to be as high as 1150. The electron emitting process of the PANI-CSA film conditioned by electric discharge was also discussed.

  17. A carbon nanotube field emission cathode with high current density and long-term stability

    Science.gov (United States)

    Calderón-Colón, Xiomara; Geng, Huaizhi; Gao, Bo; An, Lei; Cao, Guohua; Zhou, Otto

    2009-08-01

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  18. Electron field emission from 2-induced insulating to metallic behaviour of amorphous carbon (-C) films

    Indian Academy of Sciences (India)

    Pitamber Mahanandia; P N Viswakarma; Prasad Vishnu Bhotla; S V Subramanyam; Karuna Kar Nanda

    2010-06-01

    The influence of concentration and size of 2 cluster on the transport properties and electron field emissions of amorphous carbon films have been investigated. The observed insulating to metallic behaviour from reduced activation energy derived from transport measurement and threshold field for electron emission of -C films can be explained in terms of improvements in the connectivity between 2 clusters. The connectivity is resulted by the cluster concentration and size. The concentration and size of 2 content cluster is regulated by the coalescence of carbon globules into clusters, which evolves with deposition conditions.

  19. A simplified sampling procedure for the estimation of methane emission in rice fields.

    Science.gov (United States)

    Khokhar, Nadar Hussain; Park, Jae-Woo

    2017-08-24

    Manual closed chamber methods are widely used for CH4 measurement from rice paddies. Despite diurnal and seasonal variations in CH4 emissions, fixed sampling times, usually during the day, are used. Here, we monitored CH4 emission from rice paddies for one complete rice-growing season. Daytime CH4 emission increased from 0800 h, and maximal emission was observed at 1200 h. Daily averaged CH4 flux increased during plant growth or fertilizer application and decreased upon drainage of plants. CH4 measurement results were linearly interpolated and matched with the daily averaged CH4 emission calculated from the measured results. The time when daily averaged emission and the interpolated CH4 curve coincided during the daytime was largely invariant within each of the five distinctive periods. One-hourly sampling during each of these five periods was utilized to estimate the emission during each period, and we found that five one-hourly samples during the season accurately reflected the CH4 emission calculated based on all 136 hourly samples. This new sampling scheme is simple and more efficient than current sampling practices. Previously reported sampling schemes yielded estimates 9 to 32% higher than the measured CH4 emission, while our suggested scheme yielded an estimate that was only 5% different from that based on all 136-h samples. The sampling scheme proposed in this study can be used in rice paddy fields in Korea and extended worldwide to countries that use similar farming practices. This sampling scheme will help in producing more accurate global methane budget from rice paddy fields.

  20. Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings

    Science.gov (United States)

    Bagge-Hansen, Michael

    Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. At the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime >800 hours. The work function (φ) of CNS and other carbonaceous cathode materials has been reported to be φ˜4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of field emission. Initially, the intrinsic CNS field emission was studied. The mean height of the CNS was observed to decrease as a function of operating time at a rate of ˜0.05 nm/h (I 1˜40 muA/mm2). The erosion mechanism was studied using a unique UHV diode design which allowed line-of-site assessment from the field emission region in the diode to the ion source of a mass spectrometer. The erosion of CNS was found to occur by impingement of hyperthermal H and O neutrals and ions generated at the surface oxide complex of the Cu anode by electron stimulated desorption. Techniques for minimizing this erosion are presented. The Mo2C (φ˜3.7 eV) beading on CNS at previously reported carbide formation temperatures of ˜800°C was circumvented by physical vapor deposition of Mo and vacuum annealing at ˜300°C which resulted in a conformal Mo2C coating and stable field emission of 1˜50 muA/mm2. For a given applied field, the emission current was >102 greater than uncoated CNS. ThO2 thin film coatings were presumed to be even more promising because of a reported work function of φ ˜2.6 eV. The fundamental behavior of the initial oxidation of polycrystalline Th was studied in UHV (pMo2C and ThO2on the magnitude of field emission from carbon nanosheets (CNS) was substantial. For a given field emission current

  1. Determination of field scale ammonia emissions for common slurry spreading practice with two independent methods

    Directory of Open Access Journals (Sweden)

    A. Neftel

    2011-09-01

    Full Text Available At a cropland and a grassland site field scale ammonia (NH3 emissions from slurry application were determined simultaneously by two approaches based on (i eddy covariance (EC flux measurements using high temperature Chemical Ionisation Mass Spectrometry (HT-CIMS and on (ii backward Lagrangian Stochastic (bLS dispersion modelling using concentration measurements by three optical open path Fourier Transform Infrared (FTIR systems. Slurry was spread on the fields in sequential tracks over a period of one to two hours. In order to calculate field emissions, measured EC/HT-CIMS fluxes were combined with flux footprint analysis of individual slurry spreading tracks to parameterise the NH3 volatilisation with a bi-exponential time dependence. Accordingly, track-resolved concentration footprints for the FTIR measurements were calculated using bLS. A consistency test with concentrations measured by impingers showed very low systematic deviations for the EC/HT-CIMS results (<8% but larger deviations for the bLS/FTIR results. For both slurry application events, the period during fertilisation and the subsequent two hours contributed by more than 80% to the total field emissions. Averaged over the two measurement methods, the cumulated emissions of the first day amounted to 17 ± 3% loss of applied total ammoniacal nitrogen over the cropland and 16 ± 3% over the grassland field.

  2. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Menaka [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Patra, Rajkumar; Ghosh, Santanu [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Ganguli, Ashok K., E-mail: ashok@chemistry.iitd.ac.in [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  3. Characterisation of carbon nanotube pastes for field emission using their sheet resistances

    Science.gov (United States)

    Floweri, Octia; Kim, Jihan; Seo, Yongho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Carbon nanotube (CNT) pastes for field emitters were fabricated by varying the milling speed, CNT amount and glass frit (GF) powder size. The CNTs remained agglomerated at lower milling speeds while they were damaged and shortened at higher speeds. Increasing the amount of CNTs improved the field emission properties, but excessive CNTs led to increased removal of the CNT paste with surface activation because of lower cohesion strength. Small GF particles were incorporated to provide a flat surface to the CNT paste, which improved its field emission uniformity and lifespan. The dispersion, density and milling damage characteristics of CNTs in the pastes were assessed by their sheet resistances under the assumption of equal printed thicknesses. Tape activation reduced the thickness of the CNT pastes by different amounts that depended on the cohesion strength of the paste. This reduction caused the sheet resistance to increase. For all cases in this study, the field emission properties of the CNT pastes were closely related to their sheet resistances, suggesting that sheet resistance could be used as a figure-of-merit for the evaluation of CNT pastes for field emission applications.

  4. The improvement of the field emission properties from graphene films: Ti transition layer and annealing process

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-06-01

    Full Text Available Chemical-reduced graphene oxide (rGO films were deposited on titanium (Ti-coated silicon substrates by a simple electrophoretic deposition. The rGO films were annealed under argon atmosphere at different temperatures. The morphology and microstructure of the rGO films before and after annealing were characterized using scanning electron microscope, X-ray diffraction and Raman spectroscope. The field emission behaviors from these rGO films were investigated. The results show that, Ti-based transition layer can improve the stability of field emission from the rGO film, and the annealing at appropriate temperature is in favor of the field emission. Particularly, the rGO film displays an unexpected vacuum breakdown phenomenon at a relatively high current density. In addition, it is found that the field emission property of the rGO film is dependent on anode-sample distance and the film exhibits lower turn on field at larger anode-sample distance.

  5. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    Science.gov (United States)

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  6. Mitigating Nitrous Oxide Emissions from Tea Field Soil Using Bioaugmentation with a Trichoderma viride Biofertilizer

    Directory of Open Access Journals (Sweden)

    Shengjun Xu

    2014-01-01

    Full Text Available Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha−1 yr−1 fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha−1 and 58.7 kg N ha−1. Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha−1 yr−1 significantly reduced N2O emissions by 33.3%–71.8% and increased the tea yield by 16.2%–62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  7. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-Ning; ZHANG Zhi-Yong; ZHANG Fu-Chun; DONG Jun-Tang; ZHAO Wu; ZHAI Chun-Xue; ZHANG Wei-Hu

    2012-01-01

    An electrophoresis solution,prepared in a specific ratio of titanium (Ti)-doped nano-diamond,is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis.After high-temperature vacuum annealing,the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope,scanning electron microscopy and Raman spectroscopy.The field emission characteristics and luminescence features are also tested,and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed.The experimental results show that under the same conditions,the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder.Compared with the undoped nano-diamond cathode,the turn-on fields decline from 6.95 to 5.95 V/μm.When the electric field strength is 13.80 V/μm,the field emission current density increases to 130.00 μA/cm2.Under the applied fields,the emission current is stable and the luminescence is at its best,while the field emission characteristics of the 10 mg Ti-doped coating become worse,as does the luminescence.The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.%An electrophoresis solution, prepared in a speciGc ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti

  8. Effects of organic matter application on methane emission from paddy fields adopting organic farming system

    Directory of Open Access Journals (Sweden)

    P Nungkat

    2015-01-01

    Full Text Available A study that was aimed to determine the effect of the use of organic manure and azolla on methane emission on paddy field of organic systems was conducted on paddy fields in the Gempol Village, Sambirejo District of Sragen Regency, Indonesia. The experimental design performed for this study was a completely randomized block design consisting of three factors; the factor I was rice cultivars (Mira-1; Mentik Wangi; Merah Putih; factor II was dose of organic manure (0 t/ha and 10 t/ha and factor III was Azolla inoculums dose (0 t/ha and 2 t/ha. Gas sampling was conducted 3 times in one growing season when the rice plants reached ages of 38, 66 and 90 days after planting. The results showed that there was no correlation between the uses of organic fertilizers for rice production on methane emission. The increase of methane emission was very much influenced by the redox potential. Methane emission from Mira-1 field was higher than that from Mentik Wangi and Merah Putih fields. Emission of methane gas from Mira-1 field ranged from -509.82 to 791.34 kg CH4/ha; that from Wangi ranged from -756.77 to d 547.50 kg CH4/ha and that from Merah Putih ranged from -399.63 to 459.94 kg CH4/ha. Application of 10 t organic manure /ha and 2 t azolla/ha in Mentik Wangi reduced methane emissions with a high rice production compared to Merah Putih and Mira-1.

  9. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion

    Science.gov (United States)

    Xiaojing, Xiao; Yun, Ye; Longwu, Zheng; Tailiang, Guo

    2012-05-01

    Carbon nanotube (CNT) cathodes prepared by electrophoretic deposition were treated by a combination of nickel electroplating and cathode corrosion technologies. The characteristics of the samples were measured by scanning electron microscopy, energy dispersive X-ray spectroscopy, J-E and F—N plots. After the treatment, the CNT cathodes showed improved field emission properties such as turn-on field, threshold electric field, current density, stability and luminescence uniformity. Concretely, the turn-on field decreased from 0.95 to 0.45 V/μm at an emission current density of 1 mA/cm2, and the threshold electric field decreased from 0.99 to 0.46 V/μm at a current density of 3 mA/cm2. The maximum current density was up to 7 mA/cm2 at a field of 0.48 V/μm. In addition, the current density of the CNT cathodes fluctuated at around 0.7 mA/cm2 for 20 h, with an initial current density 0.75 mA/cm2. The improvement in field emission properties was found to be due to the exposure of more CNT tips, the wider gaps among the CNTs and the infiltration of nickel particles.

  10. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  11. Modeling and computation of mean field equilibria in producers' game with emission permits trading

    Science.gov (United States)

    Zhang, Shuhua; Wang, Xinyu; Shanain, Aleksandr

    2016-08-01

    In this paper, we present a mean field game to model the production behaviors of a very large number of producers, whose carbon emissions are regulated by government. Especially, an emission permits trading scheme is considered in our model, in which each enterprise can trade its own permits flexibly. By means of the mean field equilibrium, we obtain a Hamilton-Jacobi-Bellman (HJB) equation coupled with a Kolmogorov equation, which are satisfied by the adjoint state and the density of producers (agents), respectively. Then, we propose a so-called fitted finite volume method to solve the HJB equation and the Kolmogorov equation. The efficiency and the usefulness of this method are illustrated by the numerical experiments. Under different conditions, the equilibrium states as well as the effects of the emission permits price are examined, which demonstrates that the emission permits trading scheme influences the producers' behaviors, that is, more populations would like to choose a lower rather than a higher emission level when the emission permits are expensive.

  12. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler

    Science.gov (United States)

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-01

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm-2) and an extremely stable emission current at 1 mA (260 mA cm-2 for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm-2). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  13. Field electron emission from LaB{sub 6} and TiN emitter arrays fabricated by transfer mold technique

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Masayuki; Fukuda, Katsuyoshi

    2002-12-30

    LaB{sub 6} and TiN field emitter arrays (FEAs) have been developed by the transfer mold technique to fabricate sharp, uniform, and low operation voltage FEAs using low work function materials. Because of the sharpening effect on the tips by thermally oxidized SiO{sub 2} layer of the molds, emitter tip radii are as small as less than 10 nm. The turn-on voltages of LaB{sub 6} and TiN FEA are 110-130 V lower than that of conventional Mo FEA by decreasing the surface barrier heights for field emission, having the same emitter shape. That of the gated LaB{sub 6} FEA is as low as 28 V even without high vacuum baking treatment. Transfer mold technique provides easiness of selecting low work function materials as well as superior uniform sharpness of FEAs. Transfer mold LaB{sub 6} and TiN FEAs are useful for low operation vacuum microelectronic devices.

  14. Emission of terahertz radiation from GaN/AlGaN heterostructure under electron heating in lateral electric field

    Science.gov (United States)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Sofronov, A. N.; Melentyev, G. A.; Lundin, W. V.; Sakharov, A. V.; Tsatsulnikov, A. F.

    2013-12-01

    Spontaneous emission of terahertz radiation from modulation-doped AlGaN/GaN heterostructure under conditions of heating of a two-dimensional electron gas in the lateral electric field has been studied. The experimental data on the field dependence of the integral intensity of THz emission is compared with the theoretical simulation of blackbody-like emission from hot 2D electrons. Complementary transport measurements have been carried out to determine the dependence of effective electron temperature on electric field.

  15. Emission of terahertz radiation from GaN/AlGaN heterostructure under electron heating in lateral electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Sofronov, A. N.; Melentyev, G. A. [St. Petersburg State Polytechnic University, 195251 St. Petersburg (Russian Federation); Lundin, W. V.; Sakharov, A. V.; Tsatsulnikov, A. F. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2013-12-04

    Spontaneous emission of terahertz radiation from modulation-doped AlGaN/GaN heterostructure under conditions of heating of a two-dimensional electron gas in the lateral electric field has been studied. The experimental data on the field dependence of the integral intensity of THz emission is compared with the theoretical simulation of blackbody-like emission from hot 2D electrons. Complementary transport measurements have been carried out to determine the dependence of effective electron temperature on electric field.

  16. Blue-emitting LaAlO{sub 3}:Tm{sup 3+}, In{sup 3+} phosphors for field emission displays

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenyu [Innermongolia University of Science and Technology, School of Chemistry and Chemical Engineering, Baotou (China); University of Science and Technology Beijng, School of Metallurgical and Ecological Engineering, Beijing (China); An, Shengli [University of Science and Technology Beijng, School of Metallurgical and Ecological Engineering, Beijing (China); Innermongolia University of Science and Technology, School of Material and Metallurgy, Baotou (China); Fan, Bin; Li, Songbo [Innermongolia University of Science and Technology, School of Chemistry and Chemical Engineering, Baotou (China)

    2014-09-15

    Tm{sup 3+} and In{sup 3+} co-doped LaAlO{sub 3} phosphors were prepared by a Pechini sol-gel method and characterized by X-ray diffraction, scanning electron microscope, and cathodoluminescence spectrum. The phosphor is composed of slightly aggregated particles with approximately spherical shape and a narrow size range of 1.0-1.5 μm. Under voltage electron beam excitation, the phosphor shows the characteristic emissions of Tm{sup 3+}. All the color purity, radiant efficiency, luminous efficiency, and stability of the optimum LaAlO{sub 3}:0.01Tm{sup 3+}, 0.04In{sup 3+} phosphor are superior to these of commercial ZnS:Ag,Cl phosphor. These tests suggest that it could be a potential candidate as a blue phosphor for field emission displays. (orig.)

  17. Green house gas emissions from open field burning of agricultural residues in India.

    Science.gov (United States)

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  18. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    Science.gov (United States)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  19. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  20. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    Energy Technology Data Exchange (ETDEWEB)

    Mengui, U.A., E-mail: ursulamengui@gmail.com [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Campos, R.A.; Alves, K.A.; Antunes, E.F. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Hamanaka, M.H.M.O. [Centro de Tecnologia da Informação Renato Archer, Divisão de Superfícies de Interação e Displays, Rodovia D. Pedro I (SP 65) km 143.6, CP 6162, CEP 13089-500, Campinas, SP (Brazil); Corat, E.J.; Baldan, M.R. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil)

    2015-04-15

    Highlights: • Hot filament chemical vapor deposition using methane, hydrogen and a solution of urea in methanol produced nitrogen-doped diamond films. • Diamonds had the grain morphology changed for long growth time (28 h), and the nitrogen doping were evaluated by Raman spectroscopy. • Field emission characterization shows a decrease up to 70% in threshold field, related to reference diamond layer. - Abstract: Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler–Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films.

  1. The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

    Directory of Open Access Journals (Sweden)

    Zhanling Lu

    2010-01-01

    Full Text Available The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD. The source gas was a mixture of H2 and CH4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM, and transparent electron microscopy (TEM. The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/m. The current density of 2.1 mA/cm2 at electric field of 2.4 V/m was obtained.

  2. Field emission response from multi-walled carbon nanotubes grown on electrochemically engineered copper foil

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Amit Kumar; Jain, Vaibhav [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Saini, Krishna [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India)

    2017-02-01

    Exciting properties of carbon nanotube has proven it to be a promising candidate for field emission applications, if its processing cost can be reduced effectively. In this research, a new electrochemical technique is proposed for growing carbon nanotubes in selective areas by thermal chemical vapour deposition. In this process, electrochemical processing is used to create localized pits and deposition of catalysts, which act as roots to support growth and alignment of the CNTs on copper substrate. CNTs grown thus were characterized and studied using scanning electron microscope, transmission electron microscope and Raman spectroscopy, elucidating presence of multiwall carbon nanotubes (MWCNT). These CNT emitters have comparatively lower turn-on field and higher field enhancement factor. - Highlights: • Electrochemical pitting for localized carbon nanotube growth is proposed. • Electrochemical pitting method shows patterning effect on the substrate. • Size and density of pits depend on voltage, pH and temperature. • CNTs thus grown shows good field emission response.

  3. Influence of Thickness on Field Emission Characteristics of Nanometre Boron Nitride Thin Films

    Institute of Scientific and Technical Information of China (English)

    顾广瑞; 李英爱; 陶艳春; 何志; 李俊杰; 殷红; 李卫青; 赵永年

    2003-01-01

    Nanometre boron nitride (BN) thin films with various thickness (54-135 nm) were prepared on Si(100) by rf magnetic sputtering physical vapour deposition. The field emission characteristics of the BN thin films were measured in an ultrahigh vacuum system. A threshold electric field of 11 V/μm and the highest emission current density of 240 μA/cm2 at an electric field of 23 V/μm were obtained for the about 54-nm-thick BN film. The threshold electric field increases with increasing the thickness in the nanometre range. The Fowler-Nordheim plots show that electrons were emitted from BN to vacuum by tunnelling through the potential barrier at the surface of BN thin films.

  4. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Science.gov (United States)

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-01

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred °C.

  5. LZIFU: an emission-line fitting toolkit for integral field spectroscopy data

    CERN Document Server

    Ho, I-Ting; Groves, Brent; Rich, Jeffrey A; Rupke, David S N; Hampton, Elise; Kewley, Lisa J; Bland-Hawthorn, Joss; Croom, Scott M; Richards, Samuel; Schaefer, Adam L; Sharp, Rob; Sweet, Sarah M

    2016-01-01

    We present LZIFU (LaZy-IFU), an IDL toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy (IFS) data. LZIFU is useful for the investigation of the dynamical, physical and chemical properties of gas in galaxies. LZIFU has already been applied to many world-class IFS instruments and large IFS surveys, including the Wide Field Spectrograph, the new Multi Unit Spectroscopic Explorer (MUSE), the Calar Alto Legacy Integral Field Area (CALIFA) survey, the Sydney-Australian-astronomical-observatory Multi-object Integral-field spectrograph (SAMI) Galaxy Survey. Here we describe in detail the structure of the toolkit, and how the line fluxes and flux uncertainties are determined, including the possibility of having multiple distinct kinematic components. We quantify the performance of LZIFU, demonstrating its accuracy and robustness. We also show examples of applying LZIFU to CALIFA and SAMI data to construct emission line and kinematic maps, and investigate complex, skewed line prof...

  6. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cahay, M.; Zhu, W. [Spintronics and Vacuum Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Fairchild, S. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); Murray, P. T.; Back, T. C. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States); Center of Excellence for Thin Film Research and Surface Engineering, University of Dayton, Dayton, Ohio 45469-0170 (United States); Gruen, G. J. [Research Institute, University of Dayton, Dayton, Ohio 45469-0170 (United States)

    2016-01-18

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C.

  7. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory

    DEFF Research Database (Denmark)

    Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...... compared to e.g. for solvents. One way to characterize PM emission source strength is by using the material dustiness index which is scaled to correspond to industrial use by using modifying factors, such as handling energy factors. In this study we investigate how well the NF/FF model predicts PM...... concentration levels in a paint factory. PM concentration levels were measured during big bag and small bag powder pouring. Rotating drum dustiness indices were determined for the specific powders used and applied in the NF/FF model to predict mass concentrations. Modeled process specific concentration levels...

  8. Enhanced field emission from nanosecond laser based surface micro-structured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085< p/ostalC> (India); Shinde, Deodatta; More, Mahendra A. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Sinha, Sucharita [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085< p/ostalC> (India)

    2015-12-01

    Highlights: • Stainless steel (SS) sheets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence level ∼0.7 J/cm{sup 2} resulting in formation of micro protrusions. • In regions near periphery of the laser treated spot showed formation of micro-protrusions with density as high as ∼4.5 × 10{sup 7} cones/cm{sup 2}. • Energy dispersive X-ray spectroscopy (EDS) analysis of untreated and laser treated samples reveals trend in change of elemental composition of the sample on laser treatment. • Grazing incidence X-ray diffraction analysis of untreated and laser treated samples shows formation of oxides and nitrides of iron upon laser treatment. • Field emission study on the laser micro-structured (SS) sample has shown low turn on field in comparison to untreated stainless steel. • Parameters characterizing large area field emitters such as turn ON field, macroscopic field enhancement factor and pre exponential factor corresponding to the laser micro-structured steel surface have been estimated. • Field emission current has shown good stability when tested over a period of 140 min at a preset level of 4 μA. - Abstract: This paper presents results of field emission study of laser based surface micro-structured stainless steel (SS). Surface micro-structuring of SS samples has been performed by direct irradiation of sample surface with a frequency doubled Nd:YAG nanosecond (ns) laser in atmospheric ambience. Laser treated samples have been characterized in terms of their surface morphology, elemental composition and field emission properties. Our results reveal formation of micro-protrusions of varying height and tip diameter depending on incident laser fluence. Within the laser irradiated spot, regions near periphery showed formation of micro-protrusions with number density as high as 4.5 × 10{sup 7} protrusions/cm{sup 2}. Such laser micro-structured samples have shown much lower turn on electric field (7.5 V

  9. Electron emission properties of gated silicon field emitter arrays driven by laser pulses

    Science.gov (United States)

    Shimawaki, Hidetaka; Nagao, Masayoshi; Neo, Yoichiro; Mimura, Hidenori; Wakaya, Fujio; Takai, Mikio

    2016-10-01

    We report optically modulated electron emission from gated p-type silicon field emitter arrays (Si-FEAs). The device's "volcano" structure is designed to control the photoexcitation of electrons by transmitting light through the small gate aperture, thereby minimizing the photogeneration of slow diffusion carriers outside the depletion region in the tip. Compared to that in the dark, the emission current was enhanced by more than three orders of magnitude in the high field region when irradiated with blue laser pulses. Results from the time-resolved measurements of photoassisted electron emission showed that these possess the same response as the laser pulse with no discernible delay. These results indicate that the volcano device structure is effective at eliminating the generation of diffusion carriers and that a fully optimized FEA is promising as a photocathode for producing high-speed modulated electron beams.

  10. Application of nano-crystalline silicon film in the fabrication of field-emission pressure sensor

    Institute of Scientific and Technical Information of China (English)

    廖波; 陈旻; 孔德文; 张大成; 李婷

    2003-01-01

    A kind of filed-emission array pressure sensor is designed based on the quantum tunnel effect. The nano-crystalline silicon film is prepared by chemical vapor deposition (CVD) method, with the grain dimension and thickness of the film 3-9 nm and 30-40 nm, respectively. The nano-crystal- line silicon film is introduced into the cathode cones of the sensor, functioning as the essential emission part. The silicon nano phase is analyzed by HREM and TED, the microstructure of the single emitter and emitters array is inspected by SEM, and the field emission characteristics of the device are studied by an HP4145B transistor tester. The experimental results show that the measured current density emitted from the effective area of the sensor can reach 53.5 A/m2 when the exterior electric field is 5.6×105 V/m.

  11. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application

    Science.gov (United States)

    Wassmann, R.; Neue, H. U.; Lantin, R. S.; Aduna, J. B.; Alberto, M. C. R.; Andales, M. J.; Tan, M. J.; van der Gon, H. A. C. Denier; Hoffmann, H.; Papen, H.; Rennenberg, H.; Seiler, W.

    1994-08-01

    Methane emission rates from wetland rice fields were determined in Los Baños (Philippines) using an automatic system that allows continuous measurements over time. Methane emission was monitored in an irrigated Aquandic Epiaqualf planted to rice cultivar IR72. Urea fertilizer was applied using four modes: (1) broadcast 10 days after transplanting, (2) broadcast at transplanting, (3) broadcast and incorporated at final harrowing, and (4) deep placement as sulfur-coated granules. The treatments were laid out in a randomized complete block design with four replicates. Measurements were done in the 1991 wet season, 1992 dry season (four treatments), and the 1992 wet season (only treatment 3). Methane emission rates from the experimental plots showed pronounced seasonal and diel variations. The diel pattern of methane emission rates followed a consistent pattern, with highest rates observed in the early afternoon and lowest rates in the early morning. Methane emission rate was generally highest at the ripening stage. The average methane emission rate during the 1992 dry season (190 mg CH4 m-2 d-1) exceeded the average flux rates of the 1992 wet season (79 mg CH4 m-2 d-1) by a factor of 2.4. The total methane emitted from these flooded rice fields amounted to 19 g CH4 m-2 in the dry season with rice yields of 5.2-6.3 t ha-1 and 7 g CH4 m-2 in the wet season with rice yields of 2.4-3.3 t ha-1 regardless of the mode of N application. Significant amounts corresponding to 20% of the methane released under waterlogged conditions were released when the soil was drained after harvest. Emission rates increased sharply when the floodwater receded and macropores started to drain. Emission of methane stopped only when the soil became fully aerated.

  12. Enhanced Field Emission from Vertical ZnO Nanoneedles on Micropyramids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; DIAO Da-Sheng

    2009-01-01

    Vertical ZnO nanoneedles with sharp tips are secondarily grown on tips of primarily grown ZnO micropyramids by a vapour transport process.The field emission (FE) properties exhibit a lower turn-on electric fieM and a higher field enhancement factor as compared with vertical ZnO microrods.This result indicates that ZnO nanoneedles have good optimum shapes for FE due to electron accumulation at sharp tips.

  13. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  14. Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor.

    Science.gov (United States)

    Sun, Yonghai; Yeow, John T W; Jaffray, David A

    2013-10-25

    A low density vertically aligned carbon nanotube-based field-emission cathode with a ballast resistor and coaxial gate is designed and fabricated. The ballast resistor can overcome the non-uniformity of the local field-enhancement factor at the emitter apex. The self-aligned fabrication process of the coaxial gate can avoid the effects of emitter tip misalignment and height non-uniformity.

  15. Carbon Nanotube Field Emission Devices With Integrated Gate for High Current Applications

    Science.gov (United States)

    2008-08-01

    exhibits an edge effect and in fact, shows a slight enhancement. A baseline structure, consisting of two parallel plates with the same applied field and...electrostatics the addition of the gate electrode will not reduce the edge effect for the CNT pillars. As a result of this it is expected that the voltage...field emission from an individual aligned carbon nanotube bundle enhanced by edge effect ", Appl. Phys. Lett., 90, 153108, 2007. [6] Killian, J. L

  16. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    OpenAIRE

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10)...

  17. Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission.

    Science.gov (United States)

    Chang, Han-Chen; Tsai, Hsin-Jung; Lin, Wen-Yi; Chu, Yung-Chi; Hsu, Wen-Kuang

    2015-07-08

    Coating of h-BN onto carbon nanotubes induces polarization at interfaces, and charges become localized at N and C atoms. Field emission of coated tubes is found to be highly stable, and current density fluctuates within 4%. Study further reveals that the electric field established between coatings and tubes facilitates charge transfer across interfaces and electrons are emitted through occupied and unoccupied bands of N and B atoms.

  18. Far-Field Emission Pattern of a Dielectric Circular Microresonator with a Point Scatterer

    NARCIS (Netherlands)

    Dettmann, C.P.; Morozov, G.V.; Sieber, M.; Waalkens, H.

    2008-01-01

    The far-field emission pattern of a two-dimensional circular microresonator with a point scatterer inside, at some distance away from the centre, is investigated theoretically. We demonstrate that the presence of the scatterer leads to significant enhancement in the directionality of the outgoing li

  19. Manipulating carbon nanotubes Towards the application as novel field emission sources

    NARCIS (Netherlands)

    Heeres, Erwin Cornelis

    2014-01-01

    This thesis is about the research performed on novel field emission sources. Having a better electron source can reduce the time needed to obtain an electron microscope image and enable studying processes at a higher resolution. We chose to fabricate electron sources by means of mounting

  20. Field emission characteristics of SnO2/CNT composite prepared by microwave assisted wet impregnation

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-01-01

    Full Text Available nanoparticles on CNTs, which was consistent with the results from X-ray diffraction. Enhanced field emission performance was observed for SnO2/CNT composite prepared by a microwave method when compared to pure CNTs and SnO2/CNT prepared by conventional wet...

  1. Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

    Science.gov (United States)

    Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu

    2016-01-01

    Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...

  2. Microstructure and properties of Si-TaSi2 eutectic in situ composite for field emission

    Institute of Scientific and Technical Information of China (English)

    CUI ChunJuan; ZHANG Jun; HAN Min; CHEN Jun; XU NingSheng; LIU Lin; FU HengZhi

    2007-01-01

    The Si-TaSi2 eutectic in situ composite for field emission is prepared by electron beam floating zone melting (EBFZM) technique on the basis of Czochralski (CZ) crystal growth technique. The directional solidification microstructure and the field emission properties of the Si-TaSi2 eutectic in situ composite prepared by two kinds of crystal growth techniques have been systematically tested and compared.Researches demonstrated that the solidification microstructure of EBFZM can be fined obviously because of the relatively high solidification rate and very high temperature gradient, i.e. both the diameter and inter-rod spacing of the TaSi2 fibers prepared by EBFZM technique were decreased, and the density and the volume fraction of the TaSi2 fibers prepared by EBFZM technique were increased in comparison with that of the TaSi2 fibers prepared by CZ method. Therefore the field emission property of the Si-TaSi2 eutectic in situ composite prepared by EBFZM can be improved greatly, which exhibits better field emission uniformity and straighter F-N curve.

  3. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.

    Science.gov (United States)

    Zhang, Liang; Balzano, Leandro; Resasco, Daniel E

    2005-08-04

    Field emission studies were conducted on as-produced CoMoCAT single-walled carbon nanotube/silica composites with controlled nanotube diameter and bundle size. It has been observed that the as-produced nanotube material does not need to be separated from the high-surface area catalyst to be an effective electron emitter. By adjusting the catalytic synthesis conditions, single-walled carbon nanotubes (SWNT) of different diameters and bundle sizes were synthesized. A detailed characterization involving Raman spectroscopy, optical absorption (vis-NIR), SEM, and TEM was conducted to identify the nanotube species present in the different samples. The synthesis reaction temperature was found to affect the nanotube diameter and bundle size in opposite ways; that is, as the synthesis temperature increased the nanotube average diameter became larger, but the bundle size became smaller. A gradual and consistent reduction in the emission onset field was observed as the synthesis temperature increased. It is suggested that the bundle size, more than the nanotube diameter or chirality, determines the field emission characteristics of these composites. This is a clear demonstration that field emission characteristics of SWNT can be controlled by the nanotube synthesis conditions.

  4. Gas adsorption and high-emission current induced degradation of field emission characteristics in solution-processed ZnO nanoneedles

    Science.gov (United States)

    Dardona, Sameh; Peles, Amra; Wrobel, Gregory; Piech, Martin; Gao, Pu-Xian

    2010-12-01

    The effects of gas adsorption and high current on the field emission characteristics of ZnO nanoneedles grown directly from metal electrodes have been systematically investigated. Exposure of nanoneedles to H2, N2, or O2 gas degraded the field emission characteristics, with O2 having the strongest impact. Complete recovery of emission current following H2 and N2 treatment was accomplished by vacuum annealing at 450 °C. Meanwhile, changes induced by O2 adsorption were irreversible. First-principle calculations revealed electronic structure modifications through change of work function and charge density distribution upon gas exposure. It is suggested that the emission current degradation originates from shifts in the Fermi level caused by charge transfer from nanoneedle surface to gas adsorbates. Moreover, field emission degradation has been observed at high currents as a result of surface melting at the nanoneedles apex caused by resistive heating.

  5. Studies of field and secondary electron emission from nanocomposite carbon films

    Science.gov (United States)

    Gonzalez Berrios, Adolfo

    The Electron Field Emission (EFE) and Secondary Electron Emission (SEE) properties of sulfur-incorporated nanocomposite carbon films (n-C:S) grown by hot filament CVD were studied. First, as a foundation for the experimental EFE studies, the electrostatic field gradients present in measuring configurations were numerically studied using the finite element method. Especially, the generally assumed validity of the V/dCA approximation for the cathode surface electric field (ES) under commonly employed electron field emission configurations was investigated. Results indicate that the V/d CA approximation is far from being universally applicable to all the field emission measuring configurations, and that only one configuration (the flat cylindrical probe) gives a sufficiently uniform ES, which nearly equals V/dCA over most of the cathode area under the probe. Second, the effect of adsorbates on EFE was investigated by inducing adsorption on a set of n-C:S films with similar EFE properties by liquid treatment at standard conditions. Adsorbates caused an increase in the turn-on field that was found to depend on the polarity of the liquid used: the larger [smaller] the polarity, the smaller [larger] the increase in turn-on field. The analysis of the data indicates that the increase in turn-on field is due to an increase in work function caused by adsorbates. Also, the hysteresis behavior, present in the field emission measurements, changes from clockwise to counterclockwise due to the adsorbates. This is due to the adsorption-desorption process occurring on the films' surface during emission. Third, the role of Mo2C (present between the Mo substrate and the carbon film) in the EFE properties of nanocomposite carbon films was studied. A relation between the relative thickness of Mo2C (002) planes, obtained using weighed intensities, and the field emission turn-on fields was found. In general, the relation is direct: the turn-on field increases as the thickness of the Mo2C

  6. Direct current scanning field emission microscope integrated with existing scanning electron microscope

    Science.gov (United States)

    Wang, Tong; Reece, Charles E.; Sundelin, Ronald M.

    2002-09-01

    Electron field emission (FE) from broad-area metal surfaces is known to occur at much lower electric field than predicted by Fowler-Nordheim law. Although micron or submicron particles are often observed at such enhanced field emission (EFE) sites, the strength and number of emitting sites and the causes of EFE strongly depend on surface preparation and handling, and the physical mechanism of EFE remains unknown. To systematically investigate the sources of this emission, a dc scanning field emission microscope (SFEM) has been built as an extension to an existing commercial scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer for emitter characterization. In the SFEM chamber of ultrahigh vacuum (approx10-9 Torr), a sample is moved laterally in a raster pattern (2.5 mum step resolution) under a high voltage anode microtip for field emission detection and localization. The sample is then transferred under vacuum by a hermetic retractable linear transporter to the SEM chamber for individual emitter site characterization. Artificial marks on the sample surface serve as references to convert x, y coordinates of emitters in the SFEM chamber to corresponding positions in the SEM chamber with a common accuracy of plus-or-minus100-200 mum in x and y. Samples designed to self-align in sample holders are used in each chamber, allowing them to retain position registration after non-in situ processing to track interesting features. No components are installed inside the SEM except the sample holder, which does not affect the routine operation of the SEM. The apparatus is a system of low cost and maintenance and significant operational flexibility. Field emission sources from planar niobium--the material used in high-field rf superconducting cavities for particle accelerator--have been studied after different surface preparations, and significantly reduced field emitter density has been achieved by refining the preparation process based on scan

  7. Field Emission Properties of the Dendritic Carbon Nanotubes Film Embedded with ZnO Quantum Dots

    Directory of Open Access Journals (Sweden)

    Shu Zuo

    2011-01-01

    Full Text Available Response on the effects of individual differences of common carbon nanotubes on the field emission current stability and the luminescence uniformity of cathode film, a new type of cathode film made of dendritic carbon nanotubes embedded with Zinc oxide quantum dots is proposed. The film of dendritic carbon nanotubes was synthesized through high-temperature pyrolysis of iron phthalocyanine on a silicon substrate coated with zinc oxide nanoparticles. The dendritic structure looks like many small branches protrude from the main branches in SEM and TEM images, and both the branch and the trunk are embedded with Zinc oxide quantum dots. The turn-on field of the dendritic structure film is ∼1.3 V/μm at a current of 2 μA, which is much lower than that of the common carbon nanotube film, and the emission current and the luminescence uniformity are better than that of the common one. The whole film emission uniformity has been improved because the multi-emission sites out from the dendritic structure carbon nanotubes cover up the failure and defects of the single emission site.

  8. Novel thin film field emission electron source laboratory directed research and development final report

    Energy Technology Data Exchange (ETDEWEB)

    Walko, R.J.; Fleming, J.G.; Hubbs, J.W.

    1997-04-01

    The objective of this project was to demonstrate proof of concept of a thin film field emission electron source based on electron tunneling between discrete metal islands on an insulating substrate. An electron source of this type should be more easily fabricated permitting the use of a wider range of materials, and be less prone to damage and erratic behavior than the patterned field emitter arrays currently under development for flat panel displays and other vacuum microelectronic applications. This report describes the results of the studies of electron and light emission from such structures, and the subsequent discovery of a source of light emission from conductive paths across thin insulating gaps of the semiconductor-insulator-semiconductor (SIS) and metal-insulator-semiconductor (MIS) structures. The substrates consisted of silicon nitride and silicon dioxide on silicon wafers, Kapton{reg_sign}, quartz, and cut slabs of silica aerogels. The conductive film samples were prepared by chemical vapor deposition (CVD) and sputtering, while the MIS and SIS samples were prepared by CVD followed by cleaving, grinding, mechanical indentation, erosion by a sputter Auger beam, electrical arcing and chemical etching. Electron emission measurements were conducted in high and ultra high vacuum systems at SNL, NM as well as at SNL, CA. Optical emission measurements were made in air under an optical microscope as well as in the above vacuum environments. Sample morphology was investigated using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  9. Effect of interface layers on electron field emission properties of amorphous diamond films

    Institute of Scientific and Technical Information of China (English)

    茅东升[1; 赵俊[2; 李炜[3; 王曦[4; 柳襄怀[5; 诸玉坤[6; 范忠[7; 周江云[8; 李琼[9; 徐静芳[10

    1999-01-01

    Hydrogen-free high sp~3 content amorphous diamond (AD) films are deposited on three different substrates——Au-coated Si (Au/Si), Ti-coated Si (Ti/Si) and Si wafers. Electron field emission properties and fluorescent displays of the above AD films are studied by using a sample diode structure. The compositional profile of the interfaces of AD/Ti/Si and AD/Si is examined by using secondary ions mass spectroscopy (SIMS). Because of the reaction and interdiffusion between Ti and C, the formation of a thin TiC intermediate layer is possible between AD film and Ti/Si substrate. The field emission properties of AD/Ti/Si are sufficiently improved, especially its uniformity. A field emission density of 0.352 mA/cm~2 is obtained under an electric field of 19.7 V/μm. The value is much more than that of AD/Au/Si and AD/Si under the same electric field.

  10. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.

    Science.gov (United States)

    Li, Chi; Zhang, Yan; Cole, Matthew T; Shivareddy, Sai G; Barnard, Jon S; Lei, Wei; Wang, Baoping; Pribat, Didier; Amaratunga, Gehan A J; Milne, William I

    2012-04-24

    We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

  11. Enhanced electron field emission from NiCo2O4 nanosheet arrays

    Science.gov (United States)

    Naik, Kusha Kumar; Khare, Ruchita T.; Gelamo, Rogerio V.; More, Mahendra A.; Thapa, Ranjit; Late, Dattatray J.; Sekhar Rout, Chandra

    2015-09-01

    Electron emission properties of electrodeposited spinel NiCo2O4 nanosheet arrays grown on Ni foam have been studied. The work function of NiCo2O4 was calculated by density functional theory using the plane-wave basis set and used to estimate the field enhancement factor. The NiCo2O4 nanosheet arrays exhibited a low turn-on field of 1.86 V μm-1 at 1 μA cm-2 and current density of 686 μA cm-2 at 3.2 V μm-1, with field enhancement factor β = 1460 and good field emission current stability. The field emission properties of the NiCo2O4 nanosheet arrays showed enhanced performance compared to chemically prepared NiCo2O4 nanosheets. Hence, the nanosheet arrays have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications.

  12. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  13. Well-aligned carbon nanotube array membrane and its field emission properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and chemical vapor deposition of carbon in the cylindrical pores of AAO. Here we show that template-synthesized CNTs can be fabricated as well-aligned nanoporous CNTs membrane, which can be directly used as an electron field emitter. A low threshold electric field of 2-4 V/μm and maximum emission current density of ~12 mA/cm2 are observed. The results also show that the electron emission current is a function of the applied electrical field and the Fowler-Nordheim (F-N) plot almost follows a linear relationship which indicates a Fowler-Nordheim tunneling mechanism, and the field enhancement factor estimated is about 1100-7500. The simple and convenient approach should be significant for the development of nanotube devices integrated into field emission displays (FEDs) technology.

  14. Field emission mechanism from nanotubes through gas ionization induced nanoscale surface charging

    CERN Document Server

    Zhan, Changhua

    2012-01-01

    Experimental evidences reported in this letter show that the gas ionization induced positive charge accumulation can lead to the electron field emission from carbon nanotubes (CNTs) in an electrode system with proper range of gap spacing, where the CNT film with ethocel was covered with ZnO nanorods. The hypothesis for illustration is suggested that: 1) the cosmic ray ionization frequency increases 108~1010 times due to the metastable population resulted from the interaction between the gases and the CNTs; 2) the flux of positive charges is enhanced in the converged field due to the ZnO nanostructures. The resulted positive charge local density is high enough to trigger the field emission of the CNTs. The methodology may be useful in particle detectors and ionization gas sensors.

  15. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [NIU, DeKalb; Faillace, Luigi [RadiaBeam Tech.; Panuganti, Harsha [NIU, DeKalb; Thangaraj, Jayakar C.T. [Fermilab; Piot, Philippe [NIU, DeKalb

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP.

  16. INFLUENCES OF DENSITY AND DIMENSION OF CARBON NANOTUBES ON THEIR FIELD EMISSION

    Institute of Scientific and Technical Information of China (English)

    Y.B. Zhu; W.L. Wang; C.G. Hu

    2003-01-01

    The influences of density and dimension of carbon nanotubes on their electron emission from arrays are studied. The tip electric field of nanotubes, electric field enhancement factor, and optimum nanotube density are expressed by analytic equations. The theoretical analyses show that the field enhancement factor is sensitive to nanotube density, and can be sharply improved at a specific and optimum density. Some experiments have demonstrated these. Owning to electrostatic screening effect, the length of carbon nanotubes has little effect on their emission. A uniformly-distributed carbon nanotube array model is set up, and applied to analysis of carbon nanotube arrays.The results obtained here are in good agreement with the experimental data.

  17. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    Science.gov (United States)

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-05-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10) chip with electron field emission. A dose rate on the order of >1.2 Gy/min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.

  18. Quantitative field measurement of soot emission from a large gas flare using sky-LOSA.

    Science.gov (United States)

    Johnson, Matthew R; Devillers, Robin W; Thomson, Kevin A

    2011-01-01

    Particulate matter emissions from unconfined sources such as gas flares are extremely difficult to quantify, yet there is a significant need for this measurement capability due to the prevalence and magnitude of gas flaring worldwide. Current estimates for soot emissions from flares are rarely, if ever, based on any form of direct data. A newly developed method to quantify the mass emission rate of soot from flares is demonstrated on a large-scale flare at a gas plant in Uzbekistan, in what is believed to be the first in situ quantitative measurement of soot emission rate from a gas flare under field conditions. The technique, named sky-LOSA, is based on line-of-sight attenuation of skylight through a flare plume coupled with image correlation velocimetry. Monochromatic plume transmissivities were measured using a thermoelectrically cooled scientific-grade CCD camera. Plume velocities were separately calculated using image correlation velocimetry on high-speed movie data. For the flare considered, the mean soot emission rate was determined to be 2.0 g/s at a calculated uncertainty of 33%. This emission rate is approximately equivalent to that of 500 buses driving continuously and equates to approximately 275 trillion particles per second. The environmental impact of large, visibly sooting flares can be quite significant.

  19. Classification and analysis of emission-line galaxies using mean field independent component analysis

    CERN Document Server

    Allen, James T; Richardson, Chris T; Ferland, Gary J; Baldwin, Jack A

    2013-01-01

    We present an analysis of the optical spectra of narrow emission-line galaxies, based on mean field independent component analysis (MFICA). Samples of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to generate compact sets of `continuum' and `emission-line' component spectra. These components can be linearly combined to reconstruct the observed spectra of a wider sample of galaxies. Only 10 components - five continuum and five emission line - are required to produce accurate reconstructions of essentially all narrow emission-line galaxies; the median absolute deviations of the reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying the MFICA components to a large sample of SDSS galaxies we identify the regions of parameter space that correspond to pure star formation and pure active galactic nucleus (AGN) emission-line spectra, and produce high S/N reconstructions of these spectra. The phys...

  20. Local field corrections to the spontaneous emission in arrays of Si nanocrystals

    CERN Document Server

    Poddubny, Alexander N

    2014-01-01

    We present a theory of the local field corrections to the spontaneous emission rate for the array of silicon nanocrystals in silicon dioxide. An analytical result for the Purcell factor is obtained. We demonstrate that the local-field corrections are sensitive to the volume fill factor of the nanocrystals in the sample and are suppressed for large values of the fill factor. The local-field corrections and the photonic density of states are shown to be described by two different effective permittivities: the harmonic mean between the nanocrystal and the matrix permittivities and the Maxwell-Garnett permittivity.

  1. Field Emission From Ordered Nano-array Structures Based on Porous Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    WANG; ChengWei

    2001-01-01

    This thesis reports my research work of fabricating nanostructures by using nanoporous anodic aluminum oxide (AAO) templates and their field emission properties in the past few years. Some important results obtained are as follows:  1. We first proposed a new concept of fabricating field emitters with ordered nanostructures based on porous aluminum oxide templates such as AAO/Al, metal/AAO, PANI/AAO, CNTs/AAO, Si/AAO and did a lot of research in this field.  ……

  2. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao [Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Zhuo; Ou-Yang, Wei, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  3. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    Science.gov (United States)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  4. Enhanced Field Emission from a Carbon Nanotube Array Coated with a Hexagonal Boron Nitride Thin Film.

    Science.gov (United States)

    Yang, Xiaoxia; Li, Zhenjun; He, Feng; Liu, Mingju; Bai, Bing; Liu, Wei; Qiu, Xiaohui; Zhou, Hang; Li, Chi; Dai, Qing

    2015-08-12

    A high-quality field emission electron source made of a highly ordered array of carbon nanotubes (CNTs) coated with a thin film of hexagonal boron nitride (h-BN) is fabricated using a simple and scalable method. This method offers the benefit of reproducibility, as well as the simplicity, safety, and low cost inherent in using B(2)O(3) as the boron precursor. Results measured using h-BN-coated CNT arrays are compared with uncoated control arrays. The optimal thickness of the h-BN film is found to be 3 nm. As a result of the incorporation of h-BN, the turn-on field is found to decrease from 4.11 to 1.36 V μm(-1), which can be explained by the significantly lower emission barrier that is achieved due to the negative electron affinity of h-BN. Meanwhile, the total emission current is observed to increase from 1.6 to 3.7 mA, due to a mechanism that limits the self-current of any individual emitting tip. This phenomenon also leads to improved emission stability and uniformity. In addition, the lifetime of the arrays is improved as well. The h-BN-coated CNT array-based field emitters proposed in this work may open new paths for the development of future high-performance vacuum electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.

    Science.gov (United States)

    Sanchez, Jaime A; Mengüç, M Pinar

    2008-02-20

    In this paper we present an analysis to simulate heating within an isolated carbon nanotube (CNT) attached to an etched tungsten tip during field emission of an electron beam. The length, radius, wall thickness and shape of the tip (closed with a hemispherical shape or open and flat) of the CNT and its separation distance from the flat surface are considered as variables. Using a finite element method, we predict the field enhancement, emission current and temperature of the CNT as a function of these parameters. The electrostatic and transient thermal analyses are integrated with the field-emission models based on the Fowler-Nordheim approximation and heating/cooling due to emitting energetic electrons (the Nottingham effect). These simulations suggest that the main mechanism responsible for heating of the CNT is Joule heating, which is significantly larger than the Nottingham effect. Results also indicate that the electrostatic characteristics of CNTs are very sensitive to the considered parameters whereas the transient thermal response is only a function of the CNT radius and wall thickness. Further, the thermal response of the CNT is independent of its geometry, meaning that, as long as a given set of geometrical conditions are present that result in a given emission current, the maximum temperature a CNT attains will be the same.

  6. Template free synthesis of mesoporous CuO nano architects for field emission applications.

    Science.gov (United States)

    Das, Swati; Maiti, Soumen; Saha, Subhajit; Das, Nirmalya Sankar; Chattopadhyay, Kalyan Kumar

    2013-04-01

    Cupric oxide mesospheres composed of its nanoparticles have been synthesized by a simple template free chemical route at different temperatures. Thermal aging followed by higher temperature (350 degrees C, 6 hours) annealing on these architects transformed them into hollow mesospheres consisting of sharp needle like structures with high aspect ratio (- 10(3)). A detailed analysis of field emission scanning electron microscopy confirmed a uniform registry of the prepared nanostructures. High resolution transmission electron microscopy showed that the as-grown mesospheres have hollow inner cavity with a thin outer shell. X-ray photoelectron spectroscopic analysis showed no obvious changes in the chemical composition of the nanostructures after annealing, confirming that the elements in the final products were in the proper oxidation states. Electron emission under electric field was investigated from these interesting structures. It was found that both of these nanostructures showed electron emission, but emission performance of the hollow mesospheres consisting of nanoneedles exhibited excellent performance with turn-on field as low as 2.8 V/microm and high enhancement factor (beta) - 5537.

  7. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  8. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  9. Field emission digital display tube with nano-graphite film cathode

    Institute of Scientific and Technical Information of China (English)

    Jicai Deng; Zhanling Lu; Binglin Zhang

    2008-01-01

    The field emission digital display tube with a nano-crystalline graphite cold cathode is designed and fabricated. Under the control of the driving circuits, a dynamic digital display with uniform luminance distribution is realized. The luminance of the character segments is 190 cd/m2 at the operating voltage of 900 V. And the stable emission is attained with a fluctuation of about 3% at an average segment current of 75 μA. The results demonstrate that nano-crystalline graphite film is a promising material for cold cathode.

  10. METHANE EMISSION FROM PADDY FIELDS AS INFLUENCED BY DIFFERENT WATER REGIMES IN CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Prihasto Setyanto

    2013-07-01

    Full Text Available The concentration of methane (CH4 in the atmosphere is increasing at 1% per annum and rice fields are one of the sources that contribute to about 10-15% of the atmospheric CH4. One of the options to reduce greenhouse gas emission from rice fields is probably through water management. A field study was conducted to investigate the effects of water management practices on CH4 emission from rice field plots on a silty sand Aeric Tropaquept soil at Research Station for Agricultural Environment Preservation, Jakenan, Central Java, Indonesia, during the dry season of March to June 2002. Four water regimes tested were: (1 5 cm continuous flooding (CF, (2 0-1 cm continuous flooding (ST, (3 intermittent irrigation (IR where plots received continuously 5 cm of flooding with two times of draining at 15-20 and 25-30 days after transplanting (DAT, and (4 pulse irrigation (PI where plots were watered until 5 cm level and left to dry by itself until the water table reached 30 cm beneath soil surface then watered again. The total CH4 emissions of the four water treatments were 254, 185, 136 and 96 kg CH4 ha-1 for CF, ST, IR and PI, respectively. Methane emission increased during the early growing season, which coincided with the low redox potential of -100 to -150 mV in all treatments. Dry matter weight of straw and filled grain among the water treatments did not show significant differences. Likewise, total grain yield at 14% moisture content was not significantly different among treatments. However, this result should be carefully interpreted because the rice plants in all water treatments were infested by stem borer, which reduced the total grain yield of IR64 between 11% and 16%. This study suggests that intermittent and pulse irrigation practices will be important not only for water use efficiency, but also for CH4 emission reduction.

  11. Enhanced field emission from compound emitters of carbon nanotubes and ZnO tetrapods by electron beam bombardment.

    Science.gov (United States)

    Wei, Lei; Zhang, Xiaobing; Lou, Chaogang; Zhao, Zhiwei; Jing, Chen; Wang, Baoping

    2011-06-01

    The enhancement of field emission from compound emitters of carbon nanotubes and ZnO tetrapods by the electron beam bombardment is reported. After 20 minutes electron bombardment with 6 keV energy, a few bird-nest micro structures are formed in the compound emitters array. As the simulation results shown, the electric field and field emission current density at the tip of ZnO tetrapod are increased due to the influences of these bird-nest micro structures. From the measurement of the field emission performance, it can be seen that the turn-on electric field and threshold electric field of the field emitter array decrease to 0.4 V/microm and 2.4 V/microm respectively. They have decreased 62% and 15% after the electron bombardment. After the electron bombardment, the emission sites density is increased. The field emission images show that the uniformity of field emission has been improved obviously after the proper electron bombardment. The methodology proposed in this paper has a promising application in the field emission devices.

  12. Near-Field Resonance at Far-Field Anti-Resonance: Plasmonically Enhanced Light Emission with Minimum Scattering Nanoantennas

    CERN Document Server

    Rodriguez, S R K; Lozano, G; Omari, A; Hens, Z; Rivas, J Gomez

    2012-01-01

    We demonstrate that a periodic array of optical antennas sustains a resonant Near-Field (NF) and an anti-resonant Far-Field (FF) at the same energy and in-plane momentum. This phenomenon arises in the context of coupled plasmonic lattice resonances, whose bright and dark character is interchanged at a critical antenna length. The energies of these modes anti-cross in the FF, but cross in the NF. Hence, we observe an extremely narrow bandwidth emission enhancement from quantum dots in the proximity of the array, while the antennas scatter minimally into the FF. Simulations reveal that a standing wave with a quadrupolar field distribution is the origin of this dark collective resonance.

  13. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  14. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    OpenAIRE

    Jinzhuo Xu; Tao Feng; Yiwei Chen; Zhuo Sun

    2013-01-01

    The graphene double-walled carbon nanotube (DWCNT) hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better ...

  15. Validation of the TES algorithm for emissivity determination using field measurements

    Science.gov (United States)

    Schmugge, T.; Ogawa, K.; French, A.; Ritchie, J.; Rango, A.

    2009-04-01

    Knowledge of the surface emissivity is important for determining the radiation balance at the land surface. This is especially true for arid regions with sparse vegetation, where the emissivity of the exposed soils and rocks is highly variable. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region can be determined along with surface temperature. To overcome the problem of having too many unknowns, i.e. 5 emissivities and the surface temperature, TES makes use of an empirical relation between the minimum emissivity and the range of values for the 5 ASTER channels. The TES algorithm was validated using measurements with a multispectral thermal infrared field radiometer (CIMEL 312) which has essentially the same 5 bands as ASTER. The measurements were made on several soils in the Jornada Experimental Range (JER) and the White Sands National Monument in southern New Mexico, USA. The JER is a long-term ecological reserve (LTER) site located at the northern end of the Chihuahuan desert. The site is typical of desert grassland where the main vegetation components are grass and shrubs. At the White Sands National Monument dunes of gypsum sand cover about 700 km2 (275 square miles). Since gypsum has a unique emissivity spectra with a pronounced minimum at the 8.6 micrometer wavelength it is a good target for satellite observations of emissivity. The observed emissivity spectra for these sites in New Mexico show good agreement ( <0.02) with values calculated from the laboratory spectra for the soil samples when the difference of physical

  16. Electron field emission from nanostructured surfaces of GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Gorbanyuk, T.; Grygoriev, A. [Institute of Semiconductor Physics, 41 prospekt Nauki, 03028 Kiev (Ukraine); Yilmazoglu, O.; Hartnagel, H.; Pavlidis, D. [Technische Universitaet Darmstadt, Institut fuer Hochfrequenztechnik, Merckstr. 25, 64283 Darmstadt (Germany)

    2008-07-01

    The possibility of high frequency electromagnetic wave generation by field emission based devices has great interest. The wide bandgap materials GaN and AlGaN are very promising for these applications due to low electron affinity and the existence of satellite valleys in conduction band. The results of investigations of the peculiarities of electron field emission from nanostructured surfaces of GaN and AlGaN are presented. Multilayer GaN and AlGaN structures with various levels of layer doping on sapphire and bulk GaN substrates were used as initial wafers. The surface of the upper layers was nanostructured by photoelectrochemical etching in water solution of KOH. Intensive electron field emission into vacuum was observed and explained by low electron affinity and electric field enhancement on surface nanowires. A decrease of the slope in the Fowler-Nordheim characteristics was revealed. The changing slope suggests a lowering of effective work function. It is caused by electron heating and transfer into an upper satellite valley with lower electron affinity. A theory was developed for the observed phenomena and interpretation of results. It is based on electron intervalley transition upon heating and on energy band reconstruction of the surface of the nanowires due to quantum size-confinement effect. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  18. Inprovement of Field Emission Properties of PBS Thin Films by Amorphous Carbon Coating

    Directory of Open Access Journals (Sweden)

    S. Jana

    2011-01-01

    Full Text Available Lead sulfide (PbS nanocrystalline thin films were synthesized at room temperature via chemical bath deposition on both silicon and glass substrates and coated with amorphous carbon of different thickness by varying deposition time in plasma enhanced chemical vapor deposition technique. The as prepared samples were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and atomic force microscope (AFM. XRD study reveals that coating of amorphous carbon does not change the crystal structure of PbS. From FESEM images it is seen that the average size of PbS nanoparticle does not exceed 100 nm, though sometomes small cubic particles agglomerated to form bigger particles. The coating of amorphous carbon can be clearly visible by the FESEM as well as from AFM micrographs. Field emission study show a significant betterment for the carbon coated sample as compared to the pure PbS. The effect of inter-electrode distance on the field emission characteristics of best field emitting sample has been studied for three different inter-electrode distances.

  19. High-temperature annealing effects on multiwalled carbon nanotubes: electronic structure, field emission and magnetic behaviors.

    Science.gov (United States)

    Ray, Sekhar Chandra; Pao, Chih-Wen; Tsai, Huang-Ming; Chen, Huang-Chin; Chen, Yu-Shin; Wu, Shang-Lun; Ling, Dah-Chin; Lin, I-Nan; Pong, Way-Faung; Gupta, Sanju; Giorcelli, Mauro; Bianco, Stefano; Musso, Simone; Tagliaferro, Alberto

    2009-12-01

    This work elucidates the effects of high-temperature annealing on the microscopic and electronic structure of multiwalled carbon nanotubes (MWCNTs) using high-resolution transmission electron microscopy, micro-Raman spectroscopy, X-ray diffraction, X-ray absorption near-edge structure (XANES) and valence-band photoemission spectroscopy (VBPES), respectively. The field emission and magnetization behaviors are also presented. The results of annealing are as follows: (1) MWCNTs tend to align in the form of small fringes along their length, promote graphitization and be stable in air, (2) XANES indicates an enhancement in oxygen content on the sample, implying that it can be adopted for sensing and storing oxygen gas, (3) the electron field emission current density (J) is enhanced and the turn-on electric field (E(TOE)) reduced, suggesting potential use in field emission displays and as electron sources in microwave tube amplifiers and (4) as-grown MWCNTs with embedded iron nanoparticles exhibits significantly higher coercivity approximately 750 Oe than its bulk counterpart (Fe(bulk) approximately 0.9 Oe), suggesting its potential use as low-dimensional high-density magnetic recording media.

  20. ESTIMATE OF METHANE EMISSIONS FROM RICE FIELDS IN CHINA BY CLIMATE-BASED NET PRIMARY PRODUCTIVITY

    Institute of Scientific and Technical Information of China (English)

    KANG Guo-ding; CAI Zu-cong; ZHANG Zi-heng; XIAO Peng-feng

    2004-01-01

    Rice fields provide food for over half of the world population but are also an important source of atmospheric CH4. Using the climate-based GIS empirical model and the meteorological data collected from 600 meteorological stations in China, with county as the basic unit, the net primary productivity (NPP) of rice fields in China in 1990, 1995, 1998, and 2000 were estimated to be in the range from 202.19×1012g C in 1990 to 163.46×1012g C in 2000. From the measured data of the factors affecting CH4 emission and NPP, the conversion ratio of the NPP into CH4 emission for the rice fields of China was determined to be 1.8%. Using this ratio and estimated NPP, the CH4 emissions from rice fields of China in 1990, 1995, 1998, and 2000 were estimated to be 7.24×1012, 6.31×1012, 6.77×1012 and 5.85×1012g CH4, respectively.

  1. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  2. SLAC T-510: Radio emission from particle cascades in the presence of a magnetic field

    Science.gov (United States)

    Mulrey, Katharine

    2017-03-01

    Cosmic ray induced particle cascades radiate in radio frequencies in the Earth's atmosphere. Geomagnetic and Askaryan emission provide an effective way to detect ultra-high energy cosmic rays. The SLAC T-510 experiment was the first to measure magnetically induced radiation from particle cascades in a controlled laboratory setting. An electron beam incident upon a dense dielectric target produced a particle cascade in the presence of a variable magnetic field. Antennas covering a band of 30-3000 MHz sampled RF emission in vertical and horizontal polarizations. Results from T-510 are compared to particle-level RF-emission simulations which are critical for reconstructing the energy and composition of detected ultra-high energy cosmic ray air showers. We discuss the experimental set up, the data processing, the systematic errors and the main results of the experiment, which we found in a good agreement with the simulations.

  3. High energy photoelectron emission from gases using plasmonics enhanced near-fields

    CERN Document Server

    Ciappina, M F; Guichard, R; Pérez-Hernández, J A; Roso, L; Arnold, M; Siegel, T; Zaïr, A; Lewenstein, M

    2013-01-01

    We study theoretically the photoelectron emission in noble gases using plasmonic enhanced near-fields. We demonstrate that these fields have a great potential to generate high energy electrons by direct mid-infrared laser pulses of the current femtosecond oscillator. Typically, these fields appear in the surroundings of plasmonic nanostructures, having different geometrical shape such as bow-ties, metallic waveguides, metal nanoparticles and nanotips, when illuminated by a short laser pulse. In here, we consider metal nanospheres, in which the spatial decay of the near-field of the isolated nanoparticle can be approximated by an exponential function according to recent attosecond streaking measurements. We establish that the strong nonhomogeneous character of the enhanced near-field plays an important role in the above threshold ionization (ATI) process and leads to a significant extension in the photoelectron spectra. In this work, we employ the time dependent Schr\\"odinger equation in reduced dimensions to ...

  4. Field Emission Characteristics of the Structure of Vertically Aligned Carbon Nanotube Bundles

    Science.gov (United States)

    Lin, Pao-Hung; Sie, Cong-Lin; Chen, Ching-An; Chang, Hsuan-Chen; Shih, Yi-Ting; Chang, Hsin-Yueh; Su, Wei-Jhih; Lee, Kuei-Yi

    2015-07-01

    In this study, we performed thermal chemical vapor deposition for growing vertically aligned carbon nanotube (VACNT) bundles for a field emitter and applied photolithography for defining the arrangement pattern to simultaneously compare square and hexagonal arrangements by using two ratios of the interbundle distance to the bundle height ( R) of field emitters. The hexagon arrangement with R = 2 had the lowest turn-on electric field ( E to) and highest enhancement factor, whereas the square arrangement with R = 3 had the most stable field emission (FE) characteristic. The number density can reveal the correlation to the lowest E to and highest enhancement factor more effectively than can the R or L. The fluorescent images of the synthesized VACNT bundles manifested the uniformity of FE currents. The results of our study indicate the feasibility of applying the VACNT field emitter arrangement to achieve optimal FE performance.

  5. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    Science.gov (United States)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  6. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  7. Effects of exomoon’s magnetic field on generation of radio emissions

    Science.gov (United States)

    Griffith, John; Noyola, Joaquin; Satyal, Suman; Musielak, Zdzislaw E.

    2017-01-01

    In the recent work by Noyola et al. (2014, 2016), a novel technique of detection of exomoons through the radio emissions produced by the magnetic field interactions between exoplanet-exomoon pair is emulated based upon the processes occurring in the Jupiter-Io system. Their calculations have shown that the radio signal from the distant extra-solar planetary systems is detectable by current technology provided that the systems emanating the radio waves are relatively closer, have some form of atmosphere, and have larger exomoons. In this work, we explore the effect of exomoon’s magnetic field on the radio emission processes by considering a hypothetical magnetic exomoon and re-calculating the resulting radio flux. Then, a limit to the exomoon’s magnetic field is proposed based on the signal amplification versus the dampening effect the magnetic field induces on the secondary conditions such as the containment of ions within the exomoon’s magnetic field and the effect of the plasma torus density that co-orbits with the moon. The energy from the exomoon’s magnetic field is expected to amplify the radio signal, hence increasing the probability of detection of the first exomoons.

  8. Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment.

    Science.gov (United States)

    Deng, Yelin; Paraskevas, Dimos; Cao, Shi-Jie

    2017-09-01

    This study focuses on a detailed Life Cycle Assessment (LCA) for flax cultivation in Northern France. Nitrogen related field emissions are derived both from a process-oriented DeNitrification-DeComposition (DNDC) method and the generic Intergovernmental Panel on Climate Change (IPCC) method. Since the IPCC method is synthesised from field measurements at sites with various soil types, climate conditions, and crops, it contains significant uncertainties. In contrast, the outputs from the DNDC method are considered as more site specific as it is built according to complex models of soil science. As it is demonstrated in this paper the emission factors from the DNDC method and the recommended values from the IPCC method exhibit significant variations for the case of flax cultivation. The DNDC based emission factor for direct N2O emission, which is a strong greenhouse gas, is 0.25-0.5%, significantly lower than the recommend 1% level derived from the IPCC method. The DNDC method leads to a reduction of 17% in the impact category of climate change per kg retted flax straw production from the level obtained from the IPCC method. Much higher reductions are recorded for particulate matter formation, terrestrial acidification, and marine eutrophication impact categories. Meanwhile, based on the DNDC and IPCC methods, a comparative LCA per kg flax straw is presented. For both methods sensitivity analysis as well as comparison of uncertainties parameterisation of the N2O estimates via Monte-Carlo analysis are performed. The DNDC method incorporates more relevant field emissions from the agricultural life cycle phase, which can also improve the quality of the Life Cycle Inventory as well as allow more precise uncertainty calibration in the LCA inventory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dust emissions of organic soils observed in the field and laboratory

    Science.gov (United States)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third

  10. Enhanced field-emission from a mixture of carbon nanotubes, ZnO tetrapods and conductive particles.

    Science.gov (United States)

    Wei, Lei; Xiaobing, Zhang; Zhiwei, Zhao; Jing, Chen; Yiping, Cui; Baoping, Wang

    2012-08-01

    We report the enhancement of field-emission current from a mixture of carbon nanotubes, ZnO tetrapod-like nano structures, and conductive particles. Carbon nanotubes are deposited on the electrode as the field emitters. A MgO layer is printed around the cathode electrode, and ZnO tetrapod-like nano structures are deposited on this layer for the generation of secondary emission electrons. A few conductive particles are also distributed on the MgO layer by spraying or screen-printing. These conductive particles enhance the transverse electric field around the cathode electrode. Consequently, more primary electrons emitted from the carbon nanotubes bombard on the ZnO tetrapods, and secondary emission electrons and scattered electrons are yielded. Finally, the field-emission current is enhanced obviously. As experimental results shown, a high field-emission current about 32 mA in a direct current emission mode has been obtained from a 0.5 cm2 emission site when an electric field of 9 V/microm is applied between cathode and anode. Compared with a conventional carbon nanotube cathode, the field-emission current has been improved about 80%.

  11. Field test of available methods to measure remotely SOx and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  12. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  13. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Directory of Open Access Journals (Sweden)

    A. Meijide

    2011-09-01

    Full Text Available Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4, the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem.

    For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd. was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy. Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10–12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m−2

  14. Probing the X-ray emission of old nulling pulsars with high magnetic fields

    Science.gov (United States)

    Posselt, Bettina

    2013-10-01

    We propose XMM-Newton observations of two nulling radio pulsars with magnetic fields B>10^(13)G. These long-period pulsars have spin-down properties, including characteristic ages, similar to those of the Magnificent Seven which are bright thermal X-ray emitters. Nulling pulsars have been suggested as evolutionary stage where the magnetospheric emission of a pulsar ceases. In contrast, no magnetospheric emission was detected at all at X-ray or radio wavelengths for the Magnificent Seven. The proposed XMM-Newton observations will probe the magneto-thermal NS evolution model as a potential link between the radio pulsar population and the Magnificent Seven. They will also provide for the first time an X-ray characterization of nulling pulsars with large magnetic fields.

  15. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  16. Modeling of radio emission from a particle cascade in a magnetic field and its experimental validation

    Science.gov (United States)

    Zilles, Anne

    2017-03-01

    The SLAC T-510 experiment was designed to compare controlled laboratory measurements of radio emission of particle showers to predictions using particle-level simulations, which are relied upon in ultra-high-energy cosmic-ray air shower detection. Established formalisms for the simulation of radio emission physics, the "endpoint" formalism and the "ZHS" formalism, lead to results which can be explained by a superposition of magnetically induced transverse current radiation and charge-excess radiation due to the Askaryan effect. Here, we present the results of Geant4 simulations for the SLAC T-510 experiment, taking into account the details of the experimental setup (beam energy, target geometry and material, magnetic field configuration, and refraction effects) and their comparison to measured data with respect to e.g. signal polarisation, linearity with magnetic field, and angular distribution. We find that the microscopic calculations reproduce the measurements within uncertainties and describe the data well.

  17. Modified NEGF method for atomistic modeling of field emission from carbon nanotube

    Science.gov (United States)

    Monshipouri, Mahta; Behrooz, Milad; Abdi, Yaser

    2017-09-01

    A model to simulate the atomistic properties of the field emission (FE) from a zigzag-single walled carbon nanotube (Z-SWCNT) is presented. By a modification of the self-energy in non-equilibrium Green's function (NEGF) method, we simulated the field emission current, considering the quantum transport of electrons within the CNT. The paper involves investigation on the effect of the n index of the (n , 0) Z-SWCNT and the number of carbon dimers in the length direction as well as the anode-cathode separation on the FE current. Effect of additional gate voltage and substitutional impurities on the FE current is also studied. A comparison between the experimental data and simulation results are also included in the paper. The model can be used to consider different quantum effects of the atomistic emitter structure on the FE current.

  18. Field emission from entangled carbon nanotubes coated on/in a hollow metallic tube

    CERN Document Server

    Tokura, Y; Ohigashi, N; Akita, S; Nakayama, Y; Imasaki, K; Mima, K; Nakai, S

    2001-01-01

    Field emission properties of entangled carbon nanotubes were studied for an electron beam source of Cherenkov or Smith-Purcell free electron laser. The cathode was made of carbon nanotubes which were mixed with a very small amount of resin and coated on/in a hollow metallic tube with outer diameter of 0.5 mm. The emission current was as high as 2.2 mA with a fluctuation of <4%. It seems that some entangled nanotubes were frayed under the high electric field and then electrons were emitted mainly from their tips. Reduction of the work function of the carbon nanotubes was observed with the degradation of vacuum pressure in the experimental apparatus.

  19. Tungsten/Platinum Hybrid Nanowire Growth via Field Emission Using Nanorobotic Manipulation

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2011-01-01

    Full Text Available This paper reports tungsten-platinum hybrid nanowire growth via field emission, based on nanorobotic manipulation within a field emission scanning electron microscope (FESEM. A multiwalled carbon nanotube (MWCNT was used as the emitter, and a tungsten probe was used as the anode at the counterposition, by way of nanomanipulation. By independently employing trimethylcyclopentadienyl platinum (CpPtMe3 and tungsten hexacarbonyl (W(CO6 as precursors, the platinum nanowire grew on the tip of the MWCNT emitter. Tungsten nanowires then grew on the tip of the platinum nanowire. The hybrid nanowire length wascontrolled by nanomanipulation. Their purity was evaluated using energy-dispersive X-ray spectroscopy (EDS. Thus, it is possible to fabricate various metallic hybrid nanowires by changing the precursor materials. Hybrid nanowires have various applications in nanoelectronics, nanosensor devices, and nanomechanical systems.

  20. Structural change at the carbon-nanotube tip by field emission

    OpenAIRE

    Kuzumaki, Toru; Takamura, Yuzuru; Ichinose, Hideki; Horiike, Yasuhiro

    2001-01-01

    Carbon-nanotube tips are plastically deformed during field emission. High-resolution transmission electron microscopy and structural simulations suggest that the deformed structure of the closed nanotube is explained by heterogeneous nucleation of the pentagonal and heptagonal carbon ring pairs, and that of the opened one is represented by sp^3-like line defects in the hexagonal carbon network. It is considered that the changing of the inclination of the Fowler-Nordheim plots corresponds to t...

  1. Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters.

    Science.gov (United States)

    Matsumoto, Takahiro; Iwayama, Sho; Saito, Takao; Kawakami, Yasuyuki; Kubo, Fumio; Amano, Hiroshi

    2012-10-22

    We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

  2. Lattice site and hyperfine field of Fr in Fe studied by nuclear orientation and emission channelling

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, M. (Physics Dept., Chalmers Univ. of Technology, Gothenburg (Sweden)); Richards, P. (Physics Dept., Oxford Univ. (United Kingdom)); De Wachter, J. (Inst. voor Kern- en Stralingsfysika, KU Leuven (Belgium)); Wahl, U. (Fakultaet fuer Physik, Univ. Konstanz (Germany)); Haas, H. (CERN, Geneva (Switzerland)); Pattyn, H. (Inst. voor Kern- en Stralingsfysika, KU Leuven (Belgium)); Rikovska, J. (Physics Dept., Oxford Univ. (United Kingdom)); Stone, N.J. (Physics Dept., Oxford Univ. (United Kingdom)); Langouche, G. (Inst. voor Kern- en Stralingsfysika, KU Leuven (Belgium)); Nishimura, K. (Physics Dept., Toyama Univ. (Japan)); Oliveira, I.S. (Physics Dept., Oxford Univ. (United Kingdom)); Veskovic, M. (CERN, Geneva (Switzerland)); NICOLE and ISOLDE Collaborations

    1993-11-01

    The issue of lattice sites of Fr in Fe has been studied with two different techniques, integral low temperature nuclear orientation (LTNO) and emission channelling. Monte Carlo simulations of the system fitted to the channelling spectra reveal a large fraction of Fr in substitutional sites and hint at a possible complex site distribution. Using a two-site model for the LTNO data, a large fraction in high field site, in agreement with the channelling data, is deduced. (orig.)

  3. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    Directory of Open Access Journals (Sweden)

    J. Ray

    2014-08-01

    Full Text Available We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP, to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP to impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO2 (ffCO2 emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.

  4. Dots, clumps and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants

    CERN Document Server

    Bykov, Andrei M; Ellison, Donald C

    2008-01-01

    Non-thermal X-ray emission in some supernova remnants originates from synchrotron radiation of ultra-relativistic particles in turbulent magnetic fields. We address the effect of a random magnetic field on synchrotron emission images and spectra. A random magnetic field is simulated to construct synchrotron emission maps of a source with a steady distribution of ultra-relativistic electrons. Non-steady localized structures (dots, clumps and filaments), in which the magnetic field reaches exceptionally high values, typically arise in the random field sample. These magnetic field concentrations dominate the synchrotron emission (integrated along the line of sight) from the highest energy electrons in the cut-off regime of the distribution, resulting in an evolving, intermittent, clumpy appearance. The simulated structures resemble those observed in X-ray images of some young supernova remnants. The lifetime of X-ray clumps can be short enough to be consistent with that observed even in the case of a steady part...

  5. fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus.

    Science.gov (United States)

    Rossit, Stéphanie; McAdam, Teresa; McLean, D Adam; Goodale, Melvyn A; Culham, Jody C

    2013-10-01

    Humans are more efficient when performing actions towards objects presented in the lower visual field (VF) than in the upper VF. The present study used slow event-related functional magnetic resonance imaging (fMRI) to examine whether human brain areas implicated in action would show such VF preferences. Participants were asked to fixate one of four different positions allowing objects to be presented in the upper left, upper right, lower left or lower right VF. In some trials they reached to grasp the object with the right hand while in others they passively viewed the object. Crucially, by manipulating the fixation position, rather than the position of the objects, the biomechanics of the movements did not differ across conditions. The superior parieto-occipital cortex (SPOC) and the left precuneus, brain areas implicated in the control of reaching, were significantly more activated when participants grasped objects presented in the lower VF relative to the upper VF. Importantly, no such VF preferences were observed in these regions during passive viewing. This finding fits well with evidence from the macaque neurophysiology that neurons within visuomotor regions over-represent the lower VF relative to the upper VF and indicate that the neural responses within these regions may reflect a functional lower VF advantage during visually-guided actions.

  6. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  7. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2015-07-07

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thus activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.

  8. An Electrode With Molybdenum-Cathode and Titanium-Anode to Minimize Field Emission Dark Currents

    CERN Document Server

    Nakanishi, T; Gotou, T; Kuwahara, M; Naniwa, K; Okumi, S; Yamamoto, M; Yamamoto, N; Yasui, K

    2004-01-01

    A systematic study to minimize field emission dark currents from high voltage DC electrode has been continued. It is clearly demonstrated that much lower field emissions observed for Molybdenum (Mo) and Titanium (Ti) in comparison to Stainless-steel and Copper. Furthermore, by analyzing gap-length dependence data of the dark current from Mo and Ti, we can find a method to separate the primary field emission currents (FEC) from secondary induced currents (SIC). The latter currents will be created by possible bombardments of metal surface of anode or cathode by electrons or positive ions, respectively. From this data analysis, it is suggested that Mo is suitable for cathode due to its smallest FEC, and Ti is adequate for anode due to relatively small SIC. This prediction was confirmed by our experiment using a pair of Mo and Ti electrode, which showed the total dark current is suppressed below 1 nA at 105 MV/m applied for an area of 7 mm2

  9. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    Science.gov (United States)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  10. Determination of satellite valley position in GaN emitter from photoexcited field emission investigations

    Science.gov (United States)

    Semenenko, M.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2011-01-01

    Argon plasma etched GaN field-emitter rods with nanometer-scale diameter were fabricated on GaN grown on an n+-GaN substrate. Their electron field emission properties were investigated both without and under illumination by using light sources with various wavelengths. The Fowler-Nordheim current-voltage characteristics of the cathodes show a change in slope for illuminated cathodes. The electron affinity difference ΔE between the different valleys in the conduction band has been ascertained and is in the range from 1.18 up to 1.21 eV.

  11. Reduction of low voltage power cables electromagnetic field emission in MV/LV substations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran San Segundo, Hector [Dpt. Industrial Systems Engineering and Design, Campus del Riu Sec, Universitat Jaume I, 12071 Castello (Spain); Fuster Roig, Vicente [Instituto de Tecnologia Electrica, Avda. Juan de la Cierva 24, Parc Tecnologic de Valencia, 46980 Paterna (Spain)

    2008-06-15

    In this paper a solution to reduce magnetic field emission levels generated by MV/LV substation power cables is proposed. The reduction is obtained by the arrangement of the phases in a proper way and by shielding the cables with magnetic or conductive materials. The effects introduced by these two options have been analyzed by means of simulations, using finite elements method calculation software, and by experimental measurements. The introduced results allow selecting an optimal arrangement and the best screening material in order to reduce the magnetic fields in those directions required to protect. (author)

  12. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  13. Modeling the effects of anode secondary electron emission on transmitted current in crossed-field diodes

    Science.gov (United States)

    Gopinath, Venkatesh; Vanderberg, Bo

    1996-11-01

    Recent experimental measurements of transmitted current in a crossed-field switch by Vanderberg and Eninger ( B. H. Vanderberg and J. E. Eninger, ``Space-charge limited current cut-off in crossed fields,'' presented at IEEE ICOPS'95, Madison, Wi. ) have shown that the measured values of transmitted current are significantly smaller than the theoretically predicted limit. The experiments also showed larger decrease in transmitted current for higher magnetic fields, implying an effect due to the higher angle of incidence of incident electrons (i.e., at values of B closer to B_H). Studies by Verboncoeur and Birdsall ( J. P. Verboncoeur and C. K. Birdsall. ``Rapid current transition in a crossed-field diode,'' Phys. Plasmas 3) 3, March 1996. have shown that even small amount ( < 1%) of over injection in a crossed-field diode near cut-off led to substantial decrease in transmitted current. In our current work, we show that the same effect can be triggered by the presence of secondary electron emission from the anode. This study models the dependence of emission upon incident electron angle and energy. Since the yield of secondary electrons increases with incident angle, this model follows the experimental results as B approaches B_Hull accurately. This work was supported in part by ONR under grant FD-N00014-90-J-1198

  14. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajkumar; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany); Jha, Menaka; Ganguli, A. K. [Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016 (India); Schmidt, H. [Department of Materials for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz (Germany); Schulze, S.; Hietschold, M. [Solid Surfaces Analysis, Technische Universität Chemnitz, 09107 Chemnitz (Germany); Schmidt, O. G. [Department of Materials for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz (Germany); Leibniz Institute for Solid State Materials Research, IFW Dresden, Helmholtz Straße 20, 01069 Dresden (Germany)

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  15. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    Science.gov (United States)

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Jha, Menaka; Rodriguez, R. D.; Lehmann, D.; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Zahn, D. R. T.; Schmidt, O. G.

    2014-10-01

    Detailed results from field emission studies of lanthanum hexaboride (LaB6) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB6 films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB6-coated MWCNTs compared to pristine MWCNT and pristine LaB6 films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB6 nanoparticles on the outer walls of CNTs LaB6-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB6 was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB6 and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB6-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB6-coated MWCNT films are correlated with a change in microstructure and work function.

  16. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    Science.gov (United States)

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch.

  17. Preliminary studies on microbiological mechanism of the dynamics of CH4 and N2O emission from rice field

    Institute of Scientific and Technical Information of China (English)

    HOUAixin; CHENGuanxiong; WUjie; WANGZhengping

    1998-01-01

    Greenhouse gases, CH4 and N2O emitted from rice field, are the products of microbial metabolism. So the characteristics of CH4 and N2O production and emission in rice field can be understood through microbiological study. In this paper, the relationships between the dynamics of CH4 and N2O emission from rice field in northern China and the related soil bacteria groups were discussed.

  18. Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments

    DEFF Research Database (Denmark)

    Rees, R M; Agustin, J; Alberti, G

    2013-01-01

    .0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site...

  19. Estimate of CH4 Emissions from Year-Round Flooded Rice Fields During Rice Growing Season in China

    Institute of Scientific and Technical Information of China (English)

    CAI Zu-Cong; KANG Guo-Ding; H. TSURUTA; A. MOSIER

    2005-01-01

    A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China.The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66Mha were estimated to be 2.44 Tg CH4 year-1. The uncertainties of these estimations are discussed as well. However,the emissions during the non-rice growing season could not be estimated because of limited available data. Nevertheless,methane emissions from rice fields that were flooded year-round could be several times higher than those from the rice fields drained in the non-rice-growing season. Thus, the classification of "continuously flooded rice fields" in the IPCC(International Panel on Climate Change) Guidelines for National Greenhouse Gas Inventories is suggested to be revised and divided into "continuously flooded rice fields during the rice growing season" and "year-round flooded rice fields".

  20. Denitrification Losses and N2O Emissions from Nitrogen Fertilizer Applied to a Vegetable Field

    Institute of Scientific and Technical Information of China (English)

    CAO Bing; He Fa-Yun; Xu Qiu-Ming; Yin Bin; CAI Gui-Xin

    2006-01-01

    A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha-1 (U300) and 600 kg N ha-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to CK total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments, while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than CK. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤ 0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.

  1. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    Science.gov (United States)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  2. Nitrous oxide emission from an agricultural field fertilized with liquid lagoonal swine effluent

    Science.gov (United States)

    Whalen, S. C.; Phillips, R. L.; Fischer, E. N.

    2000-06-01

    Contemporary agriculture is characterized by the intensive production of livestock in confined facilities and land application of stored waste as an organic fertilizer. Emission of nitrous oxide (N2O) from receiving soils is an important but poorly constrained term in the atmospheric N2O budget. In particular, there are few data for N2O emissions from spray fields associated with industrial scale swine production facilities that have rapidly expanded in the southeastern United States. In an intensive, 24-day investigation over three spray cycles, we followed the time course for changes in N2O emission and soil physicochemical variables in an agricultural field irrigated with liquid lagoonal swine effluent. The total N (535 mg L-1) of the liquid waste was almost entirely NH4+-N (>90%) and thus had a low mineralization potential. Soil profiles for nitrification and denitrification indicated that >90% of potential activity was localized in the surface 20 cm. Application of this liquid fertilizer to warm (19° to 28°C) soils in a form that is both readily volatilized and immediately utilizable by the endogenous N-cycling microbial community resulted in a sharp decline in soil NH4+-N and supported a rapid but short-lived (i.e., days) burst of nitrification, denitrification, and N2O emission. Nitrous oxide fluxes as high as 9200 μg N2O-N m-2 h-1 were observed shortly after fertilization, but emissions decreased to prefertilization levels within a few days. Poor correlations between N2O efflux and soil physicochemical variables (temperature, moisture, NO3--N, NH4+-N) and fertilizer loading rate point to the complexity of interacting factors affecting N2O production and emission. Total fertilizer N applied and N2O-N emitted were 29.7 g m-2 (297 kg N ha-1) and 395 mg m-2, respectively. The fractional loss of applied N to N2O (corrected for background emission) was 1.4%, in agreement with the mean of 1.25% reported for mineral fertilizers. The direct effects of fertilizer

  3. Field Measurements of Gasoline Direct Injection Emission Factors: Spatial and Seasonal Variability.

    Science.gov (United States)

    Zimmerman, Naomi; Wang, Jonathan M; Jeong, Cheol-Heon; Ramos, Manuel; Hilker, Nathan; Healy, Robert M; Sabaliauskas, Kelly; Wallace, James S; Evans, Greg J

    2016-02-16

    Four field campaigns were conducted between February 2014 and January 2015 to measure emissions from light-duty gasoline direct injection (GDI) vehicles (2013 Ford Focus) in an urban near-road environment in Toronto, Canada. Measurements of CO2, CO, NOx, black carbon (BC), benzene, toluene, ethylbenzene-xylenes (BTEX), and size-resolved particle number (PN) were recorded 15 m from the roadway and converted to fuel-based emission factors (EFs). Other than for NOx and CO, the GDI engine had elevated emissions compared to the Toronto fleet, with BC EFs in the 73rd percentile, BTEX EFs in the 80-90th percentile, and PN EFs in the 75th percentile during wintertime measurements. Additionally, for three campaigns, a second platform for measuring PN and CO2 was placed 1.5-3 m from the roadway to quantify changes in PN with distance from point of emission. GDI vehicle PN EFs were found to increase by up to 240% with increasing distance from the roadway, predominantly due to an increasing fraction of sub-40 nm particles. PN and BC EFs from the same engine technology were also measured in the laboratory. BC EFs agreed within 20% between the laboratory and real-world measurements; however, laboratory PN EFs were an order of magnitude lower due to exhaust conditioning.

  4. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Science.gov (United States)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-04-01

    In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  5. Morphology dependent field emission of acid-spun carbon nanotube fibers

    Science.gov (United States)

    Fairchild, S. B.; Boeckl, J.; Back, T. C.; Ferguson, J. B.; Koerner, H.; Murray, P. T.; Maruyama, B.; Lange, M. A.; Cahay, M. M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Lockwood, N. P.; Averett, K. L.; Gruen, G.; Tsentalovich, D. E.

    2015-03-01

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber’s electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of electron sources for vacuum electronic devices.

  6. Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications

    Energy Technology Data Exchange (ETDEWEB)

    Suriani, A.B., E-mail: absuriani@yahoo.com [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Dalila, A.R. [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Mohamed, A.; Isa, I.M.; Kamari, A.; Hashim, N. [Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900 (Malaysia); Soga, T.; Tanemura, M. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-10-15

    Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the core of the sea urchin-like CNFs was composed of Fe{sub 3}C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe{sub 3}C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm{sup −1} at current density of 1 and 10 μA cm{sup −2}, respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters.

  7. Effect of Secondary Electron Emission on Electron Cross-Field Current in E×B Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yevgeny Raitses, Igor D. Kaganovich, Alexander Khrabrov, Dmytro Sydorenko, Nathaniel J. Fisch and Andrei Smolyakov

    2011-02-10

    This paper reviews and discusses recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials. A lowpressure ExB plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and electron-induced secondary electron emission (SEE) from the channel wall. The presence of a depleted, anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron crossfield transport can be reduced from anomalously high to nearly classical collisional level. The suppression of SEE was achieved using an engineered carbon velvet material for the channel walls. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma. With nonemitting walls, the maximum electric field in the thruster can approach a fundamental limit for a quasineutral plasma.

  8. Self-organized growth of bamboo-like carbon nanotube arrays for field emission properties

    Science.gov (United States)

    Padya, Balaji; Kalita, Dipankar; Jain, P. K.; Padmanabham, G.; Ravi, M.; Bhat, K. S.

    2012-09-01

    Well-aligned nitrogen-doped carbon nanotube (N-CNTs) film was fabricated on silicon substrate by thermal chemical vapor deposition process with varying the growth temperature. The effect of growth temperature on morphology, microstructure and crystallinity for the growth of N-CNTs was studied. At all growth temperatures, the bamboo-like morphology of graphene layers with compartments in CNTs were observed in transmission electron microscope micrographs. The doping level and the type of nitrogen-related moieties were determined by X-ray photoelectron spectroscopy analysis. The compartment distance decreases with increase in nitrogen doping level in hexagonal graphite network. The increase in nitrogen doping level in N-CNTs will lead to decrease in crystallinity and in-plane crystallite size. Field emission study of nitrogen-doped carbon nanotubes grown at optimum parameters showed that they are good emitters with a turn-on and threshold field of 0.3 and 1.6 V/μm, respectively. The maximum current density was observed to be 18.8 mA/cm2 at the electric field of 2.1 V/μm. It is considered that the enhanced field emission performance of doped nanotube is due to the presence of lone pairs of electrons on nitrogen atom that supplies more electrons to the conduction band.

  9. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires.

    Science.gov (United States)

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui

    2016-07-08

    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm(-1)), compared with ZnO-CdS NWAs (6.3 Vμm(-1)) and ZnO-Ag2S NWAs (5.0 Vμm(-1)). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures.

  10. Analysis of Field Emission Properties of Carbon Nanocoils for Imaging Materials

    Institute of Scientific and Technical Information of China (English)

    Lujun Pan; Yasumoto Konishi; Hiroyoshi Tanaka; Yoshikazu Nakayama; Osamu Suekane; Toshikazu Nosaka

    2004-01-01

    Carbon nanotubes and nanocoils are expected as the charging materials and electron gun for the imaging devices. It is synthesized for carbon nanocoils with different diameters by the catalytic thermal decomposition of acetylene using iron-indium-tin-oxide catalysts. It is found that the turn-on voltage is decreased by decreasing the average diameter of the grown carbon nanocoils. The turn on voltage of as low as 30 V at the electrodes' gap of 130 μm has been achieved when the coil diameter is decreased to 60 nm. The calculation for the concentration of the electric field on the coil surface has been performed using a finite element method. It is obtained that the strength of electric field around the top ring of a coil is increased with the decrease of the tubular diameter of the coil and has a similar value for that at the tip of a carbon nanotube, suggesting that the efficiency of the field emission from nanocoils would be higher than that from nanotubes. These results can explain the good stability of field emission from carbon nanocoils.

  11. Morphology dependent field emission of acid-spun carbon nanotube fibers.

    Science.gov (United States)

    Fairchild, S B; Boeckl, J; Back, T C; Ferguson, J B; Koerner, H; Murray, P T; Maruyama, B; Lange, M A; Cahay, M M; Behabtu, N; Young, C C; Pasquali, M; Lockwood, N P; Averett, K L; Gruen, G; Tsentalovich, D E

    2015-03-13

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber's electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of <1 V μm(-1). This stable high current operation makes these CNT fibers excellent candidates for use as low voltage electron sources for vacuum electronic devices.

  12. LZIFU: an emission-line fitting toolkit for integral field spectroscopy data

    Science.gov (United States)

    Ho, I.-Ting; Medling, Anne M.; Groves, Brent; Rich, Jeffrey A.; Rupke, David S. N.; Hampton, Elise; Kewley, Lisa J.; Bland-Hawthorn, Joss; Croom, Scott M.; Richards, Samuel; Schaefer, Adam L.; Sharp, Rob; Sweet, Sarah M.

    2016-09-01

    We present lzifu (LaZy-IFU), an idl toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy (IFS) data. lzifu is useful for the investigation of the dynamical, physical and chemical properties of gas in galaxies. lzifu has already been applied to many world-class IFS instruments and large IFS surveys, including the Wide Field Spectrograph, the new Multi Unit Spectroscopic Explorer (MUSE), the Calar Alto Legacy Integral Field Area (CALIFA) survey, the Sydney-Australian-astronomical-observatory Multi-object Integral-field spectrograph (SAMI) Galaxy Survey. Here we describe in detail the structure of the toolkit, and how the line fluxes and flux uncertainties are determined, including the possibility of having multiple distinct kinematic components. We quantify the performance of lzifu, demonstrating its accuracy and robustness. We also show examples of applying lzifu to CALIFA and SAMI data to construct emission line and kinematic maps, and investigate complex, skewed line profiles presented in IFS data. The code is made available to the astronomy community through github. lzifu will be further developed over time to other IFS instruments, and to provide even more accurate line and uncertainty estimates.

  13. Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Bandurin, D. A.; Kleshch, V. I. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G. [FB C Physics Department, University of Wuppertal, 42119 Wuppertal (Germany); Obraztsov, A. N., E-mail: obraz@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-06-08

    Nanocarbon films with upstanding flake-like graphite crystallites of nanometre thickness were fabricated by carbon condensation from a methane–hydrogen gas mixture activated by a direct-current discharge. The nanographite (NG) crystallites are composed of a few graphene layers. The adjacent atomic layers are connected partially at the edges of the crystallites to form strongly curved graphene structures. The extraordinary field emission (FE) properties were revealed for the NG films with an average current density of a few mA/cm{sup 2}, reproducibly obtained at a macroscopic applied field of about 1 V/μm. The integral FE current–voltage curves and electron spectra (FEES) of NG cathodes with multiple emitters were measured in a triode configuration. Most remarkably, above a threshold field, two peaks were revealed in FEES with different field-dependent shifts to lower energies. This behaviour evidences electron emission through a dual potential barrier, corresponding to carbon–carbon heterostructure formed as a result of the graphene bending.

  14. Interaction between hollow needles - electric field, light emission and ozone generation study in multineedle to plate electrical discharge

    Science.gov (United States)

    Kriha, Vitezslav

    2004-09-01

    Multi hollow needle to plate electrical discharges in air are studied as ozone sources. Dependence of ozone concentration as an function of applied voltage, discharge current, mutual hollow needles position and electrical connection, working gas flow rate, distances between needles tips and plate electrode, visible light emission was measured experimentally in these systems. Electric field was numerically modeled. Light emission and electrical field distributions were compared. Coming from light emission and electric field a model of energy density spatial distribution was built. This model was finally compared with ozone generation.

  15. Effectively Improved Field Emission Properties of Multiwalled Carbon Nanotubes/Graphenes Composite Field Emitter by Covering on the Si Pyramidal Structure

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong;

    2015-01-01

    The composite nanostructure emitter of multiwalled carbon nanotubes and graphenes was deposited on pyramidal silicon substrate by the simple larger scale electrophoretic deposition process. The field emission (FE) properties of the composite/pyramidal Si device were greatly improved compared...

  16. Observation of field-induced electron emission in porous polycrystalline silicon nano-structured diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Won; Kim, Hoon; Ju, Byeong Kwon [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Yun Hi [Korea Univ., Seoul (Korea, Republic of); Jang, Jin [Kyunghee Univ., Seoul (Korea, Republic of)

    2003-02-01

    Field-induced electron emission properties of porous poly-silicon nano-structured (PNS) diodes were investigated as a function of anodizing conditions, including morphological analysis, various kinds of top electrode thickness and the measuring substrate temperature. Also, the vacuum packaging process was performed by the normal glass frit method. The PNS layer was formed on heavily-dope n-type <100> Si substrate. Non-doped poly-silicon layer was grown by low-pressure chemical vapor deposition (LPCVD) to a thickness of 2mm. Subsequently, the poly-silicon layer was anodized in a mixed solution HF (50 wt%): ethanol(99.8 wt%) = 1:1 as a function of anodizing condition. After anodizing, the PNS layer was thermally oxidized for 1 hr at 900 .deg. C. Subsequently, the top electrode was deposited as a function of Au thickness using E-beam evaporator and, in order to establish ohmic contact, thermally evaporated Al was deposited on the back side of a Si substrate. The prepared PNS diode was packaged using the normal vacuum sealing method. After the vacuum sealing process, the PNS diode was mounted on the PC measurement table. When a positive bias was applied to the top electrode, the electron emission was observed, which was caused by field-induced electron emission through the top metal.

  17. Modelling emission turbulence-radiation interaction by using a hybrid flamelet/stochastic Eulerian field method

    Science.gov (United States)

    Consalvi, Jean-Louis

    2017-01-01

    The time-averaged Radiative Transfer Equation (RTE) introduces two unclosed terms, known as `absorption Turbulence Radiation Interaction (TRI)' and `emission TRI'. Emission TRI is related to the non-linear coupling between fluctuations of the absorption coefficient and fluctuations of the Planck function and can be described without introduction any approximation by using a transported PDF method. In this study, a hybrid flamelet/ Stochastic Eulerian Field Model is used to solve the transport equation of the one-point one-time PDF. In this formulation, the steady laminar flamelet model (SLF) is coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities and the PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. Soot production is modeled by a semi-empirical model and the spectral dependence of the radiatively participating species, namely combustion products and soot, are computed by using a Narrow Band Correlated-k (NBCK) model. The model is applied to simulate an ethylene/methane turbulent jet flame burning in an oxygen-enriched environment. Model results are compared with the experiments and the effects of taken into account Emission TRI on flame structure, soot production and radiative loss are discussed.

  18. Sub-mm Emission Line Deep Fields: CO and [CII] Luminosity Functions out to z = 6

    CERN Document Server

    Popping, Gergö; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S; Trager, Scott C

    2016-01-01

    Now that ALMA is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. Deep fields are ideal to study the luminosity function of sub-mm emission lines, ultimately tracing the atomic and molecular gas properties of galaxies. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J=1-0 up to CO J=6-5 and [CII] at redshifts z=0-6. We find that: 1) our model correctly reproduces the CO and [CII] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation. This may lay at the root of other problems theoretical models face at the same redshifts.

  19. Estimate of Methane Emission from Rice Paddy Fields in Taihu Region,China

    Institute of Scientific and Technical Information of China (English)

    CAIZU-CONG; JINJI-SHENG; 等

    1994-01-01

    Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closed chamber method in 1992 and 1993 and CH4 emission from this region (total area of paddy soils was about 1.88 million hectares,of which 0.63 million hectares are distibuted in the south of Jiangsu province) was estimated on the basis of the meam CH4 fluxes observed.The results showed that the mean CH4 flaxes from late rice and single cropping rice field were quite similar under the prevailing cultivation practices in the region,being around 5 mg CH4/m2/h(4.31-5.31mg CH4/m2/h for various cultivars of the late rice and 3.20-6.22mg CH4/m2/h for various treatments of the single cropping rice).Total CH4 emission from paddy soils in the region was estimated to e 0.185-0.359 Tg CH4 per year.Continuously flooding the soil with a water layer till ripening caused higher mean CH4 flux;and addition of nitrification inhibitor(thiourea) stimulated CH4 emission.There was no simple repationship between CH4 flux and either soil temperature or soil Eh.

  20. A pre-processor of trace gases and aerosols emission fields for regional and global atmospheric chemistry models

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2010-06-01

    Full Text Available The pre-processor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emissions fields of trace gases and aerosols for use in regional or global transport models. The emissions considered are urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources from most recent databases or from satellite fire detections for biomass burning. A plumerise model is used to derive the height of smoke emissions from satellite fire products. The pre-processor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The way to include these emissions in transport models is also detailed. The pre-processor is coded using Fortran 90 and C and is driven by a namelist allowing the user to choose the type of emissions and the database.

  1. Electron field emission characteristics of different surface morphologies of ZnO nanostructures coated on carbon nanotubes.

    Science.gov (United States)

    Li, Kuan-Wei; Lian, Huan-Bin; Cai, Jhen-Hong; Wang, Yao-Te; Lee, Kuei-Yi

    2011-12-01

    The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.

  2. Enhanced field emission properties of ZnO-Ag2S core-shell heterojunction nanowires.

    Science.gov (United States)

    Wang, Guojing; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui; Li, Zhengcao

    2016-06-07

    A simple approach to Ag2S quantum dot (QD) modification was used to tune the field emission (FE) properties of ZnO nanowire arrays (NWAs). By a simple and facile successive ionic layer adsorption and reaction (SILAR) approach, Ag2S QDs were uniformly and densely packed on ZnO nanowires (NWs) to form ZnO-Ag2S core-shell heterojunction structures. The FE properties of ZnO NWAs were effectively tuned by controlling the amount of Ag2S QDs. The turn-on field first reduces and then increases as the amount of Ag2S QDs increases, while the trend of the field-enhancement factor is inverse. This is attributed to the clustering of Ag2S QDs into nanoparticles (NPs) which cover the nanowire tips, as SILAR cycles increase.

  3. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    Directory of Open Access Journals (Sweden)

    Ma Li

    2011-01-01

    Full Text Available Abstract The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100 by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm and a high field-enhancement factor (1745.8. The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior.

  4. An array of Eiffel-tower-shape AlN nanotips and its field emission properties

    Science.gov (United States)

    Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming

    2005-06-01

    An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.

  5. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes

    Institute of Scientific and Technical Information of China (English)

    Ye Yun; Guo Tailiang; Jiang Yadong

    2012-01-01

    Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires.The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern,respectively.Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/μm and a high field enhancement factor of 2.86 × 104.A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 × 104 cd/m2 under an applied voltage of 4 kV.

  6. Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays

    Science.gov (United States)

    Di Bartolomeo, Antonio; Passacantando, Maurizio; Niu, Gang; Schlykow, Viktoria; Lupina, Grzegorz; Giubileo, Filippo; Schroeder, Thomas

    2016-12-01

    We apply molecular beam epitaxy to grow GeSn-nanoparticles on top of Si-nanopillars patterned onto p-type Si wafers. We use x-ray photoelectron spectroscopy to confirm a metallic behavior of the nanoparticle surface due to partial Sn segregation as well as the presence of a superficial Ge oxide. We report the observation of stable field emission (FE) current from the GeSn-nanoparticles, with turn on field of 65 {{V}} μ {{{m}}}-{{1}} and field enhancement factor β ˜ 100 at anode-cathode distance of ˜0.6 μm. We prove that FE can be enhanced by preventing GeSn nanoparticles oxidation or by breaking the oxide layer through electrical stress. Finally, we show that GeSn/p-Si junctions have a rectifying behavior.

  7. Zero-field steps and coherent emission of externally heated long Josephson junctions

    Science.gov (United States)

    Grib, Alexander; Seidel, Paul; Tonouchi, Masayoshi

    2017-01-01

    IV-characteristics of stacks of two inductively interacting long Josephson junctions with the homogeneous and inhomogeneous distributions of critical currents were investigated numerically. It was assumed that the inhomogeneous linear distribution of critical currents along the junction was created by heating of one end of the stack. Even zero-field steps were found in the IV-curve of the stack with the homogeneous distribution of critical currents, whereas odd zero-field steps appeared in the IV-curve of the stack with the heated end. Due to the inductive interaction between junctions in a stack of two junctions, each of the zero-field steps splits into two steps which correspond to frequencies of collective excitations in the system. Strong coherent emission was found at the step which corresponds to the frequency of in-phase oscillations.

  8. Stable Electron Field Emission from CeO2 Nanowires by Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    FU Xing-Qiu; FENG Ping; WANG Chong; WANG Tai-Hong

    2007-01-01

    @@ CeO2 nanowires are successful synthesized by hydrothermal method and their field emission (FE) properties are investigated. The turn-on electric field is 5.8 V/μm at an emitter-anode spacing of 700μm. The FE current is stable and the current fluctuations are less than 3% over 5 h. All the plotted Fowler-Nordheim curves yield straight lines, which are in agreement with the Fowler-Nordheim theory. The relationship between the field enhancement factorβ and the emitter-anode spacing d follows a universal equation. Our results imply that the CeO2 nanowires are promising materials for fabricating FE cathodes.

  9. Field emission properties of amorphous GaN ultrathin films fabricated by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    WANG FengYing; WANG RuZhi; ZHAO Wei; SONG XueMei; WANG Bo; YAN Hui

    2009-01-01

    Amorphous gallium nitride (a-GaN) films with thicknesses of 5 and 300 nm are deposited on n-Si (100) substrates by pulsed laser deposition (PLD), and their field emission (FE) properties are studied. It shows that compared with thicker (300 nm) a-GaN film, better FE performance is obtained on ultrathin (5 nm) a-GaN film with a threshold field of 0.78 V/μm, which is the lowest value ever reported. Furthermore, the current density reaches 42 mA/cm~2 when the applied field is 3.72 V/μm. These experimental results unambiguously confirm Binh's theoretical analysis (Birth et al. Phys Rev Lett, 2000, 85(4): 864-867) that the FE performance would be prominently enhanced with the coating of an ultra-thin wide band-gap semiconductor film.

  10. Carbon nanotubes as novel spacer materials on silver thin-films for generating superior fluorescence enhancements via surface plasmon coupled emission

    Science.gov (United States)

    Mulpur, Pradyumna; Podila, Ramakrishna; Rao, Apparao M.; Kamisetti, Venkataramaniah

    2016-06-01

    In this study, we report the first time implementation of single/multi-walled carbon nanotubes, as novel spacer materials, on a silver (Ag) thin-film based surface plasmon coupled emission (SPCE) platform. The engineered Ag-CNT SPCE substrates enabled the realization of up to ∼10-fold enhancement in fluorescence signal intensity, of the rhodamine b dye. This study addresses the issue that, while many of the biochemical sensing strategies are based on fluorescence, they are all fundamentally limited by the isotropic nature of the phenomenon that results in low signal collection efficiency (50% signal collection efficiency. Considering the easy functionalization of these carbon nano-allotropes, and their high sensitivity; the economical Ag-CNT SPCE platforms can be effectively extended towards sensing applications.

  11. Effect of plastic tarps over raised-beds and potassium thiosulfate in furrows on chloropicrin emissions from drip fumigated fields.

    Science.gov (United States)

    Qin, Ruijun; Gao, Suduan; McDonald, Jason A; Ajwa, Husein; Shem-Tov, Shachar; Sullivan, David A

    2008-06-01

    Plastic tarps are commonly used in raised bed strawberry production to minimize emissions of preplant soil fumigants and are left in place throughout the growing season as part of the standard cultural practices. Soil amendments with chemicals such as thiosulfate (S2O3(2-)) can reduce fumigant emissions. A field study was conducted near Santa Maria, CA to determine the effects of low density polyethylene (LDPE) and virtually impermeable film (VIF) over raised-beds and applying potassium thiosulfate (KTS) in furrows on reducing chloropicrin (CP) emissions from a strawberry field. Four fields (or treatments) were tested with 224 kg ha(-1) CP drip-applied threecm under the soil surface. The CP flux from bed tops and furrows and gas-phase concentrations under the tarps were monitored for five d. The CP emission flux and concentration under tarp were highest immediately following application. Diurnal temperature change affected CP concentration and emission fluxes (higher values during the day and lower at night). Slightly higher CP cumulative emission occurred using LDPE tarp (19%) compared to VIF (17%). Normalized flux (CP emission flux from the beds divided by CP concentration under the tarp) being estimated from field measurement was slightly higher for LDPE than VIF indicating different tarp permeability in the field. Because of extremely low emissions from the furrows (emission loss), KTS application to furrow treatments did not show further emission reductions than non-KTS treatments. This indicates that emission reduction should focus on the tarp above raised-beds when fumigant was drip-applied near bed-surface.

  12. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  13. Investigation of source-emission PM-10 particulate matter field studies of candidate methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Williamson, A.D.; Dawes, S.S.; Martin, R.S.; Ragland, J.W.

    1986-12-01

    The report outlines the results of four field tests of two candidate methods for source PM10 measurement. The first method involves a new sampling-train design which incorporates emission gas recycle (EGR) to avoid the anisokinetic sampling bias inherent in size-specific emissions measurement. The second technique, the simulated Method 5 (SIM-5) approach, uses existing sampling hardware with an altered traversing protocol to minimize this bias. The results of the test series suggest that both techniques are sufficiently advanced that they should be documented in more detail for potential use as sampling methods. Further, more extensive testing should be performed in order to define precision, reproducibility, and comparability of each technique as well as identify potential sources of interference or bias.

  14. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes.

    Science.gov (United States)

    Sridhar, Srividya; Tiwary, Chandrasekhar; Vinod, Soumya; Taha-Tijerina, Jose Jaime; Sridhar, Srividvatha; Kalaga, Kaushik; Sirota, Benjamin; Hart, Amelia H C; Ozden, Sehmus; Sinha, Ravindra Kumar; Harsh; Vajtai, Robert; Choi, Wongbong; Kordás, Krisztián; Ajayan, Pulickel M

    2014-08-26

    A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ∼ 0.1 V/μm) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.

  15. Far field emission profile of pure wurtzite InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Dalacu, Dan; Poole, Philip J.; Lapointe, Jean [National Research Council, Ottawa, Ontario, K1A 0R6 (Canada)

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to the nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.

  16. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property

    Energy Technology Data Exchange (ETDEWEB)

    Xing, G Z; Zhang, Z; Wang, D D; Liao, L; Zheng, Z; Xu, H R; Yu, T; Shen, Z X; Huan, C H A; Sum, T C; Wu, T [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Fang, X S [Department of Materials Science, Fudan University, Shanghai 200433 (China); Huang, X; Guo, J; Zhang, H, E-mail: xing0012@ntu.edu.sg, E-mail: tomwu@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-06-25

    We report the growth of ultrathin single-crystal ZnO nanobelts by using a Ag-catalyzed vapor transport method. Extensive transmission electron microscopy and atomic force microscopy measurements reveal that the thickness of the ultrathin ZnO nanobelts is {approx} 2 nm. Scanning electron microscopy and post-growth annealing studies suggest a '1D branching and 2D filling' growth process. Our results demonstrate the critical role of catalyst in the deterministic synthesis of nanomaterials with the desired morphology. In addition, these ultrafine nanobelts exhibit stable field emission with unprecedented high emission current density of 40.17 mA cm{sup -2}. These bottom-up building blocks of ultrathin ZnO nanobelts may facilitate the construction of advanced electronic and photonic nanodevices.

  17. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    Directory of Open Access Journals (Sweden)

    X. R. Wei

    2010-10-01

    Full Text Available Nitrous oxide (N2O is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L. field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK, manure (M, nitrogen (N, nitrogen + phosphorus (NP, and nitrogen + phosphorus + manure (NPM. Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK. Mineral and manure

  18. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    Directory of Open Access Journals (Sweden)

    X. R. Wei

    2010-06-01

    Full Text Available Nitrous oxide (N2O is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L. field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK, manure (M, nitrogen (N, nitrogen + phosphorus (NP, and nitrogen + phosphorus + manure (NPM. Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK. Mineral and manure

  19. Potencial de emissão de metano em lavouras de arroz irrigado Methane emission potential in flooded rice fields

    Directory of Open Access Journals (Sweden)

    Dirceu Agostinetto

    2002-12-01

    responsible for such phenomenon. The main gases that cause the greenhouse effect are carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, and chlorofluorocarbons (CFCs. Methane stands out amongst them by the amount produced and by its activity in the absorbing atmospheric heat. The main methane producing sources are soils naturally flooded or cultivated under flooding conditions, which represent approximately 40% of the total methane emitted; from this amount, 37% is emitted by rice cultivated under flooding conditions. In this context, the present review has as main purposes to describe processes responsible for methane production and emission, as well as to discuss management practices and rice plant characteristics which affect emission of this gas. From the total methane originated in rice fields during its growth cycle, between 60 to 90% comes from rice plants. Although methane is not the main gas responsible for the greenhouse effect and rice crop does not represent the main methane source, the reduction in the emission could be accomplished through changes in rice cultural practices. Amongst alternatives that can be worked out are management of irrigation water and fertilizer applied, and cropping of rice cultivars that present lower number of aerenchyma and lower biomass production, whereas maintaining rice grain yields potential.

  20. Ultra high-energy neutrinos via heavy-meson synchrotron emission in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Toshitaka; Tokuhisa, Akira; Mathews, Grant J. [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Yoshida, Takashi [Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Famiano, Michael A. [Physics Department, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI 49008-5252 (United States)

    2014-02-20

    We explore the generation and possibility for the detection of heavy-meson synchrotron emission due to the acceleration of ultra-relativistic protons (and possibly nuclei) in the presence of strong magnetic fields (H ≳ 10{sup 15} G) in transient astrophysical environments such as magnetar flares. We show that, in addition to the well-known pion synchrotron emission, heavy vector mesons like ρ, D{sub S} , J/Ψ, and Y could be generated. For high enough energies and magnetic field strengths, such heavy vector mesons can be formed with high intensity (∼10{sup 3} times the photon intensity) through strong couplings to the ultra-relativistic nucleons. We examine in particular the synchrotron emission and subsequent cooling and decay of the heavy ρ{sup 0} and Y(1S) mesons, e.g., via p → p' + Y(1S), Y(1S) → τ{sup +} + τ{sup –}, τ{sup −}→μ{sup −}+ ν-bar {sub μ}+ν{sub τ} and e{sup −}+ ν-bar {sub e}+ν{sub τ}. We evaluate the spectra of escaping ν {sub e}, ν{sub μ}, and ν{sub τ} due to the decay of short-lived τ mesons. We deduce the possible event rate in a terrestrial TeV neutrino detector. We estimate that neutrinos produced from the heavy vector-meson synchrotron radiation from a strong magnetar soft gamma repeater burst will only be detectable with the current generation of detectors if the source is very nearby (<30 pc). Nevertheless, if ever detected, the existence of heavy meson synchrotron emission might be identifiable by the unique signature of energetic tau neutrinos emanating from the source.

  1. THE EFFECT OF RICE CULTIVARS ON METHANE EMISSION FROM IRRIGATED RICE FIELD

    Directory of Open Access Journals (Sweden)

    P. Setyanto

    2016-10-01

    Full Text Available Rice plants have been reported to affect methane (CH4 emission from rice fields. The objectives of this study were to determine the effect of rice cultivars on CH4 emission from flooded rice and to develop crop management strategies with low emitting rice cultivars while sustaining high yield. The four rice cultivars studied were Memberamo, Cisadane, IR64, and Way Apoburu. The CH4 emissions were determined in the wet season of 2001/2002 (November-February using an automated closed chamber technique in an irrigated field condition. Farmyard manure at the rate of 5 t ha-1 was given to the plots to ensure carbon was not limited. Root weight, root length, biomass, and number of tillers were determined at 17, 36, and 57 days after transplanting (DAT. The results showed that the mean CH4 emission was highest in the plot planted with Cisadane (94.8 kg CH4 ha-1, and the lowest with IR64 (37.7 kg CH4 ha-1. The plots treated with emberamo and Way Apoburu resulted an intermediate CH4 emission at the average of 61.1 and 58.9 kg CH4 ha-1, respectively. There was no significant difference in yield between the cultivars tested. The yield of Memberamo, Cisadane, IR64, and Way Apoburu were 5.882, 5.764, 5.873 and 6.065 t ha-1, respectively. Statistical analysis showed that there were no significant differences in the root weight and root length among cultivars. However, Cisadane gave the highest dry matter weight (222 g hill-1 at 57 DAT compared to the other cultivars (175-190 g hill-1. Plant tillers did not show significant differences between the cultivars. Regression analysis showed that CH4 flux was significantly related with root weight, root length, aboveground biomass, and number of plant tillers. This finding shows that the use of selected cultivars, such as IR64, can potentially lower CH4 emission without scarifying yield.

  2. Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip

    Energy Technology Data Exchange (ETDEWEB)

    Houdellier, F.; Knoop, L. de; Gatel, C.; Masseboeuf, A. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Mamishin, S.; Taniguchi, Y. [Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Delmas, M.; Monthioux, M.; Hÿtch, M.J.; Snoeck, E. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse (France)

    2015-04-15

    A newly developed carbon cone nanotip (CCnT) has been used as field emission cathode both in low voltage SEM (30 kV) electron source and high voltage TEM (200 kV) electron source. The results clearly show, for both technologies, an unprecedented stability of the emission and the probe current with almost no decay during 1 h, as well as a very small noise (rms less than 0.5%) compared to standard sources which use tungsten tips as emitting cathode. In addition, quantitative electric field mapping around the FE tip have been performed using in situ electron holography experiments during the emission of the new tip. These results show the advantage of the very high aspect ratio of the new CCnT which induces a strong enhancement of the electric field at the apex of the tip, leading to very small extraction voltage (some hundred of volts) for which the field emission will start. The combination of these experiments with emission current measurements has also allowed to extract an exit work function value of 4.8 eV. - Highlights: • We develop a new field emission cathode based on carbon material. • We determine the exit work function of this new cathode using a combination of in situ electron holography and finite element modeling. • We show that the stability of cold-field emitted current can be improved with no decay during one hour of emission with a lower emission noise (less than 0.5%). • We used this cathode both for 200 kV TEM and 30 kV SEM cold field emission source. • As a TEM source, we also observe an increase of the spatial coherence using Fresnel fringes contrast.

  3. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Endo, Akira; Mocek, Tomas [HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  4. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  5. A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency

    Science.gov (United States)

    Ulisse, G.; Brunetti, F.; Ciceroni, C.; Gemma, F.; Dispenza, M.; Fiorello, A. M.; Ricci, F.; Di Carlo, A.

    2015-05-01

    Vacuum microelectronic devices play an important role in the field of micro- and nano-electronics and they have been strongly developed in recent decades. Vacuum microelectronics are mainly based on the field emission effect and the employment of electrons in vacuum in a device with dimensions from tenths to hundredths of a micrometer. In this work, we present the development of a carbon-nanotube-based multifinger microtriode operating from 0.5 to 2 GHz. In this frequency range, a minimum RF signal gain of 5 dB is achieved. Such a device represents an optimized alternative to the standard Spindt-type microtriode. The advantage of such multifinger architecture consists in the possibility to reduce the cathode-grid capacitance by reducing the overlap between the two electrodes using a parallel patterning. This approach allows increasing the cut-off frequency of the devices with respect to the Spindt-type triode. We realized a prototype of the multifinger triode and the field emission properties have been characterized. The frequency behavior has been measured, demonstrating the possibility to amplify RF signal.

  6. Accounting for canopy shading and emissivity in simulated radiation fields over a complex mountainous region (Invited)

    Science.gov (United States)

    Marks, D. G.; Essery, R.; Link, T. E.; Winstral, A. H.; Reba, M. L.; Pomeroy, J. W.

    2009-12-01

    Radiation fields are required to model snow and hydrologic processes and properties over forested mountain regions. We present a method that utilizes a representation of terrain and forest structure (height, crown and trunk shape, canopy density and spacing) to modulate above-canopy solar and thermal radiation fields for canopy shading and emissivity effects. The method preserves gap fraction, and accounts for terrain features of slope, aspect and local horizon-induced terrain shading. The method is initiated over a very high resolution, pre-determined distribution of canopy crowns and gaps. For development of the method, terrain structure information was derived from a LiDAR representation of both terrain and canopy over the Fraser Experimental Forest in Colorado. The method can also be applied to an artificial canopy structure, based on a statistical distribution of canopy crowns and gaps as simulated over a region. Though the method is computationally expensive, once the shading and emissivity functions have been computed for a full range of azmuthal conditions, they can be retained in look-up tables, and scaled to an arbitrary set of radiation conditions. The method is applied over the LiDAR domain at the Colorado site using by correcting above-canopy radiation fields for a series of selected dates representing high and low sun angles, and a variety of snow depth conditions.

  7. Controlling of strong tunable THz emission with optimal incommensurate multi-color laser field

    Science.gov (United States)

    Zhang, Lei; Wang, Guo-Li; Zhao, Song-Feng; Zhou, Xiao-Xin

    2017-02-01

    Based on the photocurrent model, we study terahertz (THz) emission from argon plasmas induced by incommensurate-frequency two- and three-color laser fields. In order to enhance the THz radiation at an arbitrary frequency efficiently, a genetic algorithm is applied to search for the optimum laser parameters. For the longer two-color field, our optimizations show that the THz tunability is mainly determined by two laser frequencies, which approximately meets the law Ω = 2ω1-ω2. However, for the shorter laser pulse, the tunability of the THz wave with lower frequency also depends on the relative phase. To control the tunable THz emission, we systematically investigated how to generate the stronger THz wave with the shorter spectrum width using the optimal synthesized waveform. We found that the THz intensity can be enhanced by about an order with three-color field compared with the two-color cases. We also show that the tunable single ultrashort THz pulses can be obtained by using an optimized 50-fs two-color pulse.

  8. Synthesis,field emission and microwave absorption of carbon nanotubes filled with ferromagnetic nanowires

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Carbon nanotubes filled with ferromagnetic metal nanowires (M-CNTs) were synthesized by using chlorine-contained benzene (e.g.trichlorobenzene) as precursor.The wall thicknesses of M-CNTs synthesized by trichlorobenzene are much thinner than those by precursor without Cl (e.g.benzene).As-synthesized thin-walled M-CNTs exhibit remarkably enhanced field electron emission performance with a low turn-on field of 0.3 V/μm and better field-emission stability.Microwave-absorption coatings were made by dispersing as-synthesized M-CNTs into epoxy resin matrix.It is found that the reflection losses in S-band (2-4 GHz),C-band (4-8 GHz) and X-band (8-12 GHz) are enhanced in the order of FeCoNi-CNTs < FeNi-CNTs< FeCo-CNTs.The areal density of as-prepared coatings is only 2.35 kg/m2 when the coating thickness is 2.0 mm.This demonstrates that M-CNTs are promising to be used as lightweight and wide-band microwave absorbers.

  9. A field-emission pressure sensor of nano-crystalline silicon film

    Institute of Scientific and Technical Information of China (English)

    廖波; 韩建保

    2001-01-01

    The prototype of a field-emission pressure sensor with a novel structure based on the quantum tunnel effect is designed and manufactured, where a cathode emitter array is fabricated on the same silicon plate as the sensible film. For an integrated structure, not only the alignment and vacuum bonding between the anode and cathode are easy to be realized, but also a fine sensibility is guaranteed. For example, the measured current density emitted from the effective area of the sensor can reach 53.5 A/m2 when the exterior electric field is 5.6 x 105 V/m. Furthermore, it is demonstrated by finite element method simulation that the reduction in sensor sensitivity caused by emitters on the sensible film is negligible. The difference between the maximum deflections of the sensible films with and without emitters under specified pressure is less than 0.4 %. Therefore, it can be concluded that the novel field-emission sensor structure is reasonable.

  10. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    Science.gov (United States)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  11. A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency.

    Science.gov (United States)

    Ulisse, G; Brunetti, F; Ciceroni, C; Gemma, F; Dispenza, M; Fiorello, A M; Ricci, F; Di Carlo, A

    2015-05-29

    Vacuum microelectronic devices play an important role in the field of micro- and nano-electronics and they have been strongly developed in recent decades. Vacuum microelectronics are mainly based on the field emission effect and the employment of electrons in vacuum in a device with dimensions from tenths to hundredths of a micrometer. In this work, we present the development of a carbon-nanotube-based multifinger microtriode operating from 0.5 to 2 GHz. In this frequency range, a minimum RF signal gain of 5 dB is achieved. Such a device represents an optimized alternative to the standard Spindt-type microtriode. The advantage of such multifinger architecture consists in the possibility to reduce the cathode-grid capacitance by reducing the overlap between the two electrodes using a parallel patterning. This approach allows increasing the cut-off frequency of the devices with respect to the Spindt-type triode. We realized a prototype of the multifinger triode and the field emission properties have been characterized. The frequency behavior has been measured, demonstrating the possibility to amplify RF signal.

  12. A novel method to form conducting channels in SiOx(Si ) films for field emission application

    Science.gov (United States)

    Semenenko, M.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2010-01-01

    The electrical and field emission properties of SiOx(Si ) films are studied. SiOx(Si ) films of 40-100nm thick are obtained by plasma-enhanced chemical vapor deposition and thermal evaporation of Si powder onto Si substrates. Nanosized electrical conducting channels are formed in SiOx(Si ) films by electrical conditioning at high current densities. The structures with conducting channels demonstrate increased field emission current and decreased threshold voltage compared to as-deposited SiOx(Si ) films. The decrease in threshold voltage for electron field emission is explained by local enhancement of electric field. The diameters of conducting channels are estimated from the effective emission area to be in the range of 1-2nm.

  13. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    Directory of Open Access Journals (Sweden)

    Jinzhuo Xu

    2013-01-01

    Full Text Available The graphene double-walled carbon nanotube (DWCNT hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better long-term stability, and stronger adhesive strength with conductive substrates. The optimized hybrid films with 20% weight ratio of graphene, which were fabricated by vacuum filtration, show the best electron emission performances with a low turn-on field of 0.50 Vμm−1 (at 1 μAcm−2 and a high field enhancement factor β of 27000.

  14. Field-emission-induced electromigration method for the integration of single-electron transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shunsuke; Tomoda, Yusuke; Kume, Watari; Hanada, Michinobu; Takiya, Kazutoshi [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2012-01-01

    We report a simple and easy method for the integration of planar-type single-electron transistors (SETs). This method is based on electromigration induced by a field emission current, which is so-called 'activation'. The integration of two SETs was achieved by performing the activation to the series-connected initial nanogaps. In both simultaneously activated devices, current-voltage (I{sub D}-V{sub D}) curves displayed Coulomb blockade properties, and Coulomb blockade voltage was also obviously modulated by the gate voltage at 16 K. Moreover, the charging energy of both SETs was well controlled by the preset current in the activation.

  15. Coherent field emission from a multi-walled carbon nanotube with two open-ended branches

    Institute of Scientific and Technical Information of China (English)

    Bai Xin; Zhang Geng-Min; Wang Ming-Sheng; Zhang Zhao-Xiang; Yu Jie; Zhao Xing-Yu; Guo Deng-Zhu; Xue Zeng-Quan

    2009-01-01

    Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches.The FEM pattern,which is composed of three parallel streaks,can be interpreted by using classical Young's double-slit interference with the ends of the two MWCNT branches treated as two secondary sources of the electron wave.The origin of the coherency of the electron beams from the two branches is discussed on the basis of the quantitative analysis of the FEM pattern.The result suggests a new approach to obtaining a coherent electron source.

  16. High field terahertz emission from relativistic laser-driven plasma wakefields

    CERN Document Server

    Chen, Zi-Yu

    2015-01-01

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range 1-10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  17. Amp\\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    CERN Document Server

    Mihalcea, D; Hartzell, J; Panuganti, H; Boucher, S M; Murokh, A; Piot, P; Thangaraj, J C T

    2015-01-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  18. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Directory of Open Access Journals (Sweden)

    A. Meijide

    2011-12-01

    Full Text Available Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4, the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem.

    For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd. was installed in a rice paddy field in the Po Valley (Northern Italy. Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10–12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m−2 measured with chambers and EC respectively and even greater differences are found if shorter periods with high chamber sampling

  19. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China

    Science.gov (United States)

    Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi

    2017-01-01

    Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China. PMID:28419127

  20. Field evaluation of a new plastic film (vapor safe) to reduce fumigant emissions and improve distribution in soil.

    Science.gov (United States)

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Sullivan, David; Wang, Dong; Hanson, Bradley D

    2011-01-01

    Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures.