WorldWideScience

Sample records for superior drug carrier

  1. Cyclodextrins in drug carrier systems.

    Science.gov (United States)

    Uekama, K; Otagiri, M

    1987-01-01

    One of the important characteristics of cyclodextrins is the formation of an inclusion complex with a variety of drug molecules in solution and in the solid state. As a consequence of intensive basic research, exhaustive toxic studies, and realization of industrial production during the past decade, there seem to be no more barriers for the practical application of natural cyclodextrins in the biomedical field. Recently, a number of cyclodextrin derivatives and cyclodextrin polymers have been prepared to obtain better inclusion abilities than parent cyclodextrins. The natural cyclodextrins and their synthetic derivatives have been successfully utilized to improve various drug properties, such as solubility, dissolution and release rates, stability, or bioavailability. In addition, the enhancement of drug activity, selective transfer, or the reduction of side effects has been achieved by means of inclusion complexation. The drug-cyclodextrin complex is generally formed outside of the body and, after administration, it dissociates, releasing the drug into the organism in a fast and nearly uniform manner. In the biomedical application of cyclodextrins, therefore, particular attention should be directed to the magnitude of the stability constant of the inclusion complex. In the case of parenteral application, a rather limited amount of work has been done because the cyclodextrins in the drug carrier systems have to be more effectively designed to compete with various biological components in the circulatory system. However, the works published thus far apparently indicate that the inclusion phenomena of cyclodextrin analogs may allow the rational design of drug formulation and that the combination of molecular encapsulation with other carrier systems will become a very effective and valuable method for the development of a new drug delivery system in the near future.

  2. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  3. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  4. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  5. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  6. Organized polysaccharide fibers as stable drug carriers

    Science.gov (United States)

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  7. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  8. [Drug delivery systems using nano-sized drug carriers].

    Science.gov (United States)

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  9. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  10. Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering

    Directory of Open Access Journals (Sweden)

    Piyush Mehta

    2018-01-01

    Full Text Available Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier’s molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier’s molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed.

  11. POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS

    Directory of Open Access Journals (Sweden)

    M. V. Grigoreva

    2013-10-01

    Full Text Available Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo. In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.

  12. Cyclodextrin-based nanosponges as drug carriers

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2012-11-01

    Full Text Available Cyclodextrin-based nanosponges, which are proposed as a new nanosized delivery system, are innovative cross-linked cyclodextrin polymers nanostructured within a three-dimensional network. This type of cyclodextrin polymer can form porous insoluble nanoparticles with a crystalline or amorphous structure and spherical shape or swelling properties. The polarity and dimension of the polymer mesh can be easily tuned by varying the type of cross-linker and degree of cross-linking. Nanosponge functionalisation for site-specific targeting can be achieved by conjugating various ligands on their surface. They are a safe and biodegradable material with negligible toxicity on cell cultures and are well-tolerated after injection in mice. Cyclodextrin-based nanosponges can form complexes with different types of lipophilic or hydrophilic molecules. The release of the entrapped molecules can be varied by modifying the structure to achieve prolonged release kinetics or a faster release. The nanosponges could be used to improve the aqueous solubility of poorly water-soluble molecules, protect degradable substances, obtain sustained delivery systems or design innovative drug carriers for nanomedicine.

  13. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  14. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Wang, Hongyu; Yang, Baixue; Liu, Hongzhuo; Pan, Weisan; Li, Sanming

    2016-02-01

    The purpose of this study was to facilely develop amino modified mesoporous silica xerogel synthesized using biomimetic method (B-AMSX) and to investigate its potential ability to be a drug carrier for loading poorly water-soluble drug indomethacin (IMC). For comparison, mesoporous silica xerogel without amino modification (B-MSX) was also synthesized using the same method. The changes of characteristics before and after IMC loading were systemically studied using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and nitrogen adsorption/desorption analysis. The results showed that B-MSX and B-AMSX were spherical nanoparticles with mesoporous structure. Compared with B-MSX, IMC loading capacity of B-AMSX was higher because more drug molecules can be loaded through stronger hydrogen bonding force. DSC and SAXS analysis confirmed the amorphous state of IMC after being loaded into B-MSX and B-AMSX. The in vitro drug release study revealed that B-MSX and B-AMSX improved IMC release significantly, and B-AMSX released IMC a little faster than B-MSX because of larger pore diameter of IMC-AMSX. B-MSX and B-AMSX degraded gradually in dissolution medium evidenced by color reaction and absorbance value, and B-AMSX degraded slower than B-MSX due to amino modification. In conclusion, B-AMSX with superiority of higher loading capacity and enhanced dissolution release can be considered to be a good candidate as drug carrier for IMC. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biomacromolecules as carriers in drug delivery and tissue engineering.

    Science.gov (United States)

    Zhang, Yujie; Sun, Tao; Jiang, Chen

    2018-01-01

    Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.

  16. Perfluorocarbon (PFC) emulsions as potential drug carriers

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Goodman, R.L.; Moore, R.E.

    1984-01-01

    PFC emulsions have excellent oxygen transporting properties and have been reported to enhance the response of murine tumors to both radiation and BCNU. While the presently available emulsions are far too toxic to the immune system to be used in cancer therapy, they can be used to investigate the overall potential of this approach. As an example, the authors have found that these emulsions can alter drug availability. The lipophilicity of both the PFC and the drug in question determine the partitioning of the drug between the organic and aqueous phases of an emulsion. In vitro, this can reduce drug effectiveness by reducing the amount of drug available to the cells. In vivo, however, this partitioning may produce sustained drug exposure, which could be of benefit in cancer therapy and other applications. In brief, as the drug is absorbed from the circulating aqueous phase, additional drug would leach from the PFC, thereby providing a sustained drug exposure similar to that obtained with liposomes. While a great deal more work will be required to evaluate the practicality of this approach, the existence of this phenomenon must be taken into account in both the design and interpretation of efficacy studies in which anesthetics, chemotherapeutics, etc are employed

  17. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  18. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  19. Elastic liposomes as novel carriers: recent advances in drug delivery

    Science.gov (United States)

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. PMID:28761343

  20. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  1. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  2. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  3. Structural and chemical aspects of HPMA copolymers as drug carriers.

    Science.gov (United States)

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  5. INTERPOLYELECTROLYTE COMPLEXES AS PROSPECTIVE CARRIERS FOR CONTROLLED DRUG DELIVERY

    OpenAIRE

    Kaur Jasmeet; Harikumar S.L.; Kaur Amanpreet

    2012-01-01

    In the current scenario, polymers as carriers have revolutionized the drug delivery system. A more successful approach, to exploit the different properties of polymers in a solitary system is the complexation of polymers to form polyelectrolyte complexes. These complexes circumvent the use of chemical crosslinking agents, thereby reducing the risk of toxicity. The complex formed is generally applied in different dosage forms for the formulation of stable aggregated macromolecules. There are t...

  6. Elastic liposomes as novel carriers: recent advances in drug delivery

    Directory of Open Access Journals (Sweden)

    Hussain A

    2017-07-01

    Full Text Available Afzal Hussain,1,2 Sima Singh,1 Dinesh Sharma,3 Thomas J Webster,4 Kausar Shafaat,2 Abdul Faruk5 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; 2Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India; 3Zifam Pyrex Myanmar Co. Ltd., Yangon, Myanmar; 4Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 5Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India Abstract: Elastic liposomes (EL are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. Keywords: elastic liposomes, drug delivery, topical, transdermal, enhanced delivery 

  7. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  8. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    Science.gov (United States)

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    International Nuclear Information System (INIS)

    Li Yanan; An Feifei; Zhang Xiaohong; Yang Yinlong; Liu Zhuang; Zhang Xiujuan

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. (paper)

  10. [Pharmaceutical application of cyclodextrins as multi-functional drug carriers].

    Science.gov (United States)

    Uekama, Kaneto

    2004-12-01

    Owing to the increasingly globalized nature of the cyclodextrin (CyD)-related science and technology, development of the CyD-based pharmaceutical formulation is rapidly progressing. The pharmaceutically useful CyDs are classified into hydrophilic, hydrophobic, and ionic derivatives. Because of the multi-functional characteristics and bioadaptability, these CyDs are capable of alleviating the undesirable properties of drug molecules through the formation of inclusion complexes or the form of CyD/drug conjugates. This review outlines the current application of CyDs in drug delivery and pharmaceutical formulation, focusing on the following evidences. 1) The hydrophilic CyDs enhance the rate and extent of bioavailability of poorly water-soluble drugs. 2) The amorphous CyDs such as 2-hydroxypropyl-beta-CyD are useful for inhibition of polymorphic transition and crystallization rates of drugs during storage. 3) The delayed release formulation can be obtained by the use of enteric type CyDs such as O-carboxymethyl-O-ethyl-beta-CyD. 4) The hydrophobic CyDs are useful for modification of the release site and/or time profile of water-soluble drugs with prolonged therapeutic effects. 5) The branched CyDs are particularly effective in inhibiting the adsorption to hydrophobic surface of containers and aggregation of polypeptide and protein drugs. 6) The combined use of different CyDs and/or pharmaceutical additives can serve as more functional drug carriers, improving efficacy and reducing side effects. 7) The CyD/drug conjugates may provide a versatile means for the constructions of not only colonic delivery system but also site-specific drug release system, including gene delivery. On the basis of the above-mentioned knowledge, the advantages and limitations of CyDs in the design of advanced dosage forms will be discussed.

  11. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  12. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  13. Rhodamine/Nanodiamond as a System Model for Drug Carrier.

    Science.gov (United States)

    Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L

    2015-02-01

    In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.

  14. Archaeosomes: an excellent carrier for drug and cell delivery.

    Science.gov (United States)

    Kaur, Gurmeet; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-09-01

    Archaeosomes as liposomes made with one or more ether lipids that are unique to the domain of Archaeobacteria, found in Archaea constitute a novel family of liposome. Achaean-type lipids consist of archaeol (diether) and/or caldarchaeol (tetraether) core structures. Archaeosomes can be produced using standard procedures (hydrated film submitted to sonication, extrusion and detergent dialysis) at any temperature in the physiological range or lower, therefore making it possible to encapsulate thermally stable compounds. Various physiological as well as environmental factors affect its stability. Archaeosomes are widely used as drug delivery systems for cancer vaccines, Chagas disease, proteins and peptides, gene delivery, antigen delivery and delivery of natural antioxidant compounds. In this review article, our major aim was to explore the applications of this new carrier system in pharmaceutical field.

  15. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    Science.gov (United States)

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  16. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  17. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets

    NARCIS (Netherlands)

    Srinarong, Parinda; Kouwen, Sander; Visser, Marinella R; Hinrichs, Wouter L J; Frijlink, Henderik W

    2010-01-01

    The objective of this study was to compare the dissolution behavior of tablets prepared from solid dispersions with and without drug-carrier interactions. Diazepam and nifedipine were used as model drugs. Two types of carriers were used; polyvinylpyrrolidone (PVP K12, K30 and K60) and saccharides

  18. Erythrocytes as Carriers for Drugs and Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mauro Magnani

    2014-01-01

    Full Text Available Erythrocytes, also known as Red Blood Cells (RBC, are typically used in transfusion medicine to replace lost blood in patients who underwent different kinds of medical treatments as well as those involved in accidents resulting in blood loss. In addition to these common uses, RBC are being used for a variety of new applications either as therapeutics or as diagnostics. Most of these novel approaches are made possible due to the peculiar properties of these cells. We have invented a technology that allows cells to be opened and resealed without affecting their main physiological characteristics with a minimal amount of patient blood.  Uses of processed RBCs in biomedical engineering include work with drugs, biomedical compounds and/or nanomaterials. These constructs are a new armamentarium available to the physicians for the release of drugs in circulation, for targeting drugs to selected sites in the body, or for in vivo diagnostic procedures based on magnetic and/or optical methods. Autologous human RBC loaded with dexamethasone (EryDex, a common corticosteroid,  have been used in the treatment of Cystic Fibrosis, Crohn’s Disease, and other severe inflammatory conditions. Benefits and safety of this technology have been documented in over 2,500 treatments. EryDel SpA is a company focused on developing and commercializing innovative therapies and diagnostics based on the use of autologous RBCs as agent carriers. More recently, EryDel SpA completed a Phase II Proof of Concept study in patients with Ataxia Telangiectasia (AT, a rare progressive neurological autosomal recessive disorder that leads to mortality in most patients at an early age, with significant benefit seen on primary and secondary end-points. EryDex treatment has received Orphan Drug Designation by EMA for the treatment of Cystic Fibrosis and both by EMA and FDA for the treatment of AT. The encapsulation of superparamagnetic nanoparticles within RBC has lead to the generation

  19. Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

    Directory of Open Access Journals (Sweden)

    Like Zeng

    2011-01-01

    Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

  20. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  1. Drug targeting and the carriers. Application to chemoembolization and medical imaging

    International Nuclear Information System (INIS)

    Puisieux, F.; Benoit, J.P.; Roblot-Treupel, L.

    1987-01-01

    The last fifteen years have seen an increased interest in drug targeting which can be considered as a new way to control the body distribution of drugs when associated with an appropriate carrier. The systems currently studied possess different structures (macromolecular, vesicular and particular) and can be classified into carriers of first, second and third generation. After a brief review of the three types of carriers, this paper focuses on their respective interest in the different fields of radiology: carriers of first generation (microcapsules, microspheres) in chemoembolization, carriers of second generation (liposomes, nanocapsules, nanospheres) in conventional radiology, in computerized tomography, in scintigraphy, in RMN; carriers of third generation (monoclonal antibodies...) in immunoscintigraphy of tumors [fr

  2. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac ® 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac ® 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac ® 40). The resulting finer composite powders (sub-100μm) based on GranuLac ® 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, D.K F; Molema, Ingrid; Moolenaar, Frits; de Zeeuw, D; Swart, P.J

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain

  4. CHARACTERIZATION OF TERNARY SYSTEM OF POORLY SOLUBLE DRUG IN VARIOUS HYDROPHILIC CARRIERS

    OpenAIRE

    Vijay Kumar; Shankaraiah MM; Venkatesh JS; Rangaraju D; C.Nagesh

    2011-01-01

    The present study aims to experiment the solid dispersion of poorly water soluble drug fenbendazole as model drug. Fenbendazole is an Antihelmintic drug (BCS class 2).The purpose of this study was to enhance the dissolution of Fenbendazole by solid dispersions consisting of the drug, a polymeric carrier, Binary and ternary system were prepared by kneading method using hydrophilic polymers like polyvinylpyrrolidone K-25 (PVP K25), beta-cyclodextrin (BCD),mannitol and urea. The prepared form...

  5. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  6. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    International Nuclear Information System (INIS)

    Stoika, R; Boiko, N; Panchuk, R; Filyak, Y; Senkiv, Y; Finiuk, N; Shlyakhtina, Y; Bilyy, R; Kit, Y; Skorohyd, N; Klyuchivska, O; Zaichenko, A; Mitina, N; Ryabceva, A

    2013-01-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  7. In vivo imaging of passively tumor targeted polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 90 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA MZd(CZ) NV16-28594A Institutional support: RVO:61389013 Keywords : polymer drug carrier * tumor targeting * enzymatic release Subject RIV: FD - Oncology ; Hematology

  8. Dissolution Enhancement of Drugs. Part II: Effect of Carriers ...

    African Journals Online (AJOL)

    Recent high throughput screening and combinatorial and parallel synthesis are increasing the number of drug molecules which are highly lipophilic. The oral route is the most preferred route of drug administration due to its convenience, good patient compliance and low medicine production costs. The challenges to ...

  9. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  10. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  11. Structural and chemical aspects of HPMA copolymers as drug carriers

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Šubr, Vladimír

    2010-01-01

    Roč. 62, č. 17 (2010), s. 150-166 ISSN 0169-409X R&D Projects: GA AV ČR KAN200200651; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Keywords : drug-delivery systems * N-(2-hydroxypropyl)methacrylamide * polymer drug conjugates Subject RIV: CD - Macromolecular Chemistry Impact factor: 13.577, year: 2010

  12. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  13. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  14. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  15. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations].

    Science.gov (United States)

    Torkhovskaia, T I; Ipatova, O M; Medvedeva, N V; Ivanov, V S; Ivanova, L I

    2010-01-01

    The extensive development of nanotechnologies in the last two decades has brought about new understanding of plasma lipoproteins (LP) as natural drug nanocarriers that escape interaction with immune and reticuloendothelial systems. Drugs bound to LP (especially LDL) can more actively penetrate into cells of many cancer and inflammation tissues with enhanced expression or/and dysregulation of B,E receptors or possibly scavenger SR-BI receptors. Relevant studies are focused on the development of new dosage forms by conjugating lipophilic drugs either with isolated plasma LP or with their model formulations, such as nanoemulsions, mimetics, lipid nanospheres, etc. Some authors include in these particles serum or recombinant apoproteins, peptides, and modified polymer products. As shown recently, protein-free lipid nanoemulsions in plasma take up free apoA and apoE. Complexes with various LP also form after direct administration of lypophilic drugs into blood especially those enclosed in phospholipid formulations, e.g. liposomes. Results of evaluation of some lipophilic dugs (mainly cytostatics, amphotericin B, cyclosporine A, etc.) are discussed. Original data are presented on the influence of phospholipid formulations on the distribution of doxorubicin and indomethacin between LP classes after in vitro incubation in plasma. On the whole, the review illustrates the importance of research on LP and phospholi pid forms as drug nanocarriers to be used to enhance effect of therapy.

  16. [In vitro drug release behavior of carrier made of porous glass ceramics].

    Science.gov (United States)

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  17. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.

    Science.gov (United States)

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-06-06

    The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    Science.gov (United States)

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  19. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Kyeong-Ok Choi

    2016-05-01

    Full Text Available The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  20. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs.

    Science.gov (United States)

    Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2016-05-20

    The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  1. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.

    Science.gov (United States)

    Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping

    2014-12-10

    Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and

  2. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Science.gov (United States)

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  3. Controlled Fabrication of Gelatin Nanoparticles as Drug Carriers

    Science.gov (United States)

    Jahanshahi, M.; Sanati, M. H.; Minuchehr, Z.; Hajizadeh, S.; Babaei, Z.

    2007-08-01

    In recent years, significant effort has been devoted to develop nanotechnology for drug delivery since it offers a suitable means of delivering small molecular weight drugs, as well as macromolecules such as proteins, peptides or genes by either localized or targeted delivery to the tissue of interest. Nanotechnology focuses on formulating therapeutic agents in biocompatible nanocomposites such as nanoparticles, nanocapsules, micellar systems, and conjugates. Protein nanoparticles (BSA, HAS and gelatin) generally vary in size from 50-300 nm and they hold certain advantages such as greater stability during storage, stability in vivo, non-toxicity, non-antigen and ease to scale up during manufacture over the other drug delivery systems. The primary structure of gelatin offers many possibilities for chemical modification and covalent drug attachment. Here nanoparticles of gelatin type A were prepared by a two-step desolvation method as a colloidal drug delivery system and the essential parameters in fabrication were considered. Gelatin was dissolved in 25 mL distilled water under room temperature range. Then acetone was added to the gelatin solution as a desolvating agent to precipitate the high molecular weight (HMW) gelatin. The supernatant was discarded and the HMW gelatin re-dissolved by adding 25 mL distilled water and stirring at 600 rpm. Acetone were added drop-wise to form nanoparticles. At the end of the process, glutaraldehyde solution was used for preparing nanoparticles as a cross-linking agent, and stirred for 12h at 600 rpm. For purification stage we use centrifuge with 600rpm for 3 times. The objective of the present study is consideration of some factors such as temperature, gelatin concentration, agitation speed and the amount of acetone and their effects on size and distribution of nanoparticles. Among the all conditions, 60° C, 50 mg/ml gelatin concentration, 75 ml acetone had the best result and the nanoparticle size was under 170 nm. The effect

  4. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.

    Science.gov (United States)

    Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami

    2015-04-01

    PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.

  5. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Garamus, V.M.; Drechsler, M.; Angelova, A.

    2017-01-01

    Roč. 235, Jun (2017), s. 83-89 ISSN 0167-7322 R&D Projects: GA MŠk EF15_003/0000447; GA MŠk EF15_008/0000162 Grant - others:OP VVV - ELIBIO(XE) CZ.02.1.01/0.0/0.0/15_003/0000447; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : self-assembled nanocarriers * liquid crystalline phase transitions * cationic lipids * macromolecular drugs Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.648, year: 2016

  6. Nano carriers for drug transport across the blood-brain barrier.

    Science.gov (United States)

    Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V

    2017-01-01

    Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully

  7. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  8. A water-soluble pillar[5]arene as a new carrier for an old drug.

    Science.gov (United States)

    Barbera, Lucia; Franco, Domenico; De Plano, Laura M; Gattuso, Giuseppe; Guglielmino, Salvatore P P; Lentini, Germana; Manganaro, Nadia; Marino, Nino; Pappalardo, Sebastiano; Parisi, Melchiorre F; Puntoriero, Fausto; Pisagatti, Ilenia; Notti, Anna

    2017-04-11

    The remarkable affinity of deca-carboxylatopillar[5]arene WP5 towards the aminoglycoside antibiotic, amikacin, in aqueous media is reported; in vitro studies on Gram-positive bacteria (Staphylococcus aureus) show that drug entrapment inside WP5 also takes place in the presence of the microrganisms, thus pointing to WP5 as an appealing carrier for amikacin targeted delivery.

  9. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  10. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil; Mahadik, Abhijeet; Nalawade, Pradeep; More, Priyesh

    2017-12-01

    Dry powder inhalers (DPIs) consisting of a powder mixture containing coarse carrier particles (generally lactose) and micronized drug particles are used for lung drug delivery. The effective drug delivery to the lungs depends on size and shape of carrier particles. Thus, various methods have been proposed for engineering lactose particles to enhance drug delivery to lungs. The objective of current work was to assess suitability of electrospray technology toward crystal engineering of lactose. Further, utility of the prepared lactose particles as a carrier in DPI was evaluated. Saturated lactose solutions were electrosprayed to obtain electrosprayed lactose (EL) particles. The polymorphic form of EL was determined using Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry. In addition, morphological, surface textural, and flow properties of EL were determined using scanning electron microscopy and Carr's index, respectively. The aerosolization properties of EL were determined using twin-stage impinger and compared with commercial lactose particles [Respitose ® (SV003, Goch, Germany)] used in DPI formulations. EL was found to contain both isomers (α and β) of lactose having flow properties comparable to Respitose ® (SV003). In addition, the aerosolization properties of EL were found to be significantly improved when compared to Respitose ® (SV003) which could be attributed to morphological (high elongation ratio) and surface characteristic (smooth surface) alterations induced by electrospray technology. Electrospray technology can serve as an alternative technique for continuous manufacturing of engineered lactose particles which can be used as a carrier in DPI formulations.

  11. Evaluation of Biosourced Alkyd Nanoemulsions as Drug Carriers

    Directory of Open Access Journals (Sweden)

    Siew Yong Teo

    2015-01-01

    Full Text Available Novel oil-in-water (O/W nanoemulsions were formulated using short, medium, and long oil length alkyds synthesized from palm kernel oil by a two-stage alcoholysis-polyesterification reaction. Alkyd/surfactant/water ternary phase diagrams identified a composition of 1% alkyd, 9% Tween 80, and 90% water where spontaneous production of nanoemulsions occurred. The pH, droplet size, and zeta potential of all formulations were in the range of 6.4–6.6, 11–14 nm, and −6 mV to −8 mV, respectively. Rheological studies showed that the nanoemulsions displayed non-Newtonian shear thinning behavior at low shear rates up to 20 s−1 with conversion to Newtonian behavior above this shear rate. All nanoemulsions were found to be stable against phase separation on storage at 4°C and 25°C for three months. Short oil length alkyd nanoemulsions exhibited significantly higher stability compared with medium and long oil length alkyd nanoemulsions, as demonstrated by an absence of phase separation and only minor changes of droplet size on storage at an elevated temperature of 45°C for 3 months. The drug carrying capacity and storage stability of the nanoemulsions were assessed using phenytoin. The entrapment efficiency of alkyd nanoemulsions was in excess of 90% and loss of phenytoin content was restricted to less than 4% during storage of the nanoemulsions for three months at 4°C, 25°C, and 45°C. Taken together, these findings indicate that nanoemulsions prepared from palm kernel oil-based alkyds offer potential as nanocarriers for drug delivery applications.

  12. Characterization of Different Functionalized Lipidic Nanocapsules as Potential Drug Carriers

    Directory of Open Access Journals (Sweden)

    José Manuel Peula-García

    2012-02-01

    Full Text Available Lipid nanocapsules (LNC based on a core-shell structure consisting of an oil-filled core with a surrounding polymer layer are known to be promising vehicles for the delivery of hydrophobic drugs in the new therapeutic strategies in anti-cancer treatments. The present work has been designed as basic research about different LNC systems. We have synthesized—and physico-chemically characterized—three different LNC systems in which the core was constituted by olive oil and the shell by different phospholipids (phosphatidyl-serine or lecithin and other biocompatible molecules such as Pluronic® F68 or chitosan. It is notable that the olive-oil-phosphatidyl-serine LCN is a novel formulation presented in this work and was designed to generate an enriched carboxylic surface. This carboxylic layer is meant to link specific antibodies, which could facilitate the specific nanocapsule uptake by cancer cells. This is why nanoparticles with phosphatidyl-serine in their shell have also been used in this work to form immuno-nanocapsules containing a polyclonal IgG against a model antigen (C-reactive protein covalently bounded by means of a simple and reproducible carbodiimide method. An immunological study was made to verify that these IgG-LNC complexes showed the expected specific immune response. Finally, a preliminary in vitro study was performed by culturing a breast-carcinoma cell line (MCF-7 with Nile-Red-loaded LNC. We found that these cancer cells take up the fluorescent Nile-Red molecule in a process dependent on the surface properties of the nanocarriers.

  13. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  14. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  15. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  16. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.

    Science.gov (United States)

    Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul

    2015-06-01

    Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.

  17. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Budko, Andrei P. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kovarskii, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Zontov, Sergei V. [Oncological Center, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kogan, Boris Ya. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com

    2009-05-15

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  18. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.

    2009-01-01

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  19. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    Directory of Open Access Journals (Sweden)

    Murilo L Bello

    Full Text Available Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation. We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  20. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  1. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy.

    Directory of Open Access Journals (Sweden)

    Marwan Moussa

    Full Text Available To determine the effect of different drug-loaded nanocarriers (micelles and liposomes on delivery and treatment efficacy for radiofrequency ablation (RFA combined with nanodrugs.Fischer 344 rats were used (n = 196. First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of i.v. fluorescent beads (20, 100, and 500 nm, with fluorescent intensity measured at 4-24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm or liposomal (100 nm preparations of doxorubicin (Dox; targeting HIF-1α or quercetin (Qu; targeting HSP70. Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg i.v., 15 min post-RFA, and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg i.v.. Tumor coagulation and HIF-1α or HSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with i.v. Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4-72 hr.Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm and liver (100 nm (p<0.05. Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05. RFA/Mic-Dox had greater early (4 hr intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24-72 hr post-RFA (p<0.04. No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03.With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over time and reduced tumor growth. Accordingly

  2. Implications of formulation design on lipid-based nanostructured carrier system for drug delivery to brain.

    Science.gov (United States)

    Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S

    2016-05-01

    The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.

  3. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Cyclodextrins as drug carriers in Pharmaceutical Technology: The state of the art.

    Science.gov (United States)

    Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, Jose Manuel Sousa

    2017-12-18

    Cyclodextrins (CDs) are versatile excipients with an essential role in drug delivery, as they can form non-covalently bonded inclusion complexes (host-guest complexes) with several drugs either in solution or in the solid state. The main purpose of this publication was to carry out a state of the art of CDs as complexing agents in drug carrier systems. In this way, the history, properties and pharmaceutical applications of the CDs were highlighted with typical examples. The methods to enhance the complexation efficiency (CE) and the CDs applications in solid dosage forms were emphasized in more detail. The main advantages of using these cyclic oligosaccharides are as follows: (1) to enhance solubility/dissolution/ bioavailability of poorly soluble drugs; (2) to enhance drug stability; (3) to modify the drug release site and/or time profile; and (4) to reduce drug side effects (for example, gastric or ocular irritation). These compounds present favorable toxicological profile for human use and therefore there are various medicines containing CDs approved by regulatory authorities worldwide. On the other hand, the major drawback of CDs is the increase in formulation bulk, once the CE is, in general, very low. This aspect is particularly relevant in solid dosage forms and limits the use of CDs to potent drugs. CDs have great potential as drug carriers in Pharmaceutical Technology and can be used by the formulator in order to improve the drug properties such as solubility, bioavailability and stability. Additionally, recent studies have shown that these compounds can be applied as active pharmaceutical ingredients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Crosslinked hydrogels?a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    OpenAIRE

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a ...

  6. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  7. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  8. Interaction of tricyclic drugs with copper phthalocyanine dye immobilized on magnetic carriers

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Šafařík, Ivo

    3(Suppl.2), - (2002), s. 188-191 ISSN 1473-2262. [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /4./. Tallahassee, 09.05.2002-11.05.2002] R&D Projects: GA MŠk OC 523.80; GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic * tricyclic drugs * phthalocyanine Subject RIV: CE - Biochemistry

  9. Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela

    2015-12-30

    Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optimization and design of ibuprofen-loaded nanostructured lipid carriers using a hybrid-design approach for ocular drug delivery

    Science.gov (United States)

    Rathod, Vishal

    The objective of the present project was to develop the Ibuprofen-loaded Nanostructured Lipid Carrier (IBU-NLCs) for topical ocular delivery based on substantial pre-formulation screening of the components and understanding the interplay between the formulation and process variables. The BCS Class II drug: Ibuprofen was selected as the model drug for the current study. IBU-NLCs were prepared by melt emulsification and ultrasonication technique. Extensive pre-formulation studies were performed to screen the lipid components (solid and liquid) based on drug's solubility and affinity as well as components compatibility. The results from DSC & XRD assisted in selecting the most suitable ratio to be utilized for future studies. DynasanRTM 114 was selected as the solid lipid & MiglyolRTM 840 was selected as the liquid lipid based on preliminary lipid screening. The ratio of 6:4 was predicted to be the best based on its crystallinity index and the thermal events. As there are many variables involved for further optimization of the formulation, a single design approach is not always adequate. A hybrid-design approach was applied by employing the Plackett Burman design (PBD) for preliminary screening of 7 critical variables, followed by Box-Behnken design (BBD), a sub-type of response surface methodology (RSM) design using 2 relatively significant variables from the former design and incorporating Surfactant/Co-surfactant ratio as the third variable. Comparatively, KolliphorRTM HS15 demonstrated lower Mean Particle Size (PS) & Polydispersity Index (PDI) and KolliphorRTM P188 resulted in Zeta Potential (ZP) ibuprofen thereafter over several hours. These values also confirm that the production method, and all other selected variables, effectively promoted the incorporation of ibuprofen in NLC. Quality by Design (QbD) approach was successfully implemented in developing a robust ophthalmic formulation with superior physicochemical and morphometric properties. NLCs as the

  11. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  12. {beta}-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Baradari, Hiba; Damia, Chantal; Dutreih-Colas, Maggy; Champion, Eric; Chulia, Dominique; Viana, Marylene, E-mail: hiva.baradari@etu.unilim.fr [SPCTS-Centre Europeen de la Ceramique, 12 Rue Atlantis, 87068 Limoges CEDEX (France)

    2011-10-15

    Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous {beta}-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous {beta}-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and {beta}-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on {beta}-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.

  13. β-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions

    International Nuclear Information System (INIS)

    Baradari, Hiba; Damia, Chantal; Dutreih-Colas, Maggy; Champion, Eric; Chulia, Dominique; Viana, Marylene

    2011-01-01

    Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous β-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous β-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and β-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on β-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.

  14. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications.

    Science.gov (United States)

    Bugnicourt, Loïc; Ladavière, Catherine

    2017-06-28

    Chitosan and lipid colloids have separately shown a growing interest in the field of drug delivery applications. Their success is mainly due to their interesting physicochemical behaviors, as well as their biological properties such as bioactivity and biocompatibility. While chitosan is a well-known cationic polysaccharide with the ability to strongly interact with drugs and biological matrices through mainly electrostatic interactions, lipid colloids are carriers particularly recognized for the drug vectorization. In recent years, the combination of both entities has been considered because it offers new systems which gather the advantages of each of them to efficiently deliver various types of bioactive species. The purpose of this review is to describe these associations between chemically-unmodified chitosan chains (solubilized or dispersed) and lipid colloids (as nanoparticles or organized in lipid layers), as well as their potential in the drug delivery area so far. Three assemblies have mainly been reported in the literature: i) lipid nanoparticles (solid lipid nanoparticles or nanostructured lipid carriers) coated with chitosan chains, ii) lipid vesicles covered with chitosan chains, and iii) chitosan chains structured in nanoparticles with a lipid coating. Their elaboration processes, their physicochemical characterization, and their biological studies are detailed and discussed herein. The different bioactive species (drugs and bio(macro)molecules) incorporated in these assemblies, their maximal incorporation efficiency, and their loading capacity are also presented. This review reveals the versatility of these assemblies. Depending on the organization of lipids (i.e., nanoparticles or vesicles) and the state of polymer chains (i.e., solubilized or dispersed under the form of nanoparticles), a large variety of drugs can be successfully incorporated, and various routes of administration can be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2013-01-01

    Full Text Available Diclofenac sodium loaded solid lipid nanoparticles (SLNs were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG and plain carbopol gel containing drug (CG for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1 and stearic acid nanoparticle 1 (SAN-1 gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3 showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher Cmax than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile.

  16. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    Science.gov (United States)

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  17. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  18. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    Science.gov (United States)

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  20. A novel oral delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for poorly water-soluble drug: vinpocetine.

    Science.gov (United States)

    Lin, Congcong; Chen, Fen; Ye, Tiantian; Zhang, Lina; Zhang, Wenji; Liu, Dandan; Xiong, Wei; Yang, Xinggang; Pan, Weisan

    2014-04-25

    The purpose of this study was to develop a new delivery system based on drug cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC) to improve the oral bioavailability of vinpocetine (VP). Three different CDs and three different methods to obtain solid vinpocetine-cyclodextrin-tartaric acid complexes (VP-CD-TA) were contrasted. The co-evaporation vinpocetine-β-cyclodextrin-tartaric acid loaded NLC (VP-β-CD-TA COE-loaded NLC) was obtained by emulsification ultrasonic dispersion method. VP-β-CD-TA COE-loaded NLC was suitably characterized for particle size, polydispersity index, zeta potential, entrapment efficiency and the morphology. The crystallization of drug in VP-CD-TA and NLC was investigated by differential scanning calorimetry (DSC). The in vitro release study was carried out at pH 1.2, pH 6.8 and pH 7.4 medium. New Zealand rabbits were applied to investigate the pharmacokinetic behavior in vivo. The VP-β-CD-TA COE-loaded NLC presented a superior physicochemical property and selected to further study. In the in vitro release study, VP-β-CD-TA COE-loaded NLC exhibited a higher dissolution rate in the pH 6.8 and pH 7.4 medium than VP suspension and VP-NLC. The relative bioavailability of VP-β-CD-TA COE-loaded NLC was 592% compared with VP suspension and 92% higher than VP-NLC. In conclusion, the new formulation significantly improved bioavailability of VP for oral delivery, demonstrated a perspective way for oral delivery of poorly water-soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Scintigraphic evaluation of the pharmacokinetics of a soluble polymeric drug carrier

    International Nuclear Information System (INIS)

    Pimm, M.V.; Perkins, A.C.; Hudecz, F.

    1992-01-01

    There is a growing interest in the use of macromolecular carriers for therapeutic agents. If these carriers can be labelled with an appropriate gamma-emitter, their biodistribution could be followed by scintigraphy. We have imaged the biodistribution of a synthetic branched polypeptide, based on a poly-L-lysine backbone (average molecular mass 45 kDa). The polymer was conjugated to diethylene triamine penta-acetic acid and labelled by chelation with indium-111. Mice were injected i.v. with labelled material and imaged with a gamma-camera with a pin-hole collimator. Images showed the majority of tracer remaining in the blood pool, but about 35% appeared in the urinary bladder within 1.5 h. When the 111 In-polymer was fractionated by gel filtration chromatography on S-300, the imaging showed that the early eluting material was retained, the intermediate showed some renal clearance, and the late was rapidly excreted. These findings show the value of gamma-scintigraphy for biodistribution studies with such polymeric drug carriers and its potential for clinical pharmacokinetic studies. (orig.)

  2. Walnut kernel-like mesoporous silica nanoparticles as effective drug carrier for cancer therapy in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Kun; Ren, Huihui; Sun, Wentong [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zhao, Qi [Hebei University, College of Clinical Science (China); Jia, Guang [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China); Zang, Aimin [Affiliated Hospital of Hebei University (China); Zhang, Cuimiao, E-mail: cmzhanghbu@163.com; Zhang, Jinchao, E-mail: jczhang6970@163.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science (China)

    2016-03-15

    In drug delivery systems, nanocarriers could reduce the degradation and renal clearance of drugs, increase the half-life in the bloodstream and payload of drugs, control the release patterns, and improve the solubility of some insoluble drugs. In particular, mesoporous silica nanoparticles (MSNs) are considered to be attractive nanocarriers for application of delivery systems because of their large surface areas, large pore volume, tunable pore sizes, good biocompatibility, and the ease of surface functionalization. However, the large-scale synthesis of monodisperse MSNs that are smaller than 200 nm remains a challenge. In this study, monodisperse walnut kernel-like MSNs with diameters of approximately 100 nm were synthesized by a sol–gel route on a large scale. The morphology and structure of MSNs were characterized by scanning electron microscope, and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms, Zeta potentials, and dynamic light scattering. Drug loading and release profile, cellular uptake, subcellular localization, and anticancer effect in vitro were further investigated. The results indicated that the loading efficiency of doxorubicinhydrochloride (DOX) into the MSNs was 57 %. The MSNs–DOX delivery system exhibited a drug-pronounced initial burst release within 12 h, followed by the slow sustained release of DOX molecules; moreover, MSNs could improve DOX release efficiency in acidic medium. Most free DOX was localized in the cytoplasm, whereas the MSNs–DOX was primarily distributed in lysosome. MSNs–DOX exhibited a potential anticancer effect against MCF-7, HeLa, and A549 cells in dose- and time-dependent manners. In summary, the as-synthesized MSNs may have well function as a promising drug carrier in drug delivery fields.Graphical Abstract.

  3. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite.

    Science.gov (United States)

    Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao

    2015-10-27

    Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability.

  4. Coordination conjugates of therapeutic proteins with drug carriers: A new approach for versatile advanced drug delivery

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Bříza, T.; Králová, Jarmila; Poučková, P.; Kral, A.; Martásek, P.; Král, V.

    2011-01-01

    Roč. 21, č. 18 (2011), s. 5514-5520 ISSN 0960-894X R&D Projects: GA ČR GA203/09/1311 Grant - others:MPO(CZ) FR-TI3/521; AV ČR(CZ) KAN200100801 Program:FR; KA Institutional research plan: CEZ:AV0Z50520514 Keywords : combined cancer therapy * photodynamic therapy * targeted drug delivery Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.554, year: 2011

  5. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  6. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  7. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    Science.gov (United States)

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  8. Physical stability, biocompatibility and potential use of hybrid iron oxide-gold nanoparticles as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Christopher M. [School of Pharmacy, Keele University (United Kingdom); Gueorguieva, Mariana [Institute of Medical Science and Technology, University of Dundee (United Kingdom); Lees, Martin R. [University of Warwick, Physics Department (United Kingdom); McGarvey, David J. [School of Physical and Geographical Sciences, Keele University, Lennard-Jones Laboratories (United Kingdom); Hoskins, Clare, E-mail: c.hoskins@keele.ac.uk [Institute for Science and Technology in Medicine, Keele University (United Kingdom)

    2013-06-15

    Hybrid nanoparticles (HNPs) such as iron oxide-gold nanoparticles are currently being exploited for their potential application in image-guided therapies. However, little investigation has been carried out into their physical or chemical stability and potential cytotoxicity in biological systems. Here, we determine the HNPs physical stability over 6 months and chemical stability in physiological conditions, and estimate the biological activity of uncoated and poly(ethylene glycol) coated nanoparticles on human pancreatic adenocarcinoma (BxPC-3) and differentiated human monocyte cells (U937). The potential of these HNPs to act as drug carrier vehicles was determined using the model drug 6-Thioguanine (6-TG). The data showed that the HNPs maintained their structural integrity both physically and chemically throughout the duration of the studies. In addition, negligible cytotoxicity or free radical production was observed in the cell lines tested. The 6-TG was successfully conjugated; with a ratio of 3:1:10 Fe:Au:6-TG (wt:wt:wt). After incubation with BxPC-3 cells, enhanced cellular uptake was reported with the 6-TG-conjugated HNPs compared with free drug along with a 10-fold decrease in IC{sub 50}. This exciting data highlights the potential of HNPs for use in image-guided drug delivery.

  9. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Shu [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Lu, Yu-Jen [Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe{sub 3}O{sub 4} magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. - Highlights: • mGO was prepared by chemical co-precipitation of Fe{sub 3}O{sub 4} MNP on GO nano-platelets. • mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG. • mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan. • mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs. • Magnetic targeting enhanced cytotoxicity of

  10. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    International Nuclear Information System (INIS)

    Huang, Ya-Shu; Lu, Yu-Jen; Chen, Jyh-Ping

    2017-01-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe 3 O 4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. - Highlights: • mGO was prepared by chemical co-precipitation of Fe 3 O 4 MNP on GO nano-platelets. • mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG. • mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan. • mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs. • Magnetic targeting enhanced cytotoxicity of m

  11. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    International Nuclear Information System (INIS)

    Pentak, Danuta

    2016-01-01

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  12. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl [University of Silesia, Department of Materials Chemistry and Chemical Technology, Institute of Chemistry (Poland)

    2016-05-15

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  13. Plant lectins as carriers for oral drugs: Is wheat germ agglutinin a suitable candidate?

    International Nuclear Information System (INIS)

    Dalla Pellegrina, Chiara; Rizzi, Corrado; Mosconi, Silvia; Zoccatelli, Gianni; Peruffo, Angelo; Chignola, Roberto

    2005-01-01

    Wheat germ agglutinin (WGA) is a plant protein that binds specifically to sugars expressed also by gastrointestinal epithelial cells. WGA is currently investigated as an anti-tumor drug and as a carrier for oral drugs. Information on whether it can cross the gastrointestinal epithelium and on its possible effects on the integrity of the epithelial layer is however scanty or lacking, and herein we address these issues. Differentiated Caco2 cells have been used as a model of polarized intestinal epithelium. WGA concentration at both the apical and the basolateral side of the epithelium has been quantified using a sensitive ELISA assay (sensitivity threshold 0.84 nM). Trans epithelial electrical resistance (TEER) has been measured to evaluate the integrity of the epithelium upon treatments with WGA. 3 H-Mannitol (182.2 Da) and FITC-dextran (3000 Da) have been used to measure the permeability of the epithelium. Cell viability has been measured by the MTT, by 7-AAD uptake, and Annexin-V binding assays. Up to a concentration of 5.6 μM, ∼0.1% of intact WGA molecules only could cross the epithelial layer. WGA perturbed the integrity of the epithelium and increased the permeability of the tissue in a dose- and time-dependent manner. WGA did not induce cell death but increased the permeability of individual cells to 7-AAD which is normally not uptaken by viable cells. These data allowed us to define a toxicity threshold for WGA on epithelial cells. WGA suitability as a carrier for oral drugs can therefore be evaluated on a rational basis

  14. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  15. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  16. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    Science.gov (United States)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  17. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  18. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen

    Directory of Open Access Journals (Sweden)

    Junmin Lai

    2017-02-01

    Full Text Available The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP and Neusilin® US2 (NS2 were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM, Fourier transform infrared (FTIR spectroscopy, X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC. Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems.

  19. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Khatamian, M. [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Divband, B., E-mail: baharakdivband@yahoo.com [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Farahmand-zahed, F. [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of)

    2016-09-01

    Current research has focused on the preparation of Zinc-clinoptilolite/Graphene Oxide (Zn-Clin/GO) hybrid nanostructure and investigating its biocompatibility for the first time. As prepared samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermo gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). In order to use it as a drug carrier two important factors were investigated: cytocompatibility of nanocomposites and their drug loading capacity. The results showed that the prepared nanocomposite is cytocompatible and its high loading capacity and slow release performance for Doxorubicin (DOX), as a cancer drug, proved that it can be used as a drug carrier. At last in-vitro toxicity of DOX loaded nanocomposite was compared with pure DOX. - Graphical abstract: Biocompatible Zn-clinoptilolite/Graphene oxide hybrid nanostructure as in vitro drug delivery systems (DDS) was able to store and release substantial amounts of doxorubicin to the lung cancer cell lines. Display Omitted - Highlights: • Zn-Clin/GO nanocomposite as a new in vitro drug carrier with high loading capacity is synthesized. • Two synthesis methods (Microwave assisted hydrothermal method and Reflux method) are used. • All of the carriers (Zn-Clin, Zn-Clin/GO, GO) showed high biocompatibility.

  20. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier

    International Nuclear Information System (INIS)

    Khatamian, M.; Divband, B.; Farahmand-zahed, F.

    2016-01-01

    Current research has focused on the preparation of Zinc-clinoptilolite/Graphene Oxide (Zn-Clin/GO) hybrid nanostructure and investigating its biocompatibility for the first time. As prepared samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermo gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). In order to use it as a drug carrier two important factors were investigated: cytocompatibility of nanocomposites and their drug loading capacity. The results showed that the prepared nanocomposite is cytocompatible and its high loading capacity and slow release performance for Doxorubicin (DOX), as a cancer drug, proved that it can be used as a drug carrier. At last in-vitro toxicity of DOX loaded nanocomposite was compared with pure DOX. - Graphical abstract: Biocompatible Zn-clinoptilolite/Graphene oxide hybrid nanostructure as in vitro drug delivery systems (DDS) was able to store and release substantial amounts of doxorubicin to the lung cancer cell lines. Display Omitted - Highlights: • Zn-Clin/GO nanocomposite as a new in vitro drug carrier with high loading capacity is synthesized. • Two synthesis methods (Microwave assisted hydrothermal method and Reflux method) are used. • All of the carriers (Zn-Clin, Zn-Clin/GO, GO) showed high biocompatibility.

  1. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Science.gov (United States)

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  2. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    Science.gov (United States)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  3. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  4. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  5. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.

    Science.gov (United States)

    Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li

    2016-04-20

    Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different

  6. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension.

    Science.gov (United States)

    Fadl Elmula, Fadl Elmula M; Hoffmann, Pavel; Larstorp, Anne C; Fossum, Eigil; Brekke, Magne; Kjeldsen, Sverre E; Gjønnæss, Eyvind; Hjørnholm, Ulla; Kjaer, Vibeke N; Rostrup, Morten; Os, Ingrid; Stenehjem, Aud; Høieggen, Aud

    2014-05-01

    We aimed to investigate for the first time the blood pressure (BP)-lowering effect of renal sympathetic denervation (RDN) versus clinically adjusted drug treatment in true treatment-resistant hypertension (TRH) after excluding patients with confounding poor drug adherence. Patients with apparent TRH (n=65) were referred for RDN, and those with secondary and spurious hypertension (n=26) were excluded. TRH was defined as office systolic BP (SBP) >140 mm Hg, despite maximally tolerated doses of ≥3 antihypertensive drugs including a diuretic. In addition, ambulatory daytime SBP >135 mm Hg after witnessed intake of antihypertensive drugs was required, after which 20 patients had normalized BP and were excluded. Patients with true TRH were randomized and underwent RDN (n=9) performed with Symplicity Catheter System versus clinically adjusted drug treatment (n=10). The study was stopped early for ethical reasons because RDN had uncertain BP-lowering effect. Office SBP and diastolic BP in the drug-adjusted group changed from 160±14/88±13 mm Hg (±SD) at baseline to 132±10/77±8 mm Hg at 6 months (P<0.0005 and P=0.02, SBP and diastolic BP, respectively) and in the RDN group from 156±13/91±15 to 148±7/89±8 mm Hg (P=0.42 and P=0.48, SBP and diastolic BP, respectively). SBP and diastolic BP were significantly lower in the drug-adjusted group at 6 months (P=0.002 and P=0.004, respectively), and absolute changes in SBP were larger in the drug-adjusted group (P=0.008). Ambulatory BPs changed in parallel to office BPs. Our data suggest that adjusted drug treatment has superior BP lowering effects compared with RDN in patients with true TRH. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT01673516.

  7. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Y

    2017-03-01

    Full Text Available Yan Liang,1 Baocheng Tian,1 Jing Zhang,1 Keke Li,1 Lele Wang,1 Jingtian Han,1,* Zimei Wu2,* 1School of Pharmacy, Binzhou Medical University, 2School of Pharmacy, Yantai University, Yantai, China *These authors contributed equally to this work Abstract: Gemcitabine (GEM and paclitaxel (PTX are effective combination anticancer agents against non-small-cell lung cancer (NSCLC. At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic and PTX (hydrophobic into simplex tumor-targeted nanostructured lipid carriers (NLCs for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N-acetyl-D-glucosamine (NAG is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6-O-methacryloyl-d-galactopyranose–GEM/PTX (PMAGP-GEM/PTX conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1 exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor

  8. Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin.

    Science.gov (United States)

    Karavasili, Christina; Amanatiadou, Elsa P; Kontogiannidou, Eleni; Eleftheriadis, Georgios K; Bouropoulos, Nikolaos; Pavlidou, Eleni; Kontopoulou, Ioanna; Vizirianakis, Ioannis S; Fatouros, Dimitrios G

    2017-08-07

    Microporous zeolites of distinct framework types, textural properties and crystal morphologies namely BEA, ZSM and NaX, have been employed as carriers to assess their effect on modulating the dissolution behavior of a BCS II model drug (indomethacin). Preparation of the loaded carriers via the incipient wetness method induced significant drug amorphization for the BEA and NaX samples, as well as high drug payloads. The stability of the amorphous drug content was retained after stressing test evaluation of the porous carriers. The dissolution profile of loaded indomethacin was evaluated in simulated gastric fluid (pH 1.2) and simulated intestinal fluids FaSSIF (fasted) and FeSSIF (fed state) conditions and was found to be dependent on the aluminosilicate ratio of the zeolites and the degree of crystalline drug content. The feasibility of the zeolitic particles as oral drug delivery systems was appraised with cytocompatibility and cellular toxicity studies in Caco-2 cultures in a time- and dose-dependent manner by means of the MTT assay and flow cytometry analysis, respectively. Intracellular accumulation of the zeolite particles was observed with no apparent cytotoxic effects at the lower concentrations tested, rendering such microporous zeolites pertinent candidates in oral drug delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer.

    Science.gov (United States)

    Liang, Yan; Tian, Baocheng; Zhang, Jing; Li, Keke; Wang, Lele; Han, Jingtian; Wu, Zimei

    2017-01-01

    Gemcitabine (GEM) and paclitaxel (PTX) are effective combination anticancer agents against non-small-cell lung cancer (NSCLC). At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic) and PTX (hydrophobic) into simplex tumor-targeted nanostructured lipid carriers (NLCs) for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N -acetyl-d-glucosamine (NAG) is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6- O -methacryloyl-d-galactopyranose)-GEM/PTX (PMAGP-GEM/PTX) conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1) exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor-targeted combination therapy to achieve maximal anticancer efficacy in NSCLC.

  10. Design of colon targeting drug delivery systems using natural polymeric carriers and their evaluation by gamma scintigraphy technique

    International Nuclear Information System (INIS)

    Soni, P.S.; Sawarkar, S.P.; Deshpande, S.G.; Bajaj, A.N.

    2004-01-01

    Of late, there has been a great awareness in the concept of drug targeting and delivery to a specific site (organ, tissue or cell) in the body to maximize therapeutic effect and reduce toxicity. The various approaches of site-specific drug delivery are implantable pumps, adhesive patches impregnated with drugs, vesicle enclosed drugs and drug carriers. Colonic drug delivery is intended for local and systemic treatment in the diseases of colon like inflammatory bowel conditions. Several approaches using viz. pro-drugs, biodegradable polymers and pH sensitive polymer coatings have been used to achieve colonic delivery. Natural polysaccarides like guar gum and pectin are promising candidates because they are susceptible to degradation by colonic bacteria and thus can release the entrapped drug in the colonic region. These indigenous natural polymers are cheaply and readily available. They comprise of polygalactouronic acid and refractory to host enzymes present in the upper gastrointestinal tract and are degraded by the enzymes produced by the colonic microflora. They were evaluated as a colonic carrier using 5-amino salicylic acid (5-ASA) as a model drug. After successful in vitro testing, gamma scintigraphy technique was used to assess in-vivo behavior of the colon specific drug delivery after a coat of Guar gum and Pectin

  11. The Hofmeister effect on nanodiamonds: How addition of ions provides superior drug loading platforms

    KAUST Repository

    Guo, Yong; Li, Song; Li, Wengang; Moosa, Basem; Khashab, Niveen M.

    2014-01-01

    Colloidal nanodiamonds (NDs) have emerged as highly versatile platforms for the controlled delivery of therapeutics, proteins, DNA, and other assorted biological agents. The most common mechanism of drug loading onto the ND surface depends mainly

  12. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    Science.gov (United States)

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nanovesicles released by Dictyostelium cells: a potential carrier for drug delivery.

    Science.gov (United States)

    Lavialle, Françoise; Deshayes, Sophie; Gonnet, Florence; Larquet, Eric; Kruglik, Sergei G; Boisset, Nicolas; Daniel, Régis; Alfsen, Annette; Tatischeff, Irène

    2009-10-01

    Nanovesicles released by Dictyostelium discoideum cells grown in the presence of the DNA-specific dye Hoechst 33342 have been previously shown to mediate the transfer of the dye into the nuclei of Hoechst-resistant cells. The present investigation extends this work by conducting experiments in the presence of hypericin, a fluorescent therapeutic photosensitizer assayed for antitumoral photodynamic therapy. Nanovesicles released by Dictyostelium cells exhibit an averaged diameter between 50 and 150 nm, as measured by transmission cryoelectron microscopy. A proteomic analysis reveals a predominance of actin and actin-related proteins. The detection of a lysosomal membrane protein (LIMP II) indicates that these vesicles are likely generated in the late endosomal compartment. The use of the hypericin-containing nanovesicles as nanodevices for in vitro drug delivery was investigated by fluorescence microscopy. The observed signal was almost exclusively located in the perinuclear area of two human cell lines, skin fibroblasts (HS68) and cervix carcinoma (HeLa) cells. Studies by confocal microscopy with specific markers of cell organelles, provided evidence that hypericin was accumulated in the Golgi apparatus. All these data shed a new light on in vitro drug delivery by using cell-released vesicles as carriers.

  14. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  15. Simulations of magnetic capturing of drug carriers in the brain vascular system

    Energy Technology Data Exchange (ETDEWEB)

    Kenjeres, S., E-mail: S.Kenjeres@tudelft.nl [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands); Righolt, B.W. [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Blood flow and magnetic particles distributions in the brain vascular system simulated. Black-Right-Pointing-Pointer Numerical mesh generated from raw MRI images. Black-Right-Pointing-Pointer Significant increase in local capturing of magnetic particles obtained. Black-Right-Pointing-Pointer Promising technique for localised non-invasive treatment of brain tumours. - Abstract: The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray's law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.

  16. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  17. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy.

    Science.gov (United States)

    Menjoge, Anupa R; Rinderknecht, Amber L; Navath, Raghavendra S; Faridnia, Masoud; Kim, Chong J; Romero, Roberto; Miller, Richard K; Kannan, Rangaramanujam M

    2011-03-30

    Dendrimers offer significant potential as nanocarriers for targeted delivery of drugs and imaging agents. The objectives of this study were to evaluate the transplacental transport, kinetics and biodistribution of PAMAM dendrimers ex-vivo across the human placenta in comparison with antipyrine, a freely diffusible molecule, using dually perfused re-circulating term human placental lobules. The purpose of this study is to determine if dendrimers as drug carriers can be used to design drug delivery systems directed at selectively treating either the mother or the fetus. The transplacental transfers of fluorescently (Alexa 488) tagged PAMAM dendrimer (16 kDa) and antipyrine (188 Da) from maternal to fetal circulation were measured using HPLC/dual UV and fluorescent detector (sensitivity of 10 ng/mL for dendrimer and 100 ng/mL for antipyrine respectively). C(max) for the dendrimer-Alexa (DA) in maternal perfusate (T(max)=15 min) was 18 times higher than in the fetal perfusate and never equilibrated with the maternal perfusate during 5.5 h of perfusion (n=4). DA exhibited a measurable but low transplacental transport of 2.26±0.12 μg/mL during 5.5h, where the mean transplacental transfer was 0.84±0.11% of the total maternal concentration and the feto-maternal ratio as percent was 0.073%±0.02. The biochemical and physiological analysis of the placentae perfused with DA demonstrated normal function throughout the perfusion. The immunofluorescence histochemistry confirmed that the biodistribution of DA in perfused placenta was sparsely dispersed, and when noted was principally seen in the inter-villous spaces and outer rim of the villous branches. In a few cases, DA was found internalized and localized in nuclei and cytoplasm of syncytiotrophoblast and inside the villous core; however, DA was mostly absent from the villous capillaries. In conclusion, the PAMAM dendrimers exhibited a low rate of transfer from maternal to the fetal side across the perfused human placenta

  18. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Science.gov (United States)

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  19. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.

    Science.gov (United States)

    Lu, Wei; Zhang, Yan; Tan, Yu-Zhen; Hu, Kai-Li; Jiang, Xin-Guo; Fu, Shou-Kuan

    2005-10-20

    In this paper, a novel drug carrier for brain delivery, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was developed and its effects were evaluated. The copolymers of methoxy-PEG-PLA and maleimide-PEG-PLA were synthesized by ring opening polymerization of D,L-lactide initiated by methoxy-PEG and maleimide-PEG, respectively, which were applied to prepare pegylated nanoparticles by means of double emulsion and solvent evaporation procedure. Native bovine serum albumin (BSA) was cationized and thiolated, followed by conjugation through the maleimide function located at the distal end of PEG surrounding the nanoparticle's surface. Transmission electron micrograph (TEM) and dynamic light scattering results showed that CBSA-NP had a round and regular shape with a mean diameter around 100 nm. Surface nitrogen was detected by X-ray photoelectron spectroscopy (XPS), and colloidal gold stained around the nanoparticle's surface was visualized in TEM, which proved that CBSA was covalently conjugated onto its surface. To evaluate the effects of brain delivery, BSA conjugated with pegylated nanoparticles (BSA-NP) was used as the control group and 6-coumarin was incorporated into the nanoparticles as the fluorescent probe. The qualitative and quantitative results of CBSA-NP uptake experiment compared with those of BSA-NP showed that rat brain capillary endothelial cells (BCECs) took in much more CBSA-NP than BSA-NP at 37 degrees C, at different concentrations and time incubations. After a dose of 60 mg/kg CBSA-NP or BSA-NP injection in mice caudal vein, fluorescent microscopy of brain coronal sections showed a higher accumulation of CBSA-NP in the lateral ventricle, third ventricle and periventricular region than that of BSA-NP. There was no difference on BCECs' viability between CBSA-conjugated and -unconjugated pegylated nanoparticles. The significant results in vitro and in vivo showed that CBSA-NP was

  20. Dissolution rate enhancement of the poorly water-soluble drug Tibolone using PVP, SiO2, and their nanocomposites as appropriate drug carriers.

    Science.gov (United States)

    Papadimitriou, Sofia; Bikiaris, Dimitrios

    2009-09-01

    Creation of immediate release formulations for the poorly water-soluble drug Tibolone through the use of solid dispersions (SDs). SD systems of Tibolone (Tibo) with poly(vinylpyrrolidone) (PVP), fumed SiO(2) nanoparticles, and their corresponding ternary systems (PVP/SiO(2)/Tibo) were prepared and studied in order to produce formulations with enhanced drug dissolution rates. The prepared SDs were characterized by the use of differential scanning calorimetry and wide-angle X-ray diffractometry techniques. Also dissolution experiments were performed. From the results it was concluded that PVP as well as SiO(2) can be used as appropriate carriers for the amorphization of Tibo, even when the drug is used at high concentrations (20-30%, w/w). This is due to the evolved interactions taking place between the drug and the used carriers, as was verified by Fourier transform infrared spectroscopy. At higher concentrations the drug was recrystallized. Similar are the observations on the ternary PVP/SiO(2)/Tibo SDs. The dissolution profiles of the drug in PVP/Tibo and SiO(2)/Tibo SDs are directly dependent on the physical state of the drug. Immediately release rates are observed in SD with low drug concentrations, in which Tibo was in amorphous state. However, these release profiles are drastically changed in the ternary PVP/SiO(2)/Tibo SDs. An immediate release profile is observed for low drug concentrations and an almost sustained release as the concentration of Tibo increases. This is due to the weak interactions that take place between PVP and SiO(2), which result in alterations of the characteristics of the carrier (PVP/SiO(2) nanocomposites). Immediate release formulation was created for Tibolone as well as new nanocomposite matrices of PVP/SiO((2)), which drastically change the release profile of the drug to a sustained delivery.

  1. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  2. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  3. Organic solute carrier 22 (SLC22 family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs

    Directory of Open Access Journals (Sweden)

    Raymond E. Lai

    2018-04-01

    Full Text Available Many drugs, hormones, components of herbal medicines, environmental pesticides and toxins are Solute Carrier family 22 (SLC22 substrates. The last twenty years has seen great progress in determining SLC22 tissue expression profiles, membrane localization, energetics, substrate profiles and biopharmaceutical significance. However, much still remains to be answered in terms of SLC22 family member's roles in ‘normal’ physiology as compared to pathophysiological states, as well as in drug interactions that impact pharmacokinetics, efficacy and toxicity. This review begins with a brief synopsis of SLC22 family discovery, function and tissue expression. Subsequent sections provide examples establishing a role for SLC22 transporters in food-drug, herbal supplement-drug, endogenous substrate-drug and drug–drug interactions. Keywords: Hepatic transport, Nephrotoxicity, Organic anion transporter, Organic cation transporter, Renal transport

  4. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  5. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  6. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  7. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen [Department of Radiation Oncology, E0505, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Subr, Vladimir; Ulbrich, Karel [Institute of Macromolecular Chemistry, Prague (Czech Republic); Friedrich, Eckhard [Division of Biology, University of Koblenz-Landau, Landau (Germany)

    2002-08-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  8. Detection and cellular localisation of the synthetic soluble macromolecular drug carrier pHPMA

    International Nuclear Information System (INIS)

    Kissel, Maria; Peschke, Peter; Strunz, Anke M.; Kuehnlein, Rainer; Debus, Juergen; Subr, Vladimir; Ulbrich, Karel; Friedrich, Eckhard

    2002-01-01

    Synthetic macromolecules such as copolymers of N-(2-hydroxypropyl)methacrylamide (pHPMA) are potential carriers for the delivery of drugs owing to their ability to passively accumulate in solid tumours [enhanced permeation and retention (EPR) effect]. To gain further knowledge about the biodistribution and the cellular localisation, poly(HPMA) was prepared for labelling by introducing biotin molecules. Biotinylated pHPMA (5 mol%) was intravenously injected into tumour-bearing rats and the accumulation of biotin-pHPMA was visualised using a streptavidin-alkaline phosphatase technique at day 7 post injection. In spite of the high solubility of pHPMA copolymers and the lack of attachment to cell structures, the biotinylated polymer could be easily detected in tissues fixed in 10% paraformaldehyde-phosphate buffer at 4 C for 48 h. While biotin-pHPMA could be detected intracytoplasmically in liver and spleen, a predominantly interstitial localisation was observed within the anaplastic prostate carcinoma (Dunning R3327-AT1). How biotin as a label influences the biodistribution of poly(HPMA) was assessed by scintigraphy, autoradiography and histology comparing homopolymer poly(HPMA) with biotin-pHPMA. The organ distribution patterns of the two polymers correlated well, except with respect to kidney. It is assumed that the accumulation of biotin-pHPMA in the distal tubuli is due to a biotin transporter in the brush border membrane. The technique presented is useful for a more comprehensive understanding of the biodistribution of soluble macromolecules. (orig.)

  9. The Hofmeister effect on nanodiamonds: How addition of ions provides superior drug loading platforms

    KAUST Repository

    Guo, Yong

    2014-01-01

    Colloidal nanodiamonds (NDs) have emerged as highly versatile platforms for the controlled delivery of therapeutics, proteins, DNA, and other assorted biological agents. The most common mechanism of drug loading onto the ND surface depends mainly on electrostatic interactions. Although a few reports have been published on using NaCl salt to increase the drug loading onto NDs, no comprehensive mechanistic study with a wide range of anions and cations has been reported. In this work, the Hofmeister effect of inorganic salts and amino acids with different isoelectric points was employed to understand the mechanism of doxorubicin (DOXH+) loading onto NDs with different sizes. Inorganic salts including NaCl, NaNO3, Na2SO4, KCl, CaCl2, (NH4)2SO4 and amino acids with an isoelectric point above 7 (positively charged at neutral pH) increase the DOXH+ loading onto small size NDs (SNDs, 5-10 nm). On the other hand, amino acids with an isoelectric point below 7 (negatively charged at neutral pH) increase the DOXH+ loading onto large size NDs (LNDs, 80-100 nm). © 2014 The Royal Society of Chemistry.

  10. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model.

    Science.gov (United States)

    Jämbeck, Joakim P M; Eriksson, Emma S E; Laaksonen, Aatto; Lyubartsev, Alexander P; Eriksson, Leif A

    2014-01-14

    Liposomes are proposed as drug delivery systems and can in principle be designed so as to cohere with specific tissue types or local environments. However, little detail is known about the exact mechanisms for drug delivery and the distributions of drug molecules inside the lipid carrier. In the current work, a coarse-grained (CG) liposome model is developed, consisting of over 2500 lipids, with varying degrees of drug loading. For the drug molecule, we chose hypericin, a natural compound proposed for use in photodynamic therapy, for which a CG model was derived and benchmarked against corresponding atomistic membrane bilayer model simulations. Liposomes with 21-84 hypericin molecules were generated and subjected to 10 microsecond simulations. Distribution of the hypericins, their orientations within the lipid bilayer, and the potential of mean force for transferring a hypericin molecule from the interior aqueous "droplet" through the liposome bilayer are reported herein.

  11. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy.

    Science.gov (United States)

    Yan, Guoqing; Wang, Jun; Qin, Jiejie; Hu, Liefeng; Zhang, Panpan; Wang, Xin; Tang, Rupei

    2017-07-01

    To compare the chemotherapeutic efficacy determined by extra- and intracellular drug release strategies, poly(ortho ester amide)-based drug carriers (POEAd-C) with well-defined main-chain lengths, are successfully constructed by a facile method. POEAd-C3-doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5-7.2), while POEAd-C6-DOX can rapidly release drug following gradual swelling at intracellular pH (5.0-6.0). In vitro cytotoxicity shows that POEAd-C3-DOX exhibits more toxic effect on tumor cells than POEAd-C6-DOX at extracellular pH, but POEAd-C6-DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd-C6-DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd-C3-DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  13. Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin.

    Science.gov (United States)

    Singhavi, Dilesh J; Khan, Shagufta; Yeole, Pramod G

    2013-04-01

    The objective of this study was to develop submicron carriers of two drugs that are practically insoluble in water, i.e. meloxicam and aceclofenac, to improve their dissolution behavior. The phase solubility of the drugs was studied using different concentrations of sparingly methylated β-cyclodextrin, Kleptose(®) Crysmeβ (Crysmeb), in the presence and absence of 0.2 % w/v water-soluble chitosan. Drug-loaded submicron particles (SMPs) were prepared using chitosan chlorhydrate and Crysmeb by the ionotropic gelation method. The SMPs were characterized in terms of powder X-ray diffraction, Fourier transforms infrared spectroscopy, size determination, process yield, drug loading, encapsulation efficiency, surface morphology and in vitro release. The drug loading in the SMPs was enhanced in the presence of Crysmeb. The in vitro drug release was found to be enhanced with SMPs prepared using higher concentrations of Crysmeb. These results indicate that SMPs formed from chitosan chlorhydrate and Crysmeb are promising submicron carriers for enhancing the dissolution of meloxicam and aceclofenac.

  14. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers.

    Science.gov (United States)

    Nair, Madhavan; Guduru, Rakesh; Liang, Ping; Hong, Jeongmin; Sagar, Vidya; Khizroev, Sakhrat

    2013-01-01

    Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the blood-brain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5'-triphosphate, an anti-human immunodeficiency virus drug, from 30 nm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the blood-brain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drug-carrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies.

  15. Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers.

    Science.gov (United States)

    Zhang, Yixin; Luo, Song; Liang, Yan; Zhang, Hai; Peng, Xinyu; He, Bin; Li, Sai

    2018-03-01

    A series of amphiphilic terpolymers with miktoarm star and triblock architectures of poly(ethylene glycol) (PEG), poly(ε-caprolactone) (PCL) and poly(l-lactide acid) (PLLA) or poly(DL-lactide acid) (PDLLA) terpolymers were synthesized as carriers for drug delivery. The architecture, molecular weight and crystallization behavior of the terpolymers were characterized. Anticancer drug doxorubicin was encapsulated in the micelles to investigate their drug loading properties. The miktoarm star terpolymers exhibited stronger crystallization capability, smaller size and better stability than that of triblock polymeric micelle, owing to the lower CMC values of miktoarm star polymeric micelle. Furthermore, the drug-loaded miktoarm star polymeric micelles showed the cumulative DOX release account of the micelles with PDLLA blocks was 65.3% while the release account of the corresponding micelles containing PLLA blocks was 45.2%. The IC 50 values of drug-loaded miktoarm star polymeric micelle were lower than triblock polymeric micelle. Meanwhile, Confocal laser scanning microscopy (CLSM) and Flow Cytometry results demonstrated that the miktoarm star micelles were more favorable for cellular internalization. The miktoarm star micelles with PDLLA blocks were promising carriers for anticancer drug delivery.

  16. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  17. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  18. Assessment of hupu gum for its carrier property in the design and evaluation of solid mixtures of poorly water soluble drug - rofecoxib.

    Science.gov (United States)

    Vadlamudi, Harini Chowdary; Raju, Y Prasanna; Asuntha, G; Nair, Rahul; Murthy, K V Ramana; Vulava, Jayasri

    2014-01-01

    There are no reports about the pharmaceutical applications of hupu gum (HG). Hence the present study was undertaken to test its suitability in the dissolution enhancement of poorly water soluble drug. Rofecoxib (RFB) was taken as model drug. For comparison solid mixtures were prepared with carriers such as poly vinyl pyrrolidone (PVP), sodium starch glycollate (SSG) and guar gum (GG). Physical mixing (PM), co-grinding (CG), kneading (KT) and solvent evaporation (SE) techniques were used to prepare the solid mixtures, using all the carriers in different carrier and drug ratios. The solid mixtures were characterized by powder X-ray diffraction (XRD) and Fourier-transformed infrared spectroscopy (FTIR). There was a significant improvement in the dissolution rate of solid mixtures of HG, when compared with the solid mixtures of other carriers. There was an increase in dissolution rate with increase in concentration of HG upto 1:1 ratio of carrier and drug. No drug-carrier interaction was found by FTIR studies. XRD studies indicated reduction in crystallinity of the drug with increase in HG concentration. Hence HG could be a useful carrier for the dissolution enhancement of poorly water soluble drugs.

  19. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  20. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay

    DEFF Research Database (Denmark)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith

    2016-01-01

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit...... in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated...... the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, boththe kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl...

  1. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers.

    Directory of Open Access Journals (Sweden)

    Gero Steinberg

    Full Text Available The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs. When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T(1/2~2 min. Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the

  2. Graft Polymerization of Acryloyloxystarch with Poly(D,L-lactide) Macromonomer--A Potential Drug Delivery Carrier for Oral Administration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Starch is the second largest natural biopolymer. Its unique biodegradable and biocompatible properties make it be increasingly applied to the field of biomedicine[1~4]. As one kind of polysaccharide, starch is easily degraded into small organic molecules by amylase in the alimentary canal. The fact that the activity of amylase is restrained in the high acid environment in stomach provides an opportunity to prepare an intestinal-specific delivery carrier with starch. In order to protect the drugs that are sensitive to the enzyms in alimentary canal, a hydrophobic layer should be constructed between the outer bioadhensive shell and the drug.

  3. Theoretical study on the cage-like nanostructures formed by amino acids and their potential applications as drug carriers

    Science.gov (United States)

    Weng, Pei Pei; Fan, Jian Fen; Lin, Hui Fang; Zhao, Xin; Si, Xia Lan

    2017-12-01

    The cage-like octamer, decamer and dodecamer constructed from aspartic acid monomers have been studied to explore their potential applications as drug carriers using the density functional theory. The calculation results indicate that these stable cage-like oligomers are mainly connected by the -C=O…HOOC- and -HN…HOOC- H-bonds and still keep stability and good drum-shaped topologies after the incorporation of 5-fluorouracil, paraldehyde and C24, respectively. The self-assembled cage-like oligomers may be applied to the preparation of new biological materials and the design of drug delivery systems.

  4. Cytotoxicity and Acute Gastrointestinal Toxicity of Bacterial Cellulose-Poly (acrylamide-sodium acrylate Hydrogel: A Carrier for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey 1,2 * , Hira Choudhury 1, Mohd Cairul Iqbal Mohd Amin 2

    2016-12-01

    Full Text Available Background: Preliminary safety evaluation of polymer intended to use as drug delivery carrier is essential. Methods: In this study polyacrylamide grafted bacterial cellulose (BC/AM hydrogel was prepared by microwave irradiation initiated free radical polymerization. The synthesized hydrogel was subjected to in vitro cytotoxicity and acute gastrointestinal toxicity studies to evaluate its biological safety as potential oral drug delivery carrier. Results: The results indicate that hydrogel was non cytotoxic and did not show any histopathological changes in GI tract after a high dose of oral administration. Conclusion: The results revealed that hydrogel composed of bacterial cellulose and polyacrylamide is safe as oral drug delivery carrier.

  5. The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers

    International Nuclear Information System (INIS)

    Ajun Wan; Yuxia, Kou

    2008-01-01

    The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers (HP-g-PEO) as drug carriers were investigated. The HP-g-PEO consisting of hydrophobic HP-g-PEO core and hydrophilic poly(ethylene glycol) arms was prepared by the cation ring-opening polymerization. A series of HP-g-PEO samples with different degree of branching (DB) were synthesized under various reaction temperatures. Nanoparticles (NP) were obtained by self-assembly of HP-g-PEO in aqueous media. The structure of resulting HP-g-PEO was characterized by IR, 13 CNMR and GPC. Dynamic light scattering and transmission electron microscopy were applied to characterize the sizes and size distributions of NP. The results demonstrated that the mean diameters of NP were less than 100 nm, which exhibited uniform spherical formations and narrow size distributions. Using hydrophobic drug Probucol (PRO) as model drug, the particle sizes of drug loaded NP were larger than relative blank NP. The drug loading efficiency (LE) and incorporation efficiency (IE) of these NP were achieved to 35 and 89%, respectively. The in vitro release of PRO from the NP exhibited a sustained release and the cumulative drugs released for more than 600 h. The most important factor to affect drug release was the value of DB of HP-g-PEO. With the DB of HP-g-PEO increasing, the size and size distribution of NP decreased as well as the release rate. However, the small DB was beneficial to the LE of NP. Nanoparticle size and size distribution, LE, IE, and drug release rate were slightly affected by the initial solution concentration of polyethers. The co-incorporated hydrophilic drug had influence slightly on the release of drug from drug loaded NP. The results of in vitro drug release suggested that the core/shell NP performed good controlled release behaviors with potential practice as novelty drug delivery vehicles

  6. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    Science.gov (United States)

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier.

    Directory of Open Access Journals (Sweden)

    Pei-Chun Chen

    effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells.

  8. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.

    Science.gov (United States)

    Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2013-09-03

    The blood vessel wall plays a prominent role in the development of many life-threatening diseases and as such is an attractive target for treatment. To target diseased tissue, particulate drug carriers often have their surfaces modified with antibodies or epitopes specific to vascular wall-expressed molecules, along with poly(ethylene glycol) (PEG) to improve carrier blood circulation time. However, little is known about the effect of poly(ethylene glycol) on carrier adhesion dynamics-specifically in blood flow. Here we examine the influence of different molecular weight PEG spacers on particle adhesion in blood flow. Anti-ICAM-1 or Sialyl Lewis(a) were grafted onto polystyrene 2 μm and 500 nm spheres via PEG spacers and perfused in blood over activated endothelial cells at physiological shear conditions. PEG spacers were shown to improve, reduce, or have no effect on the binding density of targeted-carriers depending on the PEG surface conformation, shear rate, and targeting moiety.

  9. Impulsion of nanoparticles as a drug carrier for the theoretical investigation of stenosed arteries with induced magnetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, S.; Ijaz, S., E-mail: shagufta.me2011@yahoo.com

    2016-07-15

    In this paper hemodynamics of stenosis are discussed to predict effect of atherosclerosis by means of mathematical models in the presence of uniform transverse magnetic field. The analysis is carried out using silver and copper nanoparticles as a drug carrier. Exact solution for the fluid temperature, velocity, axial induced magnetic field and current density distribution are obtained under mild stenosis approximation. The results indicate that with an increase in the concentration of nanoparticle hemodynamics effects of stenosis reduces throughout the inclined composite stenosed arteries. The considered analysis also summarizes that the drug silver nanoparticles is more efficient to reduce hemodynamics of stenosis when compare to the drug copper nanoparticle. In future this model could be helpful to predict important properties in some biomedical applications. - Highlights: • The contribution of copper and silver nanoparticles as drug carrier reveals that they are important to reduce hemodynamic of stenosis. • The heat is dissipated throughout the considered inclined artery with an increase in the nanoparticle volume fraction. • The stress on the wall of inclined arteries decreases with an increase in the magnetic Reynolds number and Strommers number.

  10. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane.

    Science.gov (United States)

    Yu, Zhan; Yu, Min; Zhou, Zhimin; Zhang, Zhibao; Du, Bo; Xiong, Qingqing

    2014-01-01

    Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA) particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 μm to 100 μm, and most were 50-80 μm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug - rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment.

  11. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  12. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  13. Investigation of interaction of vanillin with Alpha, Beta and Gamma-cyclodextrin as drug delivery carriers: brief report

    Directory of Open Access Journals (Sweden)

    Batoolalsadat Mousavi Fard

    2015-05-01

    Methods: All theoretical calculations were performed on a Intel® Core™ i5 Processors computer at Kerman University using Gaussian 09 program package (Gaussian, Inc., Wallingford, USA in a three month period (February 2014 to May 2014. Starting geometries were generated employing GaussView software, version 5 (Gaussian, Inc., Wallingford, USA and then the resulting coordinates were optimized using density functional theory (DFT calculations. The natural bond orbital method (NBO program, under Gaussian 09 program package was carried out to study charge transfer energy associated with the intermolecular interactions. The quantum theory of atoms in molecules was applied for DFT results to get insight in the nature of interaction existing in the investigated systems. The calculations were carried out with AIM2000 program and AIMAll 14.10.27 package (Todd A. Keith, TK Gristmill software, Overland Park KS, USA to find and characterize bond critical points. Results: The vanillin molecule is adsorbed on the surface of carriers by hydrogen bonding between its oxygen atom and hydrogen atoms of cyclodextrin. The hydrogen of -OH group on the cyclodextrin can form hydrogen bond to the oxygen atom of carbonyl group of vanillin molecule. This study indicates a decrease of total energy with increasing surface of cyclodextrin. So gamma-cyclodextrin and its complex with the maximum surface in between carriers have the highest stabilities. The gamma-cyclodextrin shows the strongest interaction with vanillin. In all complexes of vanillin-cyclodextrin, the direction of charge transfer is from drug to carrier. Conclusion: Due to the high solubility of gamma-cyclodxtrin and its stronger interaction with the molecule vanillin, it can be the best option as drug carrier.

  14. Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.

    Science.gov (United States)

    Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M

    2016-01-01

    Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.

  15. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design.

    Science.gov (United States)

    Kraisit, Pakorn; Sarisuta, Narong

    2018-04-23

    The aim of this present work was to prepare triamcinolone acetonide (TA)-loaded nanostructured lipid carriers (TA-loaded NLCs) for buccal drug delivery systems using the Box-Behnken design. A hot homogenization method was used to prepare the TA-loaded NLCs. Spermaceti (X₁), soybean oil (X₂), and Tween 80 (X₃) were used as solid lipid, liquid lipid, and stabilizer, respectively. The particle size of TA-loaded NLCs was lower than 200 nm and the zeta potential displayed the negative charge in all formulations. The percentage encapsulation efficiency (%EE) of the TA-loaded NLCs showed that it was higher than 80% for all formulations. Field emission scanning electron microscope (FESEM) confirmed that the size of TA-loaded NLCs was approximately 100 nm and energy-dispersive X-ray spectroscopy (EDS) confirmed that the TA could be incorporated in the NLC system. The Higuchi model gave the highest value of the R², indicating that this model was a fit for the TA release profiles of TA-loaded NLCs. Confocal laser scanning microscopy (CLSM) was used to observe the drug penetration within the porcine buccal mucosa and Nile red-loaded NLCs showed significantly higher penetration depth at 8 h than at 2 h. Therefore, TA-loaded NLCs could be an efficient carrier for drug delivery through the buccal mucosa.

  17. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles

    DEFF Research Database (Denmark)

    York-Durán, María José; Gallardo, Maria Godoy; Labay, Cédric Pierre

    2017-01-01

    significant research attention and these assemblies are proposed as candidate materials for a range of biomedical applications. In this Review article, the recent successes of multicompartment architectures as carriers for the delivery of therapeutic cargo or the creation of micro- and nanoreactors that mimic...

  18. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2010-02-01

    is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1 omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2 omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3 superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4 limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5 lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.

  19. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers.

    Science.gov (United States)

    Muzzarelli, Riccardo A A

    2010-02-21

    amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.

  20. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    Science.gov (United States)

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  1. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  2. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    Science.gov (United States)

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  3. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  4. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shu-Hui [Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Wen, Chih-Jen; Yen, Tzu-Chen [Animal Molecular Imaging Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan (China); Al-Suwayeh, S A; Fang, Jia-You [Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Chang, Hui-Wen, E-mail: fajy@mail.cgu.edu.tw [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2010-10-08

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  5. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Wen, Chih-Jen; Yen, Tzu-Chen; Al-Suwayeh, S A; Fang, Jia-You; Chang, Hui-Wen

    2010-01-01

    Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.

  6. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  7. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane

    Directory of Open Access Journals (Sweden)

    Yu Z

    2014-07-01

    Full Text Available Zhan Yu,1,* Min Yu,2,* Zhimin Zhou,3 Zhibao Zhang,3 Bo Du,3 Qingqing Xiong3 1Second Artillery General Hospital, Beijing, 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, Shenyang, 3Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Key Laboratory of Biomedical Material of Tianjin, Tianjin, People’s Republic of China *These authors contributed equallyto this work Abstract: Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 µm to 100 µm, and most were 50–80 µm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug – rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment. Keywords: bovine serum albumin (BSA, controlled release, local delivery, round-window membrane

  8. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    Science.gov (United States)

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  9. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H

    2018-01-01

    Biopharmaceutical properties of poorly water-soluble antimalarial drug, Artemisinin (ART), were improved by formulating amorphous solid dispersions with transglycosylated food additives (Hsp-G and Stevia-G) via co-spray drying. Both the formulated ART/Hsp-G and ART/Stevia-G showed superior dissolution properties with a burst release of more than 95% of drug within 5 min, whereas untreated ART dissolved only 4% in 5min. The supersaturation solubility of the formulated ART was enhanced by 2-fold as compared with untreated counterpart. The storage stability tests indicated that these formulations chemically stable at room temperature and under low humidity (water-soluble ART. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers

    KAUST Repository

    Yan, Jingjing; Guo, Yong; Altawashi, Azza; Moosa, Basem; Lecommandoux, Sé bastien; Khashab, Niveen M.

    2012-01-01

    Nanodiamond (ND) and its derivatives have been widely used for drug, protein and gene delivery. Herein, experimental and theoretical methods have been combined to investigate the effect of pH on the delivery of doxorubicin (DOX) from fluorescein

  12. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  13. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    Directory of Open Access Journals (Sweden)

    Zhang Kui-Hua

    2011-01-01

    Full Text Available Abstract Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP/polylactide-block-monomethoxy(polyethyleneglycol hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP porous nanospheres is achieved (126.7 m2/g. PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t. The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated.

  14. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil S; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-02-20

    The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study.

    Science.gov (United States)

    Li, Lei; Wang, Feijun; Shao, Ziqiang

    2018-03-15

    A biomass-based magnetic fluorescent nanoparticle (MFNPs) was successively in situ synthesized via a one-step high-gravity approach, which constructed by a magnetic core of Fe 3 O 4 nanoparticles, the fluorescent marker of carbon dots (CDs), and shells of chitosan (CS). The obtained MFNPs had a 10 nm average diameter and narrow particle size distribution, low cytotoxicity, superior fluorescent emission and superparamagnetic properties. The encapsulating and release 5-fluorouracil experiments confirmed that the introduction of CS/CDs effectively improved the drug loading capacity. Mechanism and kinetic studies proved that: (i) the monolayer adsorption was the main sorption mode under the studied conditions; (ii) the whole adsorption process was controlled by intra-liquid diffusion mass transfer and governed by chemisorption; and (iii) the release process was controlled by Fickian diffusion. These results demonstrated this method to one-step continuously produce MFNPs and the construction of non-toxic nanostructure possessed great superiority in currently Nano-delivery systems, which would show high application value in targeted drug delivery, magnetic fluid hyperthermia treatment, magnetic resonance imaging (MRI), in vitro testing and relative research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Chai HJ

    2017-01-01

    Full Text Available Hann-Juang Chai,1 Lik-Voon Kiew,1 Yunni Chin,1 Anwar Norazit,2 Suzita Mohd Noor,2 Yoke-Lin Lo,3,4 Chung-Yeng Looi,1 Yeh-Siang Lau,1 Tuck-Meng Lim,5 Won-Fen Wong,6 Nor Azizan Abdullah,1 Munavvar Zubaid Abdul Sattar,7 Edward J Johns,8 Zamri Chik,1 Lip-Yong Chung3 1Department of Pharmacology, 2Department of Biomedical Science, 3Department of Pharmacy, Faculty of Medicine, University of Malaya, 4School of Pharmacy, International Medical University, Kuala Lumpur, 5Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 6Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 7School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia; 8Department of Physiology, University College Cork, Cork, Republic of Ireland Background and purpose: Poly-L-glutamic acid (PG has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier.Experimental approach: 3H-deoxycytidine-labeled PGs (17 or 41 kDa and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido fluorescein (fluoresceinyl glycine amide-labeled PG (PG-AF. To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethylbenzenesulfonyl fluoride hydrochloride (AEBSF was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF.Results: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular

  17. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  19. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues

    Science.gov (United States)

    Tzur-Balter, Adi; Shatsberg, Zohar; Beckerman, Margarita; Segal, Ester; Artzi, Natalie

    2015-01-01

    Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance. PMID:25670235

  20. Gelucire Based In Situ Gelling Emulsions: A Potential Carrier for Sustained Stomach Specific Delivery of Gastric Irritant Drugs

    Directory of Open Access Journals (Sweden)

    Ashwin Saxena

    2013-01-01

    Full Text Available Non steroidal anti-inflammatory drugs (NSAIDs are commonly prescribed medications to the geriatric patients for the treatment of arthritis and other painful disorders. The major side effects of NSAIDs are related to their effects on the stomach and bowels. The present study concerns assessment of the potential of liquid in situ gelling emulsion formulations (emulgels as patient compliant stomach specific sustained release carrier for the delivery of highly gastric irritant drug, Piroxicam. Emulgels were prepared, without using any emulgent, by mixing different concentrations of molten Gelucire 39/01 with low viscosity sodium alginate solution prepared in deionized water at 50°C. CaCO3 was used as buoyancy imparting as well as crosslinking agent. Emulgels so prepared were homogenous, physically stable, and rapidly formed into buoyant gelled mass when exposed to simulated gastric fluid (SGF, pH 1.2. Drug release studies carried out in SGF revealed significant retardation (P<0.05 of Piroxicam release from emulgels compared to conventional in situ gelling formulations prepared without Gelucire 39/01. Pharmacodynamic studies carried out in albino rats revealed significantly increased analgesic/anti-inflammatory response from in situ emulgels compared to conventional in situ gelling formulations. Further, in vivo toxicity studies carried out in albino rats revealed no signs of gastric ulceration upon prolonged dosing.

  1. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer.

    Science.gov (United States)

    Nigam, Saumya; Bahadur, Dhirendra

    2017-07-01

    In recent years, functional nanomaterials have found an appreciable place in the understanding and treatment of cancer. This work demonstrates the fabrication and characterization of a new class of cationic, biocompatible, peptide dendrimers, which were then used for stabilizing and functionalizing magnetite nanoparticles for combinatorial therapy of cancer. The synthesized peptide dendrimers have an edge over the widely used PAMAM dendrimers due to better biocompatibility and negligible cytotoxicity of their degradation products. The surface engineering efficacy of the peptide dendrimers and their potential use as drug carriers were compared with their PAMAM counterparts. The peptide dendrimer was found to be as efficient as PAMAM dendrimers in its drug-carrying capacity, while its drug release profiles substantially exceeded those of PAMAM's. A dose-dependent study was carried out to assess their half maximal inhibitory concentration (IC 50 ) in vitro with various cancer cell lines. A cervical cancer cell line that was incubated with these dendritic nanoparticles was exposed to alternating current magnetic field (ACMF) to investigate the effect of elevated temperatures on the live cell population. The DOX-loaded formulations, in combination with the ACMF, were also assessed for their synergistic effects on the cancer cells for combinatorial therapy. The results established the peptide dendrimer as an efficient alternative to PAMAM, which can be used successfully in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems.

    Science.gov (United States)

    Sipos, Barbara; Pintye-Hódi, Klára; Kónya, Zoltán; Kelemen, András; Regdon, Géza; Sovány, Tamás

    2017-02-25

    Titanate nanotube (TNT) has recently been explored as a new carrier material for active pharmaceutical ingredients (API). The aim of the present work was to reveal the physicochemical properties of API-TNT composites, focusing on the interactions between the TNTs and the incorporated APIs. Drugs belonging to different Biopharmaceutical Classification System (BCS) classes were loaded into TNTs: diltiazem hydrochloride (BCS I.), diclofenac sodium (BCS II.), atenolol (BCS III.) and hydrochlorothiazide (BCS IV.). Experimental results demonstrated that it is feasible for spiral cross-sectioned titanate nanotubes to carry drugs and maintain their bioactivity. The structural properties of the composites were characterized by a range of analytical techniques, including FT-IR, DSC, TG-MS, etc. The interactions between APIs and TNTs were identified as electrostatic attractions, mainly dominated by hydrogen bonds. Based on the results, it can be stated that the strength of the association depends on the hydrogen donor strength of the API. The drug release of incorporated APIs was evaluated from compressed tablets and compared to that of pure APIs. Differences noticed in the dissolution profiles due to incorporation showed a correlation with the strength of interactions between the APIs and the TNTs observed in the above analytical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Aerodynamic Factors Responsible for the Deaggregation of Carrier-Free Drug Powders to form Micrometer and Submicrometer Aerosols

    Science.gov (United States)

    Longest, P. Worth; Son, Yoen-Ju; Holbrook, Landon; Hindle, Michael

    2013-01-01

    Purpose The objective of this study was to employ in vitro experiments combined with computational fluid dynamics (CFD) analysis to determine which aerodynamic factors were most responsible for deaggregating carrier-free powders to form micrometer and submicrometer aerosols from a capsule-based platform. Methods Eight airflow passages were evaluated for deaggregation of the aerosol including a standard constricted tube, impaction surface, 2D mesh, inward radial jets, and newly proposed 3D grids and rod arrays. CFD simulations were implemented to evaluate existing and new aerodynamic factors for deaggregation and in vitro experiments were used to evaluate performance of each inhaler. Results For the carrier-free formulation considered, turbulence was determined to be the primary deaggregation mechanism. A strong quantitative correlation was established between the mass median diameter (MMD) and newly proposed non-dimensional specific dissipation (NDSD) factor, which accounts for turbulent energy, inverse of the turbulent length scale, and exposure time. A 3D rod array design with unidirectional elements maximized NDSD and produced the best deaggregation with MMD<1μm. Conclusions The new NDSD parameter can be used to develop highly effective dry powder inhalers like the 3D rod array that can efficiently produce submicrometer aerosols for next-generation respiratory drug delivery applications. PMID:23471640

  4. Polylactide-based magnetic spheres as efficient carriers for anticancer drug delivery

    CSIR Research Space (South Africa)

    Mhlanga, N

    2015-09-01

    Full Text Available To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe(sub3)O(sub4)) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe(sub3)O...

  5. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.

    Science.gov (United States)

    Shenoi, Rajesh A; Abbina, Srinivas; Kizhakkedathu, Jayachandran N

    2016-11-14

    Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo

  6. Selective Release of anti–TB Drugs Complex from Smart Copolymeric Bioactive nano–carriers

    Directory of Open Access Journals (Sweden)

    Alejandro Arredondo–Peñaranda

    2014-07-01

    Full Text Available Smart nano–copolymeric matrices have been employed to load and release anti tuberculosis (anti – TB drugs combinated complexes of Ethambutol (EMB, Isoniazid (INH, Rifampicin (RMP and Pyrazinamide (PZA. Copolymeric nanocarriers were synthesized using a microemulsion polymerization method previously reported. These nanocarriers can show selective swelling–collapse response under changes in local environments such a temperature, pH, solvent composition and electrical stimuli. The employ of these kinds of systems permits a controlled and selective delivery and release on specific human tissues. High Performance Liquid Chromatography technique was used to allow the detection of combinated mixtures of different active principles of anti–TB drugs using an acetonitrile mobile phase at 0.5 mL/min of flow rate whit a Spherisorb ODS2, C18 column. The results obtained suggest that the employ of smart nanohydrogels is a novel method in several tuberculosis therapies.

  7. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S

    2016-08-07

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.

  8. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    OpenAIRE

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...

  9. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  10. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    Science.gov (United States)

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  11. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.

    Science.gov (United States)

    Li, Xin-Xin; Chen, Jing; Shen, Jian-Min; Zhuang, Ran; Zhang, Shi-Qi; Zhu, Zi-Yun; Ma, Jing-Bo

    2018-05-05

    Herein, a smart pH-sensitive nanoparticle (DGL-PEG-Tat-KK-DMA-DOX) was prepared to achieve the selective intracellular drug delivery. In this nanoparticle, a PEG-grafted cell penetrating peptide (PEG-Tat-KK) was designed and acted as the cell penetrating segment. By introducing the pH-sensitive amide bonds between the peptide and blocking agent (2,3-dimethylmaleic anhydride, DMA), the controllable moiety (PEG-Tat-KK-DMA) endowed the nanoparticle with a charge-switchable shell and temporarily blocked penetrating function, thus improving the specific internalization. Besides, dendrigraft poly-L-lysine (DGL) used as the skeleton can greatly improve the drug loading because of the highly dendritic framework. Under the stimuli of acidic pH, this nanoparticle exhibited a remarkable charge-switchable property. The drug release showed an expected behavior with little release in the neutral pH media but relatively fast release in the acidic media. The in vitro experiments revealed that the cellular uptake and cytotoxicity were significantly enhanced after the pH was decreased. In vivo biodistribution and antitumor research indicated that the nanoparticle had noteworthy specificity and antitumor efficacy with a tumor inhibition rate of 79.7%. These results verified this nanoparticle could efficiently improve the selective intracellular delivery and possessed a great potential in tumor treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    Science.gov (United States)

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  13. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate

    Directory of Open Access Journals (Sweden)

    Silva GB

    2015-01-01

    Full Text Available Gisela Bevilacqua Rolfsen Ferreira da Silva,1 Maria Virginia Scarpa,1 Iracilda Zepone Carlos,2 Marcela Bassi Quilles,2 Raphael Carlos Comeli Lia,3 Eryvaldo Socrates Tabosa do Egito,4 Anselmo Gomes de Oliveira1 1Departamento de Fármacos e Medicamentos, 2Departamento de Análises Clínicas, UNESP–Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil; 3Instituto de Patologia Cirúrgica e Citopatologia (IPC, Araraquara, SP, Brazil; 4UFRN–Universidade Federal do Rio Grande do Norte, Programa de Pós-graduação em Ciências da Saúde, Natal, RN, Brazil Abstract: Methyl dihydrojasmonate (MJ has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to

  14. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules

    Science.gov (United States)

    Srivithya, Vellampatti; Roun, Heo; Sekhar Babu, Mitta; Hyung, Park Jae; Ha, Park Sung

    2018-03-01

    Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)˗conjugated DNA nano˗ring intercalated with doxorubicin (DNRA˗DOX) as potential therapeutics for breast cancer. DNRA˗DOX exhibited significantly higher cytotoxicity to the MCF˗7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano˗ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA˗DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.

  15. Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies

    Directory of Open Access Journals (Sweden)

    Maria Grazia Sarpietro

    2011-01-01

    Full Text Available The release of bioactive molecules by different delivery systems has been studied. We have proposed a protocol that takes into account a system that is able to carry out the uptake of a bioactive molecule released during the time, resembling an in vivo-like system, and for this reason we have used biomembrane models represented by multi-lamellar and unilamellar vesicles. The bioactive molecule loaded delivery system has been put in contact with the biomembrane model and the release has been evaluated, to consider the effect of the bioactive molecule on the biomembrane model thermotropic behavior, and to compare the results with those obtained when a pure drug interacts with the biomembrane model. The differential scanning calorimetry technique has been employed. Depending on the delivery system used, our research permits to evaluate the effect of different parameters on the bioactive molecule release, such as pH, drug loading degree, delivery system swelling, crosslinking agent, degree of cross-linking, and delivery system side chains.

  16. Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers

    KAUST Repository

    Yan, Jingjing

    2012-01-01

    Nanodiamond (ND) and its derivatives have been widely used for drug, protein and gene delivery. Herein, experimental and theoretical methods have been combined to investigate the effect of pH on the delivery of doxorubicin (DOX) from fluorescein labeled NDs (Fc-NDs). In the endosomal recycling process, the nanoparticle will pass from mildly acidic vesicle to pH ≈ 4.8; thus, it is important to investigate DOX release from NDs at different pH values. Fc-NDs released DOX dramatically under acidic conditions, while an increase in the DOX loading efficiency (up to 6.4 wt%) was observed under basic conditions. Further theoretical calculations suggest that H + weakens the electrostatistic interaction between ND surface carboxyl groups and DOX amino groups, and the interaction energies at pH < 7, pH 7 and pH > 7 are 10.4 kcal mol -1, 25.0 kcal mol -1 and 27.0 kcal mol -1 respectively. Cellular imaging experiments show that Fc-NDs are readily ingested by breast adenocarcinoma (BA) cells and cell viability tests prove that they can be utilized as a safe drug delivery vehicle. Furthermore, pH triggered DOX release has been tested in vitro (pH 7.4 and pH 4.83) in breast adenocarcinoma (BA) cells. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012.

  17. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  18. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  19. Investigation of Fatty Acid Ketohydrazone Modified Liposome’s Properties as a Drug Carrier

    Directory of Open Access Journals (Sweden)

    Keita Hayashi

    2015-01-01

    Full Text Available pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH or stearic ketohydrazone (S-KH, composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties.

  20. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Science.gov (United States)

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  1. trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Giorgia Giacometti

    2017-11-01

    Full Text Available The use of liposomes has been crucial for investigations in biomimetic chemical biology as a membrane model and in medicinal chemistry for drug delivery. Liposomes are made of phospholipids whose biophysical characteristics strongly depend on the type of fatty acid moiety, where natural unsaturated lipids always have the double bond geometry in the cis configuration. The influence of lipid double bond configuration had not been considered so far with respect to the competence of liposomes in delivery. We were interested in evaluating possible changes in the molecular properties induced by the conversion of the double bond from cis to trans geometry. Here we report on the effects of the addition of trans-phospholipids supplied in different amounts to other liposome constituents (cholesterol, neutral phospholipids and cationic surfactants, on the size, ζ-potential and stability of liposomal formulations and on their ability to encapsulate two dyes such as rhodamine B and fluorescein. From a biotechnological point of view, trans-containing liposomes proved to have different characteristics from those containing the cis analogues, and to influence the incorporation and release of the dyes. These results open new perspectives in the use of the unnatural lipid geometry, for the purpose of changing liposome behavior and/or of obtaining molecular interferences, also in view of synergic effects of cell toxicity, especially in antitumoral strategies.

  2. Radiation preparation of drug carriers based on poly(N-isopropylacrylamide) hydrogels, their loading capacities and controlled release rates for dexamethasone and tegafur

    International Nuclear Information System (INIS)

    Hoang Dang Sang; Nguyen Van Binh; Tran Bang Diep; Nguyen Thi Thom; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh

    2015-01-01

    Thermo-sensitive hydrogels have great potential in some applications. In order to use as the drug delivery systems, the hydrogels should be biocompatibility. New polymers with more biocompatibility and better biodegradability, and environmental friendly crosslinking agents would be necessary for the successful drug carriers. Poly (N-isopropylacrylamide-co-dimethylacrylamide) based hydrogels have been prepared from the admixture solutions of N-isopropylacrylamide (NIPA) and N,N’-dimethyl acrylamide (DMA) by radiation copolymerization and crosslinking at radiation dose of 20 kGy as reported in our previous study. Water swelling behaviour of the resulting hydrogels were much depended on their nature such as initial ratio of NIPA and DMA. The drug-loaded hydrogels were prepared by merging hydrogel in the solutions containing corresponding drugs. Loading capacity of the hydrogels were about 48.6 and 95.7 mg per g dried hydrogel for dexamethasone and tegafur. The release studies showed that the presence of ions in simulated body fluid and temperature of the solution much affecting to in vitro release behaviors of hydrogels for dexamethasone and tegafur. The release rates were fast for both drug models. The result also revealed that these drug carriers were biocompatibility without skin irritation, suggested the drug-loaded hydrogels may be used as controlled release drug delivery systems. (author)

  3. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rahmani, Leila [Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Falavarjan (Iran, Islamic Republic of)

    2017-04-01

    Biological application of carbon nanotube in drug delivery is our main concern in this investigation. For this purpose interaction of carnosine and carbon nanotube was studied in both gas phase and separately in aqueous media. Three possible interactions of carnosine dipeptide with (5,5) carbon nanotube in physiological media were considered. At first step each species were modeled using quantum mechanical calculations, in the next step, their properties in aqueous solution were studied by applying Monte Carlo simulations. The results of density functional calculations in gas phase showed that interaction of zwitterion of carnosine with carbon nanotube via NH{sub 3}{sup +} had relatively higher interaction energy than the other complexes. Computation of solvation free energies in water showed functionalization with carnosine enhanced the solubility of carbon nanotube significantly that improve the medicinal applications of these materials. Calculation of complexation free energies indicated that zwitterion of carnosine with carbon nanotube via NH{sub 3}{sup +} produced the most stable complex in aqueous solution. This tendency could be observed in gas and liquid phase similarly. - Highlights: • Carnosine dipeptide (an anti-ageing compound and neuron protection in relation to Alzheimer's dementia) can be stabilized against degradation by binding to Carbon nanotube as a transporter. • Functionalization with carnosine increases the solubility of carbon nanotube considerably and so such systems hold great potential in the field of nanomedicine. • Complexation free energies confirm the interaction of carnosine dipeptide with carbon nanotube in aqueous solution. • Carnosine zwitter ion via NH{sub 3}{sup +} have the most interaction energy with carbon nanotube.

  4. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β₁-adrenoreceptor blocker Talinolol.

    Science.gov (United States)

    Ghai, Damanjeet; Sinha, Vivek Ranjan

    2012-07-01

    To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue.

    Science.gov (United States)

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L

    2016-02-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier-mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylene-dioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1, and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about 2 times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a 9 times-enhanced apparent permeability (P(app)) in Caco-2 cells compared with the parent drug. Both diastereomer exhibited high effective permeability (P(eff)) in mice, 6.32 ± 3.12 and 5.20 ± 2.81 × 10(-5) cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val, seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs before absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    Science.gov (United States)

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer

  7. DOE Optimization of Nano-based Carrier of Pregabalin as Hydrogel: New Therapeutic & Chemometric Approaches for Controlled Drug Delivery Systems

    Science.gov (United States)

    Arafa, Mona G.; Ayoub, Bassam M.

    2017-01-01

    Niosomes entrapping pregabalin (PG) were prepared using span 60 and cholesterol in different molar ratios by hydration method, the remaining PG from the hydrating solution was separated from vesicles by freeze centrifugation. Optimization of nano-based carrier of pregabalin (PG) was achieved. Quality by Design strategy was successfully employed to obtain PG-loaded niosomes with the desired properties. The optimal particle size, drug release and entrapment efficiency were attained by Minitab® program using design of experiment (DOE) that predicted the best parameters by investigating the combined effect of different factors simultaneously. Pareto chart was used in the screening step to exclude the insignificant variables while response surface methodology (RSM) was used in the optimization step to study the significant factors. Best formula was selected to prepare topical hydrogels loaded with niosomal PG using HPMC and Carbopol 934. It was verified, by means of mechanical and rheological tests, that addition of the vesicles to the gel matrix affected significantly gel network. In vitro release and ex vivo permeation experiments were carried out. Delivery of PG molecules followed a Higuchi, non Fickian diffusion. The present work will be of interest for pharmaceutical industry as a controlled transdermal alternative to the conventional oral route.

  8. Design, synthesis, fabrication and in vitro evalution of mucoadhesive 5-amino-2-mercaptobenzimidazole chitosan as low water soluble drug carriers.

    Science.gov (United States)

    Kongsong, Mullika; Songsurang, Kultida; Sangvanich, Polkit; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-11-01

    Mucoadhesive thiolated chitosan suitable as a carrier for low water soluble drugs was designed and synthesized by conjugating 5-amino-2-mercaptobenzimidazole (MBI) using methylacrylate (MA) as the linking agent. A 14.4% degree of substitution of MA, as determined by (1)H NMR analysis, and 11.86±0.01μmol thiol groups/g of polymer, as determined by Ellman's method, was obtained. The MBI-MA-chitosan had an 11-fold stronger mucoadhesive property compared to unmodified chitosan at pH 1.2, as determined by the periodic acid: Schiff colorimetric method. Chitosan, MA-chitosan and MBI-MA-chitosan were fabricated as well-formed microspheres using electrospray ionization, including an entrapment efficiency of simvastatin (SV) of over 80% for the MBI-MA-chitosan. The mucoadhesiveness of the SV-loaded MBI-MA-CS microspheres was still higher than that for SV-loaded chitosan at pH 1.2 and 6.4. The SV-loaded MBI-MA-CS microspheres revealed a reduced burst effect and an increased release rate (more than fivefold higher than pure SV) of SV over 12h. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder.

    Science.gov (United States)

    Yang, Xin-Hua; Tian, Kai; Wang, Dong-Fang; Wang, Yi; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2017-08-15

    Recent empirical findings have suggested that imbalanced neural networks may underlie the pathophysiology of major depressive disorder (MDD). However, the contribution of the superior temporal gyrus (STG) and the caudate nucleus to its pathophysiology remains unclear. Functional magnetic resonance imaging (MRI) date were acquired from 40 patients with first-episode drug-naive MDD and 36 matched healthy controls during wakeful rest. We used whole-brain voxel-wise statistical maps to quantify within-group resting state functional connectivity (RSFC) and between-group differences of bilateral caudate and STG seeds. Compared with healthy controls, first-episode MDD patients were found to have reduced connectivity between the ventral caudate and several brain regions including the superior frontal gyrus (SFG), the superior parietal lobule (SPL) and the middle temporal gyrus (MTG), as well as increased connectivity with the cuneus. We also found increased connectivity between the left STG and the precuneus, the angular gyrus and the cuneus. Moreover, we found that increased anhedonia severity was correlated with the magnitude of ventral caudate functional connectivity with the cuneus and the MTG in MDD patients. Due to our small sample size, we did not correct the statistical threshold in the correlation analyses between clinical variables and connectivity abnormalities. The present study suggests that anhedonia is mainly associated with altered ventral caudate-cortical connectivity and highlights the importance of the ventral caudate in the neurobiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design.

    Science.gov (United States)

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S Rayasa; Goyal, Amit K

    2016-07-01

    In the present study, nanostructured lipid carriers (NLCs) along with various surfactants loaded with paclitaxel (PTX) were prepared by an emulsification technique using a Box-Behnken design. The Box-Behnken design indicated that the most effective factors on the size and PDI were at high surfactant concentration (1.5%), low lipids ratio (6:4) and medium homogenization speed (6000 rpm). Among all the formulations, Tween 20-loaded NLCs show least particle size compared to Tween 80 and Tween 60. Entrapment efficiency of Tween 20, Tween 80 and Tween 60-loaded formulations were 82.40, 85.60 and 79.78%, respectively. Drug release of Tween 80, Tween 20 and Tween 60-loaded NLCs is 64.9, 62.3 and 59.7%, respectively (within 72 h). Maximum cellular uptake was observed with Tween 20 formulation on Caco-2 cell lines. Furthermore, spray drying of resultant NLCs was showed good flow properties and was selected for drug delivery to deeper airways. In-vivo studies demonstrated the better localization of drug within the lungs using different surfactant-based pulmonary delivery systems. From this study, we have concluded that delivering drugs through pulmonary route is advantageous for local action in lungs as maximum amount of drug concentration was observed in lungs. The surfactants could prove to be beneficial in treating drug resistance lung cancer by inhibiting P-gp efflux in the form of nano lipidic carriers.

  11. Influence of Carrier (Polymer Type and Drug-Carrier Ratio in the Development of Amorphous Dispersions for Solubility and Permeability Enhancement of Ritonavir

    Directory of Open Access Journals (Sweden)

    Vivek S. Dave

    2017-09-01

    Full Text Available The influence of the ratio of Eudragit® L100-55 or Kolliphor® P188 on the solubility, dissolution, and permeability of ritonavir was studied with a goal of preparing solid dispersions (SDs of ritonavir. SDs were formulated using solvent evaporation or lyophilization techniques, and evaluated for their physical-chemical properties. The dissolution and permeability assessments of the functionality of the SDs were carried out. The preliminary functional stability of these formulations was assessed at accelerated storage conditions for a period of six months. Ritonavir: Eudragit® L100-55 (RE, 1:3 SD showed a 36-fold higher ritonavir solubility compared to pure ritonavir. Similarly, ritonavir: Kolliphor® P188 (RP, 1:2 SD exhibited a 49-fold higher ritonavir solubility compared to pure ritonavir. Ritonavir dissolution from RE formulations increased with increasing ratios of Eudragit® L100-55, up to a ritonavir: carrier ratio of 1:3. The ritonavir dissolution from RP formulations was highest at ritonavir: Kolliphor® P188 ratio of 1:2. Dissolution efficiencies of these formulations were found to be in line with, and supported the dissolution results. The permeability of ritonavir across the biological membrane from the optimized formulations RE (1:3 and RP (1:2 were ~76 % and ~97 %, respectively; and were significantly higher compared to that of pure ritonavir (~20 %. A preliminary (six-month stability study demonstrated the functional stability of prepared solid dispersions. The present study demonstrates that ritonavir solubility, dissolution, and permeability improvement can be achieved with a careful choice of the carrier polymer, and optimizing the amount of polymer in a SD formulation.

  12. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay.

    Science.gov (United States)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Bauer-Brandl, Annette; Brandl, Martin

    2016-06-28

    Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated with liposome bilayers even upon extensive dilution. Upon i.v. injection, in contrast, rapid drug loss often occurs due to drug transfer from the liposomal carriers to endogenous lipophilic sinks such as lipoproteins, plasma proteins or membranes of red blood cells and endothelial cells. Here we report on the application of a recently introduced in vitro predictive drug transfer assay based on incubation of the liposomal drug carrier with large multilamellar liposomes, the latter serving as a biomimetic model sink, using flow field-flow fractionation as a tool to separate the two types of liposomes. By quantifying the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, both the kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). p-THPP is structurally similar to temoporfin, a photosensitizer which is under clinical evaluation in a liposomal formulation. Mechanistic insights were gained by varying the donor-to-acceptor lipid mass ratio, size and lamellarity of the liposomes. Drug transfer kinetics from one liposome to another was found rate determining as compared to redistribution from the outermost to the inner concentric bilayers, such that the overall

  13. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...

  14. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.

    Science.gov (United States)

    Djekic, Ljiljana; Krajisnik, Danina; Martinovic, Martina; Djordjevic, Dragana; Primorac, Marija

    2015-07-25

    Suitability of liquid lecithin (i.e., solution of lecithin in soy bean oil with ∼ 60% w/w of phospholipids) for formation of gels, upon addition of water solution of poloxamer 407, was investigated, and formulated systems were evaluated as carriers for percutaneous delivery of ibuprofen. Formulation study of pseudo-ternary system liquid lecithin/poloxamer 407/water at constant liquid lecithin/poloxamer 407 mass ratio (2.0) revealed that minimum concentrations of liquid lecithin and poloxamer 407 required for formation of gel like systems were 15.75% w/w and 13.13% w/w, respectively, while the maximum content of water was 60.62% w/w. The systems comprising water concentrations in a range from 55 to 60.62% w/w were soft semisolids suitable for topical application, and they were selected for physicochemical and biopharmaceutical evaluation. Analysis of conductivity results and light microscopy examination revealed that investigated systems were water dilutable dispersions of spherical oligolamellar associates of phospholipids and triglyceride molecules in the copolymer water solution. Rheological behavior evaluation results indicated that the investigated gels were thermosensitive shear thinning systems. Ibuprofen (5% w/w) was incorporated by dispersing into the previously prepared carriers. Drug-loaded systems were physically stable at storage temperature from 5 ± 3°C to 40 ± 2°C, for 30 days. In vitro ibuprofen release was in accordance with the Higuchi model (rH>0.95) and sustained for 12h. The obtained results implicated that formulated LLPBGs, optimized regarding drug release and organoleptic properties, represent promising carriers for sustained percutaneous drug delivery of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Design of in situ dispersible and calcium cross-linked alginate pellets as intestinal-specific drug carrier by melt pelletization technique.

    Science.gov (United States)

    Nurulaini, Harjoh; Wong, Tin Wui

    2011-06-01

    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation. Copyright © 2011 Wiley-Liss, Inc.

  16. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model

    International Nuclear Information System (INIS)

    Song Meirong; Song Junling; Ning Aimin; Cui Baoan; Cui Shumin; Zhou Yaobing; An Wankai; Dong Xuesong; Zhang Gege

    2010-01-01

    The aim of this study was to determine the feasibility of using silica sol to carry a hydrophobic drug in aqueous solution. Enrofloxacin, which was selected as the model drug because it is a broad-spectrum antibiotic drug with poor solubility in water, was adsorbed onto silica sol in aqueous solution during cooling from 60 deg. C to room temperature. The drug-loaded silica sol was characterized by transmission electron microscopy, Fourier transform infrared spectrum, thermal gravimetric analysis and ultraviolet-visible light spectroscopy. The results showed that enrofloxacin was adsorbed by silica sol without degradation at a loading of 15.23 wt.%. In contrast to the rapid release from pure enrofloxacin, the drug-loaded silica sol showed a slower release over a longer time. Kinetics analysis suggested the drug release from silica sol was mainly a diffusion-controlled process. Therefore, silica sol can be used to carry a hydrophobic drug in aqueous solution for controlled drug delivery.

  17. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    Science.gov (United States)

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  18. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Han Siyuan; Wang Huan; Liang Xingjie [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China); Hu Liming, E-mail: huliming@bjut.edu.cn [Beijing University of Technology, College of Life Science and Bioengineering (China); Li Min; Wu Yan, E-mail: wuy@nanoctr.cn [National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology (China)

    2011-09-15

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ({sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  19. Nanoparticle carriers based on copolymers of poly(l-aspartic acid co-l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    International Nuclear Information System (INIS)

    Han Siyuan; Wang Huan; Liang Xingjie; Hu Liming; Li Min; Wu Yan

    2011-01-01

    A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR ( 1 H NMR, 13 C NMR, 31 P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  20. Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms.

    Science.gov (United States)

    Taranejoo, Shahrouz; Janmaleki, Mohsen; Pachenari, Mohammad; Seyedpour, Seyed Morteza; Chandrasekaran, Ramya; Cheng, Wenlong; Hourigan, Kerry

    2016-11-20

    A recent approach to colon cancer therapy is to employ selective drugs with specific extra/intracellular sites of action. Alteration of cytoskeletal protein reorganization and, subsequently, to cellular biomechanical behaviour during cancer progression highly affects the cancer cell progress. Hence, cytoskeleton targeted drugs are an important class of cancer therapy agents. We have studied viscoelastic alteration of the human colon adenocarcinoma cell line, SW48, after treatment with a drug delivery system comprising chitosan as the carrier and albendazole as the microtubule-targeting agent (MTA). For the first time, we have evaluated the biomechanical characteristics of the cell line, using the micropipette aspiration (MA) method after treatment with drug delivery systems. Surprisingly, employing a chitosan-albendazole pair, in comparison with both neat materials, resulted in more significant change in the viscoelastic parameters of cells, including the elastic constants (K 1 and K 2 ) and the coefficient of viscosity (μ). This difference was more pronounced for cancer cells after 48h of the treatment. Microtubule and actin microfilament (F-actin) contents in the cell line were studied by immunofluorescent staining. Good agreement was observed between the mechanical characteristics results and microtubule/F-actin contents of the treated SW48 cell line, which declined after treatment. The results showed that chitosan affected F-actin more, while MTA was more effective for microtubules. Toxicity studies were performed against two cancer cell lines (SW48 and MCF10CA1h) and compared to normal cells, MCF10A. The results showed cancer selectiveness, safety of formulation, and enhanced anticancer efficacy of the CS/ABZ conjugate. This study suggests that employing such a suitable pair of drug-carriers with dissimilar sites of action, thus allying the different cell cytoskeleton disrupting mechanisms, may provide a more efficient cancer therapy approach. Copyright

  1. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: Size does not matter

    International Nuclear Information System (INIS)

    Venkatpurwar, V.P.; Rhodes, S.; Oien, K.A.; Elliott, M.A.; Tekwe, C.D.; Jørgensen, H.G.; Kumar, M.N.V. Ravi

    2015-01-01

    Highlights: • The particulate delivery allows an increase in dose range without accrual of toxicities. • The altered haematological and biochemical changes are drug, but not particle dependent. • PLGA nano/microparticles are safe on subacute peroral dosing over 28 days. • Nano-toxicology, drug needs to be considered. - Abstract: Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral ® 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is

  2. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  3. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  4. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  5. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo.

    Science.gov (United States)

    Deng, Wentao; Qiu, Juhui; Wang, Shaoting; Yuan, Zhi; Jia, Yuefeng; Tan, Hailin; Lu, Jiru; Zheng, Ruqiang

    2018-01-01

    In this study, we performed the characterization and synthesis of biocompatible and targeted albumin and graphene oxide (GO) dual-carrier paclitaxel (PTX) nanoparticles for photothermal-triggered tumor therapy. PTX absorbed on GO nanosheets as cores were coated with human serum albumin (HSA), following surface conjugation with monoclonal antibodies (mAb) against vascular endothelial growth factor (VEGF; denoted as mAbVEGF) via polyethylene glycol linker to form targeted nanoparticles (PTX-GHP-VEGF). The spherical nanoparticles were 191±5 nm in size with good stability and biocompatibility. GO functioned as the first carrier and a near infrared absorber that can generate photothermal effects under 5-minute 808-nm laser irradiation to thermal trigger the release of PTX from the second carrier HSA nanoparticles. The mechanism of thermal-triggered drug release was also investigated preliminarily, in which the heat generated by GO induced swelling of PTX-GHP-VEGF nanoparticles which released the drugs. In vitro studies found that PTX-GHP-VEGF can efficiently target human SW-13 adrenocortical carcinoma cells as evaluated by confocal fluorescence microscopy as well as transmission electron microscopy, and showed an obvious thermal-triggered antitumor effect, mediated by apoptosis. Moreover, PTX-GHP-VEGF combined with near infrared irradiation showed specific tumor suppression effects with high survival rate after 100 days of treatment. PTX-GHP-VEGF also demonstrated high biosafety with no adverse effects on normal tissues and organs. These results highlight the remarkable potential of PTX-GHP-VEGF in photothermal controllable tumor treatment.

  6. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules

    Science.gov (United States)

    Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un

    2018-04-01

    Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.

  7. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  8. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  9. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  10. Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer.

    Science.gov (United States)

    Fakhri, Ali; Tahami, Shiva; Nejad, Pedram Afshar

    2017-10-01

    The Best performance drug delivery systems designed with Fe 3 O 4 -Ag 2 O quantum dots decorated cellulose nanofibers which that grafted with Etoposide and Methotrexate. Morphology properties were characterized by Scanning and Transmittance electron microscopy. The crystalline structure of prepared sample was evaluated using by X-ray diffraction. The vibrating sample magnetometer analysis was used for magnetic behavior of samples. The size distributions of Fe 3 O 4 -Ag 2 O QDs/Cellulose fibers nanocomposites indicate that the average diameter was 62.5nm. The Saturation magnetization (Ms) indicates the Fe 3 O 4 -Ag 2 O QDs/Cellulose fibers nanocomposites have ferromagnetic properties in nature. For make carrier, the Iron and Silver should be binds to cellulose nanofibers and to drug molecules and observe in UV-vis spectroscopy. The drug release kinetics was studied in vitro as spectrophotometrically. The release of Etoposide and Methotrexate were carried out with a constant speed, and the equilibrium reached at 24 and 30h with a total amount 78.94% and 63.84%, respectively. The results demonstrated that the obtained Fe 3 O 4 -Ag 2 O quantum dots/cellulose fibers nanocomposites could be applied for drug delivery systems. Cytotoxicity and antioxidant study confirmed the activity of the drug incorporated in nanocomposites. In addition, the cytotoxicity of drug was increased when loaded on nanocomposites, compared to pure Fe 3 O 4 -Ag 2 O quantum dots/cellulose fibers nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.

    Science.gov (United States)

    Lin, Chih-Hung; Chen, Chun-Han; Lin, Zih-Chan; Fang, Jia-You

    2017-04-01

    Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs. Copyright © 2017. Published by Elsevier B.V.

  12. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2017-04-01

    Full Text Available Chemical and enzymatic barriers in the gastrointestinal (GI tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.

  13. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    Science.gov (United States)

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  14. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  15. Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery.

    Science.gov (United States)

    Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra

    2013-01-01

    In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.

  16. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yang L

    2013-10-01

    Full Text Available Liang Yang,1 Soo-Kyung Choi,2 Hyun-Jae Shin,2 Hyo-Kyung Han1 1College of Pharmacy, Dongguk University-Seoul, Siksa-dong, Ilsan-Donggu, Goyang, Gyunggi-do, Korea; 2Department of Chemical and Biochemical Engineering, Chosun University, Gwangju, Korea Abstract: This study aimed to develop an oral delivery system using clay-based organic–inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB was incorporated into AMP clay (FB-AMP at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3, dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3 after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2, FB-AMP(3 also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3 to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic–inorganic hybrid material might be useful to improve the bioavailability of FB. Keywords: poorly water-soluble drugs, aminopropyl functionalized magnesium phyllosilicate, organic clay, oral bioavailability

  17. Novel Biodegradable Polyesters. Synthesis and Application as Drug Carriers for the Preparation of Raloxifene HCl Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Evangelos Karavas

    2009-07-01

    Full Text Available Raloxifene HCl is a drug with poor bioavailability and poor water solubility. Furthermore nο pharmaceutically acceptable organic solvent has been reported before to dilute the drug. It was observed that Raloxifene HCl can be diluted in a solvent mixture of acetone/water or ethanol/water. The aim of this study was to use biodegradable polymers in order to prepare Raloxifene HCl nanoparticles. For this purpose a series of novel biodegradable poly(ethylene succinate-co-propylene adipate P(ESu-co-PAd polyesters were synthesized following the polycondensation method and further, poly(ethylene succinate (PESu and poly(propylene adipate (PPAd were used. The prepared polyesters were characterized by intrinsic viscosity measurements, end group analysis, enzymatic hydrolysis, Nuclear Magnetic Resonance Spectroscopy (1Η-NMR and 13C-NMR and Wide-angle X-ray Diffractometry (WAXD. The drug nanoparticles have been prepared by a variation of the co-precipitation method and were studied by Wide-angle X-ray Diffractometry (WAXD, FTIR spectrometry, light scattering size distribution, Scanning Electron Microscopy (SEM and release behavior measurements. The interactions between the polymers and the drug seem to be limited, so the drug occurs in crystalline form in all nanoparticles. The size of the nanoparticles seems to be in the range of 150-350 nm, depending on the polymer that was used. The drug release depends on the melting point and degree of crystallinity of the polyesters used. An initial high release rate was recorded followed by very slow rates of controlled release.

  18. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Swami, Rajan; Singh, Indu [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India); Kulhari, Hitesh [CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology Division (India); Jeengar, Manish Kumar [National Institute of Pharmaceutical Education & Research (NIPER), Departmentof Pharmacology (India); Khan, Wahid, E-mail: wahid@niperhyd.ac.in; Sistla, Ramakrishna, E-mail: sistla@iict.res.in, E-mail: rksistla@yahoo.com [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India)

    2015-06-15

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by {sup 1}HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere{sup ®}). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  19. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1 HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere ® ). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors

  20. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  1. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    Science.gov (United States)

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    formulation. The results of this study suggest that the PNP system is an advantageous carrier for drug delivery.

  2. The Use of Multi-Walled Carbon Nanotubes as Possible Carrier in Drug Delivery System for Aspirin

    Science.gov (United States)

    Yusof, Alias Mohd.; Buang, Nor Aziah; Yean, Lee Sze; Ibrahim, Mohd. Lokman

    2009-06-01

    Carbon nanotubes (CNTs) have raised great interest in a number of applications, including field emission, energy storage, molecular electronics, sensors, biochips and drug delivery systems. This is due to their remarkable mechanical properties, chemical stability and biofunctionalizability. This nanomaterial is low in weight, has high strength and a high aspect ratio (long length compared to a small diameter). This paper will present a brief overview of drugs adsorbed onto the surface of carbon nanotubes via sonication method. The surface area of carbon nanotubes was measured by methylene blue method, Carbon nanotubes synthesized by catalytic chemical vapor deposition (CCVD) method were purified and functionalized in a mixture of concentrated acids (H2SO4:HNO3 = 3:1) at room temperature (25° C) via sonication in water bath, yielding carboxylic acid group on the CNTs' surface. CNT was successfully loaded with 48 %(w/w) aspirin molecules by suspending CNTs in a solution of aspirin in alcohol. Analysis of loaded CNTs by Field Emission-Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectrum (FITR) and UV-visible Spectroscopy confirmed the loading of the drug onto the CNTs. The work presented is a prelude to the direction of using carbon nanotubes as a drug delivery system to desired sites in human body.

  3. Sodium Alginate with PEG/PEO Blends as a Floating Drug Delivery Carrier – In vitro Evaluation

    Directory of Open Access Journals (Sweden)

    Christe Sonia Mary

    2016-09-01

    Full Text Available Purpose: Floating drug delivery system reduces the quantity of drug intake and the risk of overloading the organs with excess drug. Methods: In the present study, we prepared the blends of sodium alginate with polyethylene glycol (PEG and polyethylene oxide (PEO as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride containing 10% acetic acid as a hardening agent. Different ratios of pore forming agent to the polymer blend was used to prepare the floating beads with different porosity and morphology. Ciprofloxacin hydrochloride was used as a model drug for the release kinetics studies. Results: The beads were characterized by optical and FESEM microscopy to study the morphology and pore dimensions. The results obtained shows decrease in beads size with increase in the concentration of the pore forming agent. The swelling properties of the beads were found to be in the range of 80% to 125%. The release kinetics of the ciprofloxacin from the beads was measured by UV-Visible spectroscopy at λmax of 278nm and the results shows for highly porous beads. Conclusion: By varying the amount of alginate and pore forming agent the release kinetics is found to get altered. As a result, ciprofloxacin hydrochloride release is found to be sustained from the blended beads.

  4. Modified human serum albumins as carriers for the specific delivery of antiviral drugs to liver- and blood cells

    NARCIS (Netherlands)

    Jansen, Robert Walter

    1992-01-01

    The general goal of this study, was to determine the possibility of a targeted delivery of antiviral drugs to their site of action. We decided to focus on two viral diseases; HIV and Hepatitis B, that replicate in T,-lymphocytes, monocytes/macrophages and hepatocytes respectively. The specific aims

  5. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  6. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen.

    Science.gov (United States)

    Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung

    2013-01-01

    This study aimed to develop an oral delivery system using clay-based organic-inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic-inorganic hybrid material might be useful to improve the bioavailability of FB.

  7. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers.

    Science.gov (United States)

    Xin, Jing; Wang, Sijia; Wang, Bing; Wang, Jiazhuang; Wang, Jing; Zhang, Luwei; Xin, Bo; Shen, Lijian; Zhang, Zhenxi; Yao, Cuiping

    2018-01-01

    As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS 4 ) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS 4 /PDT effect, the AlPcS 4 delivery sys tems with different drug carriers were synthesized and investigated. Gold nanorods, cationic liposomes, and Pluronic ® F127 nanomicellars were used to formulate the AlPcS 4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS 4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca 2+ ] i ) concentration were further measured to evaluate the mechanism of cell death. The series of synthesized AlPcS 4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS 4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS 4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS 4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS 4 delivery efficiency and ability to block serum albumin. In addition, AlPcS 4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127-AlPcS 4 is used for prolonged gastric cancer therapy. The described AlPcS 4 drug delivery systems provide promising agents for gastric cancer therapy.

  8. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  9. Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers.

    Science.gov (United States)

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto

    2017-08-30

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Arming drug carriers to disable the Hepatic Stellate Cell : the targeted delivery of apoptosis-inducing drugs to the fibrotic liver

    NARCIS (Netherlands)

    Hagens, Werner Ivo

    2006-01-01

    Chronic liver damage of various origins (e.g. viral hepatitis; chronic intoxication by alcohol, chemicals or drugs; Wilson’s disease) can eventually lead to liver cirrhosis, the end stage of liver fibrosis. This process is characterized by the accumulation of excessive amounts of scar tissue within

  11. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S., E-mail: rsanandhakumar@gmail.com [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Krishnamoorthy, G.; Ramkumar, K.M. [SRM Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Raichur, A.M. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2017-01-01

    In recent years, nanoparticles (NPs) based on biopolymers or peptides are gaining popularity for the encapsulation and release of drug molecules, especially for cancer therapy, due to their ability for targeted and controlled release. The use of collagen peptide (CP) for the preparation of chitosan (CN) NPs is especially interesting as it results in NPs that are stable under physiological conditions. In this work, mono-dispersed pH responsive CPCN NPs of about 100 nm were prepared via ionic gelation method by simple and mild co-precipitation of CN and CP. Investigation of NPs with Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS) measurements reveals that hydrogen bonding and electrostatic interactions are believed to be major driving forces for NP formation and drug encapsulation, respectively. Scanning electron microscopic (SEM) investigations show that hard and fine CPCN NPs transform to soft and bigger gel like particles as a function of collagen concentration. The unique “polymeric gel” structure of NPs showed high encapsulation efficiency towards doxorubicin hydrochloride (DOX) as well as pH controlled release. Anti-proliferative and cell viability analysis revealed that DOX loaded NPs showed excellent anti-proliferative characteristics against HeLa cells with favorable biocompatibility against normal cells. Such NPs have high potential for use as smart drug delivery carriers in advanced cancer therapy. - Highlights: • Preparation of collagen peptide functionalized chitosan nanoparticles • Hydrogen bonding plays a key role in particle formation. • Electrostatic interaction plays a key role in drug encapsulation. • Functionalized chitosan particles are more stable than chitosan NPs.

  12. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    Science.gov (United States)

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  13. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

    Directory of Open Access Journals (Sweden)

    Tian SY

    2018-01-01

    Full Text Available Shuangyan Tian,1 Juan Li,1 Qi Tao,2,3 Yawen Zhao,1 Zhufen Lv,4 Fan Yang,1 Haoyun Duan,5 Yanzhong Chen,4 Qingjun Zhou,5 Dongzhi Hou1 1Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University, 2CAS Key Laboratory of Mineralogy and Metallogeny, 3Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 4Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, 5State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China Background: Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods: To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH. Montmorillonite/BH complex (Mt-BH was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs] by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results: Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours

  14. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  15. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Guo, Lin; Jiang, Wei; Li, Ying

    2008-12-15

    Bacterial magnetosomes (BMs) are commonly used as vehicles for certain enzymes, nucleic acids and antibodies, although they have never been considered drug carriers. To evaluate the clinical potential of BMs extracted from Magnetospirillum gryphiswaldense in cancer therapy, doxorubicin (DOX) was loaded onto the purified BMs at a ratio of 0.87 +/- 0.08 mg/mg using glutaraldehyde. The DOX-coupled BMs (DBMs) and BMs exhibited uniform sizes and morphology evaluated by TEM. The diameters of DBMs and BMs obtained by AFM were 71.02 +/- 6.73 and 34.93 +/- 8.24 nm, respectively. The DBMs released DOX slowly into serum and maintained at least 80% stability following 48 h of incubation. In vitro cytotoxic tests showed that the DBMs were cytotoxic to HL60 and EMT-6 cells, manifested as inhibition of cell proliferation and suppression in c-myc expression, consistent with DOX. These observations depicted in vitro antitumor property of DBMs similar to DOX. The approach of coupling DOX to magnetosomes may have clinical potential in anti-tumor drug delivery.

  16. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acute and Subchronic Toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from Chloroform Bay Leaf Extract (Eugenia Polyantha W.) with Palm Kernel Oil as A Carrier

    Science.gov (United States)

    Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.

    2018-03-01

    The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.

  18. Aminoclay–lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption

    Directory of Open Access Journals (Sweden)

    Yang L

    2016-03-01

    Full Text Available Liang Yang, Yating Shao, Hyo-Kyung Han BK Plus Project Team, College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to prepare the aminoclay–lipid hybrid composite to enhance the drug release and improve the oral bioavailability of poorly water-soluble fenofibrate. Antisolvent precipitation coupled with an immediate freeze-drying method was adopted to incorporate fenofibrate into aminoclay–lipid hybrid composite (ALC. The optimal composition of the ALC formulation was determined as the ratios of aminoclay to krill oil of 3:1 (w/w, krill oil to fenofibrate of 2:1 (w/w, and antisolvent to solvent of 6:4 (v/v. The morphological characteristics of ALC formulation were determined using scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, which indicated microcrystalline state of fenofibrate in ALC formulation. The ALC formulation achieved almost complete dissolution within 30 minutes, whereas the untreated powder and physical mixture exhibited less than 15% drug release. Furthermore, ALC formulation effectively increased the peak plasma concentration (Cmax and area under the curve (AUC of fenofibric acid (an active metabolite in rats by approximately 13- and seven-fold, respectively. Furthermore, ALC formulation exhibited much lower moisture sorption behavior than the lyophilized formulation using sucrose as a cryoprotectant. Taken together, the present findings suggest that ALC formulation is promising for improving the oral absorption of poorly soluble fenofibrate. Keywords: aminoclay, omega-3 phospholipids, fenofibrate, drug release, oral absorption 

  19. The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case.

    Science.gov (United States)

    Battistini, F D; Tártara, L I; Boiero, C; Guzmán, M L; Luciani-Giaccobbe, L C; Palma, S D; Allemandi, D A; Manzo, R H; Olivera, M E

    2017-07-15

    The aim of this work was to obtain information concerning the properties of ophthalmic formulations based on hyaluronic-drug ionic complexes, to identify the factors that determine the onset, intensity and duration of the pharmacotherapeutic effect. Dispersions of a complex of 0.5% w/v of sodium hyaluronate (HyNa) loaded with 0.5% w/v of timolol maleate (TM) were obtained and presented a counterionic condensation higher than 75%. For comparison a similar complex obtained with hyaluronic acid (HyH) was also prepared. Although the viscosity of HyNa-TM was significantly higher than that of HyH-TM, in vitro release of TM from both complexes showed a similar extended drug release profile (20-31% over 5h) controlled by diffusion and ionic exchange. Ocular pharmacokinetic study performed in normotensive rabbits showed that HyNa-TM complex exhibited attractive bioavailability properties in the aqueous humor (AUC and Cmax significantly higher and later Tmax) compared to commercial TM eye-drops. Moreover, a more prolonged period of lowered intra-ocular pressure (10h) and a more intense hypotensive activity was observed after instillation of a drop of HyNa-TM as compared to the eye-drops. Such behavior was related to the longer pre-corneal residence times (400%) observed with HyNa-TM complex. No significant changes in rabbit transcorneal permeation were detected upon complexation. These results demonstrate that the ability of HyNa to modulate TM release, together with its mucoadhesiveness related to the viscosity, affected both the pharmacokinetic and pharmacodynamic parameters. The HyNa-TM complex is a potentially useful carrier for ocular drug delivery, which could improve the TM efficacy and reduce the frequency of administration to improve patient compliance. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery.

    Science.gov (United States)

    Qi, Dingqing; Gong, Feirong; Teng, Xin; Ma, Mingming; Wen, Huijing; Yuan, Weihao; Cheng, Yi; Lu, Chong

    2017-10-01

    Polymeric micelles are very attractive drug delivery systems for hydrophobic agents, owing to their readily tailorable chemical structure and ease for scale-up preparation. However, the intrinsic poor stability of drug-loaded micelles presents one of the major challenges for most micellar systems in the translation to clinical applications. In this study, a simple, well-defined, and easy-to-scale up 9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) containing lysine dendronized mPEG-PLA (mPEG-PLA-Lys(FB) 2 ) micellar formulation was designed and prepared for docetaxel (DTX) delivery, in an effort to improve the stability of the micelles, and its physicochemical properties, pharmacokinetics, and anti-tumor efficacy against SKOV-3 ovarian cancer were evaluated. MPEG-PLA-Lys(FB) 2 was synthesized via a three-step synthetic route, and it actively interacted with DTX in aqueous media to form stable micelles with small particle sizes (~17-19 nm) and narrow size distribution (PI PLA-Lys(FB) 2 micelles achieved delayed and sustained release manner of DTX in comparison with mPEG-PLA micelles. Further in vivo xenograft tumor model in nude mice DTX/mPEG-PLA-Lys(FB) 2 micelles demonstrated significantly higher inhibitory effect on tumor growth than the marketed formulation Taxotere. Thus, our system may hold promise as a simple and effective delivery system for DTX with a potential for translation into clinical study.

  1. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  2. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-03-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD- g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD- g-CS NPs vs. the classical ionic gelation method. New HA/β-CD- g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD- g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA): w(β-CD- g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD- g-CS NPs. Furthermore, the stability of β- CD- g-CS NPs and HA/β-CD- g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD- g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD- g-CS NPs. Finally, preliminary study of HA/β-CD- g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD- g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  3. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers.

    Science.gov (United States)

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Zhang, Yan-Dong; Tian, Jie-Sheng; Li, Ying

    2007-12-08

    Hepatocellular carcinoma (HCC) is the most common form of cancer although effective therapeutic strategy especially targeted therapy is lacking. We recently employed bacterial magnetosomes (BMs) as the magnetic-targeted drug carrier and found an antitumor effect of doxorubicin (DOX)-loaded BMs (DBMs) in EMT-6 and HL60 cell lines. The aim of this study was to evaluate the in vitro and in vivo anti-neoplastic effects of DBMs on hepatic cancer. DBMs, DOX and BMs displayed tumor suppression rates of 86.8%, 78.6% and 4.3%, respectively, in H22 cell-bearing mice. The mortality rates following administration of DBMs, DOX and BMs were 20%, 80% and 0%, respectively. Pathological examination of hearts and tumors revealed that both DBMs and DOX effectively inhibited tumor growth although DBMs displayed a much lower cardiac toxicity compared with DOX. The DBMs were cytotoxic to H22 cells manifested as inhibition of cell proliferation and c-myc expression, consistent with DOX. The IC(50) of DOX, DBMs and BMs in target cells were 5.309 +/- 0.010, 4.652 +/- 0.256 and 22.106 +/- 3.330 microg/ml, respectively. Our data revealed both in vitro and in vivo antitumor property of DBMs similar to that of DOX. More importantly, the adverse cardiac toxicity was significantly reduced in DBMs compared with DOX. Collectively, our study suggests the therapeutic potential of DBMs in target-therapy against liver cancer.

  4. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Beibei [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yuan, Yue, E-mail: hiyueyuan@163.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Yan, Yun [College of Chemistry and Molecular Engineering, Peking University, 202 Chenfu Road, Beijing 100871 (China); Zhou, Xiaoping [School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun 130021 (China); Li, Yue; Kan, Qiming [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China); Li, Sanming, E-mail: li_sanming@sina.com [School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016 (China)

    2017-06-01

    A novel bolaamphiphile surfactant N,N′-(dodecane-1, 12-diyl) bis (2,6-diaminohexanamide) (DADL) was designed and synthesized using L-lysine and 1,12-diaminododecane as the hydrophilic and hydrophobic part, respectively. After separation and purification, the structure of the synthetic bolaamphiphile surfactant was verified by FTIR, MS and {sup 1}H NMR. The synthetic bolaamphiphile was able to self-assemble to form vesicles. After formulation screening, vesicles loaded with 5-Fluorouracil (5-Fu) were prepared with Tween 60 and DADL by sonication and were examined by dynamic light scattering and transmission electron microscopy. Micro-FTIR was applied to investigate the conformation of the bola molecules within the vesicle membrane. The release profile of the vesicles showed a pH-sensitive and sustained release. No significant toxicity was observed in an in vitro cell viability assay. The antitumor efficacy of the 5-Fu-loaded vesicles on H{sub 22} tumor-bearing mice was remarkably high due to the EPR effects. These results show that our novel bolaamphiphile derived from lysine has excellent potential as a pH-sensitive drug carrier. - Highlights: • A novel bolaamphiphile molecule with lysine as hydrophilic part was synthesized. • The synthesized bolaamphiphile could self-assemble to form nano-sized vesicles. • The vesicles were pH-sensitive and have tumor-targeting potential.

  5. 4-Aminobenzoic Acid-Coated Maghemite Nanoparticles as Potential Anticancer Drug Magnetic Carriers: A Case Study on Highly Cytotoxic Cisplatin-Like Complexes Involving 7-Azaindoles

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-01-01

    Full Text Available This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2* of highly in vitro cytotoxic cis-[PtCl2(3Claza2] (1; 3Claza stands for 3-chloro-7-azaindole or cis-[PtCl2(5Braza2] (2; 5Braza stands for 5-bromo-7-azaindole, which were prepared by a silver(I ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

  6. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  7. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  8. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery.

    Science.gov (United States)

    Zhang, Wen-Jian; Hong, Chun-Yan; Pan, Cai-Yuan

    2016-09-12

    A highly efficient strategy, polymerization-induced self-assembly (PISA) for fabrication of the polymeric drug delivery systems in cancer chemotherapy is reported. Diblock prodrug copolymer, PEG-b-P(MEO2MA-co-CPTM) was used as the macro-RAFT agent to fabricate prodrug nanoparticles through PISA. The advantages of fabricating intelligent drug delivery system via this approach are as following: (1) Simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation in one-pot at relatively high concentration (100 mg/mL); (2) Almost complete monomer conversion allows direct application of the resultant prodrug nanoparticles without further purification; (3) Robust structures of the resultant prodrug nanoparticles, because the cross-linker was used as the comonomer, resulted in core-cross-linking simultaneously with the formation of the prodrug nanoparticles; (4) The drug content in the resultant prodrug nanoparticles can be accurately modulated just via adjusting the feed molar ratio of MEO2MA/CPTM in the synthesis of PEG-b-P(MEO2MA-co-CPTM). The prodrug nanoparticles with similar diameters but various drug contents were obtained using different prodrug macro-CTA. In consideration of the long-term biological toxicity, the prodrug nanoparticles with higher drug content exhibit more excellent anticancer efficiency due to that lower dosage of them are enough for effectively killing HeLa cells.

  9. Pictorial Superiority Effect

    Science.gov (United States)

    Nelson, Douglas L.; And Others

    1976-01-01

    Pictures generally show superior recognition relative to their verbal labels. This experiment was designed to link this pictorial superiority effect to sensory or meaning codes associated with the two types of symbols. (Editor)

  10. High-dose antibiotic therapy is superior to a 3-drug combination of prostanoids and lipid A derivative in protecting irradiated canines

    International Nuclear Information System (INIS)

    Kumar, K.S.; Srinivasan, V.; Toles, R.E.; Miner, V.L.; Jackson, W.E.; Seed, T.M.

    2002-01-01

    There is an urgent need to develop non-toxic radioprotectors. We tested the efficacy of a 3-drug combination (3-DC) of iloprost, misoprostol, and 3D-MPL (3-deacylated monophosphoryl lipid A) and the effects of postirradiation clinical support with high doses of antibiotics and blood transfusion. Canines were given 3-DC or the vehicle and exposed to 3.4 Gy or 4.1 Gy of 60 Co radiation. Canines irradiated at 4.1 Gy were also given clinical support, which consisted of blood transfusion and antibiotics (gentamicin, and cefoxitin or cephalexin). Peripheral blood cell profile and 60-day survival were used as indices of protection. At 3.4 Gy, 3-DC- or vehicle-treated canines without postirradiation clinical support survived only for 10 to 12 days. Fifty percent of the canines treated with 3-DC or vehicle and provided postirradiation clinical support survived 4.1-Gy irradiation. Survival of canines treated with vehicle before irradiation significantly correlated with postirradiation antibiotic treatments, but not with blood transfusion. The recovery profile of peripheral blood cells in 4.1 Gy-irradiated canines treated with vehicle and antibiotics was better than drug-treated canines. These results indicate that therapy with high doses of intramuscular aminoglycoside antibiotic (gentamicin) and an oral cephalosporin (cephalexin) enhanced survival of irradiated canines. Although blood transfusion correlated with survival of 3-DC treated canines, there were no additional survivors with 3-DC treated canines than the controls. (author)

  11. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  12. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  13. Drug-eluting stents appear superior to bare metal stents for vein-graft PCI in vessels up to a stent diameter of 4 mm

    Directory of Open Access Journals (Sweden)

    Oliver P. Guttmann

    2016-05-01

    Full Text Available BackgroundResearch trials have shown improved short-term outcome with drug-eluting stents (DES over bare metal stents (BMS in saphenous vein graft (SVG percutaneous coronary intervention (PCI, primarily by reducing target vessel revascularization (TVR for in-stent restenosis. We compared the outcomes in patients undergoing SVG stent implantation treated with DES or BMS. In exploratory analyses we investigated the influence of stent generation and diameter.MethodsData were obtained from a prospective database of 657 patients who underwent PCI for SVG lesions between 2003 and 2011. A total of 344 patients had PCI with BMS and 313 with DES. Propensity scores were developed based on 15 observed baseline covariates in a logistic regression model with stent type as the dependent variable. The nearest-neighbour-matching algorithm with Greedy 5-1 Digit Matching was used to produce two patient cohorts of 313 patients each. We assessed major adverse cardiac events (MACE out to a median of 3.3 years (interquartile range: 2.1-4.1. MACE was defined as all-cause mortality, myocardial infarction (MI, TVR and stroke.ResultsThere was a significant difference in MACE between the two groups in favour of DES (17.9% DES vs. 31.2% BMS group; p = 0.0017 over the 5-year follow-up period. MACE was driven by increased TVR in the BMS group. There was no difference in death, MI or stroke. Adjusted Cox analysis confirmed a decreased risk of MACE for DES compared with BMS 0.75 (95% confidence interval (CI 0.52-0.94, with no difference in the hazard of all-cause mortality (hazard ratio: 1.08; 95% CI: 0.77-1.68. However, when looking at stent diameters greater than 4 mm, no difference was seen in MACE rates between BMS and DES.ConclusionsOverall in our cohort of patients who had PCI for SVG disease, DES use resulted in lower MACE rates compared with BMS over a 5-year follow-up period; however, for stent diameters over 4 mm no difference in MACE rates was seen.

  14. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  15. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  16. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  17. Superior Hiking Trail Facilities

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  18. Superior Hiking Trail

    Data.gov (United States)

    Minnesota Department of Natural Resources — Superior Hiking Trail main trail, spurs, and camp spurs for completed trail throughout Cook, Lake, St. Louis and Carlton counties. These data were collected with...

  19. Alternate superior Julia sets

    International Nuclear Information System (INIS)

    Yadav, Anju; Rani, Mamta

    2015-01-01

    Alternate Julia sets have been studied in Picard iterative procedures. The purpose of this paper is to study the quadratic and cubic maps using superior iterates to obtain Julia sets with different alternate structures. Analytically, graphically and computationally it has been shown that alternate superior Julia sets can be connected, disconnected and totally disconnected, and also fattier than the corresponding alternate Julia sets. A few examples have been studied by applying different type of alternate structures

  20. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2017-06-30

    Lipid-based formulations (LBFs) are a popular strategy for enhancing the gastrointestinal solubilization and absorption of poorly water-soluble drugs. In light of this, montmorillonite-lipid hybrid (MLH) particles, composed of medium-chain triglycerides, lecithin and montmorillonite clay platelets, have been developed as a novel solid-state LBF. Owing to the unique charge properties of montmorillonite, whereby the clay platelet surfaces carry a permanent negative charge and the platelet edges carry a pH-dependent charge, three model poorly water-soluble drugs with different charge properties; blonanserin (weak base, pKa 7.7), ibuprofen (weak acid, pKa 4.5) and fenofibrate (neutral), were formulated as MLH particles and their performance during biorelevant in vitro lipolysis at pH 7.5 was investigated. For blonanserin, drug solubilization during in vitro lipolysis was significantly reduced 3.4-fold and 3.2-fold for MLH particles in comparison to a control lipid solution and silica-lipid hybrid (SLH) particles, respectively. It was hypothesized that strong electrostatic interactions between the anionic montmorillonite platelet surfaces and cationic blonanserin molecules were responsible for the inferior performance of MLH particles. In contrast, no significant influence on drug solubilization was observed for ibuprofen- and fenofibrate-loaded MLH particles. The results of the current study indicate that whilst MLH particles are a promising novel formulation strategy for poorly water-soluble drugs, drug ionization tendency and the potential for drug-clay interactions must be taken into consideration to ensure an appropriate performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    Science.gov (United States)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.

  2. Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers.

    Science.gov (United States)

    Di Meo, Chiara; Montanari, Elita; Manzi, Lucio; Villani, Claudio; Coviello, Tommasina; Matricardi, Pietro

    2015-01-22

    In this work we describe a new nanohydrogel platform, based on polysaccharides modified with the hydrophobic and fluorescent molecule riboflavin tetrabutyrate, which leads to innovative structures useful for drug delivery applications. Hyaluronic acid and pullulan were chosen as representative of anionic and neutral polysaccharides, respectively, and the bromohexyl derivative of riboflavin tetrabutyrate was chemically linked to these polymer chains. Because of such derivatization, polymer chains were able to self-assemble in aqueous environment thus forming nanohydrogels, with mean diameters of about 312 and 210 nm, for hyaluronan and pullulan, respectively. These new nanohydrogels showed low polydispersity index, and negative ζ-potential. Moreover, the nanohydrogels, which can be easily loaded with model drugs, showed long-term stability in water and physiological conditions and excellent cytocompatibility. All these properties allow to consider these intrinsically fluorescent nanohydrogels suitable for the formulation of innovative drug dosage forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Albumin modified with mannose 6-phosphate : A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells

    NARCIS (Netherlands)

    Beljaars, Leonie; Molema, Ingrid; Weert, B; Olinga, Peter; Groothuis, Geny; Meijer, D.K F; Poelstra, Klaas

    The hallmark of liver fibrosis is an increased extracellular matrix deposition, caused by an activation of hepatic stellate cells (HSC). Therefore, this cell type is an important target for pharmacotherapeutic intervention. Antifibrotic drugs are not efficiently taken up by HSC or may produce

  4. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    Directory of Open Access Journals (Sweden)

    Wang Y

    2013-10-01

    Full Text Available Ying Wang, Qinfu Zhao, Yanchen Hu, Lizhang Sun, Ling Bai, Tongying Jiang, Siling WangDepartment of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People’s Republic of ChinaAbstract: The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15 with well-ordered two dimensional (2D cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC via the solvent deposition method. Scanning electron microscopy (SEM, N2 adsorption, differential scanning calorimetry (DSC, and X-ray diffraction (XRD were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41 has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and Cell Counting Kit (CCK-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous

  5. Enhanced skin penetration of lidocaine through encapsulation into nanoethosomes and nanostructured lipid carriers: a comparative study.

    Science.gov (United States)

    Babaei, S; Ghanbarzadeh, S; Adib, Z M; Kouhsoltani, M; Davaran, S; Hamishehkar, H

    2016-05-01

    Lipid based nanoparticles have become a major research object in topical drug delivery to enable drugs to pass the stratum corneum and reach the desired skin layer. The present investigation deals with the encapsulation of lidoacine into nanostructured lipid carriers (NLCs) and nanoethosomes for improving its dermal delivery and consequently local anesthetic efficacy. Concurrently these two topical delivery systems were compared. Lidocaine-loaded NLCs and nanoethosomes were characterized by various techniques and used for an in vitro skin penetration study using excised rat skin and Franz diffusion cells. The nanoparticles were tracked in the skin by following the Rhodamine-labled nanocarriers under fluorescent microscopy. Optimized lidocaine-loaded NLCs (size 96 nm, zeta potential -13.7 mV, encapsulation efficiency (EE) % 69.86% and loading capacity (LC) % 10.47%) and nanoethosomes (size 105.4 nm, zeta potential -33.6 mV, EE 40.14% and LC 8.02%) were chosen for a skin drug delivery study. Higher skin drug deposition of NLCs and nanoethosomal formulations compared to lidocaine hydroalcoholic solution represented a better localization of the drug in the skin. NLC formulation showed the lowest entered drug in the receptor phase of Franz diffusion cell in comparison with nanoethosomes and hydroalcoholic solution confirming the highest skin accumulation of drug. Both colloidal systems showed superiority over the drug solution for dermal delivery of lidocaine, however, NLC exhibited more promising characteristics than nanoethosomes regarding drug loading and skin targeted delivery.

  6. Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorod-carbon nanocapsules during thermo-chemotherapy

    Science.gov (United States)

    Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong

    2016-04-01

    Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and

  7. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier.

    Science.gov (United States)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the -NH2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A new cell line-based coculture model of the human air-blood barrier to evaluate the interaction with aerosolized drug carriers

    OpenAIRE

    Kletting, Stephanie

    2016-01-01

    Besides reducing animal testing, in vitro models allow for the pre-screening of new drug candidates in terms of safety and efficacy before they enter clinical trials. To date, models mimicking the deep lung show limitations such as cellular origin or lack of appropriate barrier properties. Therefore, the focus of this work was on the establishment of a robust and reproducible cell line-based coculture model that reflects the two major barrier structures present in the alveolar region, namely ...

  9. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    Science.gov (United States)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  10. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  11. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  12. Self and Superior Assessment.

    Science.gov (United States)

    1986-06-01

    model of the self-evaluation process as it differs from the evaluation process used by superiors. Symbolic Interactionism One view of self assessment is...supplied by the symbolic interactionists (Cooley, 1902; Head, 1934), who state that self perceptions are generated largely from individuals...disagreements remained even immediately after an appraisal interview in which a great deal of feedback was given. Research on the symbolic interactionist

  13. Cyclosporine A loaded electrospun poly(D,L-lactic acid)/poly(ethylene glycol) nanofibers: drug carriers utilizable in local immunosuppression

    Czech Academy of Sciences Publication Activity Database

    Širc, Jakub; Hampejsová, Z.; Trnovská, J.; Kozlík, P.; Hrib, Jakub; Hobzová, Radka; Zajícová, Alena; Holáň, Vladimír; Bosáková, Z.

    2017-01-01

    Roč. 34, č. 7 (2017), s. 1391-1401 ISSN 0724-8741 R&D Projects: GA ČR(CZ) GA16-04863S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : cyclosporine A * drug release kinetics * LC-MS/MS Subject RIV: CD - Macromolecular Chemistry; JJ - Other Materials (UEM-P) OBOR OECD: Biochemical research methods; Nano-materials (production and properties) (UEM-P) Impact factor: 3.002, year: 2016

  14. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation.

    Science.gov (United States)

    Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep

    2015-11-30

    In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Superior facet syndrome

    International Nuclear Information System (INIS)

    Kubo, Yoshichika; Igarashi, Seishi; Koyama, Tsunemaro

    1985-01-01

    Sciatica caused by root entrapment in the lateral recess was named superior facet syndrome by Epstein in 1972. Few reports on this subject based on large numbers of cases have been documented to date. Of the patients with sciatica, 32 patients were diagnosed to have root entrapment at the lateral recess L 5 or/and S 1 lumbar spine. Out of 32 patients, 20 patients were operated on and the lateral entrapment was recognized in all of surgical cases. Neuroradiological findings, especially of metrizamide CT (met. CT), were documented in detail. Thirty two patients were classified in three types according to radiological findings. They were congenital or developmental, degenerative, and combined type, respectively, Fourteen cases belonged to the congenital type, 13 to the degenerative and 5 to the combined type. Each group had the mean ages of 23.4, 53.8, and 36.8 years old, respectively. Of 32 cases the entrapment occured in 47 L 5 roots and 11 S 1 roots. There was no remarkable laterality. In operation the unroofing of the lateral recess were done and the sciatica subsided postoperatively in all of surgical cases. Met. CT revealed extreme medial protrusion of the superior articular joint in 18 of 24 cases(75%) and none filling of the root in the lateral recess in 21 of 24 cases (87.5%). In the degenerative type, met. CT showed some degenerative changes that were hypertrophy or deformity of the articular joints and spur formation of the vertebral body. In contrast to met. CT, metrizamide myelography revealed only slight changes, which were poor filling of the root before it turned out the pedicle of lateral compression of the root. In plain films or lumbar spine articular joints at Lsub(4/5) were formed in coronal plane in 69% of cases of the L 5 root entrapment. Met. CT using ReView technique was of great diagnostic value in superior facet syndrome. (author)

  16. A Smart pH-responsive Nano-Carrier as a Drug Delivery System: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release studies of an anti-cancer drug.

    Science.gov (United States)

    Abbaszad Rafi, Abdolrahim; Mahkam, Mehrdad; Davaran, Soodabeh; Hamishehkar, Hamed

    2016-10-10

    A smart pH-responsive drug nano-carrier for controlled release of anti-cancer therapeutics was developed through a facile route. The nano-carrier consisted of two main parts: first, the nano-container part (that mesoporous silica nanoparticles (MCM-41) were selected for this aim); and second, pH-sensitive gatekeepers (that a pH-sensitive polymer, Poly4-vinylpyridine, played this role). In the first step, MCM-41 was synthesized via template assisted sol-gel process. In the second step, polymerizable functional groups were attached onto pore entrances rather than inside walls. In the third step, polymeric gatekeepers were introduced onto pore entrances via precipitation polymerization of functionalized MCM-41 with monomers. Different methods and analysis, such as Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Powder Diffraction (XRD), Thermo-Gravimetric Analysis (TGA), Energy-Dispersive X-ray Spectroscopy (EDX), Zeta Potentials, Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscopy (TEM) were employed to approve the successful attachment of gatekeepers. Furthermore, the release studies of methotroxate (MTX), an anti-cancer drug, were performed in different media (pH4, 5.8 and 7.4) at 37±1°C. The release profiles and curves show that the release rates are completely pH-dependent and it proceeds with a decrease in pH. It is concluded that in the higher pH the gatekeepers are in their close state, but they switch to the open state as a consequence of repulsive forces between positively charged polymer chains appear in acidic media. The results suggest that this smart nano-carrier can be considered as an appropriate candidate to deliver therapeutics to cancerous tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Lihua Zhang,1 Wufu Zhu,2 Qisi Lin,1 Jin Han,1 Liqun Jiang,1 Yanzhuo Zhang1,3 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China; 2School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China Abstract: The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC based amorphous solid dispersion (ASD can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM, dynamic light scattering (DLS, powder X-ray diffraction (PXRD, and differential scanning calorimetry (DSC. Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (Cmax and the area under the mean plasma concentration–time curve (AUC[0→48] of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly

  18. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells.

    Science.gov (United States)

    Zhu, Yu-Da; Chen, Su-Ping; Zhao, Huan; Yang, You; Chen, Xiao-Qin; Sun, Jing; Fan, Hong-Song; Zhang, Xing-Dong

    2016-12-21

    A medical nanoplatform with small size, low cost, biocompatibility, good biodegradability, and, in particular, multifunctionality has attracted much attention in the exploration of novel therapeutic methodologies. As an emerging material of self-assembled porous structure, metal-organic frameworks (MOFs) have high expectations because of their special properties compared to traditional porous materials. Therefore, integration of MOFs and functional materials is leading to the creation of new multifunctional composites/hybrids. Photothermal therapy (PTT), using near-IR (NIR) laser-absorbing nanomaterials as PTT agents, has shown encouraging therapeutic effects to photothermally ablate tumors. However, the most of widely used PTT agents are inorganic materials and nonbiodegradable. Herein, uniform polypyrrole (PPy) nanoparticles (NPs) with good biodegradability were synthesized by a microemulsion method. The PPy NPs were further coated with the mesoporous iron-based MOF structure MIL-100 by interaction between PPy NPs and MIL-100 precursors at room temperature. As a multifunctional nanoplatform, an anticancer drug could easily be loaded into the mesopores of the MIL-100 shell. The PPy core, as an organic photothermal agent, is able to photothermally ablate cancer cells and improve the efficacy of chemotherapy under NIR irradiation. The composites showed an outstanding in vivo synergistic anticancer capacity. Our work could encourage further study in the construction of a synergetic system using MOFs and organic PTT agents.

  19. Information Superiority through Data Warehousing

    National Research Council Canada - National Science Library

    Warner, Neil

    2001-01-01

    .... A precursor to a knowledge edge is Information Superiority. Within most current Command Support Systems minimal integration and fusion of data is undertaken to provide the basis of information superiority...

  20. Direct implantation of rapamycin-eluting stents with bioresorbable drug carrier technology utilising the Svelte coronary stent-on-a-wire: the DIRECT II study.

    Science.gov (United States)

    Verheye, Stefan; Khattab, Ahmed A; Carrie, Didier; Stella, Pieter; Slagboom, Ton; Bartunek, Jozef; Onuma, Yoshinobu; Serruys, Patrick W

    2016-08-05

    Our aim was to demonstrate the safety and efficacy of the Svelte sirolimus-eluting coronary stent-on-a-wire Integrated Delivery System (IDS) with bioresorbable drug coating compared to the Resolute Integrity zotarolimus-eluting stent with durable polymer in patients with de novo coronary artery lesions. Direct stenting, particularly in conjunction with transradial intervention (TRI), has been associated with reduced bleeding complications, procedure time, radiation exposure and contrast administration compared to conventional stenting with wiring and predilatation. The low-profile Svelte IDS is designed to facilitate TRI and direct stenting, reducing the number of procedural steps, time and cost associated with coronary stenting. DIRECT II was a prospective, multicentre trial which enrolled 159 patients to establish non-inferiority of the Svelte IDS versus Resolute Integrity using a 2:1 randomisation. The primary endpoint was angiographic in-stent late lumen loss (LLL) at six months. Target vessel failure (TVF), as well as secondary clinical endpoints, will be assessed annually up to five years. At six months, in-stent LLL was 0.09±0.31 mm in the Svelte IDS group compared to 0.13±0.27 mm in the Resolute Integrity group (p<0.001 for non-inferiority). TVF at one year was similar across the Svelte IDS and Resolute Integrity groups (6.5% vs. 9.8%, respectively). DIRECT II demonstrated the non-inferiority of the Svelte IDS to Resolute Integrity with respect to in-stent LLL at six months. Clinical outcomes at one year were comparable between the two groups.

  1. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs.

    Science.gov (United States)

    Zhang, Lihua; Zhu, Wufu; Lin, Qisi; Han, Jin; Jiang, Liqun; Zhang, Yanzhuo

    2015-01-01

    The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC) based amorphous solid dispersion (ASD) can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB) was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM), dynamic light scattering (DLS), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (C max) and the area under the mean plasma concentration-time curve (AUC[0→48]) of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly demonstrate that HP-β-CD/CC based porous ASD is a promising formulation approach to improve the aqueous solubility and the in vivo absorption performance of a water-insoluble compound like IRB.

  2. Method for manufacturing carrier containing e.g. proteins for human during oral drug delivery operation for food and drug administration application in pharmaceutical industry, involves providing active ingredient to core layer

    DEFF Research Database (Denmark)

    2015-01-01

    NOVELTY - The method involves preparing a multi-layered film comprising a core layer and a barrier layer, where the core layer comprises active ingredient. The multi-layered film is subjected to a hot embossing step using an embossing stamp including protrusions that allows for generation...... delivery operation for a food and drug administration (FDA) application in a pharmaceutical industry. ADVANTAGE - The method enables allowing an individual micro-structure stuck in an embossing stamp to be demolded under the conditions such that demolding operation is done by treating elastically...

  3. Sobredentadura total superior implantosoportada

    Directory of Open Access Journals (Sweden)

    Luis Orlando Rodríguez García

    2010-06-01

    Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.

  4. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  6. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2013-11-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  7. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2012-07-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  8. HTLV-I carrier with unusual brain MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Yata, Shinsaku; Ogawa, Toshihide; Sugihara, Shuji; Matsusue, Eiji; Fujii, Shinya; Kinoshita, Toshibumi [Tottori University, Department of Pathophysiological and Therapeutic Science, Yonago (Japan); Faculty of Medicine, Tottori University, Yonago (Japan)

    2004-09-01

    We describe unusual brain MR imaging findings in a patient who is an HTLV-I carrier without myelopathy. T2-weighted MR images showed hyperintense signal abnormalities in the pyramidal tract, superior and middle cerebellar peduncles, and decussation of the superior cerebellar peduncles, in addition to subcortical white matter involvement. Diffusion-weighted images also showed hyperintense signal abnormalities in the same regions by T2 shine-through effect. (orig.)

  9. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  10. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama

    2009-08-01

    Full Text Available We have evaluated the potential use of various polyamidoamine (PAMAM dendrimer [dendrimer, generation (G 2-4] conjugates with cyclodextrins (CyDs as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3 conjugate with α-CyD having an average degree of substitution (DS of 2.4 [α-CDE (G3, DS2] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2] was found to possess asialoglycoprotein receptor (AgpR-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol-appended α-CDE [Fol-PαC (G3] and revealed that Fol-PαC (G3 imparted folate receptor (FR-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.

  12. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    Matsumura, K.; Nakano, I.

    1989-01-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  13. Herbal carrier-based floating microparticles of diltiazem ...

    African Journals Online (AJOL)

    Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...

  14. Bioactive albumin-based carriers for tumour chemotherapy.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Ikram Ullah; Hussain, Talib; Alamgeer; Serra, Christophe A; Rizvi, Syed A A; Gerber, Minja; du Plessis, Jeanetta

    2014-01-01

    Proteins are posed as the natural counterpart of the synthetic polymers for the development of drug delivery systems and few of them, have been regarded safe for drug delivery purposes by the United States Food and Drug Administration (FDA). Serum albumin is the most abundant protein in human blood. Interest in the exploration of pharmaceutical applications of albumin-based drug delivery carriers, especially for the delivery of chemotherapeutic agents, has increased in recent years. Albumin has several advantages over synthetic polymers, as it is biocompatible, biodegradable, has low cytotoxicity and has an excellent binding capacity with various drugs. Micro- and nano-carriers not only protect active pharmaceutical ingredients against degradation, but also offer a prolonged release of drugs in a controlled fashion. Since existing tumour chemotherapeutic agents neither target tumour cells, nor are they specific to tumour cells, a slow release of drugs from carriers would be beneficial in targeting carcinogenic cells intracellularly. This article aims at providing an overview of pharmaceutical applications of albumin as a drug delivery carrier in tumour chemotherapy.

  15. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand

    2010-01-01

    index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  16. Willis H Carrier

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. Willis H. Carrier - Father of Air Conditioning. R V Simha. General Article Volume 17 Issue 2 February 2012 pp 117-138. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/02/0117-0138 ...

  17. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  18. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  19. Writing superiority in cued recall

    Directory of Open Access Journals (Sweden)

    Carina eFueller

    2013-10-01

    Full Text Available In list learning paradigms with free recall, written recall has been found to be less susceptible to intrusions of related concepts than spoken recall when the list items had been visually presented. This effect has been ascribed to the use of stored orthographic representations from the study phase during written recall (Kellogg, 2001. In other memory retrieval paradigms, either better recall for modality-congruent items or an input-independent writing superiority effect have been found (Grabowski, 2005. In a series of four experiments using a paired associate (PA learning paradigm we tested (a whether output modality effects on verbal recall can be replicated in a paradigm that does not involve the rejection of semantically related intrusion words, (b whether a possible superiority for written recall was due to a slower response onset for writing as compared to speaking in immediate recall, and (c whether the performance in PA word recall was correlated with performance in an additional episodic memory task. We found better written recall in the first half of the recall phase, irrespective of the modality in which the material was presented upon encoding. An explanation based on longer response latencies for writing and hence more time for retrieval could be ruled out by showing that the effect persisted in delayed response versions of the task. Although there was some evidence that stored additional episodic information may contribute to the successful retrieval of associate words, this evidence was only found in the immediate response experiments and hence is most likely independent from the observed output modality effect. In sum, our results from a PA learning paradigm suggest that superior performance for written versus spoken recall cannot be (solely explained in terms of additional access to stored orthographic representations from the encoding phase. Our findings rather suggest a general writing-superiority effect at the time of memory

  20. Prosopomorphic vessels from Moesia Superior

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana

    2008-01-01

    Full Text Available The prosopomorphic vessels from Moesia Superior had the form of beakers varying in outline but similar in size. They were wheel-thrown, mould-made or manufactured by using a combination of wheel-throwing and mould-made appliqués. Given that face vessels are considerably scarcer than other kinds of pottery, more than fifty finds from Moesia Superior make an enviable collection. In this and other provinces face vessels have been recovered from military camps, civilian settlements and necropolises, which suggests that they served more than one purpose. It is generally accepted that the faces-masks gave a protective role to the vessels, be it to protect the deceased or the family, their house and possessions. More than forty of all known finds from Moesia Superior come from Viminacium, a half of that number from necropolises. Although tangible evidence is lacking, there must have been several local workshops producing face vessels. The number and technological characteristics of the discovered vessels suggest that one of the workshops is likely to have been at Viminacium, an important pottery-making centre in the second and third centuries.

  1. Multiseed liposomal drug delivery system using micelle gradient as driving force to improve amphiphilic drug retention and its anti-tumor efficacy.

    Science.gov (United States)

    Zhang, Wenli; Li, Caibin; Jin, Ya; Liu, Xinyue; Wang, Zhiyu; Shaw, John P; Baguley, Bruce C; Wu, Zimei; Liu, Jianping

    2018-11-01

    To improve drug retention in carriers for amphiphilic asulacrine (ASL), a novel active loading method using micelle gradient was developed to fabricate the ASL-loaded multiseed liposomes (ASL-ML). The empty ML were prepared by hydrating a thin film with empty micelles. Then the micelles in liposomal compartment acting as 'micelle pool' drove the drug to be loaded after the outer micelles were removed. Some reasoning studies including critical micelle concentration (CMC) determination, influencing factors tests on entrapment efficiency (EE), structure visualization, and drug release were carried out to explore the mechanism of active loading, ASL location, and the structure of ASL-ML. Comparisons were made between pre-loading and active loading method. Finally, the extended drug retention capacity of ML was evaluated through pharmacokinetic, drug tissue irritancy, and in vivo anti-tumor activity studies. Comprehensive results from fluorescent and transmission electron microscope (TEM) observation, encapsulation efficiency (EE) comparison, and release studies demonstrated the formation of ML-shell structure for ASL-ML without inter-carrier fusion. The location of drug mainly in inner micelles as well as the superiority of post-loading to the pre-loading method , in which drug in micelles shifted onto the bilayer membrane was an additional positive of this delivery system. It was observed that the drug amphiphilicity and interaction of micelles with drug were the two prerequisites for this active loading method. The extended retention capacity of ML has been verified through the prolonged half-life, reduced paw-lick responses in rats, and enhanced tumor inhibition in model mice. In conclusion, ASL-ML prepared by active loading method can effectively load drug into micelles with expected structure and improve drug retention.

  2. Selective amygdalohippocampectomy via trans-superior temporal gyrus keyhole approach.

    Science.gov (United States)

    Mathon, Bertrand; Clemenceau, Stéphane

    2016-04-01

    Hippocampal sclerosis is the most common cause of drug-resistant epilepsy amenable for surgical treatment and seizure control. The rationale of the selective amygdalohippocampectomy is to spare cerebral tissue not included in the seizure generator. Describe the selective amygdalohippocampectomy through the trans-superior temporal gyrus keyhole approach. Selective amygdalohippocampectomy for temporal lobe epilepsy is performed when the data (semiology, neuroimaging, electroencephalography) point to the mesial temporal structures. The trans-superior temporal gyrus keyhole approach is a minimally invasive and safe technique that allows disconnection of the temporal stem and resection of temporomesial structures.

  3. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Corrier, D.E.

    1988-01-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated [ 14 C]sucrose, [ 3 H]inulin, and 51 Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated [ 3 H]inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs

  4. Motor carrier evaluation program

    International Nuclear Information System (INIS)

    Portsmouth, James

    1992-01-01

    The U.S. Department of Energy-Headquarters (DOE-HQ), Transportation Management Program (TMP) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned materials. The DOE-TMP has established an excellent safety record in the transportation of hazardous materials including radioactive materials and radioactive wastes. This safety record can be maintained only through continued diligence and sustained effort on the part of the DOE-TMP, its field offices, and the contractors' organizations. Key elements in the DOE'S effective hazardous and radioactive materials shipping program are (1) integrity of packages, (2) strict adherence to regulations and procedures, (3) trained personnel, (4) complete management support, and (5) use of the best commercial carriers. The DOE Motor Carrier Evaluation Program was developed to better define the criteria and methodology needed to identify motor carriers for use in the transportation of Highway Route Controlled Quantities (HRCQ), Truck Load (TL) quantities of radioactive materials, hazardous materials and waste. (author)

  5. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  6. Double elevator weakening for unilateral congenital superior oblique palsy with ipsilateral superior rectus contracture and lax superior oblique tendon.

    Science.gov (United States)

    Khan, Arif O

    2012-06-01

    In unilateral congenital superior oblique palsy, a large hypertropia is sometimes associated with ipsilateral contracture of the superior rectus muscle and apparent overaction of the contralateral superior oblique. Ipsilateral double elevator weakening is one surgical approach; however, this procedure could compromise supraduction. We report a series of three consecutive patients who underwent ipsilateral superior rectus and inferior oblique recessions for unilateral superior oblique palsy. Intraoperatively, all three patients were found to have a lax ipsilateral superior oblique tendon. Postoperatively, all three patients had satisfactory correction of the hypertropia and abnormal head position with minimal supraduction defect. This procedure seems to be an acceptable initial surgical option for treating congenital superior oblique muscle palsy with ipsilateral contracture of the superior rectus muscle, even when the ipsilateral superior oblique tendon is lax. Copyright © 2012 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  7. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  8. The usefulness of myoglobin radioimmunoassays to diagnose and monitor hereditary forms of muscular dystrophy linked to the X-chromosome and to identify its carriers

    International Nuclear Information System (INIS)

    Heim, L.

    1985-01-01

    A total of 376 children suffering from malignant muscular dystrophy (DMD), which is transmitted by recessive genes, were subjected to 478 radioimmunological tests for the presence of myoglobin (Mb) in the serum and found to be positive in 98% of the cases. There was a correlation between the Mb values and certain enzymes produced in the muscles, in particular CK and LDH, whereas no such link could be established regarding the age of the patients. The increases in the Mb values and related parameters seen in benign forms of muscular dystrophy failed to attain statistical significance, nor did the Mb values determined within the individual age groups permit any statistically relevant conclusions to be drawn as to the therapeutic success. Out of 58 proven carriers 73% were positive on the Mb tests, as compared to no more than 10% of the suspected carriers (the CK values remaining within normal limits). Among suspected juvenile carriers (sisters of DMD patients), increased Mb values were more frequent (25%) than increased CK values (12%). Within the group of suspected carriers there was a significant correlation between the increases in Mb and CK, which was absent in the proven carriers. One asset of radioimmunological tests to detect Mb in the serum is their superior sensitivity. They may yield valuable information in addition to that provided by muscle enzyme measurements, in particular in specific situations like those occurring during follow-up observations, in the assessment of drugs acting on muscular permeability and in the identification of carriers of either type of disease. (TRV) [de

  9. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  10. Understanding interparticle interactions in dry powder inhalation : glass beads as an innovative model carrier system

    OpenAIRE

    Renner, Niklas Ludwig

    2017-01-01

    Delivery of drugs via the pulmonary route is the most common approach to treat diseases of the respiratory system, e.g. asthma bronchiale. Here, the active pharmaceutical ingredient is generally formulated in a so-called interactive mixture with a coarse and inert carrier. This enhances flowability and therefore dose metering and dispersibility. Interparticle interactions between carrier and drug govern aerosolisation behaviour of the blend and consequently the efficacy of the drug deposition...

  11. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...... in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... the experience of all users and not just the few best ones; while overall cell capacity is not compromised....

  12. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  13. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy.

    Science.gov (United States)

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery.

  14. Selective amygdalohippocampectomy via trans-superior temporal gyrus keyhole approach

    OpenAIRE

    Mathon , Bertrand; Clemenceau , Stéphane

    2016-01-01

    International audience; BackgroundHippocampal sclerosis is the most common cause of drug-resistant epilepsy amenable for surgical treatment and seizure control. The rationale of the selective amygdalohippocampectomy is to spare cerebral tissue not included in the seizure generator.MethodDescribe the selective amygdalohippocampectomy through the trans-superior temporal gyrus keyhole approach.ConclusionSelective amygdalohippocampectomy for temporal lobe epilepsy is performed when the data (semi...

  15. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  16. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  17. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  18. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  19. Protein-based nanostructures as carriers for photo-physically active molecules in biosystems

    OpenAIRE

    Delcanale, Pietro

    2017-01-01

    In nature, many proteins function as carriers, being able to bind, transport and possibly release a ligand within a biological system. Protein-based carriers are interesting systems for drug delivery, with the remarkable advantage of being water-soluble and, as inherent components of biosystems, highly bio-compatible. This work focuses on the use of protein-based carriers for the delivery of hydrophobic photo-physically active molecules, whose structure and chemical properties lead to spontan...

  20. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  1. Escuela Superior de Palos Verdes

    Directory of Open Access Journals (Sweden)

    Neutra, Richard J.

    1965-02-01

    Full Text Available Before initiating the building operations for the «Palos Verdes» School, the site was divided into two large horizontal surfaces, at different levels. The lower one served to accommodate the playing fields, a car park, the physical training building, and shop and ancillary buildings. On the higher of these two surfaces, and to the West of the access road, there is a car park and also the building and plot of ground devoted to agricultural technology, as well as the literary studies and general purpose buildings. As a complement to these, there is a series of blocks, arranged in parallel rows, which house the administrative offices, the art school, the craft's school, the general classrooms, and those devoted to higher education. The fascinating aspect of this school is the outstanding penetration of the architect's mind into the essential function of the project. Its most evident merit is the sense of comradeship and harmony that permeates the whole architectural manifold.Antes de construir el complejo escolar «Palos Verdes» se comenzó por crear, en el terreno, dos grandes mesetas a niveles diferentes. Sobre el inferior se organizaron: los campos de juegos, de deportes, un aparcamiento, el edificio para educación física y los destinados a tiendas y servicios. Sobre la meseta superior, al oeste de la vía de acceso, se dispuso un aparcamiento y el edificio y campo para adiestramiento agrícola; al este, otro aparcamiento, el edificio dedicado a materias literarias, y el destinado a usos múltiples. Completan las instalaciones de la escuela una serie de bloques paralelos: la administración, la escuela de arte, las clases de trabajos manuales, las aulas de enseñanzas generales, y las de los cursos superiores. Lo fascinante de este complejo escolar es la perfecta y magistral compenetración del arquitecto con el tema proyectado, y su mayor mérito, la sensación de cordialidad y armonía con el ambiente.

  2. Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Vishnevetskaya, N. S.; Niebuur, B.-J.; Koziolová, Eva; Lomkova, Ekaterina A.; Chytil, Petr; Etrych, Tomáš; Papadakis, C. M.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1313-1325 ISSN 0303-402X R&D Projects: GA MZd(CZ) NV16-28600A; GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : drug delivery * HPMA copolymers * fluorescence correlation spectroscopy Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  3. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  4. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    International Nuclear Information System (INIS)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  5. Sobredentadura total superior implantosoportada Superior total overdenture on implants

    Directory of Open Access Journals (Sweden)

    Luis Orlando Rodríguez García

    2010-06-01

    Full Text Available Se presenta un caso de un paciente desdentado total superior, rehabilitado en la consulta de implantología de la Clínica "Pedro Ortiz" del municipio Habana del Este en Ciudad de La Habana, Cuba, en el año 2009, mediante prótesis sobre implantes osteointegrados, técnica que se ha incorporado a la práctica estomatológica en Cuba como alternativa al tratamiento convencional en los pacientes desdentados totales. Se siguió un protocolo que comprendió una fase quirúrgica, procedimiento con o sin realización de colgajo y carga precoz o inmediata. Se presenta un paciente masculino de 56 años de edad, que acudió a la consulta multidisciplinaria, preocupado, porque se le habían elaborado tres prótesis en los últimos dos años y ninguna reunía los requisitos de retención que él necesitaba para sentirse seguro y cómodo con las mismas. El resultado final fue la satisfacción total del paciente, con el mejoramiento de la calidad estética y funcional.This is the case of a total maxilla edentulous patient seen in consultation of the "Pedro Ortíz" Clinic Implant of Habana del Este municipality in 2009 and con rehabilitation by prosthesis over osteointegration implants added to stomatology practice in Cuba as an alternative to conventional treatment in patients totally edentulous. We follow a protocol including a surgery or surgical phase, technique without or with flap creation and early or immediate load. This is a male patient aged 56 came to our multidisciplinary consultation worried because he had three prostheses in last two years and any fulfilled the requirements of retention to feel safe and comfortable with prostheses. The final result was the total satisfaction of rehabilitated patient improving its aesthetic and functional quality.

  6. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  7. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs.

    Science.gov (United States)

    Pashirova, Tatiana N; Lukashenko, Svetlana S; Zakharov, Sergey V; Voloshina, Alexandra D; Zhiltsova, Elena P; Zobov, Vladimir V; Souto, Eliana B; Zakharova, Lucia Ya

    2015-03-01

    Aggregation properties of mono (mono-CS) and dicationic (di-CS) surfactants, namely quaternised derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO), have been evaluated in water and in nutrient broths of different pH, i.e. in Hottinger broth (рН=7.2) and Sabouraud dextrose broth (рН=5.6). Aggregation capacity of surfactants was shown to be responsible for the solubilization properties of a complex composed of a hydrophobic probe (Sudan I) and a selected drug (quercetin), contributing to the antimicrobial activity of this surfactant system. The effect of N-methyl-d-glucamine (NmDg) additive on the antimicrobial activity of mono-CS, and its aggregation and solubilization parameters, has also been evaluated. A substantial decrease in critical micelle concentration (CMC) of cationic surfactants in nutrient broths (up to 60 times) has been reported. Twofold dilution of monocationic surfactant by NmDg slightly changed the CMC of surfactant; however, it provided a remarkable increase in solubilization capacity (∼by 4 times) and decrease in its toxicity. The data anticipate the potential use of DABCO quaternized derivatives as innovative non-toxic delivery systems for hydrophobic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Water-structuring technology with the molecular chaperone proteins: indicated application of the α-crystallin domains and imidazole-containing peptidomimetics in cosmetic skin care systems or dermatological therapeutic drug carrier formulations.

    Science.gov (United States)

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2011-01-01

    a superior therapeutic treatment using the studied skin-rejuvenating, water-structuring, visible smoothing, and revitalizing beauty-performance agents to meet current challenges in skin care.

  9. Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

    Science.gov (United States)

    Hoffman, Jodi D; Greger, Valerie; Strovel, Erin T; Blitzer, Miriam G; Umbarger, Mark A; Kennedy, Caleb; Bishop, Brian; Saunders, Patrick; Porreca, Gregory J; Schienda, Jaclyn; Davie, Jocelyn; Hallam, Stephanie; Towne, Charles

    2013-01-01

    Tay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.6 kb deletion to enzyme analysis for TSD carrier screening using 74 samples collected from participants at a TSD family conference. Fifty-one of 74 participants had positive enzyme results (46 carriers, five late-onset Tay-Sachs [LOTS]), 16 had negative, and seven had inconclusive results. NGS + 7.6 kb del screening of HEXA found a pathogenic mutation, pseudoallele, or variant of unknown significance (VUS) in 100% of the enzyme-positive or obligate carrier/enzyme-inconclusive samples. NGS detected the B1 allele in two enzyme-negative obligate carriers. Our data indicate that NGS can be used as a TSD clinical carrier screening tool. We demonstrate that NGS can be superior in detecting TSD carriers compared to traditional enzyme and genotyping methodologies, which are limited by false-positive and false-negative results and ethnically focused, limited mutation panels, respectively, but is not ready for sole use due to lack of information regarding some VUS. PMID:24498621

  10. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    Science.gov (United States)

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ

  11. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  12. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... AND PLUMS Definitions § 35.4 Carrier. Carrier means any common or private carrier, including, but not being limited to, trucks, rail, airplanes, vessels, tramp or chartered steamers, whether carrying for...

  13. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  14. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  15. A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways.

    Science.gov (United States)

    Jiang, Kai; Chi, Ting; Li, Tao; Zheng, Guirong; Fan, Lulu; Liu, Yajun; Chen, Xiufen; Chen, Sijia; Jia, Lee; Shao, Jingwei

    2017-07-13

    Ursolic acid (UA) has been recently used as a promising anti-tumor and cancer metastatic chemo-preventive agent due to its low toxicity and liver-protecting property. However, the low bioavailability and nonspecific tumor targeting restrict its further clinical application. To address the problem, a silica-based mesoporous nanosphere (MSN) controlled-release drug delivery system (denoted UA@M-CS-FA) was designed and successfully synthesized, and was functionalized with folic acid (FA) and pH-sensitive chitosan (CS) for the targeted delivery of UA to folate receptor (FR) positive tumor cells. UA@M-CS-FA were spherical with mean diameter below 150 nm, and showed about -20 mV potential. Meanwhile, UA@M-CS-FA exhibited a pH-sensitive release manner and high cellular uptake in FR over-expressing HeLa cancer cells. Also, in vitro cellular assays suggested that UA@M-CS-FA inhibited cancer cell growth, invasion and migration. Mechanistically, UA@M-CS-FA induced cancer cell apoptosis and inhibited migration via cell cycle arrest in the G0/G1 stage, regulating the PARP/Bcl-2/MMP-9/CD44/PTEN/P53. Importantly, in vivo experiments further confirmed that UA@M-CS-FA significantly suppressed the tumor progression and lung metastasis in tumor-bearing nude mice. Immunohistochemical analysis revealed that UA@M-CS-FA treatment regulated CD44, a biomarker of cancer metastasis. Overall, our data demonstrated that a CS and FA modified MSN controlled-release drug delivery system could help broaden the usage of UA and reflect the great application potential of the UA as an anticancer or cancer metastatic chemopreventive agent.

  16. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    Portsmouth, J.H.; Maxwell, J.E.; Boness, G.O.; Rice, L.E.

    1991-04-01

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  17. Paso superior en una ladera

    Directory of Open Access Journals (Sweden)

    Bender, O.

    1965-07-01

    Full Text Available The Redwood highway, through the Californian forest, runs on a viaduct, as it crosses a mountain slope of about 45° inclination. The firm ground is fairly deep, and as an additional constructional difficulty, it was necessary to respect the natural beauty of the countryside. A structure of portal frames were built, forming a number of short spans. These spans were bridged with metal girders, on which a 19 m wide deck was placed. The columns are hollow and have a transversal cross beam, to join each pair. There was difficulty in excavating the foundations for the columns, as it was necessary to dig through the soft top soil, and also prevent this soil from hurting the trunks of the forest trees. Another significant difficulty in the construction of this viaduct was the access to the working site, since there were no suitable platforms from which to operate the appropriate machinery. This made it necessary to do a lot of the work by manual operation. As one of the edges of the deck is very close to the mountain side, a supporting beam was erected on this side. It was made of concrete, on metal piles. The formwork for the deck structure was placed on the concrete stems of the supporting piles.La autopista denominada Redwood (California salva, con un paso superior, la ladera de un bosque cuya pendiente es del 1/1. El terreno firme se halla a bastante profundidad, añadiéndose, a los naturales problemas de la construcción, el imperativo de respetar la belleza agreste del paraje. La solución adoptada consiste en una estructura porticada, con varios tramos de pequeñas luces, salvados con vigas metálicas, sobre los que se coloca la losa del tablero, de 19 m de anchura total. Los soportes están constituidos por pórticos de dos montantes huecos (con bases de hormigón en masa por debajo del suelo, hasta el firme coronados por un cabezal. La perforación de pozos para el hormigonado de los montantes presentaba la dificultad de atravesar el terreno

  18. 75 FR 28542 - Superior Resource Advisory Committee

    Science.gov (United States)

    2010-05-21

    ... Self-Determination Act (Pub. L. 110-343) and in compliance with the Federal Advisory Committee Act. The purpose of the meeting is to orient the new Superior Resource Advisory Committee members on their roles... following business will be conducted: Overview of the roles and responsibilities of the Superior Resource...

  19. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    Science.gov (United States)

    Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija

    2015-07-15

    Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. System and carrier for optical images and holographic information recording

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M

    2002-01-01

    The invention relates to the semiconducting silverless photography, in particular to the technique for optical information recording and may be used in microphotography for manifacture of microfiches, microfilms, storage disks, i the multiplication and copying technique, in holography, in micro- and optoelectronics, cinematography etc. The system for optical images and holographic information recording includes an optical exposure system, an information carrier , containing a dielectric substrate with the first electrode, a photosensitive element and the second electrode, arranged in consecutive order, a constant and impulse voltage source, a means for climbing and movement of the information carrier, a control unit for connection of the voltage source to the electroconducting strate, a personal computer, connected to the control unit of the recording modes ,to the exposure system and the information carrier, an electrooptical transparency, connected to the computer by means of the matching unit. The carrier for optical images and holographic information recording contains a dielectric substrate, a photosensitive element formed of a layer of the vitreous chalcogenic semiconductor and a layer of the crystalline or amorphous semiconductor, forming a heterojunction, the photosensitive element is arranged between two electrodes , one of which is made transparent , in such case rge layer of the vitreous chalcogenic semiconductor comes into contact with the superior transparent electrode, subjected to exposure

  3. Characterization data on the topical carrier DDC642

    Directory of Open Access Journals (Sweden)

    Eline Desmet

    2016-06-01

    Full Text Available This article contains original data, figures and methods used in the characterization of the liposomal carrier ‘DDC642’ for topical applications, described in “An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: proof-of-concept in the treatment of psoriasis” (Desmet et al., 2016 [1]. Several elastic liposomal formulations have been evaluated for their ability to encapsulate and deliver RNA interference (RNAi molecules to cultured primary skin cells. The efficiency and effectiveness of these liposomes were compared to that of our previously characterized liposomes, the ‘SECosomes’ (SEC (Geusens et al., 2010 [2]. After selection of a potential superior carrier, based on encapsulation and transfection efficiency data (Desmet et al., 2016 [1], the selected DDC642 liposomes were characterized more in-depth. Herein, a detailed characterization of the DDC642 liposome and RNAi-loaded lipoplexes is given, including the matching protocols.

  4. Polymer-free Drug-Coated Coronary Stents in Patients at High Bleeding Risk

    DEFF Research Database (Denmark)

    Urban, Philip; Meredith, Ian T; Abizaid, Alexandre

    2015-01-01

    BACKGROUND: Patients at high risk for bleeding who undergo percutaneous coronary intervention (PCI) often receive bare-metal stents followed by 1 month of dual antiplatelet therapy. We studied a polymer-free and carrier-free drug-coated stent that transfers umirolimus (also known as biolimus A9......), a highly lipophilic sirolimus analogue, into the vessel wall over a period of 1 month. METHODS: In a randomized, double-blind trial, we compared the drug-coated stent with a very similar bare-metal stent in patients with a high risk of bleeding who underwent PCI. All patients received 1 month of dual...... ratio, 0.50; 95% CI, 0.37 to 0.69; Pbleeding who underwent PCI, a polymer-free umirolimus-coated stent was superior to a bare-metal stent with respect to the primary safety and efficacy end points when used with a 1-month course of dual antiplatelet...

  5. Organoclays for drug delivery Systems

    OpenAIRE

    Canovas Creus, Alba

    2008-01-01

    Modified clays can be used as carriers of drugs due to their suitable properties and structure in order to achieve improvements in drug delivery. The study of this thesis starts with an introduction to mineral clays and its classification, properties and characterization, then deepens into modified clays (properties, comparison with mineral clays, applications and procedure of modification). Another chapter is focused in drug delivery: definition, its difficulties nowadays and the different w...

  6. Drug Facts

    Medline Plus

    Full Text Available ... Why Is It So Hard to Quit Drugs? Effects of Drugs Drug Use and Other People Drug ... Unborn Children Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug ...

  7. Superiority in value and the repugnant conclusion

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint

    2007-01-01

    superiority does not amount to a radical value difference at all. I then spell out the consequences of these results for different interpretations of Griffin's suggestion regarding population ethics. None of them comes out very successful, but perhaps they nevertheless retain some interest.......James Griffin has considered a weak form of superiority in value a possible remedy to the Repugnant Conclusion. In this paper, I demonstrate that, in a context where value is additive, this weaker form collapses into a stronger form of superiority. And in a context where value is non-additive, weak...

  8. 29 CFR 1201.1 - Carrier.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce Act...

  9. Low-cost carriers fare competition effect

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should

  10. Sustainable medication: Microtechnology for personalizing drug treatment

    DEFF Research Database (Denmark)

    Faralli, Adele; Melander, Fredrik; Andresen, Thomas Lars

    2014-01-01

    drug dosing” using light-­‐polymerizable polymer hydrogels as carriers for free or nanoparticle-­‐encapsulated drugs. The total dose is simply controlled by the volume of drug-­‐loaded cross-­‐ linked hydrogel defined by patterned light from a standard projector (Fig. 1). The concept enables simple...

  11. Modeling of drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls to treat vulnerable plaques

    KAUST Repository

    Hossain, Shaolie S.; Hossainy, Syed F A; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas Jr R

    2010-01-01

    The main objective of this work is to develop computational tools to support the design of a catheter-based local drug delivery system that uses nanoparticles as drug carriers in order to treat vulnerable plaques and diffuse atherosclerotic disease.

  12. Superior mesenteric artery syndrome causing growth retardation

    Directory of Open Access Journals (Sweden)

    Halil İbrahim Taşcı

    2013-03-01

    Full Text Available Superior mesenteric artery syndrome is a rare and lifethreateningclinical condition caused by the compressionof the third portion of the duodenum between the aortaand the superior mesenteric artery’s proximal part. Thiscompression may lead to chronic intermittent, acute totalor partial obstruction. Sudden weight-loss and the relateddecrease in the fat tissue are considered to be the etiologicalreason of acute stenosis. Weight-loss accompaniedby nausea, vomiting, anorexia, epigastric pain, andbloating are the leading complaints. Barium radiographs,computerized tomography, conventional angiography,tomographic and magnetic resonance angiography areused in the diagnosis. There are medical and surgical approachesto treatment. We hereby present the case ofa patient with superior mesenteric artery syndrome withdelayed diagnosis.Key words: superior mesenteric artery syndrome, nausea-vomiting, anorexia

  13. Knowledge about aids and drugs among undergraduate students in a higher education institution in the state of Paraná El conocimiento sobre sida y drogas entre alumnos de graduación de una institución de enseñanza superior en el estado de Paraná Conhecimento sobre aids e drogas entre alunos de graduação de uma instituição de ensino superior do estado do Paraná

    Directory of Open Access Journals (Sweden)

    Sônia Maria Soares dos Santos

    2009-08-01

    Full Text Available The main objective of this study was to measure the knowledge of undergraduate nursing students about Acquired Immunodeficiency Syndrome (AIDS and drugs. The study was carried out in 2007 with a random sample of 289 undergraduate students at a State University in the Northwest of Paraná, Brazil. The students self-applied a questionnaire validated by experts. Questions were divided into three levels of complexity: low, average and high. The level of correct answers was higher in the questions of low complexity, diminishing as the questions' complexity increased. Thirteen percent of questions concerning risk factors and vulnerability to HIV infection among injection drug users (IDU and biological material for diagnosis of AIDS was correctly answered by 90% of students. Students possessed knowledge concerning AIDS and drugs, however such knowledge was considered insufficient, showing lack of information and gaps in education with a dissociation of interdisciplinary and inter-curricular content.Este trabajo tuvo como principal objetivo investigar el conocimiento de universitarios sobre el síndrome de inmunodeficiencia adquirida (SIDA y drogas. La investigación se realizó en el año 2007 a partir de una muestra aleatoria de 289 alumnos de los cursos de graduación de una facultad estatal de la región noroeste de Paraná, en Brasil. Los alumnos respondieron un cuestionario auto aplicable, validado por especialistas del área. Las preguntas fueron divididas en tres niveles de complejidad: baja, media y alta. El índice de aciertos de los alumnos fue mayor en las preguntas de baja complejidad, disminuyendo con el aumento del grado de complejidad. El índice de 90% de aciertos ocurrió en 13% de las preguntas, que se referían a los factores de riesgo y vulnerabilidad para la infección por el virus de la inmunodeficiencia humana (HIV en usuarios de drogas inyectables (UDI y el material biológico para el diagnóstico de SIDA. Los alumnos pose

  14. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety... and recommendations on motor carrier safety programs and motor carrier safety regulations through a...

  15. Zn-based porous coordination solid as diclofenac sodium carrier

    Science.gov (United States)

    Lucena, Guilherme Nunes; Alves, Renata Carolina; Abuçafy, Marina Paiva; Chiavacci, Leila Aparecida; da Silva, Isabel Cristiane; Pavan, Fernando Rogério; Frem, Regina Célia Galvão

    2018-04-01

    Drug delivery systems produced with biocompatible components can be used to reduce adverse effects and improve therapy efficacy. Most of the carrier materials reported in the literature show poor drug loading and rapid release. However, porous hybrid solids, such as metal-organic frameworks, are well suited to serve as carriers for delivery and imaging applications. In this work, a luminescent and nontoxic porous Zn(II) coordination polymer with 4,4‧-biphenyl-dicarboxylic acid (BPDC) and adenine linkers (BioMOF-Zn) was synthesized by a solvothermal process and characterized by PXRD, TGA, SEM-FEG, and FTIR. Nitrogen adsorption measurements revealed the presence of micropores as well as mesopores in the framework after activation of the material. The blue-emitting BioMOF-Zn exhibited an outstanding loading capacity (1.72 g g-1) and satisfactory release capability (56% after two days) for diclofenac sodium.

  16. Superior versus inferior Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Pakravan, Mohammad; Yazdani, Shahin; Shahabi, Camelia; Yaseri, Mehdi

    2009-02-01

    To compare the efficacy and safety of Ahmed glaucoma valve (AGV) (New World Medical Inc., Rancho Cucamonga, CA) implantation in the superior versus inferior quadrants. Prospective parallel cohort study. A total of 106 eyes of 106 patients with refractory glaucoma. Consecutive patients with refractory glaucoma underwent AGV implantation in the superior or inferior quadrants. Main outcome measures included intraocular pressure (IOP) and rate of complications. Other outcome measures included best corrected visual acuity (BCVA), number of glaucoma medications, and success rate (defined as at least 30% IOP reduction and 5glaucoma surgery, phthisis bulbi, or loss of light perception. Of a total of 106 eyes, 58 and 48 eyes underwent AGV implantation in the superior and inferior quadrants, respectively. Baseline characteristics were comparable in the study groups, except for preoperative IOP, which was higher in the superior group (P = 0.01). Patients were followed for a mean period of 10.6+/-8.49 months and 10.58+/-6.75 months in the superior and inferior groups, respectively (P = 0.477). BCVA was comparable between the groups at all postoperative visits (P>0.122). After 1 year, statistically significant but comparable IOP reduction from baseline (Pglaucoma medications was comparable after 1 year (1.3+/-1.2 vs. 1.9+/-0.8 for superior and inferior implants, respectively, P = 0.256). Success rates were also similar at 1 year: 27 eyes (81.8%) versus 20 eyes (95.2%) for superior and inferior implants, respectively (P = 0.227). However, the overall rate of complications, such as implant exposure necessitating removal, cosmetically unappealing appearance, and endophthalmitis, was higher in the inferior group: 12 eyes (25%) versus 3 eyes (5.2%) for superior and inferior groups, respectively, (P = 0.004). Superior and inferior AGV implants have similar intermediate efficacy in terms of IOP reduction, decrease in number of glaucoma medications, and preservation of vision. However

  17. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  18. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Mohammad Barzegar-jalali

    2014-09-01

    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  19. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  20. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  1. Drug Facts

    Medline Plus

    Full Text Available ... Get Addicted to Drugs? Does Addiction Run in Families? Why Is It So Hard to Quit Drugs? ... Drug Use and Other People Drug Use and Families Drug Use and Kids Drug Use and Unborn ...

  2. Drug Facts

    Medline Plus

    Full Text Available ... Facts Search form Search Menu Home Drugs That People Abuse Alcohol Facts Bath Salts Facts Cocaine (Coke, ... Drugs? Effects of Drugs Drug Use and Other People Drug Use and Families Drug Use and Kids ...

  3. Drug Facts

    Medline Plus

    Full Text Available ... People Drug Use and Families Drug Use and Kids Drug Use and Unborn Children Drug Use and ... Children and Teens Stay Drug-Free Talking to Kids About Drugs: What to Say if You Used ...

  4. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  5. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.

    Science.gov (United States)

    Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry

    2016-12-15

    Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Persistent left superior vena cava with absent right superior vena cava: image findings

    International Nuclear Information System (INIS)

    Araujo Junior, Cyrillo Rodrigues de; Carvalho, Tarcisio Nunes; Fraguas Filho, Sergio Roberto; Costa, Marlos Augusto Bitencourt; Jacob, Beatriz Mahmud; Machado, Marcio Martins; Teixeira, Kim-Ir-Sen Santos; Ximenes, Carlos Alberto

    2003-01-01

    Persistent left superior vena cava absent right superior vena cava is a rare anomaly, with less than 150 cases reported in the literature. Congenitally persistent left superior vena cava is the most common variant of systemic venous return to the heart, resulting embryologically from failure of the left anterior cardinal vein to become obliterated. Its incidence varies from 0.3% in patients with otherwise normal heart to 4.3% in patients with congenital heart disease. In the majority of the patients, a right superior vena cava is present as well, but rarely the right anterior cardinal vein degenerates resulting in the absence of the normal right superior vena cava. The blood from the right side is carried by the persistent left superior vena cava to the right atrium through the coronary sinus. We report the case of a patient with a persistent left superior vena cava and absence of right superior vena cava identified by chance during a chest radiograph and computed tomography examination for investigation of chronic pulmonary obstructive disease. The patient had no congenital heart disease and the blood from the right side was drained by the persistent left superior vena cava into the right atrium through the coronary sinus. (author)

  7. Investigation into Alternative Sugars as Potential Carriers for Dry Powder Formulation of Budesonide

    Directory of Open Access Journals (Sweden)

    Ali Nokhodchi

    2011-08-01

    Full Text Available Introduction: Dry powder inhaler (DPI formulations are so far being used for pulmonary drug delivery, mainly for the treatment of asthma and chronic obstructive pulmonary disease (COPD. Currently most of DPI formulations rely on lactose as a carrier in the drug powder blend. However, due to reducing sugar function of lactose which makes it incompatible with some drugs such as budesonide, it is realistic to investigate for alternative sugars that would overcome the concerned drawback but still have the positive aspects of lactose. Methods: The study was conducted by characterizing carriers for their physico-chemical properties and preparing drug/carrier blends with concentration of 5% and 10% drug with the carrier. The mixing uniformity (homogeneity of Budesonide in the blends was analyzed using spectrophotometer. The blend was then filled into NB7/2 Airmax inhaler device and the deposition profiles of the drug were determined using multi stage liquid impinger (MSLI after aerosolization at 4 kPa via the inhaler. The morphology of the carriers conducted using the scanning electron microscope. Results: The results determined that the mean fine particle fraction (FPF of 5% and 10% blends of mannitol was 61%, possibly due to fine elongated particles. Dextrose exhibited excellent flowability. Scanning electron microscope illustrated mannitol with fine elongated particles and dextrose presenting larger and coarse particles. It was found out that type of carriers, particle size distribution, and morphology would influence the FPF of budesonide. Conclusion: It may be concluded that mannitol could be suitable as a carrier on the basis of its pharmaceutical performance and successful achievement of FPF whereas the more hygroscopic sugars such as sorbitol or xylitol showed poor dispersibility leading to lower FPF.

  8. The picture superiority effect in associative recognition.

    Science.gov (United States)

    Hockley, William E

    2008-10-01

    The picture superiority effect has been well documented in tests of item recognition and recall. The present study shows that the picture superiority effect extends to associative recognition. In three experiments, students studied lists consisting of random pairs of concrete words and pairs of line drawings; then they discriminated between intact (old) and rearranged (new) pairs of words and pictures at test. The discrimination advantage for pictures over words was seen in a greater hit rate for intact picture pairs, but there was no difference in the false alarm rates for the two types of stimuli. That is, there was no mirror effect. The same pattern of results was found when the test pairs consisted of the verbal labels of the pictures shown at study (Experiment 4), indicating that the hit rate advantage for picture pairs represents an encoding benefit. The results have implications for theories of the picture superiority effect and models of associative recognition.

  9. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  10. Vena cava superior syndrome associated with sarcoidosis

    International Nuclear Information System (INIS)

    Wurm, K.; Walz, M.; Reidemeister, J.C.; Donhuijsen, K.

    1988-01-01

    We report the first observation of clinical manifestations of vena cava superior syndrome (VCSS) associated with sarcoidosis. Twenty-four years after the first signs of the disease had been noted, mediastinal lymphomas penetrating the wall of the vena cava superior caused complete obstruction. It is most unusual for the vessel wall to be destroyed in this way, which explains why VCSS is often missed in sarcoidosis. The obstructed vessel was resected and successfully replaced by a Gore-Tex prosthesis. The importance of VCSS for the differential diagnosis is pointed out. Two further peculiarities are the simultaneous occurrence of elevated intraocular pressure and VCSS, and the familial incidence. (orig.) [de

  11. Polymer carriers for anticancer drugs targeted to EGF receptor

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Pola, Robert; Pechar, Michal; Etrych, Tomáš; Ulbrich, Karel; Kovář, Lubomír; Kabešová, Martina; Říhová, Blanka

    2012-01-01

    Roč. 12, č. 12 (2012), s. 1714-1720 ISSN 1616-5187 R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biocompatibility * EGFR * peptides Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M) Impact factor: 3.742, year: 2012

  12. Hybrid Nanostructures Containing Sulfadiazine Modified Chitosan as Antimicrobial Drug Carriers

    Directory of Open Access Journals (Sweden)

    Bogdanel Silvestru Munteanu

    2016-11-01

    Full Text Available Chitosan (CH nanofibrous structures containing sulfadiazine (SDZ or sulfadiazine modified chitosan (SCH in the form of functional nanoparticles attached to nanofibers (hybrid nanostructures were obtained by mono-axial and coaxial electrospinning. The mono-axial design consisted of a SDZ/CH mixture solution fed through a single nozzle while the coaxial design consisted of SCH and CH solutions separately supplied to the inner and outer nozzle (or in reverse order. The CH ability to form nanofibers assured the formation of a nanofiber mesh, while SDZ and SCH, both in form of suspensions in the electrospun solution, assured the formation of active nanoparticles which remained attached to the CH nanofiber mesh after the electrospinning process. The obtained nanostructures were morphologically characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. The SDZ release profiles and kinetics were analyzed. The SDZ or SCH nanoparticles loosely attached at the surface of the nanofibers, provide a burst release in the first 20 min, which is important to stop the possible initial infection in a wound, while the SDZ and SCH from the nanoparticles which are better confined (or even encapsulated into the CH nanofibers would be slowly released with the erosion/disruption of the CH nanofiber mesh.

  13. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole.

    Science.gov (United States)

    Lin, Wen Jen; Duh, Yi Shein

    2016-11-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) for transdermal delivery of acid-labile lansoprazole (LPZ). The drug loading, particle size, zeta potential, thermal behavior and stability of NLCs were evaluated. The particle size of NLCs was in the range of 90-210nm and the zeta potential was -61.9 to +3.2mV dependent of the compositions. Stearylamine (SA) prevented lansoprazole degradation and maintained drug stable in NLCs. The anionic sodium dodecyl sulfate (SDS) adsorbed on the lipid surface and formed complex with cationic SA to prevent NLCs aggregation. The effects of type (e.g., isopropyl myristate (IPM), menthol) and concentration (e.g., 1.25, 2.50, 3.75%w/w) of enhancers on penetration of lansoprazole NLC hydrogels were investigated in vitro using Wistar rat skin. The steady-state flux of lansoprazole NLC hydrogel containing 3.75% IPM was the highest which was enhanced by 2.7 folds as compared to enhancer-free NLC hydrogel. In vivo pharmacokinetics of lansoprazole following transdermal delivery of NLC hydrogel showed that the elimination of drug was significantly reduced and the mean residence time of drug was prominently prolonged as compared to intravenous drug solution (p<0.005). The accumulation of drug in the skin and continuous penetration of drug through the skin accounted for the maintenance of drug concentration for at least 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters

    NARCIS (Netherlands)

    Wieczorek, Sebastian; Krause, Eberhard; Hackbarth, Steffen; Roeder, Beate; Hirsch, Anna K. H.; Boerner, Hans G.

    2013-01-01

    A generic method describes advanced tailoring of polymer drug carriers based on polymer-block-peptides. Combinatorial means are used to select suitable peptide segments to specifically complex small-molecule drugs. The resulting specific drug formulation agents render insoluble drugs water-soluble

  15. Superior oblique luxation and trochlear luxation as new concepts in superior oblique muscle weakening surgery

    NARCIS (Netherlands)

    Mombaerts, I.; Koornneef, L.; Everhard-Halm, Y. S.; Hughes, D. S.; Maillette de Buy Wenniger-Prick, L. J.

    1995-01-01

    We used superior oblique luxation and trochlear luxation as new surgical procedures to treat acquired Brown's syndrome and superior oblique muscle overaction. We studied nine patients (11 eyes) who underwent trochlear surgery between 1988 and 1993. Four patients had acquired Brown's syndrome and

  16. Magnetic resonance imaging evaluation of meniscoid superior labrum: normal variant or superior labral tear

    Directory of Open Access Journals (Sweden)

    Marcelo Novelino Simão

    Full Text Available Abstract Objective: The objective of this study was to determine the incidence of a "meniscoid" superior labrum. Materials and Methods: This was a retrospective analysis of 582 magnetic resonance imaging examinations of shoulders. Of those 582 examinations, 110 were excluded, for a variety of reasons, and the final analysis therefore included 472 cases. Consensus readings were performed by three musculoskeletal radiologists using specific criteria to diagnose meniscoid labra. Results: A meniscoid superior labrum was identified in 48 (10.2% of the 472 cases evaluated. Arthroscopic proof was available in 21 cases (43.8%. In 10 (47.6% of those 21 cases, the operative report did not include the mention a superior labral tear, thus suggesting the presence of a meniscoid labrum. In only one of those cases were there specific comments about a mobile superior labrum (i.e., meniscoid labrum. In the remaining 11 (52.4%, surgical correlation demonstrated superior labral tears. Conclusion: A meniscoid superior labrum is not an infrequent finding. Depending upon assumptions and the requirement of surgical proof, the prevalence of a meniscoid superior labrum in this study was between 2.1% (surgically proven and 4.8% (projected. However, superior labral tears are just as common and are often confused with meniscoid labra.

  17. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

    Science.gov (United States)

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun

    2017-07-18

    Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

  18. 49 CFR 385.605 - New entrant registration driver's license and drug and alcohol testing requirements.

    Science.gov (United States)

    2010-10-01

    ... America-Domiciled Carriers § 385.605 New entrant registration driver's license and drug and alcohol... carrier must subject each of the drivers described in paragraph (a) of this section to drug and alcohol... 49 Transportation 5 2010-10-01 2010-10-01 false New entrant registration driver's license and drug...

  19. Efficiency of some spectrochemical carriers

    International Nuclear Information System (INIS)

    Gomes, R.P.

    1978-01-01

    A comparative study of the efficiency of some spectrochemical carriers for the quantitative spectrographic analysis of Ag, Al, B, Bi, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, Si, Sn, V and Zn in uranium-base materials is presented. The volatility behavior of the eighteen elements is verified by means of the moving plate technique and each of the mentioned carriers. The best results are obtained with 4% In 2 O 3 , 6% AgCl and 5% NaF in a U 3 O 8 matrix. The sensitivities for some elements were extended to fractions of p.p.m. The precision, accuracy and acceptability of the method are calculated for all elements. The total error values as approximately in the range of 16-45% [pt

  20. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-04-01

    Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers. Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier. Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles. Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  1. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  2. 7 CFR 33.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common or...

  3. 8 CFR 217.6 - Carrier agreements.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under this...

  4. 14 CFR 271.4 - Carrier costs.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.4 Carrier costs. (a) The reasonable costs projected for a carrier providing essential air service at an eligible...

  5. 14 CFR 271.5 - Carrier revenues.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.5 Carrier revenues. (a) The projected passenger revenue for a carrier providing essential air service at an eligible...

  6. Superior intellectual ability in schizophrenia: neuropsychological characteristics.

    Science.gov (United States)

    MacCabe, James H; Brébion, Gildas; Reichenberg, Abraham; Ganguly, Taposhri; McKenna, Peter J; Murray, Robin M; David, Anthony S

    2012-03-01

    It has been suggested that neurocognitive impairment is a core deficit in schizophrenia. However, it appears that some patients with schizophrenia have intelligence quotients (IQs) in the superior range. In this study, we sought out schizophrenia patients with an estimated premorbid Intelligence Quotient (IQ) of at least 115 and studied their neuropsychological profile. Thirty-four patients meeting diagnostic criteria for schizophrenia or schizoaffective disorder, as defined by the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV), with mean estimated premorbid IQ of 120, were recruited and divided into two subgroups, according to whether or not their IQ had declined by at least 10 points from their premorbid estimate. Their performance on an extensive neuropsychological battery was compared with that of 19 IQ-matched healthy controls and a group of 16 "typical" schizophrenia patients with estimated premorbid IQ Schizophrenia patients whose estimated premorbid and current IQ both lay in the superior range were statistically indistinguishable from IQ-matched healthy controls on all neurocognitive tests. However, their profile of relative performance in subtests was similar to that of typical schizophrenia patients. Patients with superior premorbid IQ and evidence of intellectual deterioration had intermediate scores. Our results confirm the existence of patients meeting DSM-IV diagnostic criteria for schizophrenia who have markedly superior premorbid intellectual level and appear to be free of gross neuropsychological deficits. We discuss the implications of these findings for the primacy of cognitive deficits in schizophrenia.

  7. The Picture Superiority Effect and Biological Education.

    Science.gov (United States)

    Reid, D. J.

    1984-01-01

    Discusses learning behaviors where the "picture superiority effect" (PSE) seems to be most effective in biology education. Also considers research methodology and suggests a new research model which allows a more direct examination of the strategies learners use when matching up picture and text in efforts to "understand"…

  8. Mammographic varicosities indicative of a superior mediastinal ...

    African Journals Online (AJOL)

    In addition, an abnormal calibre of the superficial veins can reflect not only underrying breast pathology, but a collateral venous return resulting from an upper mediastinal obstruction. A case mammographically demonstrating mammary varicosities resulting from a superior mediastinal syndrome is described. S. Afr. Med.

  9. COSEE Superior Creates Passion for Science

    Science.gov (United States)

    COSEE was a transformative educational experience that has changed the way I teach. In July, I participated in the COSEE Lake Superior Shipboard and Shoreline Science program. I spent a week on the US EPA’s R/V Lake Guardian with 14 other teachers and a crew of sailors and scient...

  10. Perturbation resilience and superiorization of iterative algorithms

    International Nuclear Information System (INIS)

    Censor, Y; Davidi, R; Herman, G T

    2010-01-01

    Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the value of a given function is optimal, algorithms tend to need more computer memory and longer execution time. A methodology is presented whose aim is to produce automatically for an iterative algorithm of the first kind a 'superiorized version' of it that retains its computational efficiency but nevertheless goes a long way toward solving an optimization problem. This is possible to do if the original algorithm is 'perturbation resilient', which is shown to be the case for various projection algorithms for solving the consistent convex feasibility problem. The superiorized versions of such algorithms use perturbations that steer the process in the direction of a superior feasible point, which is not necessarily optimal, with respect to the given function. After presenting these intuitive ideas in a precise mathematical form, they are illustrated in image reconstruction from projections for two different projection algorithms superiorized for the function whose value is the total variation of the image

  11. Improving Dry Powder Inhaler Performance by Surface Roughening of Lactose Carrier Particles.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia

    2016-08-01

    This study investigated the impact of macro-scale carrier surface roughness on the performance of dry powder inhaler (DPI) formulations. Fluid-bed processing and roller compaction were explored as processing methods to increase the surface roughness (Ra) of lactose carrier particles. DPI formulations containing either (a) different concentrations of fine lactose at a fixed concentration of micronized drug (isoniazid) or (b) various concentrations of drug in the absence of fine lactose were prepared. The fine particle fraction (FPF) and aerodynamic particle size of micronized drug of all formulations were determined using the Next Generation Impactor. Fluid-bed processing resulted in a modest increase in the Ra from 562 to 907 nm while roller compaction led to significant increases in Ra > 1300 nm. The roller compacted carriers exhibited FPF > 35%, which were twice that of the smoothest carriers. The addition of up to 5%, w/w of fine lactose improved the FPF of smoother carriers by 60-200% whereas only lactose carrier particles by roller compaction was immensely beneficial to improving DPI performance, primarily due to increased surface roughness at the macro-scale.

  12. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rutian Li

    Full Text Available AIMS: The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs are able to overcome this "pH-induced physiological drug resistance" (PIPDR by delivering drugs to the cancer cells via endocytosis rather than passive diffussion. MATERIALS AND METHODS: As a model nanoparticle, Tetradrine (Tet, Pka 7.80 was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo. RESULTS: The cytotoxicity of free Tet decreased prominently (P<0.05 when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects. CONCLUSION: The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect.

  13. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  14. Drug Facts

    Medline Plus

    Full Text Available ... Treatment and Recovery Resources? Prevention Help Children and Teens Stay Drug-Free Talking to Kids About Drugs: What to Say if You Used Drugs in the Past Drug Use ... Videos Information About Drugs Alcohol ...

  15. Drug Allergy

    Science.gov (United States)

    ... Loss of consciousness Other conditions resulting from drug allergy Less common drug allergy reactions occur days or ... you take the drug. Drugs commonly linked to allergies Although any drug can cause an allergic reaction, ...

  16. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Science.gov (United States)

    2010-01-01

    ... forth in paragraph (c) of this section. In such cases the Board may determine in an adjudicatory... carrier shall not engage in joint public relations activities at points served by both carriers which tend... either carrier are performed in common with the other carrier or as part of a single system. In cases...

  17. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Bhaskar Daravath

    2018-05-01

    Full Text Available ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05 in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%. The mean dissolution time (MDT was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min. indicating faster drug release. The DE (% dissolution efficiency was increased by 2.5 folds (61.63% compared to conventional tablets (23.71%. From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.

  18. Superior photoelectrochemical properties of ZnO nanorods/poly(3-hexylthiophene) hybrid photoanodes

    Science.gov (United States)

    Majumder, T.; Hmar, J. J. L.; Dhar, S.; Mondal, S. P.

    2017-06-01

    Photoelectrochemical properties of ZnO nanorods (ZnO NRs) and poly(3-hexylthiophene) (P3HT) polymer hybrid photoanodes have been studied. The hybrid photoanodes demonstrated higher photoconversion efficiency, incident photon to current conversion efficiency (IPCE) and lower interfacial resistance compared to pristine ZnO nanorods and P3HT based electrodes. The origin of superior photoelectrochemical properties of ZnO/P3HT photoanodes has been explained using carrier transport mechanism at semiconductor/electrolyte junction. The stability of ZnO NRs/P3HT photoanode has been demonstrated.

  19. Evoked responses of the superior olive to amplitude-modulated signals.

    Science.gov (United States)

    Andreeva, N G; Lang, T T

    1977-01-01

    Evoked potentials of some auditory centers of Rhinolophidae bats to amplitude-modulated signals were studied. A synchronization response was found in the cochlear nuclei (with respect to the fast component of the response) and in the superior olivary complex (with respect to both fast and slow components of the response) within the range of frequency modulation from 50 to 2000 Hz. In the inferior colliculus a synchronized response was recorded at modulation frequencies below 150 Hz, but in the medial geniculate bodies no such response was found. Evoked responses of the superior olivary complex were investigated in detail. The lowest frequencies of synchronization were recorded within the carrier frequency range of 15-30 and 80-86 kHz. The amplitude of the synchronized response is a function of the frequency and coefficient of modulation and also of the angle of stimulus presentation.

  20. Non-permeable substrate carrier for electroplating

    Science.gov (United States)

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  1. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee (MCSAC) Meeting. SUMMARY...

  2. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Science.gov (United States)

    2012-08-03

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety Advisory Committee (MCSAC...

  3. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  4. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA...

  5. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces...

  6. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  7. Phenobarbital use and neurological problems in FMR1 premutation carriers.

    Science.gov (United States)

    Saldarriaga, Wilmar; Lein, Pamela; González Teshima, Laura Yuriko; Isaza, Carolina; Rosa, Lina; Polyak, Andrew; Hagerman, Randi; Girirajan, Santhosh; Silva, Marisol; Tassone, Flora

    2016-03-01

    Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by a CGG expansion in the FMR1 gene located at Xq27.3. Patients with the premutation in FMR1 present specific clinical problems associated with the number of CGG repeats (55-200 CGG repeats). Premutation carriers have elevated FMR1 mRNA expression levels, which have been associated with neurotoxicity potentially causing neurodevelopmental problems or neurological problems associated with aging. However, cognitive impairments or neurological problems may also be related to increased vulnerability of premutation carriers to neurotoxicants, including phenobarbital. Here we present a study of three sisters with the premutation who were exposed differentially to phenobarbital therapy throughout their lives, allowing us to compare the neurological effects of this drug in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Aneurysm of the superior mesenteric artery

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, A

    1984-11-01

    This is a report about 4 patients with aneurysms of the superior mesenteric artery of arteriosclerotic, mycotic and probably congenital etiology together with a review of the literature as to the etiology, diagnostic possibilities and therapy. Arteriography is the method of choice even though a diagnosis may be possible by sonography or CT in special cases. Even though an aneurysm of the superior mesenteric artery is rare, it has to be considered in the differential diagnosis of persisting abdominal problems of unknown origin. This is especially true for patients with a predisposing history such as previous or existing endocarditis, sepsis, arteriosclerosis and hypertension. Because of the possibility of rupture followed by life threating bleeding an adequate diagnostic step such as arteriography has to be considered finally.

  9. Aneurysm of the superior mesenteric artery

    International Nuclear Information System (INIS)

    Gebauer, A.

    1984-01-01

    This is a report about 4 patients with aneurysms of the superior mesenteric artery of arteriosclerotic, mycotic and probably congenital etiology together with a review of the literature as to the etiology, diagnostic possibilities and therapy. Arteriography is the method of choice even though a diagnosis may be possible by sonography or CT in special cases. Even though an aneurysm of the superior mesenteric artery is rare, it has to be considered in the differential diagnosis of persisting abdominal problems of unknown origin. This is especially true for patients with a predisposing history such as previous or existing endocarditis, sepsis, arteriosclerosis and hypertension. Because of the possibility of rupture followed by life threating bleeding an adequate diagnostic step such as arteriography has to be considered finally. (orig.) [de

  10. Superior cold recycling : The score project

    OpenAIRE

    LESUEUR, D; POTTI, JJ; SOUTHWELL, C; WALTER, J; CRUZ, M; DELFOSSE, F; ECKMANN, B; FIEDLER, J; RACEK, I; SIMONSSON, B; PLACIN, F; SERRANO, J; RUIZ, A; KALAAJI, A; ATTANE, P

    2004-01-01

    In order to develop Environmentally Friendly Construction Technologies (EFCT) and as part of the 5th Framework Program of Research and Development, the European Community has decided to finance a research project on cold recycling, entitled SCORE "Superior COld REcycling based on benefits of bituminous microemulsions and foamed bitumen. A EFCT system for the rehabilitation and the maintenance of roads". This research project gathers organizations from all over Europe, from industrial partners...

  11. Reperfusion hemorrhage following superior mesenteric artery stenting.

    LENUS (Irish Health Repository)

    Moore, Michael

    2012-02-03

    Percutaneous transluminal angioplasty and stent placement is now an established treatment option for chronic mesenteric ischemia and is associated with low mortality and morbidity rates. We present a case of reperfusion hemorrhage complicating endovascular repair of superior mesenteric artery stenosis. Although a recognized complication following repair of carotid stenosis, hemorrhage has not previously been reported following mesenteric endovascular reperfusion. We describe both spontaneous cessation of bleeding and treatment with coil embolization.

  12. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A; Nueesch, P; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  13. Biocheese: A Food Probiotic Carrier

    Science.gov (United States)

    Castro, J. M.; Tornadijo, M. E.; Fresno, J. M.; Sandoval, H.

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  14. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  15. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  16. [Neuromolecular mechanism of the superiority illusion].

    Science.gov (United States)

    Yamada, Makiko

    2014-01-01

    The majority of individuals evaluate themselves as above average. This is a cognitive bias called "the superiority illusion". This illusory self-evaluation helps us to have hopes for the future, and has been central to the process of human evolution. Possessing this illusion is also important for mental health, as depressed people appear to have a more realistic perception of themselves, dubbed "depressive realism". Our recent study revealed the spontaneous brain activity and central dopaminergic neurotransmission that generate this illusion, using resting-state fMRI and PET. A functional connectivity between the frontal cortex and striatum, regulated by inhibitory dopaminergic neurotransmission, determines individual levels of the superiority illusion. We further revealed that blocking the dopamine transporter, which enhanced the level of dopamine, increased the degree of the superiority illusion. These findings suggest that dopamine acts on striatal dopamine receptors to suppress fronto-striatal functional connectivity, leading to disinhibited, heuristic, approaches to positive self-evaluation. These findings help us to understand how this key aspect of the human mind is biologically determined, and will suggest treatments for depressive symptoms by targeting specific molecules and neural circuits.

  17. Eutrophication monitoring for Lake Superior's Chequamegon ...

    Science.gov (United States)

    A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading relate to observed chlorophyll concentrations. Sampling included ship-based water samples combined with vertical CTD casts, continuous in situ towing and data collected from an autonomous underwater glider. Sampling was conducted during June, July and September. The glider collected regional data as part of three extended missions in Lake Superior over the same periods. During the study, two significant storm events impacted the western end of Lake Superior; the first occurred during July 11-12, with 8-10 inches of rain in 24hrs, and the second on July 21 with winds in excess of 161 km/h. Using GIS software, we organized these diverse temporal data sets along a continuous time line with temporally coincident Modis Satellite data to visualize surface sediment plumes in relation to water quality measurements. Preliminary results suggest that both events impacted regional water quality, and that nearshore physical forces (upwelling and currents) influenced the spatial variability. Results comparing in situ measures with remotely sensed images will be discussed. not applicable

  18. Waldenstrom macroglobulinemia involving the superior rectus muscle

    Directory of Open Access Journals (Sweden)

    J.B. Hellman

    2018-06-01

    Full Text Available Purpose: We present the first reported case of Waldenstrom macroglobulinemia in the right superior rectus causing diplopia. Observations: A 72-year-old man with a 6-month history of untreated asymptomatic Waldenstrom macroglobulinemia presented with 2 years of diagonal binocular diplopia that was previously thought to be due to ocular myasthenia gravis. Examination showed mild right proptosis and right hypotropia, and MRI revealed a focal lesion of the right superior rectus muscle. Orbital biopsy was performed, and histopathology showed lymphoplasmacytic infiltration among the skeletal muscle fibers of the rectus muscle. Immunostaining confirmed a B-cell preponderance, along with more extensive staining for IgM than IgG, and in situ hybridization confirmed lambda restriction. These findings corresponded with those of his previous bone marrow biopsy, confirming Waldenstrom macroglobulinemia as the etiology for the extraocular muscle mass. Conclusions and Importance: Lymphoma of an extraocular muscle is a rare manifestation of orbital lymphoma, and the tumors are usually mucosa-associated lymphoid tissue (MALT lymphomas (i.e. extranodal marginal zone lymphomas. There are 4 previous reports of lymphoplasmacytic lymphoma of an extraocular muscle; however this is the first reported case of such a lesion in a patient with concurrent Waldenstrom macroglobulinemia at the time of diagnosis. Keywords: Waldenstrom's macroglobulinemia, Lymphoma, Superior rectus, Diplopia

  19. Burlington Northern Taconite Transshipment Facility, Duluth-Superior Harbor, Superior Wisconsin. Environmental Assessment Report.

    Science.gov (United States)

    1975-03-01

    the Federal Government declared the Duluth- Superior area to be economically depressed . The reason given was the "consistant and chronic unemployment...include dogwood, sumac, arrowwood, blueberry, highbush cranberry , elderberry, wild grape, buttonbrush, snowberry and partridgeberry. Aquatic and...water for the proposed greenbelt areas and as dust sup- pression spray. 10.003 The depressed economy of the Duluth-Superior area would benefit by the

  20. Superior mesenteric artery compression syndrome - case report

    Directory of Open Access Journals (Sweden)

    Paulo Rocha França Neto

    2011-12-01

    Full Text Available Superior mesenteric artery syndrome is an entity generally caused by the loss of the intervening mesenteric fat pad, resulting in compression of the third portion of the duodenum by the superior mesenteric artery. This article reports the case of a patient with irremovable metastatic adenocarcinoma in the sigmoid colon, that evolved with intense vomiting. Intestinal transit was carried out, which showed important gastric dilation extended until the third portion of the duodenum, compatible with superior mesenteric artery syndrome. Considering the patient's nutritional condition, the medical team opted for the conservative treatment. Four months after the surgery and conservative measures, the patient did not present vomiting after eating, maintaining previous weight. Superior mesenteric artery syndrome is uncommon and can have unspecific symptoms. Thus, high suspicion is required for the appropriate clinical adjustment. A barium examination is required to make the diagnosis. The treatment can initially require gastric decompression and hydration, besides reversal of weight loss through adequate nutrition. Surgery should be adopted only in case of clinical treatment failure.A síndrome da artéria mesentérica superior é uma entidade clínica causada geralmente pela perda do tecido adiposo mesentérico, resultando na compressão da terceira porção do duodeno pela artéria mesentérica superior. Esse artigo relata o caso clínico de uma paciente portadora de adenocarcinoma de cólon sigmoide metastático irressecável, que evoluiu com vômitos incoercíveis. Realizou-se, então, trânsito intestinal que evidenciou dilatação gástrica importante, que se prolongava até a terceira porção duodenal, quadro radiológico compatível com pinçamento da artéria mesentérica superior. Diante da condição nutricional da paciente, foi optado por iniciar medidas conservadoras (porções alimentares pequenas e mais frequentes, além de dec

  1. Silicon nanowire hot carrier electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, M. du, E-mail: monuko@up.ac.za; Joubert, T.-H.

    2016-08-31

    Avalanche electroluminescence from silicon pn junctions has been known for many years. However, the internal quantum efficiencies of these devices are quite low due to the indirect band gap nature of the semiconductor material. In this study we have used reach-through biasing and SOI (silicon-on-insulator) thin film structures to improve the internal power efficiency and the external light extraction efficiency. Both continuous silicon thin film pn junctions and parallel nanowire pn junctions were manufactured using a custom SOI technology. The pn junctions are operated in the reach-through mode of operation, thus increasing the average electric field within the fully depleted region. Experimental results of the emission spectrum indicate that the most dominant photon generating mechanism is due to intraband hot carrier relaxation processes. It was found that the SOI nanowire light source external power efficiency is at least an order of magnitude better than the comparable bulk CMOS (Complementary Metal Oxide Semiconductor) light source. - Highlights: • We investigate effect of electric field on silicon avalanche electroluminescence. • With reach-through pn junctions the current and carrier densities are kept constant. • Higher electric fields increase short wavelength radiation. • Higher electric fields decrease long wavelength radiation. • The effect of the electric field indicates intraband transitions as main mechanism.

  2. Extensive superior limbic keratoconjunctivitis in Graves’ disease: case report and mini-review of the literature

    Directory of Open Access Journals (Sweden)

    Chelala E

    2015-03-01

    Full Text Available Elias Chelala, Hala El Rami, Ali Dirani, Henry Fakhoury, Ali Fadlallah Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon Background: Superior limbic keratoconjunctivitis (SLK is characterized as an inflammation of the superior bulbar conjunctiva with predominant involvement of the superior limbus and adjacent epithelial keratitis.Methods: A 51-year-old woman, with a history of medically controlled Graves’ disease was seen with an extensive SLK involving 5 mm of the superior cornea.Results: Total remission was observed with topical steroids (DXM. Recurrence was observed 1 week after steroid discontinuation, and steroidal treatment was reintroduced with tapering over 1 month. Total remission was then observed for 1 year. Conclusion: Extensive keratitis and vascular pannus in SLK is rarely reported. This form could be treated with topical steroids. Tapering treatment remains essential for long-term success. Keywords: superior limbic keratoconjunctivitis, anti-inflammatory drugs, dexamethasone, triamcinolone, Graves’ disease

  3. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  4. Low-complexity Joint Sub-carrier Phase Noise Compensation for Digital Multi-carrier Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Barletta, Luca; Zibar, Darko

    2017-01-01

    Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM.......Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM....

  5. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  6. Drug Safety

    Science.gov (United States)

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  7. Drug Abuse

    Science.gov (United States)

    ... Cocaine Heroin Inhalants Marijuana Prescription drugs, including opioids Drug abuse also plays a role in many major social problems, such as drugged driving, violence, stress, and child abuse. Drug abuse can lead to ...

  8. Drug Facts

    Medline Plus

    Full Text Available ... Use and Unborn Children Drug Use and Your Health Other Effects on the Body Drug Use Hurts Brains Drug Use and Mental Health Problems Often Happen Together The Link Between Drug ...

  9. Drug Facts

    Medline Plus

    Full Text Available ... Drug Use and Kids Drug Use and Unborn Children Drug Use and Your Health Other Effects on ... Someone Find Treatment and Recovery Resources? Prevention Help Children and Teens Stay Drug-Free Talking to Kids ...

  10. Club Drugs

    Science.gov (United States)

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  11. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  12. Aerial Logistics Management for Carrier Onboard Delivery

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY by Samuel L. Chen September 2016...AND SUBTITLE AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY 5. FUNDING NUMBERS 6. AUTHOR(S) Samuel L. Chen 7. PERFORMING ORGANIZATION NAME(S...delivery (COD) is the use of aircraft to transport people and cargo from a forward logistics site (FLS) to a carrier strike group (CSG). The goal of

  13. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu; Gu, Yuzong [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  14. Both Hemophilia Health Care Providers and Hemophilia A Carriers Report that Carriers have Excessive Bleeding

    Science.gov (United States)

    Paroskie, Allison; Oso, Olatunde; DeBaun, Michael R.; Sidonio, Robert F

    2014-01-01

    Introduction Hemophilia A, the result of reduced factor VIII (FVIII) activity, is an X-linked recessive bleeding disorder. Previous reports of Hemophilia A carriers suggest an increased bleeding tendency. Our objective was to determine the attitudes and understanding of the Hemophilia A carrier bleeding phenotype, and opinions regarding timing of carrier testing from the perspective of both medical providers and affected patients. Data from this survey was used as preliminary data for an ongoing prospective study. Material and Methods An electronic survey was distributed to physicians and nurses employed at Hemophilia Treatment Centers (HTC), and Hemophilia A carriers who were members of Hemophilia Federation of America. Questions focused on the clinical understanding of bleeding symptoms and management of Hemophilia A carriers, and the timing and intensity of carrier testing. Results Our survey indicates that 51% (36/51) of providers compared to 78% (36/46) of carriers believe that Hemophilia A carriers with normal FVIII activity have an increased bleeding tendency (pHemophilia A carriers report a high frequency of bleeding symptoms. Regarding carrier testing, 72% (50/69) of medical providers recommend testing after 14 years of age, conversely 65% (29/45) of Hemophilia A carriers prefer testing to be done prior to this age (pHemophilia A carriers self-report a higher frequency of bleeding than previously acknowledged, and have a preference for earlier testing to confirm carrier status. PMID:24309601

  15. Superior labrum anterior-to-posterior tear.

    Science.gov (United States)

    Sum, Jonathan C; Omid, Reza

    2012-12-01

    The patient was a 25-year-old male college student with a chief complaint of right shoulder pain. The patient was initially diagnosed with bicipital tendinitis by his physician and had been treated for 4 weeks by a physical therapist. However, his symptoms did not improve and he was unable to return to his preinjury activity levels, so he sought the services of another physical therapist for a second opinion. Due to concern for a labrum tear, the physical therapist referred the patient to an orthopaedic surgeon. Magnetic resonance arthrography revealed findings consistent with a superior labrum anterior-to-posterior tear.

  16. Ultrasound Detection of Superior Vena Cava Thrombus

    Directory of Open Access Journals (Sweden)

    Aaron Birch

    2014-09-01

    Full Text Available Superior vena cava (SVC syndrome is most commonly the insidious result of decreased vascular flow through the SVC due to malignancy, spontaneous thrombus, infections, and iatrogenic etiologies. Clinical suspicion usually leads to computed tomography to confirm the diagnosis. However, when a patient in respiratory distress requires emergent airway management, travel outside the emergency department is not ideal. With the growing implementation of point-of-care ultrasound (POCUS, clinicians may make critical diagnoses rapidly and safely. We present a case of SVC syndrome due to extensive thrombosis of the deep venous system cephalad to the SVC diagnosed by POCUS. [West J Emerg Med. 2014;15(6:715-718

  17. Superior Venacava Thrombus-A Case Report

    Directory of Open Access Journals (Sweden)

    Bijay Sah

    2016-03-01

    Full Text Available Superior venacava (SVC thrombus is a condition requiring immediate diagnosis and treatment. SVC thrombus causes obstruction of blood flow through the SVC resulting in severe decrease in venous return from the head, neck and upper extremity to the heart. The presenting symptoms of SVC obstruction include headache, hoarseness of voice, dyspnea, and laryngeal edema, dizziness, swelling of face, neck, and upper extremity. We hereby present a case of SVC thrombus who presented to the casualty department of COMS-TH with features of SVC syndrome which was diagnosed and managed promptly.JCMS Nepal. 2016;12(1:33-5.

  18. Spontaneous Dissection of the Superior Mesenteric Artery

    International Nuclear Information System (INIS)

    Sheldon, Patrick J.; Esther, James B.; Sheldon, Elana L.; Sparks, Steven R.; Brophy, David P.; Oglevie, Steven B.

    2001-01-01

    Spontaneous dissection of the superior mesenteric artery (SMA) is a rare occurrence, especially when not associated with aortic dissection. Currently, only 28 cases appear to have been reported. Due to the scarcity of cases in the literature, the natural history of isolated, spontaneous SMA dissection is unclear. CT has been reported to be useful for the initial diagnosis of SMA dissection [2-5]. We present two recent cases of spontaneous SMA dissection in which enhanced spiral CT was instrumental in following the disease process and guiding clinical decision making

  19. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  20. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Directory of Open Access Journals (Sweden)

    Petunin AI

    2010-01-01

    Full Text Available Abstract Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs to various targets in vivo.

  1. Nanosuspension Technology for Solubilizing Poorly Soluble Drugs

    OpenAIRE

    Deoli Mukesh

    2012-01-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. It is estimated that around 40% of drugs in the pipeline cannot be delivered through the preferred route or in some cases, at all owing to poor water solubility. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor1 EL). To date, nanoscale systems f...

  2. Estudio descriptivo del uso de drogas en adolescentes de educación media superior de la ciudad de Monterrey, Nueva León, México Estudo descritivo do uso de drogas em adolescentes de educação média supeiror da cidade de monterrey, Nova Leon, México Descriptive study of drugs use among adolescents in higher middle education in Monterrey, Nueva León, Mexico

    Directory of Open Access Journals (Sweden)

    Gregorio Martinez Rodríguez

    2004-04-01

    Full Text Available Se buscó establecer el perfil de consumo de drogas lícitas e ilícitas, patrones de consumo y estrategias de afrontamiento y resistencia al alcohol, tabaco y otras drogas en adolescentes de educación media superior. El estudio se sustentó en los conceptos de autores especializados en el tema considerándose las características conductuales, psicológicas y normativas de la persona. La muestra no probabilística consistió de 325 jóvenes. Los resultados indicaron que 67%, 65% y 7% de los adolescentes aceptaron haber usado alcohol, tabaco y marihuana alguna vez en su vida respectivamente y en el último mes el 33%, 38% y 3% esas mismas substancias, 65% consideran que la mayoría de sus compañeros han hecho uso; 56% tuvieron que rechazar una vez el ofrecimiento de alcohol, 64% tabaco y 51% marihuana, en el último mes con base en esos hallazgos. Se recomienda implementar un programa de prevención orientado a apoyar los recursos del adolescente para resistir las presiones para el consumo.Buscou-se estabelecer o perfil de consumo de drogas lícitas e ilícitas, padrões de consumo e estratégias de enfrentamento e resistência ao álcool, tabaco e outras drogas em adolescentes de educação média superior. O estudo fundamentou-se nos conceitos de autores especializados no tema, considerando-se as características comportamentais, psicológicas normativas da pessoa. A amostra, não probabilística, consistiu de 325 jovens. Os resultados indicaram que 67%, 65% e 7% dos adolescentes aceitaram haver usado álcool, tabaco e maconha alguma vez na vida respectivamente e no último mês, 33%, 38% e 3% essas mesmas substâncias; 65% consideram que a maioria de seus companheiros fez uso; 56% tiveram que recusar uma vez a oferta de álcool, 64% tabaco e 51% maconha, no último mês. Com base nesses achados recomenda-se a implementação de um programa de prevenção orientado a apoiar os aportes dos adolescentes para resistir à pressão para o consumo

  3. Acute Bilateral Superior Branch Vestibular Neuropathy

    Directory of Open Access Journals (Sweden)

    Dario A. Yacovino

    2018-05-01

    Full Text Available The rapid onset of a bilateral vestibular hypofunction (BVH is often attributed to vestibular ototoxicity. However, without any prior exposure to ototoxins, the idiopathic form of BVH is most common. Although sequential bilateral vestibular neuritis (VN is described as a cause of BVH, clinical evidence for simultaneous and acute onset bilateral VN is unknown. We describe a patient with an acute onset of severe gait ataxia and oscillopsia with features compatible with acute BVH putatively due to a bilateral VN, which we serially evaluated with clinical and laboratory vestibular function testing over the course of 1 year. Initially, bilateral superior and horizontal semicircular canals and bilateral utricles were impaired, consistent with damage to both superior branches of each vestibular nerve. Hearing was spared. Only modest results were obtained following 6 months of vestibular rehabilitation. At a 1-year follow-up, only the utricular function of one side recovered. This case is the first evidence supporting an acute presentation of bilateral VN as a cause for BVH, which would not have been observed without critical assessment of each of the 10 vestibular end organs.

  4. Premissas para o Ensino Superior do Design

    Directory of Open Access Journals (Sweden)

    André Luis Marques da Silveira

    2016-12-01

    Full Text Available Este artigo aborda a temática da Educação Superior e objetivo identificar premissas para o Ensino em Design no Brasil. Para tanto, efetua um estudo dos conteúdos das comunicações da área em periódicos e livros quanto ao assunto. O método de investigação utilizado foi a análise de conteúdo e observou as seguintes etapas de investigação: registro de dados, interpretação inferencial e categorização. Num primeiro momento, identifica a frequência do aparecimento de índices lexicais quanto ao relato de problemas no processo de Ensino-aprendizagem do Design e as proposições para o seu enfrentamento. Procede uma interpretação inferencial destes dados e, por fim, propõe como resultado, um conjunto de doze premissas que devem ser observadas quanto ao Ensino Superior em Design, a saber: 1 Incentivar o empreendedorismo; 2 Nivelar a Formação; 3 Desenvolver estrategistas; 4 Pensar a ética na atuação profissional; 5 Educar para o social; 6 Valorizar os ideias humanistas; 7 Repensar as estruturas acadêmicas; 8 Focar na aprendizagem baseada em problemas; 9 Aceitar os novos paradigmas; 10 Fomentar o pensamento crítico reflexivo; 11 Estimular a transdisciplinaridade; 12 Focar nas economias emergentes.

  5. Design and Evaluation of Chitosan-Based Novel pHSensitive Drug ...

    African Journals Online (AJOL)

    Design and Evaluation of Chitosan-Based Novel pHSensitive Drug Carrier for Sustained ... Scanning electron microscopy(SEM),Raman spectroscopy for particle size analysis. Swelling ratio, Effect of drug loading on encapsulation efficiency

  6. Tratamento da síndrome da veia cava superior Treatment of superior vena cava syndrome

    Directory of Open Access Journals (Sweden)

    Luís Marcelo Inaco Cirino

    2005-12-01

    Full Text Available A veia cava superior é formada pela união das duas veias inominadas, direita e esquerda, e localiza-se no mediastino médio, à direita da artéria aorta e anteriormente à traquéia. A síndrome da veia cava superior representa um conjunto de sinais (dilatação das veias do pescoço, pletora facial, edema de membros superiores, cianose e sintomas (cefaléia, dispnéia, tosse, edema de membro superior, ortopnéia e disfagia decorrentes da obstrução do fluxo sanguíneo através da veia cava superior em direção ao átrio direito. A obstrução pode ser causada por compressão extrínseca, invasão tumoral, trombose ou por dificuldade do retorno venoso ao coração secundária a doenças intra-atriais ou intraluminais. Aproximadamente 73% a 97% dos casos de síndrome da veia cava superior ocorrem durante a evolução de processos malignos intratorácicos. A maioria dos pacientes com a síndrome secundária a neoplasias malignas é tratada sem necessidade de cirurgia, através de radioterapia ou quimioterapia, ou através da colocação de stents endoluminais. Quando a síndrome é de etiologia benigna, o tratamento é feito através de medidas clínicas (anticoagulação, elevação da cabeça, etc. ou, em casos refratários, através de angioplastia, colocação de stents endoluminais e cirurgia.The superior vena cava is formed by the union of the right and left brachiocephalic veins. It is located in the middle mediastinum, to the right of the aorta and anterior to the trachea. Superior vena cava syndrome consists of a group of signs (dilation of the veins in the neck, facial swelling, edema of the upper limbs, and cyanosis and symptoms (headache, dyspnea, cough, orthopnea and dysphagia caused by the obstruction of blood flow through the superior vena cava to the right atrium. This obstruction can be caused by extrinsic compression, tumor invasion or thrombosis. Such obstruction may also occur as a result of insufficient venous return

  7. 14 CFR 120.17 - Use of prohibited drugs.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Use of prohibited drugs. 120.17 Section 120...) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Air Traffic Controllers § 120.17 Use of prohibited drugs. (a) Each employer shall provide...

  8. 14 CFR 120.33 - Use of prohibited drugs.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Use of prohibited drugs. 120.33 Section 120...) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL... prohibited drugs. (a) This section applies to individuals who perform a function listed in subpart E of this...

  9. 14 CFR 120.35 - Testing for prohibited drugs.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Testing for prohibited drugs. 120.35... (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND... for prohibited drugs. (a) Each certificate holder or operator shall test each of its employees who...

  10. Low molecular mass chitosan as carrier for hydrodynamically balanced system for sustained delivery of ciprofloxacin hydrochloride

    OpenAIRE

    VERMA, ANURAG; BANSAL, ASHOK K.; GHOSH, AMITAVA; PANDIT, JAYANTA K.

    2012-01-01

    Chitosan has become a focus of major interest in recent years due to its excellent biocompatibility, biodegradability and non-toxicity. Although this material has already been extensively investigated in the design of different types of drug delivery systems, it is still little explored for stomach specific drug delivery systems. The objective of the present investigation was to explore the potential of low molecular mass chitosan (LMCH) as carrier for a hydrodynamically balanced system (HBS)...

  11. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers.

    Science.gov (United States)

    Otarola, Jessica; Garrido, Mariano; Correa, N Mariano; Molina, Patricia G

    2016-08-04

    A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti-inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  13. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  14. The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Pan

    Full Text Available Red blood cells (RBCs can be used for vascular delivery of encapsulated or surface-bound drugs and carriers. Coupling to RBC prolongs circulation of nanoparticles (NP, 200 nm spheres, a conventional model of polymeric drug delivery carrier enabling their transfer to the pulmonary vasculature without provoking overt RBC elimination. However, little is known about more subtle and potentially harmful effects of drugs and drug carriers on RBCs. Here we devised high-throughput in vitro assays to determine the sensitivity of loaded RBCs to osmotic stress and other damaging insults that they may encounter in vivo (e.g. mechanical, oxidative and complement insults. Sensitivity of these tests is inversely proportional to RBC concentration in suspension and our results suggest that mouse RBCs are more sensitive to damaging factors than human RBCs. Loading RBCs by NP at 1:50 ratio did not affect RBCs, while 10-50 fold higher NP load accentuated RBC damage by mechanical, osmotic and oxidative stress. This extensive loading of RBC by NP also leads to RBCs agglutination in buffer; however, addition of albumin diminished this effect. These results provide a template for analyses of the effects of diverse cargoes loaded on carrier RBCs and indicate that: i RBCs can tolerate carriage of NP at doses providing loading of millions of nanoparticles per microliter of blood; ii tests using protein-free buffers and mouse RBCs may overestimate adversity that may be encountered in humans.

  15. Air Power's First Among Equals: Why Air Superiority Still Matters

    National Research Council Canada - National Science Library

    Slawson, Andrew T

    2008-01-01

    .... History is replete with examples of successful or failed air superiority campaigns. This paper details air superiority's role in both the Battle of Britain, and the 1967 Six Day War's Operation MOKED...

  16. Driver citation/carrier data relationship project

    Science.gov (United States)

    1996-09-01

    The Driver/Carrier Relationship Project was commissioned to address three issues. The first was to determine if drivers of commercial motor vehicles get tickets at a different rate, depending on the carrier that they are working for. The second issue...

  17. Method and apparatus for information carrier authentication

    NARCIS (Netherlands)

    2015-01-01

    The present invention relates to a method of enabling authentication of an information carrier, the information carrier comprising a writeable part and a physical token arranged to supply a response upon receiving a challenge, the method comprising the following steps; applying a first challenge to

  18. Immobilisation of Acinetobacter calcoaceticus using natural carriers

    African Journals Online (AJOL)

    2005-04-02

    Apr 2, 2005 ... and Cloete, 1995) or ceramic (Kariminiaae-Hamedaani et al.,. 2003) carriers. Besides the synthetic carriers, natural zeolite. (NZ) has been shown as a .... ing 9 mℓ of sterile distilled water, crushed with a sterile glass rod and dispersed by mixing (2 700 r/min for 10 min using the test tube shaker Kartell TK3S) ...

  19. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao

    2009-01-01

    OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  20. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...